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1 Introdu
tionLinear re
urren
es are ubiquitous in 
ombinatori
s, as part of a broad general frameworkthat is well-studied and well-understood; in parti
ular, many 
ombinatorially-de�ned se-quen
es 
an be seen on general prin
iples to satisfy linear re
urren
es (see [26℄), and
onversely, when an integer sequen
e is known to satisfy a linear re
urren
e it is oftenpossible to reverse-engineer a 
ombinatorial interpretation for the sequen
e (see [4℄ andreferen
es therein for a general dis
ussion, and [3, Chapter 3℄ for spe
i�
 examples). In
ontrast, rational re
urren
es su
h as
s(n) = (s(n − 1)s(n − 3) + s(n − 2)2)/s(n − 4),whi
h we prefer to write in the form
s(n)s(n − 4) = s(n − 1)s(n − 3) + s(n − 2)2,are en
ountered far less often, and there is no simple general theory that des
ribes thesolutions to su
h re
urren
es or relates those solutions to 
ombinatorial stru
tures. Theparti
ular rational re
urren
e relation given above is the Somos-4 re
urren
e, and is partof a general family of re
urren
es introdu
ed by Mi
hael Somos:

s(n)s(n−k) = s(n−1)s(n−k+1)+s(n−2)s(n−k+2)+ · · ·+s(n−⌊k/2⌋)s(n−⌈k/2⌉).If one puts s(0) = s(1) = · · · = s(k − 1) = 1 and de�nes subsequent terms using theSomos-k re
urren
e, then one gets a sequen
e of rational numbers whi
h for the values
k = 4, 5, 6, 7 is a
tually a sequen
e of integers. (Sequen
es Somos-4 through Somos-7are entries A006720 through A006723 in [24℄.) Although integer sequen
es satisfyingsu
h re
urren
es have re
eived a fair bit of attention in the past few years, until re-
ently algebra remained one step ahead of 
ombinatori
s, and there was no enumerativeinterpretation of these integer sequen
es. (For links related to Somos sequen
es, seehttp://jamespropp.org/somos.html.)Inspired by the work of Somos, David Gale and Raphael Robinson [13, 12℄ 
onsideredsequen
es given by re
urren
es of the form

a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ),with initial 
onditions a(0) = a(1) = · · · = a(m−1) = 1, where m = i+j = k+ℓ. We 
allthis the three-term Gale-Robinson re
urren
e 1. The Somos-4 and Somos-5 re
urren
esare the spe
ial 
ases where (i, j, k, ℓ) is equal to (3, 1, 2, 2) and (4, 1, 3, 2) respe
tively. Galeand Robinson 
onje
tured that for all integers i, j, k, ℓ > 0 with i + j = k + ℓ = m, thesequen
e a(0), a(1), . . . determined by this re
urren
e has all its terms given by integers.About ten years later, this was proved algebrai
ally in an in�uential paper by Fomin andZelevinsky [11℄.1Gale and Robinson also 
onsidered re
urren
es of the form a(n)a(n−m) = a(n− g)a(n− h) + a(n−
i)a(n − j) + a(n − k)a(n − ℓ) for suitable values of g, h, i, j, k, ℓ, m, but su
h four-term Gale-Robinsonre
urren
es will not be our main 
on
ern here.
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1.1 ContentsIn this paper, we �rst give a 
ombinatorial proof of the integrality of the three-termGale-Robinson sequen
es. The integrality 
omes as a side-e�e
t of produ
ing a 
ombina-torial interpretation of those sequen
es. Spe
i�
ally, we 
onstru
t a sequen
e of graphs
P (n; i, j, k, ℓ) (n > 0) and prove in Theorem 9 that the nth graph in the sequen
e has
a(n) (perfe
t) mat
hings. Our graphs, whi
h we 
all pine
ones, generalize the well-knownAzte
 diamond graphs, whi
h are the mat
hings graphs for the Gale-Robinson sequen
e1, 1, 2, 8, 64, 1024, . . . in whi
h i = j = k = ℓ = 1. A more generi
 example of apine
one is shown in Figure 1. All pine
ones are subgraphs of the square grid.
Figure 1: The pine
one P (25; 6, 2, 5, 3). Its mat
hing number is a(25), where a(n) is theGale-Robinson sequen
e asso
iated with (i, j, k, ℓ) = (6, 2, 5, 3).We give two ways to 
onstru
t pine
ones for the Gale-Robinson sequen
es: a re
ursivemethod (see Figure 11 and the surrounding text) that 
onstru
ts the graph P (n; i, j, k, ℓ)in terms of the smaller graphs P (n′; i, j, k, ℓ) with n′ < n, and a dire
t method (seeFormula (2) in Se
tion 3) that allows one to 
onstru
t the graph P (n; i, j, k, ℓ) immediately.The heart of our proof is the demonstration that if one de�nes a(n) as the number ofperfe
t mat
hings of P (n) ≡ P (n; i, j, k, ℓ), the sequen
e a(0), a(1), a(2), ... satis�es theGale-Robinson re
urren
e. This fa
t, in 
ombination with a simple 
he
k that a(0) =
a(1) = · · · = a(m − 1) = 1, gives an immediate indu
tive validation of our 
laim that
P (n) has a(n) perfe
t mat
hings for all n, whi
h yields additionally the integrality of a(n).General pine
ones are de�ned in Se
tion 2, where we also explain how to 
omputeindu
tively their mat
hing number via Kuo's 
ondensation lemma [17℄. In Se
tion 3,we des
ribe how to asso
iate a sequen
e of pine
ones to a Gale-Robinson sequen
e, andobserve that for these pine
ones, the 
ondensation lemma spe
ializes pre
isely to theGale-Robinson re
urren
e. Indeed, the re
ursive method of 
onstru
ting pine
ones, in
ombination with Kuo's 
ondensation lemma, gives 
ombinatorial meaning to the di�erentterms a(n1)a(n2) of the Gale-Robinson re
urren
e.In Se
tion 4, we re�ne our argument to prove that the sequen
e p(n) ≡ p(n; w, z)de�ned by

p(n)p(n − m) = w p(n − i)p(n − j) + z p(n − k)p(n − ℓ),with i+j = k+ℓ = m and p(0) = p(1) = · · · = p(m−1) = 1, is a sequen
e of polynomialsin w and z with nonnegative integer 
oe�
ients. More pre
isely, we prove in Theorem 20that p(n; u2, v2) 
ounts perfe
t mat
hings of the pine
one P (n; i, j, k, ℓ) by the number of
the electronic journal of combinatorics 16 (2009), #R125 3



spe
ial horizontal edges (the exponent of the variable u) and the number of verti
al edges(the exponent of the variable v). The fa
t that p(n) is a polynomial with 
oe�
ients in
Z was proved in [11℄, but no 
ombinatorial explanation was given and the non-negativityof the 
oe�
ients was left open.1.2 Strategy, and 
onne
tions with previous workFor mu
h of the work in this paper, we share pre
eden
e with the students inthe NSF-funded program REACH (Resear
h Experien
es in Algebrai
 Combinatori
sat Harvard), led by James Propp, whose permanent ar
hive is on the web athttp://jamespropp.org/rea
h/. A paper by one of these students, David Speyer [25℄,introdu
ed a very �exible framework (the �
rosses and wren
hes method�) that, start-ing from a re
urren
e relation of a 
ertain type, 
onstru
ts a sequen
e of graphs whosemat
hing numbers satisfy the given re
urren
e. This framework in
ludes the three-termGale-Robinson re
urren
es, and thus yields a 
ombinatorial proof of the integrality of theasso
iated sequen
es. This extends to a proof that the bivariate Gale-Robinson polyno-mials mentioned above are indeed polynomials, and have non-negative 
oe�
ients. Onedi�eren
e with our paper is that Speyer's graphs are only des
ribed expli
itly for Somos-4and Somos-5 sequen
es, whereas our 
onstru
tion is expli
it for any Gale-Robinson se-quen
e. Moreover, the des
ription of our graphs as subgraphs of the square grid looksmore regular, and may be useful to study limit shapes of random perfe
t mat
hings. Fig-ure 19 shows two random perfe
t mat
hings asso
iated with the Somos-4 sequen
e (or,rather, the equivalent domino tilings).Let us mention that shortly after Speyer did his work on perfe
t mat
hings, he and hisfellow REACH-parti
ipant Gabriel Carroll did for four-term Gale-Robinson re
urren
eswhat Speyer had done for three-term Gale-Robinson re
urren
es, by introdu
ing newobje
ts 
alled �groves� to take the pla
e of perfe
t mat
hings [6℄. Carroll and Speyer'swork gives, as two spe
ial 
ases, 
ombinatorial proofs of the integrality of Somos-6 andSomos-7.The strategies that led to Speyer's arti
le [25℄ and to the present arti
le are not entirelyindependent; ea
h made use of Propp's prior 
onstru
tion of a suitable perturbed Gale-Robinson re
urren
e, whi
h we explain next. The explanation will mostly be of interestto resear
hers seeking to apply similar te
hniques to other problems; others may want toskip the rest of the introdu
tion.Suppose we perturb a three-term Gale-Robinson re
urren
e by repla
ing the singly-indexed Gale-Robinson number a(n) by a triply-indexed quantity A(n, p, q) satisfying theperturbed re
urren
e
A(n, p, q)A(n−m, p, q) = A(n−i, p−1, q)A(n−j, p+1, q)+A(n−k, p, q+1)A(n−ℓ, p, q−1).(This 
hoi
e of perturbation is not as spe
ial as it looks: all that matters is that thepairs (−1, 0), (1, 0), (0, 1), (0,−1) that des
ribe the perturbations of the se
ond and third
oordinates in the four index-triples on the right-hand side, viewed as points in the plane,
the electronic journal of combinatorics 16 (2009), #R125 4



form a non-degenerate 
entrally-symmetri
 parallelogram. Choosing a di�erent 
entrally-symmetri
 parallelogram is tantamount to a simple re-indexing of the re
urren
e.) If wetake as our initial 
onditions A(n, p, q) = xn,p,q for all n between 0 and m − 1 and p, qarbitrary, with (formal) indeterminates xn,p,q, then ea
h A(n, p, q) with n > m 
an beexpressed as a rational fun
tion of these indeterminates. It should be emphasized herethat for all n, p, q, r, s, the rational fun
tions A(n, p, q) and A(n, r, s) are the same fun
tionup to re-indexing of the indeterminates.Propp 
onje
tured that ea
h A(n, p, q) is a Laurent polynomial in some �nite subset ofthe (in�nitely many) indeterminates xn,r,s, with integer 
oe�
ients; that is, ea
h A(n, p, q)is an element of Z[x±1
n,r,s]. This was subsequently proved by Fomin and Zelevinsky [11℄.Note that if one sets all the indeterminates xn,r,s equal to 1, the Laurent polynomials

A(n, p, q) spe
ialize to the Gale-Robinson numbers a(n). Propp 
onje
tured that ea
h
oe�
ient in ea
h su
h Laurent polynomial is positive (a fa
t that is not proved by Fominand Zelevinsky's method) and furthermore is equal to 1.Propp knew that in the 
ase i = j = k = ℓ = 1, the Laurent polynomials A(n, p, q) 
anbe interpreted as multivariate mat
hing polynomials of suitable graphs, namely, the Azte
diamond graphs. (See Subse
tion 2.1 for a de�nition of mat
hing polynomials.) Indeed,David Robbins had studied the three-parameter �perturbed re
urren
e� in this 
ase, ona

ount of its relation to the study of determinants, and had shown (with Rumsey) [22℄that the asso
iated rational fun
tions are Laurent polynomials. (For more ba
kgroundon this 
onne
tion with determinants, see [5℄.) The work by Elkies, Kuperberg, Larsen,and Propp [10℄ had shown that the monomials in these Laurent polynomials 
orrespondto perfe
t mat
hings of Azte
 diamond graphs. So it was natural to hope that this
orresponden
e 
ould be extended to the Gale-Robinson family of re
urren
es.It should be a
knowledged here that the idea behind the spe
i�
 triply-indexed per-turbation A(n, p, q) of the Gale-Robinson sequen
e that proved so fruitful 
ame from anarti
le of Zabrodin [28℄ that was brought to Propp's attention by Ri
k Kenyon. Thisarti
le led Propp to think that the re
urren
e studied by Robbins should be 
onsidered aspe
ial 
ase of the �dis
rete bilinear Hirota equation�, or �o
tahedron equation�, and thatother re
urren
es su
h as the Gale-Robinson re
urren
e should likewise be 
onsidered inthe 
ontext of the o
tahedron equation.What the REACH students were able to do, after diligent examination of the Laurentpolynomials A(n, p, q), is view those Laurent polynomials as multivariate mat
hing poly-nomials of suitable graphs. Bousquet-Mélou and West, independently, did the same forsmall values of n, until they were able to extrapolate these examples to the generi
 formof the graphs, whi
h be
ame the pine
ones of this paper.There is a general strategy here for reverse-engineering 
ombinatorial interpretationsof algebrai
ally-de�ned sequen
es of numbers: add su�
iently many extra variables sothat the numbers be
ome Laurent polynomials in whi
h every 
oe�
ient equals 1. Foranother appli
ation of this reverse-engineering method (in the 
ontext of Marko� numbersand frieze patterns), see [18℄.
the electronic journal of combinatorics 16 (2009), #R125 5



2 Perfe
t mat
hings of pine
onesIn this se
tion we de�ne a family of subgraphs of the square latti
e, whi
h we 
allpine
ones. Then we prove that the number of perfe
t mat
hings of a pine
one 
an be
omputed indu
tively in terms of the number of perfe
t mat
hings of �ve of its sub-pine
ones.2.1 PreliminariesTo begin with, let us re
all some terminology about graphs. A (simple) graph G is anordered pair (V, E) where V is a �nite set of verti
es, and E, the set of edges, is a 
olle
tionof 2-element subsets of V . The degree of a vertex v is the number of edges in E 
ontaining
v. A subgraph of G is a graph H = (V ′, E ′) su
h that V ′ ⊂ V and E ′ ⊂ E. If, in addition,
V ′ = V , we say that H is a spanning subgraph of G. The interse
tion of two graphs
G = (V, E) and H = (V ′, E ′) is the graph G ∩ H = (V ∩ V ′, E ∩ E ′), and the union ofthe two graphs is the graph G∪H = (V ∪ V ′, E ∪E ′). Given two graphs G = (V, E) and
H = (V ′, E ′), we denote by G \ H the subgraph (V ′′, E ′′), where V ′′ = V \ V ′ and E ′′ isthe set of edges of E \ E ′ having both endpoints in V ′′.A perfe
t mat
hing of a graph G = (V, E) is a subset E ′ of E su
h that every vertexof V belongs to exa
tly one edge of E ′. We will sometimes omit the word �perfe
t� andrefer to perfe
t mat
hings as simply �mat
hings�. The mat
hing number of G, denoted by
m(G), is the number of perfe
t mat
hings of G. More generally, we shall often 
onsiderthe set E of edges as a set of 
ommuting indeterminates, and asso
iate with a (perfe
t)mat
hing E ′ the produ
t of the edges it 
ontains. The mat
hing polynomial of G is thusde�ned to be

M(G) :=
∑

E′

∏

e∈E′

e,where the sum runs over all perfe
t mat
hings E ′ of G. If we repla
e every e that o

ursin this sum-of-produ
ts by a non-negative integer ne, then this expression be
omes a non-negative integer, namely, the number of perfe
t mat
hings of the multigraph in whi
hthere are ne edges joining the verti
es x and y for all e = {x, y} in E (and no edgesjoining x and y if {x, y} is not in E). In parti
ular, if ea
h ne is set equal to 0 or 1, thenthe mat
hing polynomial be
omes the number of perfe
t mat
hings of the subgraph of G
onsisting of pre
isely those edges e for whi
h ne = 1.2.2 Azte
 diamonds graphsThe pine
ones 
onsidered in this paper are 
ertain subgraphs of the square latti
e. Themost regular of them are the (Azte
) diamond graphs, whi
h are the duals of the so-
alledAzte
 diamonds, whi
h were �rst studied in detail in [10℄. A diamond graph of width
2k − 1 is obtained by taking 
onse
utive rows of squares, of length 1, 3, . . . , 2k − 3, 2k −
1, 2k−3, . . . , 3, 1 and sta
king them from top to bottom, with the middle squares in all therows lining up verti
ally, as illustrated by Figure 2. Let A be a diamond graph of width
the electronic journal of combinatorics 16 (2009), #R125 6



9

e

s

n

w

Figure 2: An Azte
 diamond graph of width 9, and one of its perfe
t mat
hings.
2k − 1. Let AN be the diamond graph of width 2k − 3 obtained by deleting the leftmostand rightmost squares of A as well as the two lowest squares of ea
h of the remaining
2k − 3 
olumns of A. We 
all AN the North sub-diamond of A. De�ne similarly theSouth, West and East sub-diamonds of A, denoted by AS, AW and AE . Finally, let ACbe the 
entral sub-diamond of A of width 2k − 5 (Figure 3). The following result is areformulation of Kuo's 
ondensation theorem for Azte
 diamond graphs [17℄.Theorem 1 (Condensation for diamonds graphs) The mat
hing polynomial of adiamond graph A is related to the mat
hing polynomials of its sub-diamonds by

M(A)M(AC) = nsM(AW )M(AE) + ewM(AN )M(AS),where n, s, w, and e denote respe
tively the top (resp. bottom, westmost, eastmost) edge of
A (see Figure 2).In parti
ular, if a(n) (with n > 2) denotes the mat
hing number of a diamond graph ofwidth 2n − 3, then

a(n)a(n − 2) = 2a(n − 1)2for all n > 2, provided we adopt the initial 
onditions a(0) = a(1) = 1. This shows that
a(n) is the three-term Gale-Robinson sequen
e asso
iated with i = j = k = ℓ = 1, andimplies a(n) = 2(n

2).The 
ondensation theorem we shall prove for pine
ones appears as a generalizationof the 
ondensation theorem for diamond graphs. But it 
an a
tually also be seen as aspe
ialization of it, and this is the point of view we adopt in this paper. The key idea isto forbid 
ertain edges in the mat
hings.Corollary 2 Let A be a diamond graph, and let G be a spanning subgraph of A, 
ontainingthe edges n, s, w and e. Let GN = G ∩ AN , and de�ne GS, GW , GE and GC similarly.Then
M(G)M(GC) = nsM(GW )M(GE) + ewM(GN)M(GS).
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AEAW AC

AN

ASFigure 3: The �ve sub-diamonds of a diamond graph of width 9.Proof. Sin
e G is a spanning subgraph of A, every perfe
t mat
hing of G is a perfe
tmat
hing of A. Hen
e the mat
hing polynomial M(G) is simply obtained by setting
a = 0 in M(A), for every edge a that belongs to A but not to G. The same propertyrelates M(GN ) and M(AN ), and so on. Consequently, Corollary 2 is simply obtained bysetting a = 0 in Theorem 1, for every edge a that belongs to A but not to G.2.3 Pine
ones: de�nitionsA standard pine
one of width 2k − 1 is a subgraph P = (V, E) of the square latti
esatisfying the three following 
onditions, illustrated by Figure 4.a:

1. The horizontal edges form i+ j +1 segments of odd length, starting from the points
(0, 1), (1, 2) . . . , (i−1, i) and (0, 0), (1,−1), . . . , (j,−j), for some i > 1, j > 0. More-over, if Lm denotes the length of the segment lying at ordinate m, then

L−j < · · · < L−1 < L0 = 2k − 1 = L1 > L2 > · · · > Li.

2. The set of verti
es V is the set of verti
es of the square latti
e that are in
ident tothe above horizontal edges.
the electronic journal of combinatorics 16 (2009), #R125 8



3. Let e = {(a, b), (a, b+1)} be a verti
al edge of the square latti
e joining two verti
esof V . If a + b is even, then e belongs to the set of edges E, and we say that e is aneven edge of P . Otherwise, e may belong to E, or not (Figure 4.a), and we 
all e a(present or absent) odd edge.The leftmost verti
es of a standard pine
one are always (0, 0) and (0, 1). However, some-times it is 
onvenient to 
onsider graphs obtained by shifting su
h a graph to a di�erentlo
ation in the two-dimensional latti
e. We will 
all su
h a graph a transplanted pine
one.In a transplanted pine
one, the leftmost verti
es are (a, b) and (a, b + 1), where a + b iseven. In some 
ases, where the distin
tion between standard and transplanted pine
onesis not relevant or where we think the 
ontext makes it 
lear whi
h sort of pine
one weintend, we omit the modi�er and simply use the word �pine
one�.
b. c.a.

(0, 0)Figure 4: Some pine
ones of width 15. a. The dashed edges may belong to the graph, ornot. b. A pine
one. c. A 
losed pine
one.Figures 4.b and 4.c show two spe
i�
 ways to make the 
hoi
es indi
ated in Figure 4.aand obtain a pine
one of width 15. The pine
one of Figure 4.c is 
losed, meaning that it
ontains no vertex of degree 1. (Su
h a vertex 
an only o

ur at the right border of thepine
one, and o

urs if the rightmost vertex of some horizontal segment does not belongto a verti
al edge, as shown in Figure 4.b.) An Azte
 diamond graph is an example ofa 
losed pine
one. Let us 
olor the 
ells of the square latti
e alternatingly in bla
k andwhite in su
h a way that the 
ell 
ontaining the verti
es (0, 0) and (1, 1) is bla
k. Thefa
es of the pine
one are the �nite 
onne
ted 
omponents of the 
omplement of the graphin R
2. The fa
es of a pine
one P are of three types: bla
k squares, white squares, andhorizontal re
tangles 
onsisting of a bla
k 
ell to the left and a white 
ell to the right. Weinsist on the distin
tion between a 
ell (of the underlying square latti
e) and a square (afa
e of P that has 4 edges). For instan
e, the longest row of a pine
one of width 2k − 1
ontains exa
tly 2k−1 
ells, but may 
ontain no square at all. Denoting by ℓ (resp. r) theleftmost (resp. rightmost) 
ell of the longest row of P , we say that P is rooted on (ℓ, r).(If P is standard, then ℓ is the 
ell with (0, 0) as its lower-left 
orner.) We refer to thelongest row of a pine
one as row 0. The row above it (resp. below) is row 1 (resp. −1),and so on.It is easy to see that a pine
one P is 
losed if and only if the rightmost �nite fa
e ofea
h row is a bla
k square. In this 
ase, the rightmost bla
k square in ea
h row is also therightmost 
ell of the row. If moreover P is standard, it is 
ompletely determined by theposition of its bla
k squares. Equivalently, it is 
ompletely determined by the position of
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its odd verti
al edges. Conversely, 
onsider any �nite set S of bla
k squares whose lower-left verti
es lie in the 90 degree wedge bounded by the rays y = x > 0 and −y = x > 0.Assume that S is monotone, in the following sense: the rows that 
ontain at least onesquare of S are 
onse
utive (say from row −j to row i, where row m refers to 
ells lo
atedbetween ordinates m and m+1) and for m > 0 (resp. m < 0), the rightmost bla
k squarein row m o

urs to the left of the rightmost bla
k square in row m−1 (resp. m+1). Thenis a (unique) 
losed standard pine
one whose set of bla
k squares is S.We shall often 
onsider the empty graph as a parti
ular 
losed pine
one (asso
iatedwith the empty set of bla
k squares). The empty graph has one perfe
t mat
hing, ofweight 1.2.4 The 
ore of a pine
oneWhen a pine
one P is not 
losed, some of the edges of P 
annot belong to any perfe
tmat
hing of P . Spe
i�
ally, if v is a vertex of degree 1 in P , then in any perfe
t mat
hingof P , v must be mat
hed with the vertex to its left (
all it u), so that u 
annot bemat
hed with any of its other neighbors. Indeed, there 
an be a 
hain rea
tion wherebya for
ed edge, in 
ausing other edges to be forbidden, leads to new verti
es of degree 1,
ontinuing the pro
ess of for
ing and forbidding other edges. An example of this is shownin Figure 5. The left half of the pi
ture shows a non-
losed pine
one P , and the right halfof the pi
ture shows a 
losed sub-pine
one P̄ of P along with a set of isolated edges. Thereader 
an 
he
k (starting from the rightmost frontier of P and working systemati
allyleftward) that ea
h of the isolated edges is a for
ed edge (that is, it must be 
ontainedin every perfe
t mat
hing of P ), so that a perfe
t mat
hing of P is nothing other thana perfe
t mat
hing of P̄ together with the set of isolated edges shown at right. In thissubse
tion, we will give a systemati
 way of redu
ing a pine
one P to a smaller 
losedpine
one by pruning away some for
ed and forbidden edges.
Figure 5: From a pine
one P to its 
ore P̄ .It 
an easily be 
he
ked that the union or interse
tion of two standard pine
ones is astandard pine
one, and that the union or interse
tion of two 
losed standard pine
onesis a 
losed standard pine
one. It follows that, if P is a standard pine
one, there exists alargest 
losed standard sub-pine
one of P , namely, the union of all the 
losed standardsub-pine
ones of P . We 
all this the 
ore of P and denote it by P̄ . (If P is not a standardpine
one but a transplanted pine
one rooted at the 
ell with lower-left 
orner (a, b), we
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de�ne P0 as the standard pine
one obtained by translating P by (−a,−b), and we de�nethe 
ore of P as the 
ore of P0 translated by (a, b). However, for the rest of this se
tionwe will restri
t attention to standard pine
ones.)Here is an alternative (more 
onstru
tive and less abstra
t) approa
h to de�ning the
ore. Let P be a standard pine
one. Let b0 be the rightmost bla
k square in row 0 of
P , let b1 be the rightmost bla
k square in row 1 of P that lies stri
tly to the left of b0,let b2 be the rightmost bla
k square in row 2 of P that lies stri
tly to the left of b1, andso on (pro
eeding upwards); likewise, let b−1 be the rightmost bla
k square in row −1 of
P that lies stri
tly to the left of b0, and so on (pro
eeding downwards). If at some pointthere is no bla
k square that satis�es the requirement, we leave bm unde�ned. Considerall the fa
es of P that lie in the same row as, and lie weakly to the left of, one of one ofthe bk's. This set of fa
es gives a 
losed pine
one P̃ . At the same time, it is 
lear that any
losed sub-pine
one Q of P must be a sub-pine
one of P̃ . For, the rightmost bla
k squarein row 0 of Q 
an be no farther to the right than b0, whi
h implies that the rightmostbla
k square in row 1 of Q 
an be no farther to the right than b1, et
.; and likewise forthe bottom half of Q. Hen
e the sub-pine
one P̃ we have 
onstru
ted is none other thanthe 
ore of P as de�ned above.If P is 
losed, then P̄ = P . Note that a 
losed pine
one always admits two parti
u-larly simple perfe
t mat
hings: one 
onsisting entirely of horizontal edges, and the other
onsisting of the leftmost and rightmost verti
al edges in ea
h row (and no other verti
aledges) along with some horizontal edges (Figure 6). In parti
ular, the rightmost verti
aledges of a 
losed pine
one are never for
ed nor forbidden.

Figure 6: Two parti
ularly simple mat
hings of a 
losed pine
one.Let P be a pine
one with 
ore P̄ . There is a unique perfe
t mat
hing of P \ P̄
onsisting ex
lusively of horizontal edges (see Figure 5); let H be the edge set of thisperfe
t mat
hing. Every perfe
t mat
hing of P̄ 
an be extended to a perfe
t mat
hingof P by adjoining the edges in H , so m(P ) > m(P̄ ). We now show that every perfe
tmat
hing of P is obtained from a perfe
t mat
hing of P̄ in this way.Proposition 3 Let P be a pine
one with 
ore P̄ . Then m(P̄ ) = m(P ).Proof. We will prove this 
laim by using a pro
edure that redu
es a sub-pine
one Q of Pto a smaller sub-pine
one with the same mat
hing number. Let Q be a sub-pine
one of Pwhose 
ore 
oin
ides with P̄ . If Q is not 
losed, then there must be at least one vertex ofdegree 1 along the right boundary of Q. Let v = (a, b) be one of the the rightmost verti
esof degree 1 in Q. Then v is the rightmost vertex in one of the rows of Q. Assume for the
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moment that v lies stri
tly above the longest row of Q (that is, b > 1). See the top partof Figure 7 for an illustration of the following argument. Let u be the vertex to the leftof v. Then the edge joining u and v is for
ed to belong to every perfe
t mat
hing of Q,while every other edge 
ontaining u is forbidden from belonging to any perfe
t mat
hingof Q. Hen
e the graph Q′ obtained from Q by deleting u, v, and every edge in
ident with
u or v has the same mat
hing number as Q. Furthermore, Q′ is a pine
one, unless thevertex v1 = (a − 1, b + 1) belongs to Q. In this 
ase, v1 has degree 1 in Q′. Let i be thelargest integer su
h that vj = (a − j, b + j) belongs to Q for all 0 6 j 6 i. Applying thedeletion pro
edure to the verti
es v = v0, v1, . . . , vi (in this order) yields a pine
one Q∗.Assume now that b = 1. Applying the deletion pro
edure to all the verti
es of Q of theform (a − j, 1 + j) or (a − j,−j) yields again a pine
one Q∗ (see Figure 7, bottom). Bysymmetry, we have 
overed all possible values of b.

v

v2
v1

v

v2
v1

v

v

Q

Q

Q∗

Q∗

Figure 7: Some sequen
es of edge-deletions starting and ending with a pine
one.Observe that m(Q) = m(Q∗). Additionally, we 
an 
he
k that the 
ore of Q∗ is P̄ . Theonly thing we might worry about is that in passing from Q to Q∗, we removed some edgesthat belong to P̄ . The examination of Figure 5 shows that we would have, in parti
ular,removed the rightmost verti
al edge is some row of P̄ . However, this 
annot happen,be
ause the removed edges were all for
ed or forbidden, whereas the rightmost edges of
P̄ are neither for
ed nor forbidden (Figure 6).To prove that m(P̄ ) = m(P ), take Q = P and use the pre
eding operation repeatedlyto 
onstru
t su

essively smaller graphs Q∗, Q∗∗, . . . su
h that m(P ) = m(Q) = m(Q∗) =
m(Q∗∗) = · · · and P̄ = Q̄ = Q∗ = Q∗∗ = · · · . Eventually we arrive at a 
losed sub-pine
one of P whose 
ore is P̄ ; that is, we arrive at P̄ itself. And sin
e ea
h step of our
onstru
tion preserves m(Q), we 
on
lude that m(P̄ ) = m(P ), as 
laimed.
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2.5 A 
ondensation theorem for 
losed pine
onesLet P be a 
losed pine
one, with longest row 
onsisting of 2n + 1 squares. Let A be thesmallest diamond graph 
ontaining P (the longest row of A 
ontains exa
tly 2n+1 
ells).Let G denote the spanning subgraph of A whose edge-set 
onsists of all edges of P , allhorizontal edges of A, and all even verti
al edges of A (Figure 8). Observe that G is apine
one. Moreover, among the spanning subgraphs of A that are pine
ones and 
ontain
P , G has stri
tly fewer edges than the others. Sin
e no odd verti
al edge is added, P isa
tually the 
ore of the pine
one G.

P
G

Figure 8: Completing a pine
one P into a spanning pine
one of an Azte
 diamond graph.Let us now use the notation of Corollary 2. That is, GN = G ∩ AN , and so on. Then
GN , GS, GW , GE and GC are (standard or transplanted) pine
ones. Let P N , P S, P W , P Eand P C denote their respe
tive 
ores. (These are not to be 
onfused with PN , et
., whi
hare the interse
tions of P with AN , et
.) We will often 
all P N , P S, P W , P E and P C �the�ve sub-pine
ones� of P , even though, stri
tly speaking, P admits other sub-pine
ones.An example is given in Figure 9. Let ℓ0 (resp. r0) be the leftmost (resp. rightmost) 
ellof the longest row R0 of P . Similarly, let r1 (resp. r−1) denote the rightmost 
ell of therow just above (resp. below) R0. Observe that the 
ells r0, r1 and r−1 
orrespond tobla
k squares of P . Finally, let ℓ′0 be the bla
k 
ell of R0 following ℓ0, and let r′0 thebla
k square of R0 pre
eding r0 (if it exists). In light of the basi
 properties of the 
ore(both the abstra
t de�nition and the algorithmi
 
onstru
tion), we 
an give the followingalternative des
ription of the �ve sub-pine
ones of P .Proposition 4 Let P be a 
losed pine
one. With the above notation, P N (resp. P S) isthe largest 
losed sub-pine
one of P whose rightmost 
ell is r1 (resp. r−1). Similarly, P W(resp. P E) is the largest 
losed sub-pine
one whose rightmost (resp. leftmost) 
ell is r′0(resp. ℓ′0). Finally, P C is the largest 
losed sub-pine
one rooted on (ℓ′0, r

′
0).This proposition implies that a pine
one P that is neither empty, nor redu
ed to a bla
ksquare 
an be re
onstru
ted from its four main sub-pine
ones P N , P S, P E and P W .Indeed, the part of P lo
ated stri
tly above its longest row 
oin
ides with the top part of
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PC

PN

PEPW

PS

r−1

ℓ0

r1

r0
r′0ℓ′0

Figure 9: The �ve sub-pine
ones of a pine
one P .
P N . More pre
isely, row r of P , with r > 0 
oin
ides with row r − 1 of P N . Similarly,for r < 0, row r of P 
oin
ides with row r + 1 of P S. It thus remains to determine thelongest row of P . This row is obtained by adding a 2-by-1 re
tangle2 to the left of thelongest row of P E, and then superimposing the longest row of P W .Let us now apply Corollary 2 to the graph G obtained by 
ompleting P into a spanningpine
one of A (Figure 8). By Proposition 3, sin
e P is the 
ore of G, m(G) = m(P ), andsimilar identities relate the mat
hing numbers of GN and P N , et
.Theorem 5 (Condensation for 
losed pine
ones) The mat
hing number of a 
losedpine
one P is related to the mat
hing number of its 
losed sub-pine
ones by

m(P )m(P C) = m(P W )m(P E) + m(P N)m(P S).We will state in Se
tion 4 a more general 
ondensation result dealing with the mat
hingpolynomial, rather than the mat
hings number, of 
losed pine
ones (Theorem 13).3 Pine
ones for the Gale-Robinson sequen
esThe pine
ones introdu
ed in the previous se
tion generalize Azte
 diamond graphs. Thenumber of perfe
t mat
hings of the diamond graph of width 2n− 3 is the nth term in the2This re
tangle is a
tually only useful if PW is empty or redu
ed to a single bla
k square.
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re
urren
e
a(n)a(n − 2) = a(n − 1)a(n − 1) + a(n − 1)a(n − 1),with initial 
onditions a(0) = a(1) = 1. More generally, the three-term Gale-Robinsonsequen
es are governed by re
urren
es of the form

a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ), (1)with initial 
onditions a(n) = 1 for n = 0, 1, . . . , m − 1. Here, i, j, k and ℓ are positiveintegers su
h that i + j = k + ℓ = m, and we adopt the following (important) 
onvention
j = min{i, j, k, ℓ}.Our purpose in this se
tion is to 
onstru
t a sequen
e of (
losed) pine
ones (P (n))n>0 ≡

(P (n; i, j, k, ℓ))n>0 for ea
h set of parameters {i, j, k, ℓ} su
h that i+j = k+ℓ = m, and toshow that the mat
hing numbers of the pine
ones in our sequen
e satisfy the 
orrespondingGale-Robinson re
urren
e. More spe
i�
ally, our family of graphs will be 
onstru
ted insu
h a way that
• P (n)C is P (n − m) transplanted to (2, 0) (that is, shifted two steps to the right),
• P (n)W is P (n − i),
• P (n)E is P (n − j) transplanted to (2, 0),
• P (n)N is P (n − k) transplanted to (1, 1), and
• P (n)S is P (n − ℓ) transplanted to (1,−1).In our 
onstru
tion, we use the fa
t that a 
losed pine
one is 
ompletely determined byits set of odd verti
al edges, that is, verti
al edges of the form {(a, b), (a, b + 1)} where

a + b is odd. We introdu
e two fun
tions, an upper fun
tion U and a lower fun
tion L,whi
h will be used to determine the positions of the odd verti
al edges in the (
losed)pine
one P (n; i, j, k, ℓ): for r > 0, let
U(n, r, c) = 2c + r − 3 − 2

⌊

mc + kr + i − n − 1

j

⌋

,

L(n, r, c) = 2c + r − 3 − 2

⌊

mc + ℓr + i − n − 1

j

⌋

.

(2)Observe that the parameters k and ℓ play symmetri
 roles. Also, U(n, 0, c) = L(n, 0, c).The fun
tion U will des
ribe the upper part of the pine
one, while L will des
ribe itslower part. Re
all that, by 
onvention, the longest row of a standard pine
one is row 0and its South-West 
orner lies at 
oordinates (0, 0), as shown in Figure 4.To lo
ate the verti
al odd edges in row r > 0, 
al
ulate the values U(n, r, c) for
c = 0, 1, . . . This will be a (stri
tly) de
reasing sequen
e, sin
e m > 2j (re
all that
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i + j = m and j 6 i). Retain those values U(n, r, c) that are larger than r, and pla
e averti
al edge in the rth row at abs
issa U(n, r, c), that is, an edge 
onne
ting (U(n, r, c), r)and (U(n, r, c), r+1) (an odd edge, sin
e U(n, r, c)+r is odd). The �rst row not 
ontainingsu
h an edge (and therefore not in
luded in the pine
one) is the �rst one for whi
h
U(n, r, 0) < r. Observe that U(n, r, 0)−r is a de
reasing fun
tion of r (sin
e j 6 k). Thisproperty guarantees that if the rth row is empty, then all higher rows are empty too. It alsoimplies that the rightmost verti
al edge in row r (whi
h is lo
ated at abs
issa U(n, r, 0)) liesto the right of the rightmost verti
al edge in row r+1. (To see this, note that U(n, r, 0)−ris always an odd number.) So the inequality U(n, r+1, 0)−(r+1) < U(n, r, 0)−r implies
U(n, r + 1, 0)− (r + 1) 6 U(n, r, 0)− r − 2, or U(n, r + 1, 0) < U(n, r, 0). That is, the setof odd edges (equivalently, of bla
k squares) given by Formula (2) satis�es the �top part�of the monotoni
ity 
ondition des
ribed at the end of Se
tion 2.3: the rightmost odd edgein row r > 0, if it exists, lies to the left of the rightmost odd edge in row r − 1.Similarly, to lo
ate the edges in row −r 6 0, 
al
ulate the values of L(n, r, 0) >
L(n, r, 1) > · · · and retain those larger than r. For ea
h, pla
e a verti
al edge in row −rat abs
issa L(n, r, c), that is, 
onne
ting (L(n, r, c),−r) and (L(n, r, c),−r + 1). Observethat L(n, 0, c) = U(n, 0, c), so that the 
olle
tion of odd verti
al edges in row 0 is thesame whether it is determined from U or from L.The monotoni
ity properties satis�ed by the positions of the odd edges imply thatthere exists a unique standard 
losed pine
one whose set of odd verti
al edges 
oin
ideswith the set we have 
onstru
ted via the fun
tions U and L. To obtain this pine
one, drawhorizontal edges from (r, r + 1) to (U(n, r, 0), r + 1) and from (−r,−r) to (L(n, r, 0),−r)for all r > 0. Finally, pla
e all the appropriate even verti
al edges. Sin
e these steps areso routine, we regard the pine
one as fully des
ribed on
e the set of odd verti
al edgeshas been spe
i�ed. This point of view simpli�es the exposition.Observe that P (n) is empty if and only if U(n, 0, 0) < 0, whi
h is equivalent to
U(n, 0, 0) 6 −1 (sin
e U(n, 0, 0) is odd), whi
h is easily seen to be equivalent to n < m(using the fa
t that m = i + j).Example. Take (i, j, k, ℓ) = (5, 2, 3, 4) and determine P (12). The above de�nition of Uand L spe
ializes to

U(n, r, c) = 2c + r − 3 − 2

⌊

7c + 3r − 8

2

⌋

,

L(n, r, c) = 2c + r − 3 − 2

⌊

7c + 4r − 8

2

⌋

.In row 0, we �nd odd edges with lower verti
es (5, 0) and (1, 0). In row 1, there is one oddedge at (4, 1). This is the top row of the diagram be
ause U(12, 2, 0) = 1 < 2. Turningto the lower portion of the diagram, there is one odd edge with lower vertex (2,−1) andnone in row −2 or below. Completing the diagram is now routine, and gives the pine
one
P (12) whi
h is shown in Figure 10, together with its 14 perfe
t mat
hings. A

ordingly,the Gale-Robinson sequen
e a(n) asso
iated with (5, 2, 3, 4) satis�es a(12) = 14.A larger example is presented after Corollary 10.
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(2)(4)(4) (4)(0, 0)Figure 10: The pine
one P (12; 5, 2, 3, 4), with bla
k squares indi
ated, and its 14 perfe
tmat
hings (a 
ross stands for any of the two mat
hings of a square).The pine
ones based on the fun
tions U and L satisfy a remarkable property: the oddedges (or, equivalently, the bla
k squares) in rows r and r + 1 are interleaved. That is,between two bla
k squares in row r > 0, there is a bla
k square in row r+1, and similarly,between two bla
k squares in row r 6 0, there is a bla
k square in row r− 1. This 
an be
he
ked on the small example of Figure 10, but is more visible on the bigger example ofFigure 12.Lemma 6 (The interleaving property) For all values of n, r and c, the fun
tions Uand L de�ned by (2) satisfy
U(n, r, c + 1) + 1 6 U(n, r + 1, c) 6 U(n, r, c) − 1and
L(n, r, c + 1) + 1 6 L(n, r + 1, c) 6 L(n, r, c) − 1.Proof. We have

U(n, r + 1, c) − U(n, r, c + 1) =

2

⌊

mc + kr + i − n − 1 + m

j

⌋

− 2

⌊

mc + kr + i − n − 1 + k

j

⌋

− 1.But
mc + kr + i − n − 1 + m

j
−

mc + kr + i − n − 1 + k

j
=

ℓ

j
> 1,so that the two �oors o

urring in the above identity di�er by 1 at least. Consequently,

U(n, r + 1, c) − U(n, r, c + 1) > 2 − 1 = 1.The three other inequalities are proved in a similar manner.We now wish to apply the 
ondensation theorem (Theorem 5) to the pine
ones P (n) wehave just de�ned. Using the notation of Theorem 5, we will verify that, up to translation,
P (n)W = P (n − i), P (n)E = P (n − j), P (n)N = P (n − k), P (n)S = P (n − ℓ) and
P (n)C = P (n−m). These equivalen
es will follow from the interleaving property and thefollowing algebrai
 equalities.
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Lemma 7 For any 
hoi
e of parameters (i, j, k, ℓ), the fun
tions U and L de�ned by (2)satisfy:
U(n − i, r, c − 1) = U(n, r, c), L(n − i, r, c − 1) = L(n, r, c),

U(n − j, r, c) = U(n, r, c) − 2, L(n − j, r, c) = L(n, r, c) − 2,
U(n − k, r − 1, c) = U(n, r, c) − 1, L(n − ℓ, r − 1, c) = L(n, r, c) − 1,

U(n − ℓ, r + 1, c − 1) = U(n, r, c) − 1, L(n − k, r + 1, c − 1) = L(n, r, c) − 1,
U(n − m, r, c − 1) = U(n, r, c) − 2, L(n − m, r, c − 1) = L(n, r, c) − 2.Proof. The L-identities are symmetri
 to the U-identities upon ex
hanging k and ℓ, sothat there are really 5 identities to prove. These 
an all be veri�ed by routine algebrai
manipulations. Let us 
he
k for instan
e the fourth identity satis�ed by U :

U(n − ℓ, r + 1, c − 1)

= 2(c − 1) + (r + 1) − 3 − 2

⌊

m(c − 1) + k(r + 1) + i − (n − ℓ) − 1

j

⌋

= 2c + r − 4 − 2

⌊

mc + kr + i − n − 1 − m + k + ℓ

j

⌋

= 2c + r − 4 − 2

⌊

mc + kr + i − n − 1

j

⌋ sin
e m = k + ℓ

= U(n, r, c) − 1.We leave it to the reader to verify the remaining 4 identities.We now 
he
k that these identities imply that the pine
ones are related to one anotheras 
laimed.Proposition 8 Let P (n) ≡ P (n; i, j, k, ℓ) be the sequen
e of pine
ones asso
iated with theparameters (i, j, k, ℓ). Then for n > m, the �ve 
losed sub-pine
ones of P (n) satisfy
P (n)W = P (n − i), P (n)E = P (n − j),

P (n)N = P (n − k), P (n)S = P (n − ℓ),and
P (n)C = P (n − m).These identities hold up to a translation.Proof. Begin by 
he
king that P (n)W = P (n − i). Using the des
ription of P (n)W givenin Proposition 4, and the fa
t that the bla
k squares of P (n) are interleaved, we see thatthe odd verti
al edges in P (n)W are those of P (n), ex
ept that the rightmost odd edgein ea
h row has been removed. (If this was the only odd edge in the row, then the entirerow disappears.) Therefore P (n)W 
an be 
onstru
ted by following the 
onstru
tion for

P (n), but beginning with c = 1, 2, . . . instead of c = 0, 1, . . .. This means that in row
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r > 0 of P (n)W , odd edges appear at positions U(n, r, 1), U(n, r, 2), . . . as long as thesevalues 
ontinue to ex
eed r. (Similarly in rows r 6 0, using L instead of U .)Let us now 
ompare this with P (n − i). In row r > 0 of P (n − i), odd edges appearin positions U(n − i, r, 0), U(n − i, r, 1), . . ., as long as these values 
ontinue to ex
eed r.However we showed in Lemma 7 that U(n − i, r, c − 1) = U(n, r, c), so the sequen
e ofodd edges in row r is the same in P (n)W and in P (n− i). The situation is similar in rows
r < 0 using the equality for L. As we remarked above, a pine
one is determined by itsodd edges (and the position of its leftmost edge), so P (n)W = P (n − i).The other four equivalen
es are similar. The only new development is that instead ofbeing positioned at the origin, the smaller pine
ones are now o�set by one or two 
olumns(in all four 
ases) and possibly rows (in the 
ase of P (n)N and P (n)S). We will look at
P (n)S as an example, and let the reader supply the details for the remaining three 
ases.As noted after Proposition 4, for r 6 0, row r of P (n)S 
oin
ides with row r−1 of P (n).For r > 0, the leftmost 
ell of row r of P (n)S lies two steps to the right of the leftmost
ell of row r − 1 of P (n). Moreover, the interleaving property implies, by indu
tion on
r > 0, that the last (i.e., rightmost) bla
k square of row r of P (n)S is the next-to lastbla
k square of row r−1 of P (n). Thus the odd edges of P (n)S are lo
ated as follows: forrows −r, with r = 1, 2, . . ., in 
olumns L(n, r, 0), L(n, r, 1), . . ., as long as these numbers
ontinue to ex
eed r; and for rows r = 0, 1, 2, . . ., in 
olumns U(n, r, 1), U(n, r, 2), . . ., aslong as these numbers 
ontinue to ex
eed r + 2.Let us now look at a 
opy of P (n− ℓ) positioned with its origin at (1,−1). After thistranslation, the odd verti
al edges in rows −r, with r = 1, 2, . . . are lo
ated at abs
issas
L(n−ℓ, r−1, c)+1, for c > 0 and as long as these numbers 
ontinue to ex
eed r. Lemma 7then implies that the bottom parts of P (n)S and of the translate of P (n − ℓ) 
oin
ide.After the translation, the odd verti
al edges of P (n−ℓ) lying in rows r, with r = 0, 1, 2, . . .are lo
ated at abs
issas U(n − ℓ, r + 1, c) + 1, for c > 0 and as long as these numbers
ontinue to ex
eed r + 2. Lemma 7 then implies that the top parts of P (n)S and of thetranslate of P (n − ℓ) 
oin
ide.This 
ompletes the analysis for P (n)S; the veri�
ations for P (n)N , P (n)E and P (n)Care similar (and even identi
al, up to symmetry, in the 
ase of P (n)N).Remark: a re
ursive 
onstru
tion of the pine
ones P (n). The above proposition,
ombined with Proposition 4, provides an alternative way of 
onstru
ting the sequen
e ofpine
ones P (n) asso
iated with a given set of parameters (i, j, k, ℓ). For 0 6 n < m, we put
P (n) equal to the empty graph (whi
h has one perfe
t mat
hing), and for m 6 n < m+j,we put P (n) equal to the graph with four verti
es and four edges surrounding one squarefa
e (whi
h has 2 perfe
t mat
hings). Then, for n > m + j, it su�
es to superimpose
P (n − i), P (n − j), P (n − k) and P (n − ℓ), and add a 2-by-1 re
tangle to the left of thelongest row of P (n − j). More pre
isely, the four above pine
ones must be positionedin su
h a way the leftmost 
ell of P (n − i) (resp. P (n − j), P (n − k), P (n − ℓ)) has itsSouth-West 
orner at (0, 0) (resp. (2, 0), (1, 1), (1,−1)), while the 2-by-1 re
tangle has itsSouth-West 
orner at (0, 0). (This re
tangle is a
tually only ne
essary if P (n− i) is empty
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P (10) =

P (7) =P (5) = P (6) =

P (8) =

P (4) =

P (5)E = P (4)
P (6)E = P (5) P (7)W = P (4), P (7)E = P (6)

P (9)N = P (7)
P (10)W = P (7)

P (8)N = P (8)S = P (6)

P (9) =

Figure 11: Re
ursive graphi
al 
onstru
tion of the pine
ones asso
iated with the Somos-4sequen
e. At ea
h stage, one (or two) of the 
omponents that are superimposed to formthe pine
one is highlighted.or 
onsists of a single bla
k square. Typi
ally this 2-by-1 re
tangle 
omes for free as partof P (n − i). Note that we do not 
laim that this re
tangle is a fa
e of the pine
one; theodd edge joining (1, 0) and (1, 1) will be present or absent in P (n), a

ording to whetherit is present or absent in P (n− i).) This gives a graphi
al, indu
tive way of 
onstru
ting
P (n). This method is illustrated in Figure 11 by the 
ase of the Somos-4 sequen
e, forwhi
h

a(n)a(n − 4) = a(n − 3)a(n − 1) + a(n − 2)2.That is, (i, j, k, ℓ) = (3, 1, 2, 2) and m = 4.We 
an now state our 
ombinatorial interpretation of the Gale-Robinson numbers.Theorem 9 Let P (n) ≡ P (n; i, j, k, ℓ) be the sequen
e of pine
ones asso
iated with theparameters (i, j, k, ℓ). Let a(n) denote the number of perfe
t mat
hings of P (n). Then
a(n) = 1 for n < m, and for n > m, the sequen
e a(n) satis�es the following Gale-Robinson re
urren
e:

a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ).Proof. We have already observed that the pine
one P (n) is empty for n < m. Hen
e theinitial 
onditions apply 
orre
tly. Now for n > m, Theorem 5 states that the mat
hingmat
hing of P (n) is related to the mat
hing numbers of its 
losed sub-pine
ones by
m(P (n))m(P (n)C) = m(P (n)W )m(P (n)E) + m(P (n)N)m(P (n)S).Proposition 8 then implies that m(P (n)C) = m(P (n − m)), et
. Therefore,

m(P (n))m(P (n − m)) = m(P (n − i))m(P (n − j)) + xm(P (n − k))m(P (n − ℓ)),whi
h is the re
urren
e relation satis�ed by a(n).
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Before we study a spe
i�
 example, let us state an obvious 
orollary of Theorem 9.Corollary 10 Let i, j, k, ℓ be positive integers su
h that i+j = k+ℓ = m. The re
urren
erelation
a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ),with initial 
onditions a(n) = 1 for n < m, de�nes a sequen
e of positive integers.Example. We give a spe
i�
 example in the 
ase where (i, j, k, ℓ) = (6, 2, 5, 3) and

n = 25. We also show how to use the VAXmaple software pa
kage (available athttp://jamespropp.org/vaxmaple.
) to 
ompute the number of perfe
t mat
hings inthe 
onstru
ted pine
one, whi
h 
an be seen to be the 25th term in the appropriateGale-Robinson sequen
e.Considering �rst the upper portion of P (n), we �x r and then 
onsider the �rst fewvalues of U(n, r, c) as c = 0, 1, 2, 3, . . .:
r = 0 : {17, 11, 5,−1, . . .}

r = 1 : {14, 8, 2,−4, . . .}

r = 2 : {9, 3,−3,−9, . . .}

r = 3 : {6, 0,−6 − 12, . . .}

r = 4 : {1,−5,−11,−17, . . .}Sin
e the c = 0 value for r = 4 is already less than r, there are only three non-empty rowsabove the middle (longest) row in this pine
one. For the lower portion of the diagram,we obtain the following values of L(n, r, c):
r = 0 : {17, 11, 5,−1, . . .}

r = 1 : {16, 10, 4,−4, . . .}

r = 2 : {13, 7, 1,−5, . . .}

r = 3 : {12, 6, 0,−6, . . .}

r = 4 : {9, 3,−3,−9, . . .}

r = 5 : {8, 2,−4,−10, . . .}

r = 6 : {5,−1,−7,−13, . . .}

Figure 12: The pine
one P (25; 6, 2, 5, 3).
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Completing the 
onstru
tion, we arrive at the graph of Figure 12.It is easy to translate this into the format required by the 
omputer programVAXmaple, written by Greg Kuperberg, Jim Propp and David Wilson to 
ount per-fe
t mat
hings of �nite subgraphs of the in�nite square grid. In this format, ea
h vertexpresent in the graph is represented by a letter. The 
hoi
e of letter indi
ates whetherany edges are omitted when 
onne
ting the vertex to its nearest neighbours � ea
hvertex having up to four of these. An X indi
ates that no edges are omitted; an Aindi
ates that the edge leading upward from the vertex is omitted; a V indi
ates theomission of the downward edge. (For a more detailed explanation of the software, seehttp://jamespropp.org/vaxmaple.do
.) The en
oding of the pine
one of Figure 12 isgiven in Figure 13. XVXXXXAVXVXXXXXVAVAXXVXVXXXVXVAXAVXVAXAVXVXXXAVAXXVAVAXXVAVAXXXAVXVAXAVXVAXAXXXAVAXXVAVAXXXAVXVAXAXXXAVAXXXAXXFigure 13: The pine
one P (25; 6, 2, 5, 3) as a VAX �le.Counting the perfe
t mat
hings in this pine
one by running the above input throughthe VAXmaple program and then through Maple produ
es 167,741, as it should, sin
e the
25th term of the Gale-Robinson sequen
e 
onstru
ted from (6, 2, 5, 3) is 167,741.4 The Gale-Robinson bivariate polynomialsAs stated in Corollary 10, Theorem 9 implies that the three-term Gale-Robinson sequen
es
onsist of integers. In this se
tion, we re�ne this result as follows.Theorem 11 Let i, j, k, ℓ and m be positive integers su
h that i + j = k + ℓ = m. Let
w and z be two indeterminates, and de�ne a sequen
e p(n) ≡ p(n; w, z) by p(n) = 1 for
n < m and for n > m,

p(n)p(n − m) = w p(n − i)p(n − j) + z p(n − k)p(n − ℓ).Then p(n) is a polynomial in w and z with nonnegative integer 
oe�
ients.The proof goes as follows: we have already seen that p(n; 1, 1) 
ounts perfe
t mat
hings ofthe pine
one P ≡ P (n; i, j, k, ℓ) 
onstru
ted in Se
tion 3. We will prove that p(n; u2, v2)
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ounts these mat
hings a

ording to two parameters. More pre
isely, we begin by givingin Se
tion 4.1 a 
ondensation theorem that 
omputes indu
tively the mat
hing polynomial(rather than the mat
hing number) of 
losed pine
ones. We observe that this theoremtakes a simpler form when applied to interleaved pine
ones (a 
lass of pine
ones that
ontains all Gale-Robinson pine
ones). In Se
tion 4.2, we de�ne the spe
ial horizontaledges of a pine
one. We then de�ne the partial mat
hing polynomial of a pine
one Pas the mat
hing polynomial M(P ) in whi
h the weights of non-spe
ial edges are set to1. We spe
ialize the 
ondensation theorem of Se
tion 4.1 to a 
ondensation theoremfor the partial mat
hing polynomial of interleaved pine
ones. Its appli
ation to the Gale-Robinson pine
ones P (n; i, j, k, ℓ) implies that the polynomial q(n) ≡ q(n; u, v) that 
ountsperfe
t mat
hings of P (n) a

ording to the number of verti
al edges (the exponent of v)and horizontal spe
ial edges (the exponent of u) satis�es q(n) = 1 for n < m and
q(n)q(n − m) = u2q(n − i)q(n − j) + v2q(n − k)q(n − ℓ)for n > m. This shows that q(n; u, v) = p(n; u2, v2) and implies Theorem 11.4.1 A 
ondensation theorem for the mat
hing polynomialLet us go ba
k to the 
ondensation theorem for 
losed pine
ones (Theorem 5). We nowstate and prove a stronger result dealing with the mat
hing polynomial rather than themat
hing number. Let P be a 
losed pine
one and A the smallest diamond graph that
ontains it, with G de�ned as in the beginning of Se
tion 2.5 and with n, s, e, w as inTheorem 1 and Figure 2. Sin
e P is the 
ore of G, the mat
hing polynomial M(G) equals

M(P )M(G \ P ). Similar results hold for the sub-pine
ones P C , P W , P E, P N and P S.Corollary 2 gives:
M(P )M(G \ P )M(P C)M(GC \ P C) = nsM(P W )M(GW \ P W )M(P E)M(GE \ P E)

+ ewM(P N)M(GN \ P N)M(P S)M(GS \ P S). (3)Sin
e P is the 
ore of G, the graph G \P has a unique perfe
t mat
hing, whi
h is formedof horizontal edges only. Hen
e M(G \ P ) is a monomial. The same holds for the othergraph di�eren
es o

urring in (3). We 
an thus rewrite this identity as
M(P )M(P C) = αM(P W )M(P E) + βM(P N)M(P S)for some Laurent monomials α and β (indeed, negative exponents may arise from thedivision by M(G\P )M(GC \P C)). Our obje
tive in this subse
tion is to prove that thesemonomials only involve nonnegative exponents (so that they are ordinary monomials),and to des
ribe them in a more 
on
ise way.We introdu
e the following de�nition, illustrated in Figure 14.De�nition 12 Let P be a 
losed pine
one. A horizontal edge is a left edge if it is theleftmost horizontal edge in the horizontal segment of P that 
ontains it.A horizontal edge with leftmost vertex (i, j) is even if i + j is even, odd otherwise.
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Figure 14: The left edges of a 
losed pine
one.For a (standard) pine
one P , we denote by P> (resp. P>) the pine
one formed of rows
0, 1, 2, . . . of P (resp. rows 1, 2, . . .). We use similar notations for the bottom part of P .These de�nitions are extended to transplanted pine
ones in a natural way: for instan
e,
(P N)>, whi
h we simply denote P N

> , 
onsists of rows 1, 2, . . . of P .
P C

6P N
<

P N
>P C

>

Figure 15: The in
lusion properties P N
< ⊂ P C

6 and P C
> ⊂ P N

> (the small subpine
onesare dashed). The leftmost �gure also shows some edges of the horizontal mat
hing of
P C

6 \ P N
< .Observe that, for any pine
one P ,

P N
< ⊂ P C

6 while P C
> ⊂ P N

> . (4)Both properties are illustrated in Figure 15. Consequently, the graph di�eren
e P C \ P Nis formed of edges that lie in P C
6 , and P C \P N ⊂ P C

6 \P N
< . Let us des
ribe more pre
iselythe horizontal edges of these two graph di�eren
es. For j 6 1, if there are any horizontaledges of P C

6 \ P N
< lying at ordinate j, then the number of them is odd, say 2kj + 1, andthese edges are the 2kj+1 rightmost horizontal edges of P C found at ordinate j (Figure 15,left). If j 6 0, all these edges belong to P C \ P N . However, for j = 1, only a subset ofthese edges, of even 
ardinality, belong to P C \ P N . (In the example of Figure 15, thetwo leftmost thi
k edges shown at ordinate 1 do not belong to P C \ P N .) The graph

P C
6 \P N

< thus has a unique horizontal mat
hing, whi
h has kj +1 edges at ordinate j 6 1.We denote by H−(P C \ P N) the produ
t of the edges of this mat
hing having ordinate
6 0. The fa
t that the horizontal edges of P C \ P N found at ordinate j 
oin
ide withthose of P C

6 \ P N
< allows us to use the notation H−(P C \ P N) rather than something like

H−(P C
6 \ P N

< ) whi
h would have been heavier.
the electronic journal of combinatorics 16 (2009), #R125 24



Symmetri
ally,
P S

> ⊂ P C
> while P C

< ⊂ P S
6, (5)so that the graph P C \ P S lies in P C

> . We denote by H+(P C \ P S) the produ
t of theedge-weights of the horizontal mat
hing of P C
> \ P S

> lying at a positive ordinate.
E1

rightmost 
ell of P N

E2
2

H−(P C \ P N)

E1
2

e

rightmost 
ell of P S

w

Figure 16: Left: The edges o

urring in the �rst term of the re�ned 
ondensation theorem,with the pine
one P W shown. Right: The edges o

urring in the se
ond term. Here
H+(P C \ P S) = 1. The two distinguished pine
ones are P C and P N (dashed).We 
an now state a 
ondensation theorem for the mat
hing polynomial of 
losedpine
ones. See Figure 16 for an illustration.Theorem 13 (The mat
hing polynomial of 
losed pine
ones)The mat
hing polynomial of a 
losed pine
one P is related to the mat
hing polynomialof its sub-pine
ones by

M(P )M
(

P C
)

=

(

∏

a∈E1

a

)

M
(

P W
)

M
(

P E
)

+

(

∏

a∈E2

a

)

H−(P C \ P N)H+(P C \ P S)M
(

P N
)

M
(

P S
)

,where
• E1 is the set of left edges of P not belonging to P W ,
• E2 is the union of three edge-sets Ei

2, for 0 6 i 6 2:� E0
2 = {e, w} 
ontains the eastmost and westmost verti
al edges of P ,� E1
2 
ontains the even edges at ordinate 1 not belonging to P N ,� E2
2 
ontains the odd edges at ordinate 0 not belonging to P S.
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Proof. In this proof, we adopt the following notation: for ea
h edge set E, we also denoteby E the produ
t of the edges of the set. For a graph G having a unique horizontal(perfe
t) mat
hing, we denote this mat
hing by H(G).Let us return to (3). Re
all that G\P has a unique mat
hing, 
onsisting of horizontaledges only. Denoting by A the smallest diamond graph 
ontaining P , we observe that
M(G \ P ) = H(A)/H(P ) (see Figure 8). Similar identities hold for the other pine
oneso

urring in (3). For instan
e, M(GW \ P W ) = H(AW )/H(P W ). This allows us torewrite (3) as

M(P )M(P C) = ns
H(AW )H(AE)

H(A)H(AC)

H(P )H(P C)

H(P W )H(P E)
M(P W )M(P E)

+ ew
H(AN)H(AS)

H(A)H(AC)

H(P )H(P C)

H(P N)H(P S)
M(P N)M(P S).Let us begin with the two fa
tors involving A and its subgraphs. It is easy to see, withthe help of Figure 3, that

ns
H(AW )H(AE)

H(A)H(AC)
= 1.The se
ond fa
tor involving A, namely ewH(AN)H(AS)/(H(A)H(AC)), is a multiple of

e and w (all the other edges are horizontal) and thus 
annot be equal to 1. Denoting by
L

(e)
1 the graph formed by the even horizontal edges lying at ordinate 1, and introdu
ingsimilar notations L

(o)
1 , L

(e)
0 and L

(o)
0 , one �nds

H(AN)H(AS)

H(A)H(AC)
=

L
(e)
1 L

(o)
0

L
(o)
1 L

(e)
0

. (6)It remains to des
ribe the two fa
tors that involve P and its subgraphs. For the �rst one,we note that H(P )/H(P E) is simply the produ
t of the left edges of P . Similarly, as
P C = (P W )E, the ratio H(P W )/H(P C) is the produ
t of the left edges of P W . This givesthe following expression for the �rst fa
tor:

H(P )H(P C)

H(P W )H(P E)
=
∏

a∈E1

a,with E1 de�ned as in the theorem.To express the se
ond fa
tor involving P , let us �rst separate in H(P ) the edges thatlie at ordinate j = 0, j = 1, j > 1, j < 0. This gives
H(P ) = L

(e)
0 · L

(o)
1 ·

H(P N
> )

L
(e)
1 ∩ P N

·
H(P S

6)

L
(o)
0 ∩ P S

.For the other 3 pine
ones that are involved in this fa
tor, we write:
H(P C) =

H(P C
> )H(P C

6 )

(L
(e)
0 ∩ P C)(L

(o)
1 ∩ P C)

, H(P N) =
H(P N

> )H(P N
< )

L
(o)
1 ∩ P N

<

, H(P S) =
H(P S

6)H(P S
>)

L
(e)
0 ∩ P S

>

.
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The division by (L
(e)
0 ∩ P C)(L

(o)
1 ∩ P C) in the �rst identity 
omes from the fa
t that

H(P C
> ) and H(P C

6 ) have edges in 
ommon at ordinates 0 and 1. The other divisions arejusti�ed in a similar way. These identities, together with (6), give:
H(AN)H(AS)

H(A)H(AC)

H(P )H(P C)

H(P N)H(P S)
=

(L
(e)
1 \ P N)(L

(o)
0 \ P S)

(L
(o)
1 ∩ P N

< )H(P C
6 )

(L
(o)
1 ∩ P C)H(P N

< )

(L
(e)
0 ∩ P S

>)H(P C
> )

(L
(e)
0 ∩ P C)H(P S

>)
.The ratio H(P C

6 )/(L
(o)
1 ∩ P C) is the produ
t of the edges found at non-positive ordinatesin the horizontal mat
hing of P C

6 . Similarly, the ratio H(P N
< )/(L

(o)
1 ∩ P N

< ) is the produ
tof the edges found at non-positive ordinates in the horizontal mat
hing of P N
< . But

P N
< ⊂ P C

6 (see (4) and its a

ompanying Figure 15), so the quotient of the two ratios is
H−(P C \ P N), the produ
t of the edges found at non-positive ordinates in the horizontalmat
hing of P C

6 \ P N
< . The remaining quotient involving P S

> is, symmetri
ally, equal to
H+(P C \ P S). This yields the result stated in the theorem.The re�ned 
ondensation theorem spe
ializes ni
ely to interleaved pine
ones.De�nition 14 (Interleaved pine
ones) A 
losed pine
one is interleaved if, betweentwo bla
k squares in row r, one �nds a bla
k square in row r + 1 and a bla
k square inrow r − 1.This implies that, between two 
onse
utive bla
k squares in row r, there is exa
tly onebla
k square in row r + 1, and one in row r − 1. For instan
e, the pine
one to the rightof Figure 17 is interleaved. Going ba
k to Theorem 13, it is easy to see that for aninterleaved pine
one, the graphs P C

6 \P N
< and P C

> \P S
> are empty, so that H−(P C \P N) =

H+(P C \ P S) = 1.Corollary 15 (The mat
hing polynomial of interleaved pine
ones) The mat
h-ing polynomial of an interleaved pine
one P is related to the mat
hing polynomial ofits 
losed sub-pine
ones by
M(P )M(P C) =

(

∏

a∈E1

a

)

M(P W )M(P E) +

(

∏

a∈E2

a

)

M(P N)M(P S),where the sets E1 and E2 are des
ribed in Theorem 13. Moreover, the �ve sub-pine
onesof P are also interleaved.The last statement follows from the fa
t that ea
h of the �ve sub-pine
ones 
an be de�nedas the largest 
losed pine
one 
ontaining two pres
ribed verti
al edges.
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4.2 Spe
ial edgesWe will now simplify further the expression of Corollary 15, by assigning weight 1 to
ertain horizontal edges, 
alled ordinary. If P is interleaved, the set of bla
k squares of
P W is obtained by deleting the rightmost bla
k square in ea
h row of P . Consequently, therows that disappear when 
onstru
ting P W from P are those that 
ontain only one bla
ksquare. These are the rows that 
ontain a left edge 
ontributing to the set E1. Moreover,the top and bottom rows of P 
ontain exa
tly one bla
k square, otherwise P would notbe interleaved. Hen
e E1 has 
ardinality at least 2. We are going to assign weight 1 toall the edges of E1 that lie neither on the top segment of P nor on its bottom segment.Similarly, we will assign weight 1 to the edges of E1

2 and E2
2 , so that the produ
t of theedge-weights in E2 will redu
e to ew. As we want to apply the 
ondensation theoremiteratively, this for
es us to set to 1 the weights of other horizontal edges, o

urring forinstan
e in the sets E1

2 and E2
2 asso
iated to the �ve sub-pine
ones of P . Iterating thispro
edure, we arrive at the following de�nition of ordinary horizontal edges � those thatwill have weight 1. This de�nition is illustrated in Figure 17. Note that it does not assumethat the pine
one is interleaved.De�nition 16 An even horizontal edge a, lying at ordinate r in a pine
one (that is,between rows r − 1 and r), is ordinary if the 
losest bla
k square found in rows r − 1 and

r weakly to the right of a is in row r−1. Otherwise, a is said to be spe
ial. In parti
ular,if an even edge a lies in the bottom segment of P , it is spe
ial.Symmetri
ally, an odd horizontal edge a, lying at ordinate r, is ordinary if the 
losestbla
k square found in rows r − 1 and r weakly to the right of a is in row r. Otherwise,
a is said to be spe
ial. In parti
ular, if an odd edge a lies in the top segment of P , it isspe
ial. even

oddFigure 17: The ordinary edges of a pine
one. The even ones are in bla
k, the odd ones inwhite. The pine
one to the right is interleaved.It is easy to 
he
k that in an interleaved pine
one, the edges of E1
2 and E2

2 are ordinary.The following lemma tells whi
h edges of E1 are spe
ial.Lemma 17 Let P be an interleaved 
losed pine
one. There are exa
tly two left edges of
P that do not belong to P W and are spe
ial. One of them is even, and is the lowest leftedge of P . The other is odd, and is the highest left edge of P .
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Proof. As noted at the beginning of this subse
tion, the left edges of P that do not belongto P W are those that belong to rows 
ontaining exa
tly one bla
k square. Take an evenedge of this type. It belongs to the bottom portion of P . Figure 18 shows that it is alwaysordinary, unless it lies on the bottommost horizontal segment of P . The proof is similarfor odd left edges.

Figure 18: The even ordinary left edges of P \ P W .Lemma 18 Let P be a 
losed pine
one, and Q one of the �ve sub-pine
ones P C, P W ,
P E, P N , P S. The ordinary edges of Q are exa
tly the ordinary edges of P belonging to
Q.Proof. Let a be an even ordinary edge of P , lying at ordinate r. Let c be the �rst bla
ksquare found in row r − 1 weakly to the right of a. By de�nition of ordinary edges, thereis no bla
k square in row r between a and c. Assume a belongs to Q and is not ordinaryin Q. Sin
e we do not add squares when going from P to Q, this means that c does notbelong to Q. Then there is no bla
k square in row r − 1 to the right of a in Q. However,sin
e a belongs to Q, there must be a bla
k square c′ to the right of a in row r of Q.This square c′ is also in P , and to the right of c. But Q is de�ned as the largest 
losedsubpine
one of P having 
ertain pres
ribed rightmost and leftmost edges, so that if it
ontains a and c′, it has to 
ontain c as well. We have thus rea
hed a 
ontradi
tion, and
a is ordinary in Q.

. . .
. . .

a

Q

c′

P
cConversely, assume a is spe
ial in P , but ordinary in Q. The latter property impliesthat there is a bla
k square c in row r− 1 of Q to the right of a. Of 
ourse, c also belongsto P . Sin
e a is spe
ial in P , there is a bla
k square c′ in row r of P lying between a and

c. As Q is the largest pine
one 
ontaining two pres
ribed edges, and 
ontains a and c,the square c′ must be in Q as well, 
ontradi
ting the assumption that a is ordinary in Q.
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a

QP

c′

c
. . .
. . .Of 
ourse, the proof is 
ompletely similar for odd spe
ial edges.4.3 The partial mat
hing polynomialFor any pine
one P , de�ne its partial mat
hing polynomial M̃(P ) to be the value of M(P )when the weights of all ordinary edges are set to 1. We emphasize that this polynomial
ounts perfe
t mat
hings (all verti
es of P belong to an edge in the mat
hing), but someof the edges have weight 1. Assume P is interleaved, and apply Corollary 15. As observedafter De�nition 16, all the edges of E1

2 and E2
2 are ordinary, so that they have weight 1.This means that the se
ond monomial o

urring in the 
ondensation formula is simply

ew. Moreover, the spe
ial edges of E1 are des
ribed in Lemma 17. This, 
ombined withLemma 18, implies the following 
orollary.Corollary 19 The partial mat
hing polynomial of an interleaved 
losed pine
one P isrelated to the partial mat
hing polynomials of its sub-pine
ones by
M̃(P )M̃(P C) = aa′M̃(P W )M̃(P E) + ewM̃(P N)M̃(P S),where a and a′ are the highest and lowest left edges of P .Sin
e the Gale-Robinson pine
ones 
onstru
ted in Se
tion 3 are interleaved, we haveobtained a 
ombinatorial interpretation of the Gale-Robinson polynomials.Theorem 20 Let P (n) ≡ P (n; i, j, k, ℓ) be the sequen
e of pine
ones asso
iated with theparameters (i, j, k, ℓ). Let q(n) ≡ (n; u, v) be the polynomial in u and v that 
ounts theperfe
t mat
hings of P (n) a

ording to the number of verti
al edges (the exponent of v)and horizontal spe
ial edges (the exponent of u). Then q(n) = 1 for n < m and for n > m,
q(n)q(n − m) = u2q(n − i)q(n − j) + v2q(n − k)q(n − ℓ).This proves Theorem 11, as the re
urren
e shows that q(n; u, v) = p(n; u2, v2).5 Perspe
tives5.1 Variations and extensionsThere is a good deal of overlap between this arti
le and the paper by David Speyer on thegeneral o
tahedron re
urren
e, of whi
h the Gale-Robinson re
urren
e is a very spe
ial
ase [25℄. Speyer's method allows him to 
onstru
t, for ea
h (i, j, k, ℓ) with i + j = k + ℓ,
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a sequen
e of graphs having the same number of perfe
t mat
hings as the pine
ones we
onstru
t. We believe that our graphs are the same as the ones that are given by Speyer'spro
edure, but we have not proved that this holds in general.One undesirable feature of our des
ription of Gale-Robinson pine
ones is that it breakssome of the symmetries between the parameters i, j, k, and ℓ. Clearly, ex
hanging k and
ℓ re�e
ts the pine
one a
ross a horizontal line. But the 
onvention j = min{i, j, k, ℓ}implies that i and j do not play symmetri
 roles, nor the pairs {i, j} and {k, ℓ}. Thisexplains why the des
ription of the bivariate polynomials q(n; u, v) of Theorem 20 is notsymmetri
 in u and v. Perhaps some of this asymmetry is unavoidable, but it wouldbe good to �nd a more symmetri
al de�nition or else a
hieve some insight into why theasymmetry 
annot be avoided.Indeed, part of the point of view that led to both this arti
le and Speyer's is that thetruly fundamental obje
ts of study are fun
tions that map a three-dimensional latti
e tosome ring and that obey the o
tahedron relation

f(x + i)f(x − i) + f(x + j)f(x − j) + f(x + k)f(x − k) = 0(where x is an arbitrary ve
tor in the latti
e and i, j, k are �xed generators of the latti
e)and more general versions of the relation that in
lude 
oe�
ients of various kinds. Thereis no intrinsi
 �arrow of time� here (as there is when one thinks of running a re
urren
erelation forward from some set of initial 
onditions), but some sets of initial 
onditionsare su�
iently large that they allow one to re
onstru
t the entirety of f , and some ofthese subsets of the latti
e 
an be viewed as �spa
e-like�, so that one 
an think of there
onstru
tion of su

essive sli
es of the latti
e as a kind of propagation. In the fullysymmetri
al version, there is no reason to privilege one dire
tion over its reverse, or oneaxis over another.In 
ontrast, when one des
ends from this level to the more 
on
rete world of graphs andperfe
t mat
hings, the symmetry appears to be broken. A full theory of the o
tahedronre
urren
e would in
orporate graph-theoreti
 analogues of all the symmetries of the three-dimensional latti
e; su
h an understanding is 
urrently la
king. Just as Ehrhart theoryfor enumeration of latti
e-points in polytopes 
an best be understood in a 
ontext thatin
ludes inside-out polytopes [2℄, the theory of Azte
 diamonds, 
rosses-and-wren
hes,and pine
ones requires notions of geometri
 graphs in whi
h 
ombinatorial parametersthat are ordinarily required to be positive 
an take on negative values as well. (E.g., oneneeds a theory in whi
h the notion of an Azte
 diamond of order 4 and an Azte
 diamondof order −4 enter on an equal footing, and the latter graph turns out to be essentiallythe same things as an Azte
 diamond graph of order 3.) As a hint of what su
h a theorymight look like, the interested reader should look at [19℄ and [1℄.The bivariate polynomials p(n; w; z) studied in Se
tion 4 generalize Gale-Robinsonnumbers. A di�erent extension of these numbers 
omes from repla
ing the initial 
ondi-tions (a string of m 1's) by generi
 initial 
onditions (indeterminates x0 through xm−1).Here again, Fomin and Zelevinsky proved algebrai
ally, and Speyer proved 
ombinato-rially, that the rational fun
tions one obtains are Laurent polynomials in x0, . . . , xm−1.Speyer's work shows that these variables, in 
ontrast to the formal 
oe�
ients w and
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z mentioned above, are most naturally viewed as being asso
iated with the fa
es of agraph, rather than its edges. So there should be a way to asso
iate these m variableswith the fa
es of our pine
ones and use them to assign weights to the perfe
t mat
h-ings so that the weight of ea
h perfe
t mat
hing of a pine
one is a Laurent monomialin x0, . . . , xm−1. Indeed, there should be an extension of Theorem 20 that des
ribesthe Laurent polynomials that arise from setting a(n) = xn for 0 6 n 6 m − 1 and
a(n) = (wa(n − i)a(n − j) + za(n − k)a(n − ℓ))/a(n − m) for n > m, and in parti
-ular identi�es ea
h Laurent monomial in a(n) as the weight of a perfe
t mat
hing of
P (n; i, j, k, ℓ).Most of the work of this arti
le was done in 2005 and 2006, as the study of 
lusteralgebras was beginning its (still 
ontinuing) outward explosion, so there are now otherapproa
hes to proving positivity results that have some overlap with the approa
h takenhere. In parti
ular, it is possible that pine
ones graphs 
an also be viewed as Azte
diamond graphs with defe
ts, in the manner of [9℄.5.2 Random pine
one mat
hingsA rather di�erent dire
tion that might be studied is the �typi
al� behavior of perfe
tmat
hings of large pine
ones. Figure 19 shows two tilings asso
iated with mat
hingsof Somos-4 pine
ones. (Here we make use of the standard duality between a tiling ofa polyomino by dominos and a perfe
t mat
hing of the dual graph of the polyomino,in whi
h verti
es 
orrespond to 
ells of the polyomino and edges 
orrespond to pairs ofadjoining 
ells, i.e. legal positions of a domino in a tiling.) The �rst one 
orrespondsto n = 26 (that is, to a perfe
t mat
hing of the graph P (26; 3, 1, 2, 2)), the se
ond oneto n = 50. Both were 
hosen uniformly at random from the set of all perfe
t mat
h-ings of that graph. These examples were produ
ed using Propp and Wilson's paperson �exa
t sampling� [21, 20℄ whi
h show how the method of �
oupling from the past�permits one to generate random perfe
t mat
hings of bipartite planar graphs. Indeed,this algorithm was in
orporated into a program 
alled vaxrandom that a

epts a VAX-�le as input and produ
es a perfe
t mat
hing of the asso
iated graph as output, orrather, the dual pi
ture of a domino tiling of a region. The sour
e 
ode for the programis 
ontained in the �les http://jamespropp.org/tiling/sour
es/vaxrandom.
 andhttp://jamespropp.org/tiling/sour
es/allo
ate.h, and information on the pro-gram's use 
an be found at http://jamespropp.org/tiling/do
/vaxrandom.html.)The reader will qui
kly noti
e that in both of these random tilings, the randomness isnot spatially distributed in a uniform manner. Near the boundary, there is a good deal oforder, with tiles lined up the same way as their neighbors; only in the interior does one�nd random-looking behavior.This phenomenon is not spe
i�
 to pine
ones, but has been observed for a wide varietyof two-dimensional tiling models over the past de
ade, from [7℄ and [8℄ to [16℄. The most-studied 
ase is the Azte
 diamond graph ((i, j, k, ℓ) = (1, 1, 1, 1), in our notation); in this
ase, it has been shown that in a suitable asymptoti
 sense there is a sharp boundarybetween the part of the tiling that is random and the part that is orderly, and that
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Figure 19: The domino tilings asso
iated with random perfe
t mat
hings of the pine
one
P (n; 1, 3, 2, 2), for n = 26 and then n = 70.this boundary is (asymptoti
ally) a perfe
t 
ir
le. A similar sort of domain-boundary isvisible in Figure 19; assuming that the theory for pine
ones is analogous to the theoryfor Azte
 diamond graphs, it would be interesting to know the asymptoti
 shape of thedomain-boundary for (i, j, k, ℓ)-pine
ones as n → ∞.One interesting feature of Gale-Robinson pine
ones is that we 
an write the de�nitionin a way that makes sense even when the parameters (i, j, k, ℓ) 
ease to be integers.Formula (2) 
an be rewritten as

U(t, r, c) = 2c + r − 3 − 2 ⌊µc + κr + ι − t⌋ ,

L(t, r, c) = 2c + r − 3 − 2 ⌊µc + λr + ι − t⌋ .
(7)where ι = i/j, κ = k/j, λ = ℓ/j, µ = m/j = ι + 1 = κ + λ, and t = (n + 1)/j. So thereis a sense in whi
h all the pine
ones dis
ussed in this arti
le are part of a four parameterfamily, parametrized by ι, κ, λ and t. Of 
ourse, the graphs do not vary 
ontinuouslyin these variables (being dis
rete elements in a 
ountable set, namely the set of all �nitegraphs, how 
ould they?), but this parametrization seems likely to be natural for somepurposes, e.g., the study of random perfe
t mat
hings of pine
ones. (It is to be expe
tedthat a 
oherent limit-law with t → ∞ will prevail for any �xed 
hoi
e of (ι, κ, λ), whetheror not ι, κ, and λ are rational.) It should be noted, in
identally, that if one 
hoosesparameters (i, j, k, ℓ) with a greater 
ommon divisor d > 1, the sequen
e of pine
ones one
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gets from our 
onstru
tion is the same as the sequen
e of pine
ones that one gets fromthe parameters (i/d, j/d, k/d, ℓ/d), ex
ept that ea
h pine
one in the latter sequen
e isrepeated d times in the former sequen
e; this observation follows easily from the ι, κ, λformulation of the de�nitions of U(·) and L(·).5.3 Closed-form expressionsOne feature 
ommon to sequen
es satisfying three-term or four-term Gale-Robinson re-
urren
es is that the terms grow at quadrati
 exponential rate. Indeed, it is easy to verify,from the dis
ussion of pine
ones, that in the in�nite sequen
e of graphs asso
iated withany parti
ular three-term Gale-Robinson re
urren
e, the nth graph has O(n2) verti
es,with ea
h vertex having degree at most 4. It follows from this that Gale-Robinson se-quen
es have at most exponential-quadrati
 growth; that is, the nth term is boundedabove by Cn2 for all su�
iently large C. In some 
ases, an exa
t formula is possible; wehave already mentioned the �Azte
 diamond 
ase� i = j = k = ℓ = 1, and in the 
ase
(i, j, k, ℓ, m) = (6, 1, 4, 3, 7) there is an exa
t formula for a(n) of the form 2e2(n)3e3(n) wherethe exponents e2(n) and e3(n) are given by quadrati
 polynomials in n whose 
oe�
ientsare periodi
 fun
tions of n (we thank Mi
hael Somos for bringing this spe
ial 
ase of theGale-Robinson re
urren
e to our attention, and we raise the question of whether thereare other instan
es of Gale-Robinson sequen
es being given by simple exa
t formulas).However, in general su
h algebrai
 formulas do not exist. Instead, one must be 
ontentwith formulas that express the nth term in terms of Ja
obi theta fun
tions. This link withthe analyti
 world is what motivated Mi
hael Somos to introdu
e the Somos-k sequen
esto begin with. E.g., ba
k in 1993, Somos announ
ed (without proof) that the nth termof the Somos-6 sequen
e is given by f(n − 2.5, n − 2.5) where

f(x, y) = c1c
xy
2

∞
∑

k2=−∞

(−1)k2

∞
∑

k1=−∞

g(k1, k2, x, y),

g(k1, k2, x, y) = c
k2

1

3 c
k2

2

4 ck1k2

5 cos(c6k1x + c7k2y),

c1 = 0.875782749065950194217251...,

c2 = 1.084125925473763343779968...,

c3 = 0.114986002186402203509006...,

c4 = 0.077115634258697284328024...,

c5 = 1.180397390176742642553759...,

c6 = 1.508030831265086447098989...,

c7 = 2.551548771413081602906643...(See http://jamespropp.org/somos/ellipti
 for a similar but simpler formula for theSomos-4 sequen
e.) However, as far as we are aware, nobody has proposed (or even
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onje
tured) a fully general analyti
 formula for the terms of sequen
es satisfying three-term Gale-Robinson re
urren
es. A more detailed dis
ussion of the analyti
 propertiesof su
h sequen
es 
an be found in [15℄, whi
h also gives some of the history of thesesequen
es.It is worth mentioning that for the Somos-4 sequen
e, there exists a unique 
onstant
c su
h that s(n) (the nth term of the sequen
e) is on the order of cn2 , but that thebehavior of s(n)/cn2 is os
illatory; see http://jamespropp.org/somos/ellipti
. Letus also mention a re
ent paper by Xin [27℄ where the Somos-4 numbers are expressed asdeterminants of Hankel matri
es with integer 
oe�
ients.5.4 Analogy with the KP hierar
hyWe 
on
lude with some remarks (based on some unpublished remarks of Andrew Hone)about the analogy between Somos sequen
es and the like and the hierar
hy of solutionsto an integrable PDE like the KdV equation, followed by our own spe
ulation about adire
tion for further study that the analogy might suggest.The equation

uxxx + 6uux + ut = 0,where u = u(x, t) is the fun
tion we want to solve for and subs
ripts indi
ate partialdi�erentiation (e.g., uxxx = ∂3u
∂x3 ) is known as the KdV equation, and has played a 
ru
ialrole in the modern theory of partial di�erential equation, as part of a large family ofequations with related properties (the �KP hierar
hy�). If one sets u = 2(∂x)

2 log F one
an rewrite the PDE in the 
ompa
t form
(DxDxDxDx + DxDt)(F ⊗ F ) = 0where Dx and Dt are the �Hirota D-operators� a
ting on tensor-pairs of fun
tions via

Dx(f(x, t) ⊗ g(x, t)) = (∂x1
− ∂x2

)f(x1, t)g(x2, t)|x1=x2=xand
Dt(f(x, t) ⊗ g(x, t)) = (∂t1 − ∂t2)f(x, t1)g(x, t2)|t1=t2=t.(Note that in the literature on KdV, this tensor produ
t is traditionally written as f · grather than f ⊗ g and is 
alled the �dot-produ
t�, but it is a tensor produ
t, not an innerprodu
t). More generally, the bilinear method is the tri
k of rewriting PDEs in the form

P (Dx, Dy, . . .)(F ⊗ F ) = 0. Hirota operators are antisymmetri
, so we 
an think of themas a
tions on the antisymmetri
 square of a ve
tor spa
e of fun
tions. For more on theHirota method, see e.g. [14℄.Analogously, if we take V to be the ve
tor spa
e of real- (or 
omplex-) valued bilaterallyin�nite sequen
es (. . . , s0, . . .), we may de�ne, for every pairs of integers i, j, a bilinearshift operator V ⊗ V → V sending (sn)
∞
−∞ ⊗ (tn)∞−∞ to (sn+itn+j)

∞
−∞ (the sequen
e whose

nth term is sn+itn+j for all n ∈ Z). These operators, graded by i + j, generate a gradedring of bilinear shift-operators, and the Somos sequen
es and Gale-Robinson sequen
es
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are spe
ial instan
es of sequen
es (sn)∞−∞ for whi
h the tensor-square (sn)
∞
−∞ ⊗ (sn)

∞
−∞lies in the kernel of a parti
ular bilinear operator. It has been noti
ed that for a typi
alSomos or Gale-Robinson sequen
e, the tensor-square of the sequen
e, in addition to beingannihilated by the �de�ning� bilinear operator, is annihilated by in�nitely many othersas well. In fa
t, there is more than just an analogy at work here: ea
h GR re
urren
e
an be written in terms of Hirota di�erential operators by taking exponentials (see [23℄).Hopefully, by 
ombining algebrai
, analyti
, and 
ombinatorial tools, future resear
herswill shed some light on this intriguing phenomenon.Referen
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