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Abstract

Let G be a non-trivial group, S € G\ {1} and S = S7! := {s7' | s € S}.
The Cayley graph of G denoted by I'(S : G) is a graph with vertex set G and two
vertices a and b are adjacent if ab=! € S. A graph is called integral, if its adjacency
eigenvalues are integers. In this paper we determine all connected cubic integral
Cayley graphs. We also introduce some infinite families of connected integral Cayley
graphs.

1 Introduction and Results

We say that a graph is integral if all the eigenvalues of its adjacency matrix are integers.
The notion of integral graphs was first introduced by Harary and Schwenk in 1974 [12].

In 1976 Bussemaker and Cvetkovi¢ [7], proved that there are exactly 13 connected
cubic integral graphs. The same result was independently proved by Schwenk [16] who
unlike the effort in [7] avoids the use of computer search to examine all the possibilities.
However the work of Schwenk [16] was inspired and stimulated by Cvetkovié attempt [9]
to find the connected cubic integral graphs where he had displayed twelve such graphs,
and had restricted the remaining possibilities to ninety-five potential spectra, Schwenk
has produced a complete and self-contained solution.

It is known that the size of a connected k-regular graph with diameter d is bounded
above by k(k;ii);ﬂ (see, for example [10]). In [9], it is noted that if we know the graph is
integral then d < 2k because there are at most 2k + 1 distinct eigenvalues. Consequently,
the upper bound of the size of a connected k-regular integral graph is

Kk — 1)2 — 2
k-2

n <
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Using Brendan McKay’s program geng for generating graphs, nowadays it is easy to
see that there are exactly 263 connected integral graphs on up to 11 vertices (see [3, 4]).
In 2009 Alon et al. [1] show that the total number of adjacency matrices of integral

n(n—1)

graphs with n vertices is less than or equal to 2~z 10 for a sufficiently large n. For
the background and some known results about integral graphs, we refer the reader to the
survey [5].

The problem of characterizing integral graphs seems to be very difficult and so it is
wise to restrict ourselves to certain families of graphs. Here we are interested to study
Cayley graphs. Let G be a non-trivial group with the identity element 1, S C G\ {1}
and S = S7! := {s7!s € S}. The Cayley graph of G denoted by I'(S : G) is the graph
with vertex set G' and two vertices a and b are adjacent if ab=! € S. If S generates G
then I'(S : G) is connected. A Cayley graph is simple and vertex transitive.

We denote the symmetric group and the alternating group on n letters by S, and A,,
respectively. Also (), and Ds, are used for the cyclic group of order m and dihedral group
of order 2n (n > 2).

The main question that we are concerned here is the following:

Which Cayley graphs are integral?

It is clear that if S = G\ {1}, then I'(S : G) is the complete graph with |G| vertices and so
it is integral. Klotz and Sander [14] showed that all nonzero eigenvalues of I'(U,, : Z,,) are
integers dividing the value ¢(n) of the Euler totient function, where Z, is the cyclic group
of order n and U, is the subset of all elements of Z,, of order n. W. So [17] characterize
integral graphs among circulant graphs. By using a result of Babai [2] which presents the
spectrum of a Cayley graph in terms of irreducible characters of the underlying group, we
give some infinite families of integral Cayley graphs.

The study of Cayley graphs of the symmetric group generated by transpositions is interest-
ing (See [11]). In this paper we show ['(S : S,,) is integral, where S = {(12), (13),...,(1n)}
and n € {3,4,5,6}. We also characterize all connected cubic integral Cayley graphs and
introduce some infinite family of connected integral Cayley graphs.

The main results are the following.

Theorem 1.1 There are exactly seven connected cubic integral Cayley graphs. In par-
ticular, for a finite group G and a subset S = S™' % 1 with three elements, T'(S : G) is
integral if and only if G is isomorphic to one the following groups: C2, Cy, Cs, Sz, C3,
02 X 04, Dg, 02 X C(j, Dlg, A4, 54, Dg X Cg, DG X 04 or A4 X 02.

Theorem 1.2 Let Dy, = (a,b|a" =0 =1,(ab)> =1), n=2m+1,d|n (1 <d<n)
and S = {a* | k € B(1,n)} U{a®* | k € B(1,2)} U{ba* | k € B(1,n)} U {ba™ | k €
B(1,%)}. Then T'(S : Dyy,) is integral.

Theorem 1.3 Let Ty, = (a,b | a® = 1,0* =a™, b lab=a"'), n=2m +1 (n # 1) and
S={a"|1<k<2n—1,k#n}U{ab,a™tb}. Then T'(S :Ty,) is integral.

Theorem 1.4 Let Ug, = {(a,b | a® =0 = 1l,a'ba =b"'), n =2m+1 (n # 1) and
S={a®*b|1<k<n—1JU{a*? |1 <k<n—1}U{a®*|0< k< n—1}. Then
I'(S : Usy) is integral.
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2 Preliminaries

First we give some facts that are needed in the next section. Let n be a positive integer.
. . . 27
Then B(1,n) denotes the set {j |1 < j <n,(j,n) =1}. Let w=e™» and

Clrm)= Y o, 0<r<n—1 (2.1)
JjEB(1,n)

The function C(r,n) is a Ramanujan sum. For integers r and n, (n > 0), Ramanujan
sums have only integral values ( See [15] and [18]).

Lemma 2.1 Let w = e, where i> = —1. Then
2n—1

i) Z wl = —1.
j=1

n—1
ii) If | is even, then Zwlj =—1.
j=1
n—1
iii) If 1 is odd, then Y w" +w™ = 0.
j=1
Proof. The proof is straightforward. O
Lemma 2.2 Let G =C, = (a), d |n (1 <d <n) and Ag = {a™ | k € B(1,2)}. Then

A= A

Proof. Let n = dk’ and a?* be an arbitrary element of A;. Since (k — k',k’) = 1 and
(a®)~! = qn=tk = qWk'—dk = (K =R)d(qd)=1 ¢ A, So A7' C A, Tt is easy to see that
|A;Y| = |Ag|. Hence A" = A,. O
Lemma 2.3 [2] Let G be a finite group of order n whose irreducible characters (over
C) are py,...,pn with respective degrees ny,...,n,. Then the spectrum of the Cayley
graph I'(S : G) can be arranged as A = {Nji | i = 1,...,h;j,k = 1,...,n;} such that
>\ij1 =...= >\Um and

for any natural number t.

Lemma 2.4 [13] Let C,, = (a). Then irreducible characters of C,, are p; : a* — wi*,

where 5,k =0,1,...,n— 1.

Lemma 2.5 [13] Let G = Cp,, X - - x Cy,. and Cy,, = (a;), so that for anyi,j € {1,...,r},
2mi

(ni,nj) # 1. If wy = e, then ny - - -n, irreducible characters of G are

Py (allﬁ’ SRR aﬁr) = wl11k1wézkz o 'wirkr (2'3)

where l; =0,1,...,n; — 1 andi=1,2,...,r.
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Lemma 2.6 Let G be a group and G = (S), where S =S~ and 1 ¢ S. Ifa € S and
o(a) =m > 2, then I'(S : G) has the cycle with m vertices as a subgraph.

Proof. Observe that 1 —a —a® —--- —a™ ! —a™ =1 is a cycle with m vertices. O

Lemma 2.7 Let G = (S) be a group, |G| =n, |S|=2,S=S"1Z1. ThenT(S:QG) is
integral if and only if n € {3,4,6}.

Proof. It is clear that I'(S : G) is a connected 2-regular graph. Thus I'(S : G) is the
cycle with n vertices. By checking the eigenvalues of the cycles, one can easily see that
the only integral cycles are ones with 3, 4 or 6 vertices. This completes the proof. O

Lemma 2.8 Let G be the cyclic group (a), |G| =n > 3 and let S be a generating set of G
such that |S| =3, S =S and1¢ S. Thena™? € S. Also ifa” € S and o(a™) = m > 2,
then (n,r) =1 or (n/2,r) = 1.

Proof. Let (n,r) # 1 and (n/2,7r) # 1. Then (a") # G. Suppose (n/2,r) = d, where
d # 1, then (a",a™?) = (a%). Since d | n, G # (a?). Hence (a",a™?) # G. This
contradicts the fact that S generates G. U

Lemma 2.9 Let G be the cyclic group {(a), |G| = n > 3 and let S be a generating set
of G such that |S| =3, S =St and 1 & S. Then I'(S : G) is integral if and only if
n € {4,6}.

Proof. Let I'(S : G) be integral. Then S = {a"/?,a",a™"}, where (n,7) =1 or (n/2,r) =
1. If X is the eigenvalue of I'(S : GG) corresponding to irreducible character of p;. Then
by Lemmas 2.3 and 2.4, A = py(a") + p1(a™") + p1(a™/?) = 2cos(27r/n) — 1. Since \ is
integer, cos(27mr/n) € {£1/2,+1,0}. We consider the following cases:

Casel: Let (n,r) = 1. Then if cos(2nr/n) € {—1/2,—1,1}, then n € {1,2,3}, which is
false. If cos(27r/n) =0, thenn =4 and r = 1 or 3. So S = {a,a?,a}. If cos(2mr/n) =
1/2, thenn =6 and r =1 or 5. So S = {a,da?,a’}.

Case2: Let (n,7) # 1 and (n/2,r) = 1. Without loss of generality we can assume r < n/2.
Similarly if cos(27r/n) € {—1,0,1/2,1}, then r = 1, which is false. If cos(27r/n) = —1/2,
then n =6 and r =2 or 4. So S = {a?, a®,a'}.

Conversely, if n = 4, then I'(S : G) is complete graph K, and so is integral.

If n==6,5 ={a,aa’} and Sy = {a? a*, a'}, then by Lemmas 2.3 and 2.4, ['(S; : G)
and T'(S, : G) are integral with spectra of [—3,0%, 3] and [—22,02, 1, 3] respectively. [

Lemma 2.10 Let Gy and Gy be two groups and G = Gy X Gy such that I'(S : G) is
integral, where S = S™' Z 1 with three elements. Let S; = {s1 | (s1,92) € S, g0 €
Go} \ {1}. Then I'(S; : Gy) is integral.

Proof. Let yo and py be the trivial irreducible characters of G; and G, respectively.
Let A\ and A; be the eigenvalues of I'(S : G) and I'(S; : G;) corresponding to irreducible
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characters of y; x po and x;, respectively. Since S generates G and S = S~! ¥ 1 with
three elements, |S;| =2 or 3. If |S;| = 2, then by Lemma 2.3,

Aip = Z (Xi % po)(g1,92) = Z Xi(s1) +1

(91,92)€8 51€51

and so \jg = A\; + 1. If || = 3, then by Lemma 2.3,

Aip = Z (Xi X po)(g1,92) = Z Xi(s1) = Ai

(91,92)€8 51€851

and so Spec(I'(S; : G1)) C Spec(I'(S : G)). However I'(S; : G1) is integral. Furthermore
if |Sl| = 2, then —1 < )\i0~ [

Lemma 2.11 Let G be a finite abelian group such that is not cyclic and let G = (S),
where |S| =3, =S"1Yand1 & S. ThenT(S : G) is integral if and only if |G| € {4,8,12}.

Proof. Let T'(S : G) be integral. If all of elements of S are of order two, then G = C?
or G = (3. So |G| = 4 or 8 Otherwise G = C,,, x Cy where m is even. By Lemmas
2.7, 2.9 and 2.10, we conclude that m € {3,4,6}. Since m is even, m € {4,6}. Hence
G| € {4,8,12}.

Conversely, if |G| = 4, then I'(S : G) = K, and so is integral.

Let |G| = 8. Then G = C3 or CyxCy. If G = C and S = {(b,1,1), (1,b,1),(1,1,b)}, then
by Lemma 2.3, T'(S : C3) is integral with spectrum of [—-3, —13,13 3]. If G = C; x Cy and
S ={(a,1),(a®1),(1,b)}, then by Lemma 2.3, ['(S : Cy x Cy) is integral with spectrum
of [-3,—13,13,3].

Let |G| = 12. Then G = Cg x Cy. If S = {(a,1),(a",1),(1,b)}, then by Lemma 2.3,
['(S: Cs x Cy) is integral with spectrum of [—3, —22, —1,0% 1,22 3]. O

Lemma 2.12 Let Dy, = (a,b | a" =1* = 1,(ab)> = 1), n =2m + 1, and T'(S : Dy,) be
integral, where Dy, = (S), |S| =3, S=S"" and1 ¢ S. Then

i) —3 is the simple eigenvalue of T'(S : Day,) if and only if all of elements of S are of
order two.

i) If [=3, =21, —1%2 0% 114 25 3] 4s the spectrum of T'(S : Day,), then Iy = 1y, Iy =I5
and 4 | l3. Furthermore ly, ly are even.

i11) If n # 3, then I'(S : Day,) is bipartite.

Proof. i) Let —3 be the simple eigenvalue of I'(S : Dy,). By Lemma 2.3 and using
characters table D,,, —3 is the eigenvalue of I'(S : Dy,) corresponding to irreducible
character x,,+1. So all of elements of S are in conjugacy class of b.

Conversely, if all of elements of S are of order two, then S C b (the bar indicates conjugacy
class). By Lemma 2.3 and using characters table of Ds,, the eigenvalue of I'(S : Ds,)
corresponding to irreducible character y;,+1 is —3.
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ii) Since —3 is the simple eigenvalue of I'(S : Ds,), S € b. By Lemma 2.3 and
using characters table of Dy, the eigenvalues of I'(S : Dy,) corresponding to irreducible
characters x; (1 < j < m), are negative. Thus [; = I, and [y = l5. Furthermore since the
multiplicity of the eigenvalues of corresponding to irreducible characters of degree two is
2, l; and [y are even and 4 | l3.

iii) Let a” € S, where 1 < r < m. It is clear that (n,r) = 1. Since n # 3 and
(n,7) = 1, 2cos(2nr/n) is not integer. Let A3 and Ao be eigenvalues of I'(S : Dy,)
corresponding to irreducible character y;. By Lemma 2.3 and using characters table of
Doy, A1+ A2 = 2 cos(27r/n). This contradicts the fact that I'(S : Dy, is integral. Thus
S C b and so —3 is an eigenvalue of ['(S : Dy,). Therefore, T'(S : Dy,) is bipartite. O

Lemma 2.13 Let S = {(12),(13),...,(In)} and n € {3,4,5,6}. Then I'(S : S,) is
integral.

Proof. It is clear that I'(S : S5) is a cycle with six vertices and so is integral with
spectrum of [—2,—1%1%22]. By using the following program written in GAP [19] and
thanks to the GRAPE package of L.H. Soicher, one can easily see that I'(S : Sy), I'(S : S5)
and I'(S : Sg) are integral graphs with spectra as follows:

[—3, 20, —1% 0% 1,25 3],
[_4 _312 _228 _14 030 14 228 312 4]
[_5 _420 _3105 _2120 _130 0168 130 2120 3105 420 5]
respectively.

LoadPackage("grape") ;

### The following function admat constructs the adjacency matrix
### of a given graph G with n vertices

admat:=function(G,n)

local B,A,i,j;

A:=[1;
for i in [1..n] do
B:=[1;

for j in [1..n] do
if (j in Adjacency(G,i))=true then Add(B,1); else

Add(B,0); fi;
od;

Add(A,B);

od;

return A;
end;

#### The following function listcompress converts a multiset to a set
#### of ordered pairs whose <first components are exactly the
#### elements of the corresponding set to the multiset
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#### and the second one is the multiplicity of the first

#### component in the multiset

listcompress:=function(L)

local 1;

1:=Set(L);

return List(1l,i->[i,Size(Filtered(L,j->j=1))]1);

end;

## Example: Computing the spectrum of the Cayley graph of

## the symmetric group of degree 6 on the set

# [(1,2),(1,3),(1,4),(1,5),(1,6)]
G:=CayleyGraph(SymmetricGroup(6),[(1,2),(1,3),(1,4),(1,5),(1,6)]1);
### Construct the required Cayley graph

A:=admat (G,720);

p:=CharacteristicPolynomial(A);

r:=Roots0fUPol(p); #roots of the characteristic polynomial of A
Spectrum0fS6:=1listcompress(r); #Spectrum of G

O
We end this section by the following conjecture.

Conjecture 2.14 Let n > 4 be an arbitrary integer and S = {(12),(13),...,(1n)} be
the subset of the symmetric group S, of degree n. Then I'(S : S,) is integral. Moreover,
{0, £1,...,£(n — 1)} is the set of all distinct eigenvalues of T'(S : S,,).

3 Proof of Our main results

In this section we prove our main results.

Proof of Theorem 1.1. Let I'(S : G) be integral. Since I'(S : G) is a cubic integral
graph, I'(S : G) is of type G, for 1 < i < 13 (see [16]). Since the number of vertices of
G;, for 1 <i < 13, are 4, 6, 8, 10, 12, 20, 24 or 30, |G| € {4,6,8,10,12,20,24,30}. Hence
we have the following cases:

Casel: Let |G| =4. Then I'(S: G) = K, = G.

Case2: Let |G| = 6. Then G = Cj or Dg.

If Cg = (a), S; = {a,a®,a°} and Sy = {a? a® a'}, then by using the program written
in Lemma 2.13, T'(S; : Cg) and T'(Sy : C) are integral with spectra of [—3,0% 3] and
[—22,02, 1, 3] respectively. So I'(S; : C) = Gy and T'(Sy : C5) = Gs.

If G = Dg = (a,b| a®> =0 = (ab)? = 1), S; = {b,ab,a’b} and Sy = {a,a? b},
then by using the program written in Lemma 2.13, I'(S; : Dg) and I'(Sy : Dg) are inte-
gral with spectra of [—3,0%, 3] and [—22,02, 1, 3] respectively. So I'(S; : Dg) = G5 and
F(Sg : Dﬁ) = G5.

Case3: Let |G| = 8. Then G = Cg, C3, Cy x Cy, Dg or Qg = (a,b | a* = 1,a*> =
b, b~tab = a'). We show that the graph G4 is only and only cayley graph of C3, Cy x C,
and Dsg.
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Let G = C3 or Cy x Cy, by the proof of Lemma 2.11, I'(S : G) = G4.

Let G = Dg = {a,b | a* = b* = (ab)? = 1) and S = {a,a™*,b} or {b,a®b,ab}. Then
by using the program written in Lemma 2.13, T'(S : Dg) is integral with spectrum of
[—3,—13,13,3] and so I'(S : Dg) = Gy.

Let G = Cs. By Lemma 2.9, I'(S : Cy) is not isomorphic to Gj.

Let G = Qg. Since a? is the unique element of degree two, a* € S. Since S is generator
and S = S7', S = {a? b,a®b} or {a? ab,a®b}. It S = {a* b, a®b}, then by Lemma 2.3 and
using characters table of Q)g, the eigenvalue of I'(S : Q)g) corresponding to the irreducible
character ys is 3. If S = {a?, ab,ab}, then the eigenvalue of I'(S : Qg) corresponding to
the irreducible character x4 is 3. However the multiplicity 3 as an eigenvalue of T'(S : Qg)
is greater than one. So I'(S : (Js) is not isomorphic to Gj.

Case4: Let |G| = 10. Then by Lemmas 2.9 and 2.11, G is a non-abelian group and so
G = DlO- Since F(S : DlO) is integral, F(S : DlO) = Gg, G7 or Gll- If F(S : DlO) = Gg or
G, then T'(S : Dyg) is not bipartite graph, which by Lemma 2.12 (iii), is a contradiction.
If I'(S : Dig) = Gi1, then by Lemma 2.12 (ii), it is a contradiction. Therefore, the graphs
of G5, G7; and G; are not Cayley graphs.

Case5: Let |G| = 12. By Lemmas 2.9 and 2.11, G = Cg x Cy, T1a, Ay or Diy. First we
show G5 is only and only cayley graph of Cs x Cy and Dqs.

Let G = Cs x Cy and S = {(a,c), (a™ !, ¢), (a® ¢)} where Cs = (a) and Cy = (¢). Then
by using the program written in Lemma 2.13, T'(S : Cg x Cy) is integral with spectrum of
[—3, —22, —1,04, 1,22, 3] So F(S : CG X CQ) = G12.

Let G = Dyy = {(a,b | a® =b* = (ab)? = 1) and S = {a, a’, b}. Then by using the program
written in Lemma 2.13, T'(S : Dj,) is integral with spectrum of [—3,—22, —1,0% 1,22, 3].
So F(S : Dlg) = Glg.

Let I'(S : T1s) = Gpo. It is easy to see that a® is the unique element of order two, so
a® € S. Since S generates G, a” ¢ S. By Lemma 2.3 and using characters table of T},, we
conclude that the eigenvalues of I'(S : T2) corresponding to linear irreducible characters
of T are distinct from —3. Therefore, GGi» have not —3 as an eigenvalue, which is not
true. So G2 is not Cayley graph of Tis.

Let I'(S : Ay) = G12. By Lemma 2.3 and using characters table of Ay, I'(S : A4) has an
eigenvalue with multiplicity greater than 6 or three eigenvalues with multiplicities greater
than 3. Which is impossible.

Therefor the graph G5 is only and only Cayley graph of Cg x C5 and Dys.

We continue by showing that Gg is only and only Cayley graph A,.

Let G = Ay and S ={(1 2)(3 4),(1 2 3),(1 3 2)}. By using the program writ-
ten in Lemma 2.13, I'(S : A,) is integral with spectrum of [—23 —13 0% 23 3], and so
F(S : A4) = Gg.

Let T'(S : Ti12) = Gg. Since Gg does not have Cy as a subgraph, by Lemma 2.6,
S ={a3a",a""} for r = 1,2. This contradicts the fact that S generates G.

Let T'(S : Cg x C2) = Gg and Sy = {s1 | (s1,¢) € S,c € Cy} \ {1}. Then by Lemma
2.10 and case 2, |Sy| = 2 and so —1 < A, where )\ is the eigenvalue of I'(S : Cg x Cs)
corresponding to a linear irreducible character of Cs x Cy. This contradicts the fact that
—2 is an eigenvalue of Gg.
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Let I'(S : Dg x Cy) = Gs and S1 = {s1 | (s1,¢) € S,c € Cy} \ {1}. Then by Lemma
2.10 and case 2, |S1| = 2 and so —1 < Ay, where Ay is the eigenvalue of I'(S : Dg x Cs)
corresponding to a linear irreducible character of Dg x C5. This contradicts the fact that
—2 is an eigenvalue of Gf.

Therefor the graph Gy is only and only Cayley graph of Ay.

Case6: Let |G| = 20. By Lemmas 2.9 and 2.11, G is a non-abelian group and so it is
Doy = Dyg x Co, Tog or F54 = {a,b| a® =b* =1,b"'ab = a*). Since I'(S : G) is integral,
F(S : G) = Gg or Gl().

Let G = F5,4. Since the graphs Gg and G, does not have Cy and C5 as a subgraph, by
Lemma 2.6, all of the elements of S are of order 2 or 10. It is clear that F5 4 does not have
any element of order 10, so S C b (the bar indicates conjugacy class). By Lemma 2.3 and
using characters table of Fj 4, we see that the eigenvalues of I'(S : F;4) corresponding to
irreducible characters y; and y3 are 3. which is impossible.

Let G = Do x Cy and S = {s1 | (s1,¢) € S,c € Co}\ {1}, then by Lemma 2.10 and Case
4, |S1| =2 and so —1 < \jp, where A is the eigenvalue of I'(S : D19 x () corresponding
to a linear irreducible character of Dy x C5. This contradicts the fact that —3 is an
eigenvalue of Gy and Gyj.

Let G = Tyy. Since a® € Ty is the unique element of order two and Gy, G4, does not have
C, and Cj as a subgraph, S = {a®,a",a™"}. This contradicts the fact that S generates
G. Hence the graphs Gg and G, are not Cayley graphs.

Case7: Let |G| = 24. By Lemmas 2.9 and 2.11, G is a non-abelian group and so
G = D12 X Cg, T12 X Cg, Qg X Cg, SL(2,3), D24, T24, U24, ‘/24, 54, Dg X Cg, Dﬁ X 04 or
Ay x Cy. We show that 13 is only and only Cayley graph of groups Sy, A4 x Cy, Dg x Cf,
D6 X 04.

Let G = S;. By Lemma 2.13, I'(S : S;) = Gis.

Let G =Ay xCyand S ={((1 2)(3 4),¢),((1 2 3),¢),((1 3 2),¢)}, where Cy =
(c). Then by using the program written in Lemma 2.13, I'(S : A4 x C5) is integral with
spectrum of [—3, —26 13 0%13,26 3]. So I'(S : Ay x Cy) = G1s.

Let G = Dg x C3 and S = {(a,c), (a*, ¢), (b, 1)}, where Dg = {(a,b) and Cy = (c). Then
by using the program written in Lemma 2.13, T'(S : Dg x Cj3) is integral with spectrum
of [=3,—26,—13,0% 13,25 3] and so I'(S : Dg x C3) = Gi3.

Let G = Dg x Cy. In the same manner we can see that I'(S : Dg x Cy) = G413, where
D¢ = {(a,b), Cy = {c) and S = {(a, c), (a®,¢), (b, 1)}.

It remains to prove that I'(S : G) is not integral, for others. On the contrary, let
F(S . G) = G13, for G = Qg X Cg, T12 X CQ, D12 X Cg, T24, D24, SL(2,3) or ‘/24.

Let G = Qg x C3 or Ty x Cy and Sy = {s1 | (s1,¢) € S,c € C3} \ {1} or {s1 | (s1,¢) €
S,c € Cy} \ {1}, then by Lemma 2.10 and Cases 3, 5, we have |51 = 2 and so —1 < Ay,
where \;o is the eigenvalue of I'(S : G) corresponding to a linear irreducible character of
G. This contradicts the fact that —3 is an eigenvalue of G3.

Let G = Dyy x Cy and Sy = {s1 | (s1,¢) € S,c € Ca} \ {1}. One can check that (1,¢) € S
where Cy = (¢). So |S1| = 2 and —1 < \jo, where )\ is the eigenvalue of I'(S : Dy x Cy)
corresponding to a linear irreducible character of D5 x Cy. This contradicts the fact that
—3 is an eigenvalue of G13.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R122 9



Let G = Tyy. Since a® € Ty, is the unique element of order two and G415 does not have Cy
as a subgraph, S = {a® a",a™"} for 1 < r < 5. This contradicts the fact that S generates
G.

Let G = Uy = {(a,b | a® =V = 1,a7'ba = b7'). Since a* is the unique element
of order two, a* € S and so a” ¢ S for r # 4 because of S generates G. It is easy
to see that (a®b)™! = a®270? and (a® )7 = a® 2. So S = {a*, a®b,a® ¥ b?},
{a4’a2r+1b’ a8—2r—1b} or {a4’a2r+1b2’a8—2r—lb2} (0 < r < 3) IfS = {a4,a2rb, a8—2rb2}’
then by Lemma 2.3 and using characters table of Us,, the eigenvalue of I'(S : Uy)
corresponding to 4 is equal to 3, which is not true. If S = {a* a* b, a® 210} or
{a*, a®> 0%, a®2 =%}, then by Lemma 2.3 and using characters table of Us,, the eigen-
value of I'(S : Usq) corresponding to x; is =142 cos((2r+1)7/4) for 0 < r < 3, obviously
is not integer. Which is a contradiction.

Let G = Dyy. First consider a® € S. Since S generates G, a” ¢ S. By Lemma 2.3, it is
immediate that I'(S : Dyy) = G113 does not have —3 as an eigenvalue, which is impossible.
Thus a ¢ S. Now suppose a” € S where 1 <7 < 5. Since S generates Doy, (r,12) = 1.
So S = {a",a™",a*b} or {a",a™",a®*1b} where r = 1 or 5. By Lemma 2.3 and using
characters table of D,,, the sum of the eigenvalues of I'(S : Dqy) corresponding to y; is
V/3 or —/3, which is impossible. Therefore, all of the elements of S are in conjugacy class
of bor ab. Let S = {a*b,a* b, a® b} (1 < 1,r,5 < 5) and p be an irreducible character
of degree two of Doy. If X and pu are the eigenvalues T'(S : Doy) corresponding to p, then
by Lemma 2.3 and using characters table of Ds,, we have:

A+ pu=0

)\2 ‘l‘,u2 =6 + Q[p(a2s—2r—1) _l_p(a2s—2l—1) +p(a2r—2l)]‘

A trivial verification shows that if w = e 12, then w+w ™! = V3, w?+w 2 = 1, w3+w=3 = 0,
w+w?t=—-1and w4 w® = —v/3. From this and using characters table of D,, we
conclude that A? + p? # 0. Tt follows that T'(S : Dyy) does not have 0 as an eigenvalue .
Therefore, G135 does not have 0 as an eigenvalue, which is impossible.

Let G = SL(2,3). It is easy to see that gy is the unique element of order two, so g € S.
On the other hand, since gsg; = 1 and the graph Gi3 does not have C3 and Cy as a
subgraph, S = {gs, z, 7'}, such that z is in conjugacy class of g5 and ™! in conjugacy
class of g7. By Lemma 2.3 and using characters table of SL(2,3), it is easily seen that
the eigenvalues of corresponding to irreducible linear characters of SL(2,3) are equal to
zero. This contradicts the fact that —3 is an eigenvalue of G13

Let G = Voy = (a,b | a® = b* = (ba)® = (a7'b)®> = 1). Since the graph G3 does not
have C3 and Cy as a subgraph, SNb = ¢ and SN a?2 = ¢ (the bar indicates conjugacy
class). If SN ab = ¢, then by Lemma 2.3 and using characters table of Va4, we see that
the eigenvalues of corresponding to linear irreducible characters of x; and x» are equal to
3. Which is impossible. So SNab # ¢. Also if b* € S or a?b? € S, then by Lemma 2.3, we
check at once that I'(S : V) does not have —3 as an eigenvalue, which is not true. Hence
S ={a,a™,a"b*}, {ab?, a1V, a"b*} or {a®, a’b?, a"b*}, where r € {1,3,5} and s € {1, 3}.
Let A and p be the eigenvalues of I'(S : Va4) corresponding to irreducible character xs.
If S = {a3,ah?, a"b*}, then by Lemma 2.3 and using characters table of Voy, A+ = 0 and
N4 12 = x5(a®) + x5(a®0?)? 4 x5(a"b%)? + 2[5 (a®a®b?) + xs5(a"T30%) + x5 (a"T365T2)] = 10.
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If S={a,a ! a"b*} or {ab? a='b? a"b}, then by Lemma 2.3, A+ p = 0 and \? + p? =
¥5(0) + x5(a2) + x5(a8)? + 2ys(aa ) + x5(a7 %) + x5 (@ 1)) or A+ i = 0 and
A+ p® = xs(ab?)? + xs5(a710%)? + x5(a"b*)? + 2[xs(1) + X5(a"0°2) 4 x5 (a0, re-
spectively.

By using character table of Vi, we have y5(a"™0%) = x5(a"710°) = x5(a"™05T2) =
XS(ar—lbs+2) — Xs(ar-‘r?:bs) — Xs(ar+i’»bs+2) =0. So )\2 + ,u2 = 10.

This gives A and p are not integers, which is false.

Case8: Let |G| =30 and I'(S : G) = Gg. By Lemmas 2.9 and 2.11, G is a non-abelian
group and so G = Dyg x C3, D3 or Usg = {(a,b | a'® = 0* = 1,a7*ba = b71).

Let G = Dyo x C3 and S; = {51 | (s1,¢) € S,c € C3} \ {1}. By Lemma 2.10 and Case 4,
|S1| = 2 and so —1 < Ao, where Ay is the eigenvalue of I'(S : Djg x C3) corresponding
to a linear irreducible character of Dy x (5. This contradicts the fact that —3 is an
eigenvalue of Gg.

Let I'(S : D3y) = G¢. By Lemma 2.12 (4i), we have 4 | 10, which is impossible.

Let I'(S : Usg) = Gg. It is obvious that Usy has exactly three elements of order two and
they are a®, a®b and a®b®. So S N {a® a’b,a’V?} # ¢. If S = {a®,a®b, a®b*}, then by
Lemma 2.3 and using characters table of Us,, the eigenvalues of I'(S : Usy) corresponding
to irreducible characters y; and x5 are —3. This contradicts the fact that the multiplicity
—3 as an eigenvalue of Gg is one. If ¢ € S or a*b € S (0 < r < 4), then by Lemma
2.3 and using characters table of Us,, the eigenvalue of I'(S : Usg) corresponding to irre-
ducible character ys is 1, this show that 1 is an eigenvalue of G, which is not true. Thus
S = {a®*, a®*1b°, (a®>T1b%) 71}, where k,s € {0,1,2} and r € {0,1,3,4}. By Lemma 2.3
and using characters table of Us,, the eigenvalue of I'(S : Usg) corresponding to irreducible
character y; is —1 + 2 cos((2r + 1)x/5) for r € {0,1,3,4}. This is not integer. which is a
contradiction. Therefor G is not Cayley graph.

Hence there are exactly seven connected, cubic integral Cayley graphs. This proves the
theorem. O

Theorem 3.1 (See [14]) Let C,, = (a). If S = {a’ | j € B(1,n)}, then T'(S : C},) is
integral.

Proof. By Lemma 2.2, T'(S : C,,) is connected graph. By Lemmas 2.3 and 2.4, n

eigenvalues of I'(S : ) are A\, = Z W (1 <r < n). Byequation (2.1), A\, = C(r,n),
j€B(1,n)

(1 <r <n). Hence I'(S : C,,) is integral. O

Corollary 3.2 For any natural number n, there is at least an connected, (n)-regular
integral graph with n vertices.

Theorem 3.3 Let C, = (a), d | n (1 < d < n) and Ag = {a¥ | j € B(1,2)}. If
S =A,UAy, then T'(S : C,) is integral.

Proof. By Lemma 2.2, I'(S : C},) is connected graph. Let A\, (0 < r < n — 1) be the
eigenvalues of I'(S : C),). By Lemmas 2.3 and 2.4, we have:
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=Y 0@+ Y p)= Y p@)+ Y al®= Y W Y Wt

geA g€A jeB(1,n) jEB(1,2) jeB(1,n) jEB(1,2)
By equation (2.1), Z w’" and Z w¥™ are integer. Hence I'(S : C,) is integral. [J
jEB(1,n) jeB(1,2)

Corollary 3.4 For any natural number n, there is at least a connected, (¢(n) + p(5))-
reqular integral graph with n vertices, where d | n (1 < d <n).

Lemma 3.5 Let G = Cy, x Gy, Cpp = (@) and C,, = (b) so that (m,n) # 1. If S =
(@) | j € B(Lm),j € B} U{(@,1) | j € BLm}U{Lb) | € B(Ln)},
then T'(S : G) is integral.

Proof. It is clear that I'(S : G) is Connected graph. By Lemma 2.3, mn eigenvalues of
[(S : G) are A\, = Zp’”’ (0<k<m-—1)and (0 <7 <n-—1). By Lemma 2.5,
geSs
Rl T
j€B(1,m) j'€B(1,n) jeEB(1,m) j’€B(1,n)
An easy computation shows:

Zw Zw+Zw+Zw2 By equation (2.1), Zw

j€EB(1,m) j’€B(1,n) JjEB(1,m) j’€B(1,n) JjEB(1,m)
and Z w2 are integer. Hence I'(S : G) is integral. O
j'€B(1,n)

Theorem 3.6 Let G = Cy, x ... X Cy, and Cy; = (a;), so that for any i,j € {1,...,1},
(ni,mj) # 1. If S = {(a{l,% ,...,ail) | 7o € B(l,n;),i=1,...,1} U{(al",1,...,1) | j1 €
B(l,n))}uU...U{(1,1,....a]") | 1 € B(1,m)}, then T'(S : G) is integral.

27

ma , where w, = em™ , for t =

Proof. Suppose & = 37 p a0y 2 jieB(in) W1
1,...,l. One can check that a = ( Z wit) - ( Z w,”"). By Lemma 2.3,

wZ"l]l

j1€B(1,n1) JIGB(l ny)
ning . ..n eigenvalues of I'(S : G) are A, Z Priry. Tl ), where 0 < 7; < n; — 1 and
ges
1<i<!l. ByLemma 25, )\, , =a+ Z ml +...+ Z wl”jl.
J1€B(1,n1) J€B(1,ny)
By equation (2.1), Z w7 (1 <i <) is integer. Hence I'(S : G) is integral. O

Ji€B(1,n;)

Corollary 3.7 Let n =ny---ny such that (n;,n;) # 1, where 1 < 1,5 <. Then there is
I I

at least a connected (Z @(nz))(H w(n;))-reqular integral graph with n vertices.
i=1 i=1

Theorem 3.8 Let Dy, = (a,b | a" = b* = 1,(ab)> = 1), n =2m+1 (n # 1) and
S={d"| ke B(,n)}u{be | ke B(1,n)}. Then T'(S: Dy,) is integral.
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Proof.Since S generates D,,, ['(S : Dy,) is connected graph. We know that {1},
{a";a™"}, 1 <r < (n—1)/2 and {a*b | 0 < s < n — 1} are the conjugacy classes of
Dy,. Let A; = Z w* Sy ={a*| k€ B(1,n)} and Sy = {ba* | k € B(1,n)}. If \j; ,
keB(1,n)
Aj2 (Each one 2 times)for 1 < j < m , Ajpy1 and A, 4o are 2n eigenvalues of I'(S : Dsy,),
then by Proposition 4.1 from [2], Aj; + Ajo = 24; and A3} + A%, = 442, So \j; =0,
)\jg = QAj or )\jl = 214] y )\jQ = 0. Also )\m—l—l =0 and >\m+2 = |Sl‘ + |Sg| = 2()0(71) By
equation (2.1), A; is integer. So all of the eigenvalues of I'(S : Dy,) are integers. Hence
(S : Ds,) is integral. O

Corollary 3.9 For any odd natural number n (n # 1), there is at least a connected,
(2¢p(n))-regular integral graph with 2n vertices.

Proof of Theorem 1.2. It is clear that I'(S : D,,) is connected graph. Let C; =

{k| ke B,n)} = {ki,...,kpam} and Cy = {dk | k € B(l,%)} = {ki,...,k;(%)}.

Then C; NCy = ¢. Suppose C; UCy, = {k; | 1 < kg < -+ < ky < n—1} and
t

A = ijk“ for j =1,...,m. Then A; = Z wik 4 Z w’* and by equation (2.1),
u=1 keCy k'eCsy

A; is integer. If \j; , Ajp for 1 < j < m (Each one 2 times), \,+1 and A\, 4o are 2n

eigenvalues of I'(S : Dy, ), then by Proposition 4.1 from [2], we have \j; + Ajo = 24, and

>\?1 + )\32 = 4143 So >\j1 = 0, )\jQ = 214] or >\j1 = 214] y )\jQ = 0. Also >\m+1 = 0 and

A2 = 2|C1| + 2|Cy] = 2p(n) + 2¢(%). Since Aj is integer, 2n eigenvalues of I'(S : Da,)

are integers. Hence I'(S : Dsy,) is integral. O

Corollary 3.10 For any odd natural number n, there is at least a connected, (2p(n) +
2p(%5))-regular integral graph with 2n vertices, where d [n (1 <d < n).

Proof of Theorem 1.3. We know that {1}, {a",a "}, (1 <r<n—1), {a®*b|0< k<
n—1} and {a®**1b | 0 < k < n—1} are all of the conjugacy classes of Ty,. It is clear that
Ty =(S),S=S"1and 1 ¢ S. Let \j1 , A\ja for 1 < j <n—1 (Each one 2 times) and 1y
for 1 <1 < 4 be 4n eigenvalues of I'(S : Ty,). Then by Lemma 2.3 and using characters
table of T}, we have:

p=> xi(g) =2n, =Y xa(g) =0, 13 = > _xa(g) =2n—4and s = > xulg) =

ges geS ges ges
-1
M1+ A2 =Y pilg) _2ij Z Wk Wk
ges k=1
n—1
M+ = D pi(sise) = (An—8) Y pi(a¥) + 2n[p;(a") + p;(1)]=
S$1,82€8 k=1
n—1
(4n — 8) > (w* + w*) 4+ 2n[2(—1)7 + 2].
k=1

By Lemma 2.1, if j is odd, then A;; + A2 = 0 and )\?1 + )\32 =0and so A\j; = Xj2 =0
(Each one two times).
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If j is even, then \j; + X\jz = —4 and A} + X%, = 16 and so A\j; = 0 and \j, = —4 (Each
one two times). Therefore, the spectrum of T'(S : Ty,) is: [—4"71, 0371 2n —4,2n]. O

Corollary 3.11 For any odd natural number n, (n # 1), there is at least a connected,
2n-reqular integral graph with 4n vertices.

Proof of Theorem 1.4. Consider A = {a®*b | 1 < k < n—1}U{a®p? | 1 <
k<n-—1}and B = {a®**b | 0 < k < n—1}. We know that {a®}, {a*b,a®"V*}
and {a® ' a1, a®>™H?}, (0 < r < n — 1) are the conjugacy classes of Us,. An
easy computatlon shows that ba? = a?b, (a®b)~! = a=2"0?, (a® 16?71 = a‘z’"_le and
(@* )t =a 2" 1h. So Ug, =(S), S=S"1and 1¢ S. Let N1, Ajpfor0<j<n—1
(Each one 2 times) and g, for 0 <1 < 2n — 1 be 6n eigenvalues of I'(S : Us,) correspond—
ing to the characters of p; and x; of Us,, respectively. Then by Lemma 2.3 and using
characters table of Uy,, we have:

:ZXO(S) =3n—2, liy :ZX”(S> =n-—2,

s€S s€S

NIZZXI( )=—2,for 1 <1< 2n—1and [ #n.

sES
Also for 0 < j < n — 1, we have:

Mo+ XL = Y pilsis)+ D pilsis)+ Y (pi(sisa) + pj(sas)).

s1,52€A s1,52€B s1€A,52€B
One can check that :
n—1

Z pi(s152) = (2n — Z —wi 4 Z 2w + (2n — 2)[2 + Z —w),

51,82€A k=1
n—1
Z pi(s182) = nz2w2kj.
s1,52€B k=1
> (pilsis2) + pj(s2s1)) = 0.
s1€A,s2€B

By Lemma 2.1, A\, + Aj, = 4n® —4n +2 and A}, + A3, = 2 for 1 < j <n—1. On the
other hand, it is clear that A\g; + Ag2 = Z po(s) = —2n+2and A\j; + N\jos = Z pi(s) =2

seS seS
for 1 <j<n—1. 50 A\ =1and A\ =1 — 2n (Each one two times).
Also \ji =1=Xpfor1 <j<n—-1 (Each one two times). Therefore, the spectrum of
(s U6n)) : [(1—2n)%, =222 1972 n — 2 3n — 2]. O

Corollary 3.12 For any odd natural number n (n # 1), there is at least a connected
(3n — 2)-reqular integral graph with 6n vertices.

Character Table of Qg

1 a®> a b ab
o 1 1 1 T 1
e 1 1 1 —1 -1
v 1 1 -1 1 -1
il 1 -1 -1 1
Y 2 -2 0 0 0
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Character Table of A,

(1) (1 2)(3 4) (1 2 3 (1 3 2)
x1 1 1 1 1
X2 1 55 e
x3 1 e’ e
X4 3 -1 0 0
Character Table of Fj 4
1 «a b o
x1 1 1 1 1 1
x2 1 1 ) -1 —i
x3 1 1 -1 1 -1
xe 1 1 —i -1 1
xs 4 —1 0 0
Character Table of SL(2,3)
=1 g2 g5 G g5 96 gr
X1 1 1 1 1 1 1 1
X2 1 1 1 e’ s e e
X3 1 1 1 5 S s i
X4 3 3 -1 0 0 0 0
X5 2 -2 0 —1 —1 1 1
X6 2 —2 0 —eF —eF eF eF
X7 2 —2 0 —eF —eBF e eF
-1 0 0 1
w3 Y )= (5 0)
_1 11 _1 -1 1
g5 294=<O 1)797 :96=< 0 _1)
Character Table of Vay
1 v a a’ a® a’> a’t* b ab
x1 1 1 1 1 1 1 1 1 1
x2 1 1 1 1 1 1 1 -1 -1
x3 1 1 -1 -1 -1 1 1 1 -1
xa 1 1 —1 —1 —1 1 1 -1 1
X5 2 —2 0 0 0 2 —2 0 0
6 2 -2 W3 0 —iv3 -1 1 0 0
xr 2 =2 —i/3 0 W3 -1 1 0 0
xs 2 2 1 —2 1 -1 -1 0 0
Xo 2 2 —1 2 —1 -1 -1 0 0
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Character Table of D,,, n =2m + 1 odd

1 a” b
X 2 W+ w0
Xm-+1 1 1 —1
Xm+2 1 1 1

271

w=en,1<j<mand 1 <r<m

Character Table of D,,, n = 2m even

1 a™ a” b ab
X; 2 2(-1Y w+wd 0 0
S 1 1 1 -1 -1
Xom-+2 L=y (=1 -1
Xom-+3 (=™ (=1 -1 1
Xmid 1 1 1 1 1

27t

w=en,l<j<mand 1 <r<m-1

Character Table of Ty,,, n = 2m + 1 odd

Characters a” a  a*b a®tb
» 1 T 1 1
Xo 1 S L
X = (—1)r  —i i
pj 2(=1)7  wIm 4+ wIT 0 0

271

Character Table of Ty, n = 2m even

a™ a’ a2rb a2r+1b
1 1 1 1 1
Yo 1 1 1 1
X3 1 (—1)" 1 ~1
Y4 1 (—1)" -1 1
p; 2(-1) w4 w0 0

271

w=¢exm, 1<j<n—1land0<r<n—1

Character Table of Us,

a2r a2rb a2r+1
X1 w2lr w2lr le?“-i—l
pj 2w2j7” _w2j7” 0

2me

w=exn, 0<I<2n—-1,0<j<n—1land0<r<n—1
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