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Abstract

Let m be a positive integer and let G be a graph. A set M of matchings of G,
all of which of size m, is called an [m]-covering of G if

⋃

M∈M M = E(G). G is
called [m]-coverable if it has an [m]-covering. An [m]-covering M such that |M| is
minimum is called an excessive [m]-factorization of G and the number of matchings
it contains is a graph parameter called excessive [m]-index and denoted by χ′

[m](G)

(the value of χ′
[m](G) is conventionally set to ∞ if G is not [m]-coverable). It is

obvious that χ′
[1](G) = |E(G)| for every graph G, and it is not difficult to see that

χ′
[2](G) = max{χ′(G), ⌈|E(G)|/2⌉} for every [2]-coverable graph G. However the

task of determining χ′
[m](G) for arbitrary m and G seems to increase very rapidly

in difficulty as m increases, and a general formula for m > 3 is unknown. In this
paper we determine such a formula for m = 3, thereby determining the excessive
[3]-index for all graphs.

Keywords: excessive [m]-index, excessive [m]-factorization, matching, edge
coloring
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1 Introduction

All graphs considered in this paper will be implicitly assumed to be simple, finite, undi-
rected and to contain at least one edge and no isolated vertices. The vertex set, edge set
and maximum degree of a graph G are denoted by V (G), E(G) and ∆(G), respectively.
If V1 ⊂ V (G), we denote by < V1 > the subgraph of G induced by V1. If E1 ⊂ E(G),
we denote by < E1 > the graph induced by the endpoints of the edges in E1 (notice that
this graph may contains also edges which are not in E1). If E1 = {e, f} consists of two
edges only, we use the shorthand < e, f > instead of < {e, f} >. A matching of G is a
set of mutually non-adjacent edges. If k is a nonnegative integer, a k-edge colouring of
a graph G is a map ϕ : E(G) → C, where C is a set of cardinality k (called the colour

set), such that adjacent edges of G are mapped into distinct colours. The minimum k for
which a k-edge colouring of G exists is called the chromatic index of G and denoted by
χ′(G). A χ′(G)-edge colouring (i.e. one which uses as few colours as possible) is called
an optimal edge colouring. For graph theoretic terminology and notations, not explicitly
defined here, we follow Lovász and Plummer [7].

Let m be a positive integer and let G be a graph. An [m]-covering of G is a set
M = {M1, M2, . . . , Mk} of distinct matchings of G, each of size exactly m, such that
⋃k

i=1 Mi = E(G). The graph G is said to be [m]-coverable if it admits an [m]-covering.
Clearly G is [m]-coverable if and only if every edge of G belongs to a matching of G of
size m. As a consequence, checking whether a given graph is [m]-coverable reduces to
checking whether, for each edge e = uv of G, the graph G − u − v has a matching of size
at least m − 1, which can be done in polynomial time [6].

We define a parameter χ′
[m](G), called excessive [m]-index, as follows:

χ′
[m](G) = min{|M| : M is an [m]-covering of G},

with the proviso that min ∅ = ∞. Thus, by the above remark, for every graph G and
positive integer m, we can determine in polynomial time whether χ′

[m](G) is finite. If M

is an [m]-covering of minimum cardinality, we call M an excessive [m]-factorization of G.
Excessive [m]-factorizations were introduced by the present authors in [2], where (inter

alia) the parameter χ′
[m](G) was evaluated, for arbitrary m, for cycles, paths, complete

graphs and complete bipartite graphs and for the Petersen graph. This concept lends
itself to a number of possible applications, e.g. in scheduling theory, where one could
wish to find a schedule, say, for a particular process, where the fundamental constraint
is that all facilities must always run at full capacity (even if this could imply repeating
certain jobs or operations already performed on some of the facilities) and, subject to this
condition, one wishes to complete the process in the minimum possible time.

The concept of excessive [m]-factorization is a generalization of the concept of exces-

sive factorization, introduced by Bonisoli and Cariolaro [1] (an excessive factorization of
a graph G is a minimum set of perfect matchings of G whose union is E(G) and the corre-
sponding parameter is called excessive index and denoted by χ′

e(G)). Not much is known
in general about the parameter χ′

e, except that χ′
e(G) > χ′(G) and that the difference

between χ′
e(G) and χ′(G) can be arbitrarily large [1]. The present authors recently [4]
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determined χ′
e(G) for all complete multipartite graphs, which proved to be a challeng-

ing task. They also introduced [3] the related notion of excessive near 1-factorization

for graphs of odd order, where the size of the matchings is assumed to be the size of a
near-perfect matching. The corresponding parameter (also denoted by χ′

e(G) and called
excessive index ) was computed, apart from some elementary classes of graphs, for all trees
[3]. It was observed by Bonisoli and Cariolaro [1] that, determining the number of perfect
matchings in an excessive factorization of a graph is NP-complete, since this problem
is equivalent to determining the existence of a 1-factorization of G. The complexity of
the computation of χ′

[m](G), for a fixed value of m, was until recently much less clear.

However Cariolaro and Rizzi [5] have now settled this problem, to the effect that, when
m is fixed, the parameter χ′

[m](G) can be computed in polynomial time.

Trivially, χ′
[1](G) = |E(G)| for every graph G. For m = 2 the present authors [2]

established the formula

χ′
[2](G) = max{χ′(G), ⌈

|E(G)|

2
⌉} (1)

for all [2]-coverable graphs G (so that every graph G either satisfies (1) or satisfies
χ′

[2](G) = ∞). In this paper we shall continue the study of the excessive [m]-index,

by determining the excessive [3]-index for all graphs. Let S ⊂ E(G). We call S a splitting

set if no two edges in S belong to the same matching of size 3 of G. The maximum car-
dinality of a splitting set will be denoted by s(G), and s(G) will be called the “splitting
index” of G.

We notice the following.

Lemma 1 Let G be a graph. Then

χ′
[3](G) > max{χ′(G), ⌈

|E(G)|

3
⌉, s(G)}.

Proof. The inequality χ′
[m](G) > max{χ′(G), ⌈ |E(G)|

m
⌉} for arbitrary m is easy to see and

was proved in [2, Theorem 3]. Hence, we only need to verify that χ′
[3](G) > s(G). Let S

be a maximum splitting set. Then, by definition, no pair of distinct edges of S belong to
the same matching of size 3 of G. Since, in order to cover G we need to cover the edges
of S, at least s(G) = |S| matchings of size 3 are needed to cover G. This completes the
proof of the lemma. 2

The objective of this paper is to prove that we have equality in the statement of
Lemma1, i.e. the following theorem.

Theorem 1 Let G be a [3]-coverable graph. Then

χ′
[3](G) = max{χ′(G), ⌈|E(G)|/3⌉, s(G)}.
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Unfortunately, we could not prove directly Theorem 1 (and the search for a direct
proof of Theorem 1 remains an open challenge!). We shall actually prove a stronger
result, namely Theorem 2 below, for the proof of which we need a case-by-case analysis.
Before we state Theorem 2, we give some further definitions.

A bad quartet of G is a set Q ⊂ V (G) such that |Q| = 4 and each edge of G is incident
with at least one vertex in Q. Let B denote the set of all bad quartets of G. We define a
graph parameter q(G) as follows:

q(G) =

{

maxQ∈B |E(< Q >)| if B 6= ∅
0 if B = ∅.

In other words, q(G) is the maximum number of edges joining the vertices of a bad quartet,
if a bad quartet exists, or 0 otherwise. Notice that q(G) 6 s(G) for all graphs, since any
two edges joining the vertices of a bad quartet cannot be extended to a matching of size
3. Hence we have, from Lemma1, the inequality

χ′
[3](G) > max{χ′(G), ⌈

|E(G)|

3
⌉, q(G)} (2)

for all graphs G.

Theorem 2 Let G be a [3]-coverable graph. Let H denote the family of graphs illus-

trated1 in Fig. 1. Then

χ′
[3](G) =







max{χ′(G), ⌈ |E(G)|
3

⌉, q(G)} + 1 if G ∈ H;

max{χ′(G), ⌈ |E(G)|
3

⌉, q(G)} otherwise.

We now show that Theorem 2 implies Theorem 1.

Proposition 1 Theorem 2 implies Theorem 1.

Proof. Assume the truth of Theorem 1. Then, for any [3]-coverable graph not in H, we
have

χ′
[3](G) = max{χ′(G), ⌈|E(G)|/3⌉, q(G)} 6 max{χ′(G), ⌈|E(G)|/3⌉, s(G)},

so the identity stated by Theorem 1 follows immediately from Lemma 1. If G ∈ H, then
as shown in Fig. 1, the identity χ′

[3](G) = s(G) holds, which, by Lemma 1, implies the
identity of Theorem 1. This completes the proof. 2

1When it is necessary to specify a particular excessive [3]-factorization of a graph, e.g. in a pictorial
representation, we usually do so by indicating a corresponding edge colouring satisfying the conditions
of Lemma 2. In such case, we use the expression “colouring” or “colourable” always referring to an edge
colouring of this particular type. In Fig.1 and all the subsequent illustrations, we adopt the convention
that vertices drawn as circles are meant to be distinct from all other vertices, whereas vertices drawn as
squares may coincide with other vertices drawn as squares (as long as multiple edges are avoided). Edges
represented by a broken line (and their degree 1 endvertices) may or may not be assumed to exist.
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Figure 1: The family H referred to in the statement of Theorem 2. H consists of three
types of graphs, labelled A,B and C, respectively. An excessive [3]-factorization of these
graphs is indicated (see also the footnote to Theorem 2). The vertices of a bad quartet of
G containing q(G) edges are shaded. The edges forming a maximum splitting set S are
depicted in bold. In each case we exhibit a [3]-covering of size equal to |S|, which proves
that the [3]-covering is an excessive [3]-factorization and the splitting set is maximum by
Lemma 1. The identity stated by Theorem 2 may be verified directly for these graphs.
(It always holds χ′(G) = s(G) − 1 = χ′

[3](G) − 1.)

We shall make use of the following lemmas. Lemma 2 was obtained independently by
McDiarmid [8] and de Werra [9]. Lemmas 3 and 4 were established by the present authors
in [2].

Lemma 2 Let G be a multigraph. If k > χ′(G), then G has a k-edge colouring such

that every colour class C satisfies ⌊ |E(G)|
k

⌋ 6 |C| 6 ⌈ |E(G)|
k

⌉.

Lemma 3 Let k be a positive integer. A graph G satisfies χ′
[m](G) 6 k if and only if G

admits a k-edge colouring ϕ such that every colour class of ϕ is contained in a matching

of size m.

Lemma 4 If a graph G is [m]-coverable and satisfies
|E(G)|

m
> χ′(G), then χ′

[m](G) =

⌈ |E(G)|
m

⌉.

2 Preliminary considerations

We start by giving some additional definitions. Let G be a graph. Two independent (i.e.
non-adjacent) edges e, f form a bad pair if they form a maximal matching, i.e. if every
other edge of G is adjacent to one of them. Notice that, if {e, f} is a bad pair, then the
endpoints of e and f form a bad quartet, as defined in Section 1.

If ϕ is an edge colouring of G, a bad colour class is a colour class consisting of two
edges of G which form a bad pair, and a good colour class is a colour class which is not
bad. An optimal edge colouring φ of G is called a suitable colouring if every colour class
of φ has size at most 3 and the number of bad colour classes is minimum.

For convenience, when we want to stress the fact that a certain edge e belongs to a
matching of size 3, we say that e “extends”.
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In view of Lemma 1, when proving Theorem 2 we can assume that G is a graph such
that

max{χ′(G), ⌈
|E(G)|

3
⌉} < χ′

[3](G) < ∞, (3)

so that our task is proving that χ′
[3](G) = q(G) for any graph G satisfying (3), unless G is

one of the exceptional graphs of the family H (for which direct verification confirms the
truth of Theorem 2). We call a graph satisfying (3) incompatible, and a graph satisfying

χ′
[3](G) = max{χ′(G), ⌈ |E(G)|

3
⌉} compatible. We notice the following.

Lemma 5 Every incompatible graph G has a suitable colouring φ. Furthermore, every

suitable colouring φ of G has at least one bad colour class.

Proof. Let G be an incompatible graph. By Lemma4, |E(G)|
χ′(G)

< 3. This implies, by Lemma
2, the existence of an optimal edge colouring all whose colour classes have size at most 3,
and hence the existence of a suitable colouring φ of G. Since φ is an optimal colouring,
by (3) and Lemma3 there exists a colour class of φ which is not contained in a matching
of size 3 of G. Such colour class may not consist of a single edge, since every edge is
contained in a matching of size 3 by the assumption that χ′

[3](G) < ∞. Therefore such
colour class consists necessarily of two edges and, since these two edges form a maximal
matching, such colour class is a bad colour class. This terminates the proof. 2

Suitable colourings shall always be denoted by the symbol φ. Now, let G be an
incompatible graph and let S denote the set of all suitable colourings of G. It is convenient
to define an auxiliary parameter λ∗(G) as follows:

λ∗(G) = min{|E(< e, f >)| : {e, f} is a bad colour class of φ, φ ∈ S}.

Thus λ∗(G) is just the minimum number of edges in the graph induced by the quadruplets
of vertices of the bad colour classes of φ, where φ ranges over all suitable colourings of G.

In view of Lemma 5, the parameter λ∗(G) is well defined for any incompatible graph
G and, by the definition of λ∗(G) and the fact that the vertices of a bad colour class form
a bad quartet, we have

2 6 λ∗(G) 6 q(G) 6 6. (4)

We now prove some further results, which will be used in the proof of Theorem 2.

Lemma 6 There is no incompatible graph G with ∆(G) 6 2.

Proof. Suppose there was an incompatible graph G with ∆(G) 6 2. Then G would be, in
particular, [3]-coverable. If G was connected, then G would be a path or a cycle, but such
graphs are easily seen to be compatible ([2, Proposition 8]). Hence G is disconnected.
Let φ be a suitable colouring of G and let {e, f} be a bad colour class. Since every edge
of G (other than e and f) is adjacent to either e or f , and G is disconnected and has
no isolated vertices, e and f belong to two distinct connected components of G. Since e
extends and {e, f} is not contained in a matching of size 3, there must be two independent
edges f ′, f ′′, which are independent from e, and hence adjacent to f . Similarly, since f
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extends, there must be two independent edges e′, e′′, adjacent to e. There can be no other
edges in G, since any additional edge would have to be adjacent to either e or f , thereby
violating the condition ∆(G) 6 2. Thus G consists of two disjoint paths of length 3,
and it is easily seen that χ′

[3](G) = 2 = χ′(G), so that G is compatible, contradicting the
assumption. 2

Lemma 7 Let e be an edge of an incompatible graph G. There exist at most two

distinct edges f, f ′ forming a bad pair with e, respectively. Furthermore, if there exist

two such edges, the subgraph of G consisting of the edges not incident with e has the

form illustrated by Fig. 2, where k > 1.

Proof. Suppose f, f ′ are two distinct edges forming a bad pair with e, respectively. Let
H be the subgraph of G consisting of the edges not incident with e and their endpoints.
Both f and f ′ must be incident or coincident to every edge in H . In particular, f and
f ′ are adjacent. Let x be their common endpoint and let f = xy, f ′ = xy′. Since G is
[3]-coverable, the edge e is contained in a matching of size 3. Therefore, there exist two
independent edges g, g′ in H . Clearly g and g′ are distinct from f and f ′. Since g and
g′ are adjacent to f , we have, without loss of generality, g = xx1 and g′ = yz. Since g
and g′ are adjacent to f ′, and y is not incident to f ′, z must be incident to f ′, and, since
z 6= x, it follows z = y′. Any other edge of H must be necessarily incident to both f and
f ′ and be distinct from g′ = yy′, so that it must be incident with x. Hence H has the
form illustrated in Fig. 2, where k > 1. It is easily seen that no edge of H , other than f
and f ′, is incident to every other edge of H , and hence there can be no edge f ′′, distinct
from f and f ′, which forms a bad pair with e. This concludes the proof of the lemma. 2

y′

f ′
x

g

x1

x2

xk

f

g′

y

Figure 2: Structure of the subgraph of an incompatible graph G containing the edges not
adjacent to a fixed edge of a bad pair.

Lemma 8 Let φ be a suitable colouring of an incompatible graph G, and let {e, f} be a

bad colour class. Let δ be a colour not appearing on any of the edges of < e, f >. Then

either there exists an edge f ′ 6= f forming a bad pair with e and coloured δ, or there

exists an edge e′ 6= e forming a bad pair with f and coloured δ.
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Proof. Let α = φ(e) = φ(f). Obviously α 6= δ. Consider the subgraph G(α, δ) of G
consisting of the edges coloured either α or δ and their endpoints. Let Ce (respectively,
Cf) denote the connected component of G(α, δ) containing the edge e (respectively, f).
Clearly Ce 6= Cf , since e and f are coloured α and there is no edge joining e and f which
is coloured δ. It is obvious that Ce is a path of length at most 3. Exchanging the colours
α, δ on Ce we produce a colouring φ′ which is still an edge colouring of G and is such
that the α-colour class is a bad colour class if and only if there exists an edge e′ 6= e
such that {e′, f} is a bad pair and φ′(e′) = α (which is equivalent to say that φ(e′) = δ).
Similarly, the δ-colour class of φ′ will form a bad colour class if and only if there exists an
edge f ′ 6= f which forms a bad pair with e and is such that φ′(f ′) = δ (or, equivalently,
φ(f ′) = δ). If neither of the two conditions above is satisfied, φ′ has fewer colour classes
forming bad pairs than φ, which contradicts the assumption that φ is a suitable colouring.
Hence at least one of the two conditions holds, and the lemma is proved. 2

Corollary 1 Let G be an incompatible graph. Then χ′(G) 6 λ∗(G) + 1.

Proof. Let φ be a suitable colouring and let {e, f} be a bad colour class, with |E(< e, f >
)| = λ∗(G). Since φ(e) = φ(f), at most λ∗(G) − 1 distinct colours are used by φ on the
edges of < e, f >. By Lemma 7 and Lemma 8, there can be at most two other colours in
the colour set of φ. Since φ is an optimal colouring, we conclude that χ′(G) 6 λ∗(G) + 1,
as we wanted. 2

3 Proof of the main theorem

In this section we prove Theorem 2. The proof is split into several lemmas, according to
the possible values of λ∗(G).

Lemma 9 Let G be an incompatible graph and suppose λ∗(G) = 2. Then G is isomorphic

to a graph of type A in Fig. 1.

Proof. Let G be an incompatible graph satisfying λ∗(G) = 2. Let φ be a suitable colouring
of G and let {e, f} be a bad colour class, where |E(< e, f >)| = 2. Let α = φ(e) = φ(f).
By Lemma6, we have χ′(G) > ∆(G) > 3. By Corollary1, we have χ′(G) 6 λ∗(G)+1 = 3,
so that χ′(G) = 3. By Lemma8, there exist two distinct colours β and γ (distinct from α),
an edge e′ 6= e, coloured β and forming a bad pair with f , and an edge f ′ 6= f, coloured
γ and forming a bad pair with e. Let e = pq, e′ = pr, f = xy, f ′ = xz. Let He (Hf ,
respectively) denote the subgraphs of G consisting of the edges not incident with e (not
incident with f , respectively) together with their endpoints. Then He and Hf have the
form prescribed by Lemma7, where necessarily k = 1 by the fact that ∆(G) 6 χ′(G) = 3.
Let x′ and p′ denote the only vertices of degree one in He, Hf , respectively. Clearly He

and Hf are edge-disjoint and every edge of G is either in He or in Hf . It is easily seen
that φ(xx′) = β and φ(pp′) = γ. This implies that the edge xx′ may not be incident with
the edge pr, which, together with the fact that there may not be any edge joining e and
f , implies that x′ cannot belong to Hf . Similarly p′ may not belong to He. Clearly r and
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z are distinct, since otherwise we have a vertex of degree 4 in G. Thus He and Hf are
vertex-disjoint, except possibly for the vertices x′ and p′, which may coincide. It follows
that G is isomorphic to one of the graphs of type A in Fig. 1, and this completes the
proof. 2

Lemma 10 Let G be an incompatible graph and suppose λ∗(G) = 3. Then G is

isomorphic to a graph of type B of Fig. 1.

Proof. Let G be a graph satisfying the hypotheses of the lemma. Let φ be a suitable
colouring having a bad colour class {e, f}, where |E(< e, f >)| = 3. Let E(< e, f >) =
{e, f, g}, let α = φ(e) = φ(f), and let β = φ(g). By Lemma6, we have χ′(G) > ∆(G) > 3.
By Lemma8, there exists a colour γ 6= α, β and an edge coloured γ which forms a bad pair
with either e or f . By symmetry, we may assume this edge to be an edge f ′ 6= f forming
a bad pair with e. Thus the subgraph He of G, consisting of the edges of G not incident
with e, is of the type prescribed by Lemma 7. By Corollary 1, χ′(G) 6 λ∗(G) + 1 = 4.
Hence 3 6 χ′(G) 6 4.
Claim: χ′(G) = 4. To prove the claim, assume χ′(G) = 3. Let f = xy, f ′ = xz, and let
x′ be a neighbour of x of degree 1 in He. Since x has already the three distinct neighbours
y, z, x′ and ∆(G) 6 χ′(G) = 3, the edge g, which joins e and f , cannot be incident with
x. It follows that the edge g is incident with y. But, since φ(xy) = α and φ(xz) = γ, we
necessarily have φ(yz) = β = φ(g). It follows that g cannot be incident to y either, which
yields a contradiction, proving the claim.

By the above claim and Lemma8, there exists an edge e′ 6= e, forming a bad pair with
f and coloured δ, where δ is a colour different from α, β, γ. The graph Hf has the form
prescribed by Lemma7. Let f = xy, f ′ = xz, e = pq, e′ = pr. Let p′ be a vertex of degree
one in Hf adjacent to p, and let x′ be a vertex of degree one in He adjacent to x. Notice
that r 6= z, since otherwise the vertex r = z has degree 4, and hence it is incident to an
edge coloured α, contradicting the assumption that e, f are the only edges coloured α.
We distinguish four cases, according to the pairs of endpoints of the edges e, f which are
matched by the edge g.
Case a: g = py. Necessarily φ(pp′) = γ = φ(xz) and hence p′ 6= z. Now, exchanging the
colours of the edges f and f ′, we create a colouring φ′ which is still suitable, and such that
{e, f ′} is a bad colour class. Hence, by the assumption that λ∗(G) = 3, there must be at
least one edge h joining e and f ′. Such edge cannot be incident with p, since p has already
the four neighbours q, r, y, p′ (neither of which is incident with f ′) and ∆(G) 6 χ′(G) = 4.
The edge h cannot be incident with the vertex x, since the only edge joining e and f is
the edge g = py by assumption. Hence h must be the edge qz. But then h is not incident
with either f or e′, contradicting the fact that {f, e′} is a bad pair.
Case b: g = qx. This case is analogous to Case 1, by symmetry.
Case c: g = qy. As in the proof of Case a, we can claim the existence of an edge h
joining e to f ′. Such edge cannot be the edge qx or the edge px because only the edge qy
joins e and f in G, by assumption. Moreover h 6= qz since {e′, f} is a bad pair and is not
incident with qz. Hence h = pz. Similarly there is an edge h′ joining e′ to f , which must
necessarily be the edge xr. Exchanging the colours of e, e′ and (subsequently) of f, f ′,
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we obtain a colouring φ′ for which the γ- and δ-colour classes are good, and the α-colour
class consists of the pair {e′, f ′}. Such pair is not a bad pair, because of the existence of
the edge g. Thus the α-colour class of φ′ is a good colour class, and φ′ has then less bad
colour classes than φ, which contradicts the assumption that φ is a suitable colouring.
Case d: g = px. The vertex p has the four neighbours p′, r, q, x, and the vertex x has
the four neighbours x′, y, z, p. Since φ(pp′) = φ(xz) = δ, p′ is distinct from z. Similarly, x′

is distinct from r. Hence He and Hf are vertex disjoint, except for p′ and x′, which may
coincide. In any case G is isomorphic to one of the graphs of type B of Fig. 1, concluding
the proof of the lemma. 2

Lemma 11 Let G be an incompatible graph and suppose λ∗(G) = 4. Then χ′
[3](G) =

q(G).

Proof. Let G be a graph satisfying the hypotheses of the lemma. Let φ be a suitable
colouring and let {e, f} be a bad colour class, where |E(< e, f >)| = 4. Let E(< e, f >
) = {e, f, g, h} and let e = pq, f = xy. Let α = φ(e) = φ(f). We split the proof in two
cases, according to g, h being adjacent or non-adjacent.
Case 1: g, h are adjacent. Without loss of generality, assume g = px, h = py. Let
φ(g) = β, φ(h) = γ. By Corollary 1,

4 6 ∆(G) 6 χ′(G) 6 λ∗(G) + 1 = 5.

Hence χ′(G) = 4 or 5. Assume first χ′(G) = 4. By Lemma8, there is a colour δ /∈ {α, β, γ}
and an edge coloured δ which forms a bad pair with either e or f . Assume first that this
edge is an edge e′ 6= e forming a bad pair with f . By the structure of Hf prescribed
by Lemma 7 and the fact that ∆(G) 6 χ′(G) = 4, e′ cannot be incident with p. But
then e′ is incident with q, i.e. e′ = qr for some r, and there is, by Lemma 7, an edge
rp. Since there are edges adjacent to e′ and coloured α, β, γ, δ, no such colour can be
used for e′, which contradicts the assumption that χ′(G) = 4. Hence e′ does not exist,
and there is an edge f ′ 6= f , coloured δ and forming a bad pair with e. By symmetry
we can assume f ′ to be incident with x, say f ′ = xz. By Lemma 7, there is an edge zy
and an edge xx′, where x′ /∈ {x, y, p, q, z}. The vertex y is, by Lemma 7, adjacent only
to vertices p, x, z. Exchanging the colours of f and f ′ we create a suitable colouring φ′

having {e, f ′} as a bad colour class. Hence, using the assumption that λ∗(G) = 4, there
must be two edges joining e and f ′ in G, one of which is the edge g. The other edge
cannot be the edge pz, since it would have to be coloured δ = φ(xz), which is impossible,
and cannot be the edge qx because of the assumption that E(< e, f >) = {e, f, g, h}.
Hence such edge is necessarily the edge qz. To extend g there must be at least one edge
of the form qq′, where q′ /∈ {p, q, x, y, z}. Since f extends, there must be one edge of the
form pp′, where p′ /∈ {p, q, x, y}. The only possible other edge must have the form qq′′,
where q′′ /∈ {p, q, x, y, z}. In any case the graph can be coloured as in Fig. 3.

Hence, we can now assume that χ′(G) = 5. In this case there are two colours δ, ǫ,
which do not appear on E(< e, f >), and hence there is an edge f ′ 6= f , forming a bad
pair with e and coloured δ, and an edge e′ 6= e, forming a bad pair with f and coloured
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ǫ. By symmetry, we can assume that f ′ has the form f ′ = xz. We distinguish two cases
(1a and 1b), according to e′ being incident to p or to q.
Case 1a: e′ = qr. Necessarily r 6= z, since otherwise the edge rp would be incident to
some edges coloured α, β, γ, δ, ǫ, and hence could not be allocated a colour. Exchanging
the colours of e and e′, we create a suitable colouring φ′ having {e′, f} as a bad colour
class. Hence, using the assumption that λ∗(G) = 4, there must be two edges joining e′

and f in G. Arguing as before, we see that the these edges must necessarily be the edge
rx and the edge ry, but this contradicts the fact that, as prescribed by Lemma 7, y is
adjacent only to vertices p, x, z.
Case 1b: e′ = pr. Assume first r = z. Then the vertex q is adjacent only to vertices p
and r and the vertex y is adjacent only to vertices p, x, r. It follows that the edge g = px
does not extend, contradicting the assumption. Thus r 6= z. Arguing as before, there are
at least two edges joining the edges e and f ′, one of which is g. The other edge must
necessarily be the edge pz. But pz is adjacent to some edges coloured α, β, γ, δ, ǫ, hence
cannot have any such colour, contradicting the hypothesis that χ′(G) = 5. This settles
Case 1 completely.
Case 2: g, h are non-adjacent. Without loss of generality, assume g = px, h = qy,
where φ(g) = β. By Lemma 6 and Corollary 1, we have 3 6 χ′(G) 6 5. Assume first
χ′(G) = 3. Then G consists of the edges e, f, g, h and the edges pp′, qq′, xx′, yy′, where
{p′, y′}∩{p, q, x, y, q′, x′} = ∅ and {q′, x′}∩{p, q, x, y, p′, y′} = ∅ since all the edges e, f, g, h
extend. This graph can be easily coloured as shown in Fig. 4.
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We now assume χ′(G) = 4. In this case there is a colour δ, which does not appear on
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the edges in < e, f >. By symmetry and by Lemma8, we can assume the existence of an
edge f ′ 6= f, coloured δ, which forms a bad pair with e. Without loss of generality, let
f ′ = xz. Arguing as above, there must be at least two edges joining e and f ′, one of which
is g. The possible candidates are pz and qz, since qx cannot be an edge of G. Notice that
{φ(qy), φ(yz)} = {β, γ} as a consequence of our current assumptions. If pz ∈ E(G), pz is
adjacent to edges coloured α, β, γ, δ, and hence cannot have any such colour, contradicting
the assumption that χ′(G) = 4. It follows that qz ∈ E(G). But now the configuration of
the edges in < e, f ′ > is exactly as in Case 1, which is a case already settled. Therefore
the case χ′(G) = 4 of Case 2 can be considered settled too.

Finally, we assume χ′(G) = 5. There are now exactly two colours δ, ǫ, which do not
appear on E(< e, f >), and an edge f ′ 6= f coloured δ, which forms a bad pair with e,
and an edge e′ 6= e, coloured ǫ, which forms a bad pair with f . Without loss of generality,
assume φ(e) = φ(f) = α, φ(g) = β, φ(h) = γ. By symmetry, we can assume f ′ = xz.
There are now two cases to consider, according to e′ being incident to p or q, respectively.
Case 2a: e′ = qr. Assume first r = z. The graph G contains the edges e, f, g, h, pr, qr,
xr, yr and the edges xx′, qq′ (where {x′, q′}∩{p, q, r, x, y} = ∅), because e, f, extend. The
only other possible edges are of the form xx′′, qq′′ (where {x′′, q′′} ∩ {p, q, r, x, y} = ∅). In
any case the graph is colourable as shown in Fig. 5.
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Hence, we may assume r 6= z. Arguing as above, we can claim the existence of two
edges joining e and f ′, one of which is g. The other edge must necessarily be the edge qz.
Similarly, there must be two edges joining e′ and f , one of which is h. This edge must
necessarily be the edge rx. The only two possible additional edges are of the form xx′

and qq′, where {x′, q′}∩ {p, q, r, x, y, z} = ∅. In any case the graph is colourable as shown
in Fig. 6.
Case 2b: e′ = pr. Assume first z = r. Then the edges qr, yr are adjacent to some
edges coloured α, γ, δ, ǫ, hence cannot be given a colour, which yields a contradiction. It
follows that r 6= z. Now, arguing as above, there must be two edges joining e and f ′, one
of which is g. The second edge must necessarily be the edge pz and is unique. But now
the configuration < e, f ′ > falls under Case 1, hence this case can be considered settled.
This concludes the proof of the lemma. 2
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Lemma 12 Let G be an incompatible graph and suppose λ∗(G) = 5. Then χ′
[3](G) =

q(G), unless G is isomorphic to one of the graphs of type C in Figure 1.

Proof. Let G be a graph satisfying the hypotheses of the lemma. Let φ be a suitable
colouring and let {e, f} be a bad colour class, where |E(< e, f >)| = 5. Let E(< e, f >
) = {e, f, g, h, i} and let e = pq, f = xy, g = px, h = py, i = qy. Let α = φ(e) = φ(f). By
Corollary 1 and the obvious fact that ∆(G) > 4, we have

4 6 ∆(G) 6 χ′(G) 6 λ∗(G) + 1 = 6.

Hence χ′(G) = 4, 5, or 6. We split the proof into three cases, according to the value of
χ′(G).
Case 1: χ′(G) = 4. In this case the graph can be easily coloured with 5 colours as
shown in Fig. 7.

2

1

2

3
5

4 3

5 4 1

1

p

q y

x

Figure 7

Case 2: χ′(G) = 5. In this case there exists a colour δ which is not used on < e, f >.
By symmetry and Lemma 8, we can assume the existence of an edge f ′ coloured δ and
forming a bad pair with e. We distinguish two cases, according to f ′ being incident to x
or to y.
Case 2a: f ′ = xz. By Lemma 7, the vertex y is adjacent only to vertices p, x, z.
Exchanging the colours of f and f ′ we create a suitable colouring such that {e, f ′} is a
bad colour class. Hence, by the assumption that λ∗(G) = 5, there must be at least three
edges joining e and f ′ in G, one of which is the edge g. Since qx /∈ E(G), it follows that
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pz, qz ∈ E(G). In addition, there must be either one or two edges of type xx′ and either
one or two edges of type qq′, where {x′, q′}∩{p, q, x, y, z} = ∅, since both e and g extend.
There may or may not be a single edge j of type pp′, where p′ /∈ {p, q, x, y, z}. If there is
such an edge j, the graph is colourable with 5 colours as shown in Fig. 8. If such an edge
does not exist, the graph is isomorphic to a graph of type C in Fig. 1.
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Case 2b: f ′ = yz. As before, we can claim the existence of at least three edges joining
e and f ′, two of which are h, i. A third edge could be either qz or pz. We first assume
qz ∈ E(G). The pair {py, qz} is a bad pair. If pz /∈ E(G), we can colour with 5 colours
as indicated in Fig. 9. If pz ∈ E(G), then q(G) > |E(< py, qz >)| = 6, so that q(G) = 6,
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and we can colour with 6 colours using the same colouring given in Fig. 9 and giving
colour 6 to the edge pz. We can then assume pz ∈ E(G) and qz /∈ E(G). The graph is
now colourable with 5 colours as shown in Fig. 10.
Case 3: χ′(G) = 6. In this case we can assume the existence of an edge f ′ coloured ǫ
and forming a bad pair with e, and an edge e′, coloured θ, and forming a bad pair with
f , where ǫ 6= θ and ǫ, θ /∈ {α, β, γ, δ}. We distinguish 4 cases, according to e′ being of the
form pr or qr and f ′ being of the form xz or yz.
Case 3a: e′ = pr, f ′ = xz. By Lemma7, the vertex q is adjacent to p, r, y only and the
vertex y is adjacent to x, p, q, z only. By the same argument used earlier, we can claim
the existence of 3 edges joining e and f ′, one of which is g. However, one of these edges
must necessarily be the edge qz, and this is impossible unless r = z. But, if r = z, the
edge g = px is not augmentable, and hence we have a contradiction.
Case 3b: e′ = qr, f ′ = yz. This case is symmetric to Case 3a.
Case 3c: e′ = qr, f ′ = xz. Again, we can claim the existence of 3 edges joining e and
f ′, which is impossible unless r = z. If r = z, then G is isomorphic to a graph of type C
in Fig. 1, and hence is of the desired type.
Case 3d: e′ = pr, f ′ = yz. The assumption r = z yields immediately a contradiction,
since the edge py does not extend in that case. Hence we have r 6= z. Arguing as above,
there must be at least 3 edges joining e and f ′ and at least 3 edges joining e′ and f . This
implies the existence of the edges pz and ry, respectively. The only other admissible edges
are one edge of the form pp′ and one edge of the form yy′, where {p′, y′}∩{p, q, r, x, y, z} =
∅. This graph can be easily coloured with 6 colours as shown in Fig. 11. This observation
concludes the proof of the lemma. 2
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Lemma 13 Let G be an incompatible graph and suppose λ∗(G) = 6. Then χ′
[3](G) =

q(G).

Proof. Let G be a graph satisfying the hypotheses of the lemma. Let φ be a suitable
colouring and let {e, f} be a bad colour class, where |E(< e, f >)| = 6. Let E(<
e, f >) = {e, f, g, h, i, j} and let e = pq, f = xy, g = px, h = py, i = qy, j = qx. Let
α = φ(e) = φ(f). By Corollary 1 and the fact that the edges e, f extend, we have

4 6 ∆(G) 6 χ′(G) 6 λ∗(G) + 1 = 7.
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Hence χ′(G) = 4, 5, 6 or 7. We split the proof into three cases, according to the value of
χ′(G).
Case 1: 4 6 χ′(G) 6 5. In this case G is easily colourable as shown in Fig. 12.
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Case 2: χ′(G) = 6. In this case there is an edge, which, by symmetry, can be assumed
to be the edge f ′ = xz (for some z /∈ {p, q, x, y}) such that f ′ is coloured θ, where θ is not
the colour of any edge in < e, f >, and f ′ forms a bad pair with e. Arguing as above, we
can claim the existence of 4 edges joining e and f ′. Hence pz, qz ∈ E(G). By Lemma 7,
the only neighbours of y are x, p, q, z and there exists at least one edge of the form xx′,
where x′ /∈ {p, q, x, y, z}. Since j = qx and g = pq extend, there must be at least one edge
of the form pp′ and one edge of the form qq′, where {p′, q′}∩ {p, q, x, y, z} = ∅. Thus G is
of the type shown in Fig. 13, and can be coloured as shown.
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Case 3: χ′(G) = 7. In this case there are two edges, e′ 6= e and f ′ 6= f , such that e′

forms a bad pair with f and f ′ forms a bad pair with e. By symmetry, we can assume
f ′ = xz and e′ = pr, where {r, z} ∩ {p, q, x, y} = ∅. The assumption z = r yields a
contradiction immediately, as the edge g = px does not extend. Hence r 6= z. Arguing as
above, we have 4 edges joining e and f ′ and 4 edges joining e′ and f . Now, exchanging
first the colours of e, e′ and then the colours of f, f ′, we generate a suitable colouring φ′

such that α = φ′(e′) = φ′(f ′). Necessarily the α-colour class must be a bad colour class,
otherwise φ′ has fewer bad colour classes than φ, which is impossible. But this is not the
case, since {e′, f ′, qy} is a matching of size 3. This contradiction completes the proof of
the lemma. 2
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Proof of Theorem 2 and Theorem 1. This follows immediately by combining
Lemma 9, Lemma 10, Lemma 11, Lemma 12, Lemma 13, the chain of inequalities (4)
and Proposition 1. 2

Open problem It would be interesting to see if an assertion analogous to Theorem 1
holds for multigraphs.
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