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1 IntrodutionLinear reurrenes are ubiquitous in ombinatoris, as part of a broad general frameworkthat is well-studied and well-understood; in partiular, many ombinatorially-de�ned se-quenes an be seen on general priniples to satisfy linear reurrenes (see [26℄), andonversely, when an integer sequene is known to satisfy a linear reurrene it is oftenpossible to reverse-engineer a ombinatorial interpretation for the sequene (see [4℄ andreferenes therein for a general disussion, and [3, Chapter 3℄ for spei� examples). Inontrast, rational reurrenes suh as
s(n) = (s(n − 1)s(n − 3) + s(n − 2)2)/s(n − 4),whih we prefer to write in the form
s(n)s(n − 4) = s(n − 1)s(n − 3) + s(n − 2)2,are enountered far less often, and there is no simple general theory that desribes thesolutions to suh reurrenes or relates those solutions to ombinatorial strutures. Thepartiular rational reurrene relation given above is the Somos-4 reurrene, and is partof a general family of reurrenes introdued by Mihael Somos:

s(n)s(n−k) = s(n−1)s(n−k+1)+s(n−2)s(n−k+2)+ · · ·+s(n−⌊k/2⌋)s(n−⌈k/2⌉).If one puts s(0) = s(1) = · · · = s(k − 1) = 1 and de�nes subsequent terms using theSomos-k reurrene, then one gets a sequene of rational numbers whih for the values
k = 4, 5, 6, 7 is atually a sequene of integers. (Sequenes Somos-4 through Somos-7are entries A006720 through A006723 in [24℄.) Although integer sequenes satisfyingsuh reurrenes have reeived a fair bit of attention in the past few years, until re-ently algebra remained one step ahead of ombinatoris, and there was no enumerativeinterpretation of these integer sequenes. (For links related to Somos sequenes, seehttp://jamespropp.org/somos.html.)Inspired by the work of Somos, David Gale and Raphael Robinson [13, 12℄ onsideredsequenes given by reurrenes of the form

a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ),with initial onditions a(0) = a(1) = · · · = a(m−1) = 1, where m = i+j = k+ℓ. We allthis the three-term Gale-Robinson reurrene 1. The Somos-4 and Somos-5 reurrenesare the speial ases where (i, j, k, ℓ) is equal to (3, 1, 2, 2) and (4, 1, 3, 2) respetively. Galeand Robinson onjetured that for all integers i, j, k, ℓ > 0 with i + j = k + ℓ = m, thesequene a(0), a(1), . . . determined by this reurrene has all its terms given by integers.About ten years later, this was proved algebraially in an in�uential paper by Fomin andZelevinsky [11℄.1Gale and Robinson also onsidered reurrenes of the form a(n)a(n−m) = a(n− g)a(n− h) + a(n−
i)a(n − j) + a(n − k)a(n − ℓ) for suitable values of g, h, i, j, k, ℓ, m, but suh four-term Gale-Robinsonreurrenes will not be our main onern here.
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1.1 ContentsIn this paper, we �rst give a ombinatorial proof of the integrality of the three-termGale-Robinson sequenes. The integrality omes as a side-e�et of produing a ombina-torial interpretation of those sequenes. Spei�ally, we onstrut a sequene of graphs
P (n; i, j, k, ℓ) (n > 0) and prove in Theorem 9 that the nth graph in the sequene has
a(n) (perfet) mathings. Our graphs, whih we all pineones, generalize the well-knownAzte diamond graphs, whih are the mathings graphs for the Gale-Robinson sequene1, 1, 2, 8, 64, 1024, . . . in whih i = j = k = ℓ = 1. A more generi example of apineone is shown in Figure 1. All pineones are subgraphs of the square grid.
Figure 1: The pineone P (25; 6, 2, 5, 3). Its mathing number is a(25), where a(n) is theGale-Robinson sequene assoiated with (i, j, k, ℓ) = (6, 2, 5, 3).We give two ways to onstrut pineones for the Gale-Robinson sequenes: a reursivemethod (see Figure 11 and the surrounding text) that onstruts the graph P (n; i, j, k, ℓ)in terms of the smaller graphs P (n′; i, j, k, ℓ) with n′ < n, and a diret method (seeFormula (2) in Setion 3) that allows one to onstrut the graph P (n; i, j, k, ℓ) immediately.The heart of our proof is the demonstration that if one de�nes a(n) as the number ofperfet mathings of P (n) ≡ P (n; i, j, k, ℓ), the sequene a(0), a(1), a(2), ... satis�es theGale-Robinson reurrene. This fat, in ombination with a simple hek that a(0) =
a(1) = · · · = a(m − 1) = 1, gives an immediate indutive validation of our laim that
P (n) has a(n) perfet mathings for all n, whih yields additionally the integrality of a(n).General pineones are de�ned in Setion 2, where we also explain how to omputeindutively their mathing number via Kuo's ondensation lemma [17℄. In Setion 3,we desribe how to assoiate a sequene of pineones to a Gale-Robinson sequene, andobserve that for these pineones, the ondensation lemma speializes preisely to theGale-Robinson reurrene. Indeed, the reursive method of onstruting pineones, inombination with Kuo's ondensation lemma, gives ombinatorial meaning to the di�erentterms a(n1)a(n2) of the Gale-Robinson reurrene.In Setion 4, we re�ne our argument to prove that the sequene p(n) ≡ p(n; w, z)de�ned by

p(n)p(n − m) = w p(n − i)p(n − j) + z p(n − k)p(n − ℓ),with i+j = k+ℓ = m and p(0) = p(1) = · · · = p(m−1) = 1, is a sequene of polynomialsin w and z with nonnegative integer oe�ients. More preisely, we prove in Theorem 20that p(n; u2, v2) ounts perfet mathings of the pineone P (n; i, j, k, ℓ) by the number of
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speial horizontal edges (the exponent of the variable u) and the number of vertial edges(the exponent of the variable v). The fat that p(n) is a polynomial with oe�ients in
Z was proved in [11℄, but no ombinatorial explanation was given and the non-negativityof the oe�ients was left open.1.2 Strategy, and onnetions with previous workFor muh of the work in this paper, we share preedene with the students inthe NSF-funded program REACH (Researh Experienes in Algebrai Combinatorisat Harvard), led by James Propp, whose permanent arhive is on the web athttp://jamespropp.org/reah/. A paper by one of these students, David Speyer [25℄,introdued a very �exible framework (the �rosses and wrenhes method�) that, start-ing from a reurrene relation of a ertain type, onstruts a sequene of graphs whosemathing numbers satisfy the given reurrene. This framework inludes the three-termGale-Robinson reurrenes, and thus yields a ombinatorial proof of the integrality of theassoiated sequenes. This extends to a proof that the bivariate Gale-Robinson polyno-mials mentioned above are indeed polynomials, and have non-negative oe�ients. Onedi�erene with our paper is that Speyer's graphs are only desribed expliitly for Somos-4and Somos-5 sequenes, whereas our onstrution is expliit for any Gale-Robinson se-quene. Moreover, the desription of our graphs as subgraphs of the square grid looksmore regular, and may be useful to study limit shapes of random perfet mathings. Fig-ure 19 shows two random perfet mathings assoiated with the Somos-4 sequene (or,rather, the equivalent domino tilings).Let us mention that shortly after Speyer did his work on perfet mathings, he and hisfellow REACH-partiipant Gabriel Carroll did for four-term Gale-Robinson reurreneswhat Speyer had done for three-term Gale-Robinson reurrenes, by introduing newobjets alled �groves� to take the plae of perfet mathings [6℄. Carroll and Speyer'swork gives, as two speial ases, ombinatorial proofs of the integrality of Somos-6 andSomos-7.The strategies that led to Speyer's artile [25℄ and to the present artile are not entirelyindependent; eah made use of Propp's prior onstrution of a suitable perturbed Gale-Robinson reurrene, whih we explain next. The explanation will mostly be of interestto researhers seeking to apply similar tehniques to other problems; others may want toskip the rest of the introdution.Suppose we perturb a three-term Gale-Robinson reurrene by replaing the singly-indexed Gale-Robinson number a(n) by a triply-indexed quantity A(n, p, q) satisfying theperturbed reurrene
A(n, p, q)A(n−m, p, q) = A(n−i, p−1, q)A(n−j, p+1, q)+A(n−k, p, q+1)A(n−ℓ, p, q−1).(This hoie of perturbation is not as speial as it looks: all that matters is that thepairs (−1, 0), (1, 0), (0, 1), (0,−1) that desribe the perturbations of the seond and thirdoordinates in the four index-triples on the right-hand side, viewed as points in the plane,
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form a non-degenerate entrally-symmetri parallelogram. Choosing a di�erent entrally-symmetri parallelogram is tantamount to a simple re-indexing of the reurrene.) If wetake as our initial onditions A(n, p, q) = xn,p,q for all n between 0 and m − 1 and p, qarbitrary, with (formal) indeterminates xn,p,q, then eah A(n, p, q) with n > m an beexpressed as a rational funtion of these indeterminates. It should be emphasized herethat for all n, p, q, r, s, the rational funtions A(n, p, q) and A(n, r, s) are the same funtionup to re-indexing of the indeterminates.Propp onjetured that eah A(n, p, q) is a Laurent polynomial in some �nite subset ofthe (in�nitely many) indeterminates xn,r,s, with integer oe�ients; that is, eah A(n, p, q)is an element of Z[x±1
n,r,s]. This was subsequently proved by Fomin and Zelevinsky [11℄.Note that if one sets all the indeterminates xn,r,s equal to 1, the Laurent polynomials

A(n, p, q) speialize to the Gale-Robinson numbers a(n). Propp onjetured that eahoe�ient in eah suh Laurent polynomial is positive (a fat that is not proved by Fominand Zelevinsky's method) and furthermore is equal to 1.Propp knew that in the ase i = j = k = ℓ = 1, the Laurent polynomials A(n, p, q) anbe interpreted as multivariate mathing polynomials of suitable graphs, namely, the Aztediamond graphs. (See Subsetion 2.1 for a de�nition of mathing polynomials.) Indeed,David Robbins had studied the three-parameter �perturbed reurrene� in this ase, onaount of its relation to the study of determinants, and had shown (with Rumsey) [22℄that the assoiated rational funtions are Laurent polynomials. (For more bakgroundon this onnetion with determinants, see [5℄.) The work by Elkies, Kuperberg, Larsen,and Propp [10℄ had shown that the monomials in these Laurent polynomials orrespondto perfet mathings of Azte diamond graphs. So it was natural to hope that thisorrespondene ould be extended to the Gale-Robinson family of reurrenes.It should be aknowledged here that the idea behind the spei� triply-indexed per-turbation A(n, p, q) of the Gale-Robinson sequene that proved so fruitful ame from anartile of Zabrodin [28℄ that was brought to Propp's attention by Rik Kenyon. Thisartile led Propp to think that the reurrene studied by Robbins should be onsidered aspeial ase of the �disrete bilinear Hirota equation�, or �otahedron equation�, and thatother reurrenes suh as the Gale-Robinson reurrene should likewise be onsidered inthe ontext of the otahedron equation.What the REACH students were able to do, after diligent examination of the Laurentpolynomials A(n, p, q), is view those Laurent polynomials as multivariate mathing poly-nomials of suitable graphs. Bousquet-Mélou and West, independently, did the same forsmall values of n, until they were able to extrapolate these examples to the generi formof the graphs, whih beame the pineones of this paper.There is a general strategy here for reverse-engineering ombinatorial interpretationsof algebraially-de�ned sequenes of numbers: add su�iently many extra variables sothat the numbers beome Laurent polynomials in whih every oe�ient equals 1. Foranother appliation of this reverse-engineering method (in the ontext of Marko� numbersand frieze patterns), see [18℄.
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2 Perfet mathings of pineonesIn this setion we de�ne a family of subgraphs of the square lattie, whih we allpineones. Then we prove that the number of perfet mathings of a pineone an beomputed indutively in terms of the number of perfet mathings of �ve of its sub-pineones.2.1 PreliminariesTo begin with, let us reall some terminology about graphs. A (simple) graph G is anordered pair (V, E) where V is a �nite set of verties, and E, the set of edges, is a olletionof 2-element subsets of V . The degree of a vertex v is the number of edges in E ontaining
v. A subgraph of G is a graph H = (V ′, E ′) suh that V ′ ⊂ V and E ′ ⊂ E. If, in addition,
V ′ = V , we say that H is a spanning subgraph of G. The intersetion of two graphs
G = (V, E) and H = (V ′, E ′) is the graph G ∩ H = (V ∩ V ′, E ∩ E ′), and the union ofthe two graphs is the graph G∪H = (V ∪ V ′, E ∪E ′). Given two graphs G = (V, E) and
H = (V ′, E ′), we denote by G \ H the subgraph (V ′′, E ′′), where V ′′ = V \ V ′ and E ′′ isthe set of edges of E \ E ′ having both endpoints in V ′′.A perfet mathing of a graph G = (V, E) is a subset E ′ of E suh that every vertexof V belongs to exatly one edge of E ′. We will sometimes omit the word �perfet� andrefer to perfet mathings as simply �mathings�. The mathing number of G, denoted by
m(G), is the number of perfet mathings of G. More generally, we shall often onsiderthe set E of edges as a set of ommuting indeterminates, and assoiate with a (perfet)mathing E ′ the produt of the edges it ontains. The mathing polynomial of G is thusde�ned to be

M(G) :=
∑

E′

∏

e∈E′

e,where the sum runs over all perfet mathings E ′ of G. If we replae every e that oursin this sum-of-produts by a non-negative integer ne, then this expression beomes a non-negative integer, namely, the number of perfet mathings of the multigraph in whihthere are ne edges joining the verties x and y for all e = {x, y} in E (and no edgesjoining x and y if {x, y} is not in E). In partiular, if eah ne is set equal to 0 or 1, thenthe mathing polynomial beomes the number of perfet mathings of the subgraph of Gonsisting of preisely those edges e for whih ne = 1.2.2 Azte diamonds graphsThe pineones onsidered in this paper are ertain subgraphs of the square lattie. Themost regular of them are the (Azte) diamond graphs, whih are the duals of the so-alledAzte diamonds, whih were �rst studied in detail in [10℄. A diamond graph of width
2k − 1 is obtained by taking onseutive rows of squares, of length 1, 3, . . . , 2k − 3, 2k −
1, 2k−3, . . . , 3, 1 and staking them from top to bottom, with the middle squares in all therows lining up vertially, as illustrated by Figure 2. Let A be a diamond graph of width
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Figure 2: An Azte diamond graph of width 9, and one of its perfet mathings.
2k − 1. Let AN be the diamond graph of width 2k − 3 obtained by deleting the leftmostand rightmost squares of A as well as the two lowest squares of eah of the remaining
2k − 3 olumns of A. We all AN the North sub-diamond of A. De�ne similarly theSouth, West and East sub-diamonds of A, denoted by AS, AW and AE . Finally, let ACbe the entral sub-diamond of A of width 2k − 5 (Figure 3). The following result is areformulation of Kuo's ondensation theorem for Azte diamond graphs [17℄.Theorem 1 (Condensation for diamonds graphs) The mathing polynomial of adiamond graph A is related to the mathing polynomials of its sub-diamonds by

M(A)M(AC) = nsM(AW )M(AE) + ewM(AN )M(AS),where n, s, w, and e denote respetively the top (resp. bottom, westmost, eastmost) edge of
A (see Figure 2).In partiular, if a(n) (with n > 2) denotes the mathing number of a diamond graph ofwidth 2n − 3, then

a(n)a(n − 2) = 2a(n − 1)2for all n > 2, provided we adopt the initial onditions a(0) = a(1) = 1. This shows that
a(n) is the three-term Gale-Robinson sequene assoiated with i = j = k = ℓ = 1, andimplies a(n) = 2(n

2).The ondensation theorem we shall prove for pineones appears as a generalizationof the ondensation theorem for diamond graphs. But it an atually also be seen as aspeialization of it, and this is the point of view we adopt in this paper. The key idea isto forbid ertain edges in the mathings.Corollary 2 Let A be a diamond graph, and let G be a spanning subgraph of A, ontainingthe edges n, s, w and e. Let GN = G ∩ AN , and de�ne GS, GW , GE and GC similarly.Then
M(G)M(GC) = nsM(GW )M(GE) + ewM(GN)M(GS).
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AEAW AC

AN

ASFigure 3: The �ve sub-diamonds of a diamond graph of width 9.Proof. Sine G is a spanning subgraph of A, every perfet mathing of G is a perfetmathing of A. Hene the mathing polynomial M(G) is simply obtained by setting
a = 0 in M(A), for every edge a that belongs to A but not to G. The same propertyrelates M(GN ) and M(AN ), and so on. Consequently, Corollary 2 is simply obtained bysetting a = 0 in Theorem 1, for every edge a that belongs to A but not to G.2.3 Pineones: de�nitionsA standard pineone of width 2k − 1 is a subgraph P = (V, E) of the square lattiesatisfying the three following onditions, illustrated by Figure 4.a:

1. The horizontal edges form i+ j +1 segments of odd length, starting from the points
(0, 1), (1, 2) . . . , (i−1, i) and (0, 0), (1,−1), . . . , (j,−j), for some i > 1, j > 0. More-over, if Lm denotes the length of the segment lying at ordinate m, then

L−j < · · · < L−1 < L0 = 2k − 1 = L1 > L2 > · · · > Li.

2. The set of verties V is the set of verties of the square lattie that are inident tothe above horizontal edges.
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3. Let e = {(a, b), (a, b+1)} be a vertial edge of the square lattie joining two vertiesof V . If a + b is even, then e belongs to the set of edges E, and we say that e is aneven edge of P . Otherwise, e may belong to E, or not (Figure 4.a), and we all e a(present or absent) odd edge.The leftmost verties of a standard pineone are always (0, 0) and (0, 1). However, some-times it is onvenient to onsider graphs obtained by shifting suh a graph to a di�erentloation in the two-dimensional lattie. We will all suh a graph a transplanted pineone.In a transplanted pineone, the leftmost verties are (a, b) and (a, b + 1), where a + b iseven. In some ases, where the distintion between standard and transplanted pineonesis not relevant or where we think the ontext makes it lear whih sort of pineone weintend, we omit the modi�er and simply use the word �pineone�.
b. c.a.

(0, 0)Figure 4: Some pineones of width 15. a. The dashed edges may belong to the graph, ornot. b. A pineone. c. A losed pineone.Figures 4.b and 4.c show two spei� ways to make the hoies indiated in Figure 4.aand obtain a pineone of width 15. The pineone of Figure 4.c is losed, meaning that itontains no vertex of degree 1. (Suh a vertex an only our at the right border of thepineone, and ours if the rightmost vertex of some horizontal segment does not belongto a vertial edge, as shown in Figure 4.b.) An Azte diamond graph is an example ofa losed pineone. Let us olor the ells of the square lattie alternatingly in blak andwhite in suh a way that the ell ontaining the verties (0, 0) and (1, 1) is blak. Thefaes of the pineone are the �nite onneted omponents of the omplement of the graphin R
2. The faes of a pineone P are of three types: blak squares, white squares, andhorizontal retangles onsisting of a blak ell to the left and a white ell to the right. Weinsist on the distintion between a ell (of the underlying square lattie) and a square (afae of P that has 4 edges). For instane, the longest row of a pineone of width 2k − 1ontains exatly 2k−1 ells, but may ontain no square at all. Denoting by ℓ (resp. r) theleftmost (resp. rightmost) ell of the longest row of P , we say that P is rooted on (ℓ, r).(If P is standard, then ℓ is the ell with (0, 0) as its lower-left orner.) We refer to thelongest row of a pineone as row 0. The row above it (resp. below) is row 1 (resp. −1),and so on.It is easy to see that a pineone P is losed if and only if the rightmost �nite fae ofeah row is a blak square. In this ase, the rightmost blak square in eah row is also therightmost ell of the row. If moreover P is standard, it is ompletely determined by theposition of its blak squares. Equivalently, it is ompletely determined by the position of
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its odd vertial edges. Conversely, onsider any �nite set S of blak squares whose lower-left verties lie in the 90 degree wedge bounded by the rays y = x > 0 and −y = x > 0.Assume that S is monotone, in the following sense: the rows that ontain at least onesquare of S are onseutive (say from row −j to row i, where row m refers to ells loatedbetween ordinates m and m+1) and for m > 0 (resp. m < 0), the rightmost blak squarein row m ours to the left of the rightmost blak square in row m−1 (resp. m+1). Thenis a (unique) losed standard pineone whose set of blak squares is S.We shall often onsider the empty graph as a partiular losed pineone (assoiatedwith the empty set of blak squares). The empty graph has one perfet mathing, ofweight 1.2.4 The ore of a pineoneWhen a pineone P is not losed, some of the edges of P annot belong to any perfetmathing of P . Spei�ally, if v is a vertex of degree 1 in P , then in any perfet mathingof P , v must be mathed with the vertex to its left (all it u), so that u annot bemathed with any of its other neighbors. Indeed, there an be a hain reation wherebya fored edge, in ausing other edges to be forbidden, leads to new verties of degree 1,ontinuing the proess of foring and forbidding other edges. An example of this is shownin Figure 5. The left half of the piture shows a non-losed pineone P , and the right halfof the piture shows a losed sub-pineone P̄ of P along with a set of isolated edges. Thereader an hek (starting from the rightmost frontier of P and working systematiallyleftward) that eah of the isolated edges is a fored edge (that is, it must be ontainedin every perfet mathing of P ), so that a perfet mathing of P is nothing other thana perfet mathing of P̄ together with the set of isolated edges shown at right. In thissubsetion, we will give a systemati way of reduing a pineone P to a smaller losedpineone by pruning away some fored and forbidden edges.
Figure 5: From a pineone P to its ore P̄ .It an easily be heked that the union or intersetion of two standard pineones is astandard pineone, and that the union or intersetion of two losed standard pineonesis a losed standard pineone. It follows that, if P is a standard pineone, there exists alargest losed standard sub-pineone of P , namely, the union of all the losed standardsub-pineones of P . We all this the ore of P and denote it by P̄ . (If P is not a standardpineone but a transplanted pineone rooted at the ell with lower-left orner (a, b), we
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de�ne P0 as the standard pineone obtained by translating P by (−a,−b), and we de�nethe ore of P as the ore of P0 translated by (a, b). However, for the rest of this setionwe will restrit attention to standard pineones.)Here is an alternative (more onstrutive and less abstrat) approah to de�ning theore. Let P be a standard pineone. Let b0 be the rightmost blak square in row 0 of
P , let b1 be the rightmost blak square in row 1 of P that lies stritly to the left of b0,let b2 be the rightmost blak square in row 2 of P that lies stritly to the left of b1, andso on (proeeding upwards); likewise, let b−1 be the rightmost blak square in row −1 of
P that lies stritly to the left of b0, and so on (proeeding downwards). If at some pointthere is no blak square that satis�es the requirement, we leave bm unde�ned. Considerall the faes of P that lie in the same row as, and lie weakly to the left of, one of one ofthe bk's. This set of faes gives a losed pineone P̃ . At the same time, it is lear that anylosed sub-pineone Q of P must be a sub-pineone of P̃ . For, the rightmost blak squarein row 0 of Q an be no farther to the right than b0, whih implies that the rightmostblak square in row 1 of Q an be no farther to the right than b1, et.; and likewise forthe bottom half of Q. Hene the sub-pineone P̃ we have onstruted is none other thanthe ore of P as de�ned above.If P is losed, then P̄ = P . Note that a losed pineone always admits two partiu-larly simple perfet mathings: one onsisting entirely of horizontal edges, and the otheronsisting of the leftmost and rightmost vertial edges in eah row (and no other vertialedges) along with some horizontal edges (Figure 6). In partiular, the rightmost vertialedges of a losed pineone are never fored nor forbidden.

Figure 6: Two partiularly simple mathings of a losed pineone.Let P be a pineone with ore P̄ . There is a unique perfet mathing of P \ P̄onsisting exlusively of horizontal edges (see Figure 5); let H be the edge set of thisperfet mathing. Every perfet mathing of P̄ an be extended to a perfet mathingof P by adjoining the edges in H , so m(P ) > m(P̄ ). We now show that every perfetmathing of P is obtained from a perfet mathing of P̄ in this way.Proposition 3 Let P be a pineone with ore P̄ . Then m(P̄ ) = m(P ).Proof. We will prove this laim by using a proedure that redues a sub-pineone Q of Pto a smaller sub-pineone with the same mathing number. Let Q be a sub-pineone of Pwhose ore oinides with P̄ . If Q is not losed, then there must be at least one vertex ofdegree 1 along the right boundary of Q. Let v = (a, b) be one of the the rightmost vertiesof degree 1 in Q. Then v is the rightmost vertex in one of the rows of Q. Assume for the
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moment that v lies stritly above the longest row of Q (that is, b > 1). See the top partof Figure 7 for an illustration of the following argument. Let u be the vertex to the leftof v. Then the edge joining u and v is fored to belong to every perfet mathing of Q,while every other edge ontaining u is forbidden from belonging to any perfet mathingof Q. Hene the graph Q′ obtained from Q by deleting u, v, and every edge inident with
u or v has the same mathing number as Q. Furthermore, Q′ is a pineone, unless thevertex v1 = (a − 1, b + 1) belongs to Q. In this ase, v1 has degree 1 in Q′. Let i be thelargest integer suh that vj = (a − j, b + j) belongs to Q for all 0 6 j 6 i. Applying thedeletion proedure to the verties v = v0, v1, . . . , vi (in this order) yields a pineone Q∗.Assume now that b = 1. Applying the deletion proedure to all the verties of Q of theform (a − j, 1 + j) or (a − j,−j) yields again a pineone Q∗ (see Figure 7, bottom). Bysymmetry, we have overed all possible values of b.

v

v2
v1

v

v2
v1

v

v

Q

Q

Q∗

Q∗

Figure 7: Some sequenes of edge-deletions starting and ending with a pineone.Observe that m(Q) = m(Q∗). Additionally, we an hek that the ore of Q∗ is P̄ . Theonly thing we might worry about is that in passing from Q to Q∗, we removed some edgesthat belong to P̄ . The examination of Figure 5 shows that we would have, in partiular,removed the rightmost vertial edge is some row of P̄ . However, this annot happen,beause the removed edges were all fored or forbidden, whereas the rightmost edges of
P̄ are neither fored nor forbidden (Figure 6).To prove that m(P̄ ) = m(P ), take Q = P and use the preeding operation repeatedlyto onstrut suessively smaller graphs Q∗, Q∗∗, . . . suh that m(P ) = m(Q) = m(Q∗) =
m(Q∗∗) = · · · and P̄ = Q̄ = Q∗ = Q∗∗ = · · · . Eventually we arrive at a losed sub-pineone of P whose ore is P̄ ; that is, we arrive at P̄ itself. And sine eah step of ouronstrution preserves m(Q), we onlude that m(P̄ ) = m(P ), as laimed.
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2.5 A ondensation theorem for losed pineonesLet P be a losed pineone, with longest row onsisting of 2n + 1 squares. Let A be thesmallest diamond graph ontaining P (the longest row of A ontains exatly 2n+1 ells).Let G denote the spanning subgraph of A whose edge-set onsists of all edges of P , allhorizontal edges of A, and all even vertial edges of A (Figure 8). Observe that G is apineone. Moreover, among the spanning subgraphs of A that are pineones and ontain
P , G has stritly fewer edges than the others. Sine no odd vertial edge is added, P isatually the ore of the pineone G.

P
G

Figure 8: Completing a pineone P into a spanning pineone of an Azte diamond graph.Let us now use the notation of Corollary 2. That is, GN = G ∩ AN , and so on. Then
GN , GS, GW , GE and GC are (standard or transplanted) pineones. Let P N , P S, P W , P Eand P C denote their respetive ores. (These are not to be onfused with PN , et., whihare the intersetions of P with AN , et.) We will often all P N , P S, P W , P E and P C �the�ve sub-pineones� of P , even though, stritly speaking, P admits other sub-pineones.An example is given in Figure 9. Let ℓ0 (resp. r0) be the leftmost (resp. rightmost) ellof the longest row R0 of P . Similarly, let r1 (resp. r−1) denote the rightmost ell of therow just above (resp. below) R0. Observe that the ells r0, r1 and r−1 orrespond toblak squares of P . Finally, let ℓ′0 be the blak ell of R0 following ℓ0, and let r′0 theblak square of R0 preeding r0 (if it exists). In light of the basi properties of the ore(both the abstrat de�nition and the algorithmi onstrution), we an give the followingalternative desription of the �ve sub-pineones of P .Proposition 4 Let P be a losed pineone. With the above notation, P N (resp. P S) isthe largest losed sub-pineone of P whose rightmost ell is r1 (resp. r−1). Similarly, P W(resp. P E) is the largest losed sub-pineone whose rightmost (resp. leftmost) ell is r′0(resp. ℓ′0). Finally, P C is the largest losed sub-pineone rooted on (ℓ′0, r

′
0).This proposition implies that a pineone P that is neither empty, nor redued to a blaksquare an be reonstruted from its four main sub-pineones P N , P S, P E and P W .Indeed, the part of P loated stritly above its longest row oinides with the top part of
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PC

PN

PEPW

PS

r−1

ℓ0

r1

r0
r′0ℓ′0

Figure 9: The �ve sub-pineones of a pineone P .
P N . More preisely, row r of P , with r > 0 oinides with row r − 1 of P N . Similarly,for r < 0, row r of P oinides with row r + 1 of P S. It thus remains to determine thelongest row of P . This row is obtained by adding a 2-by-1 retangle2 to the left of thelongest row of P E, and then superimposing the longest row of P W .Let us now apply Corollary 2 to the graph G obtained by ompleting P into a spanningpineone of A (Figure 8). By Proposition 3, sine P is the ore of G, m(G) = m(P ), andsimilar identities relate the mathing numbers of GN and P N , et.Theorem 5 (Condensation for losed pineones) The mathing number of a losedpineone P is related to the mathing number of its losed sub-pineones by

m(P )m(P C) = m(P W )m(P E) + m(P N)m(P S).We will state in Setion 4 a more general ondensation result dealing with the mathingpolynomial, rather than the mathings number, of losed pineones (Theorem 13).3 Pineones for the Gale-Robinson sequenesThe pineones introdued in the previous setion generalize Azte diamond graphs. Thenumber of perfet mathings of the diamond graph of width 2n− 3 is the nth term in the2This retangle is atually only useful if PW is empty or redued to a single blak square.
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reurrene
a(n)a(n − 2) = a(n − 1)a(n − 1) + a(n − 1)a(n − 1),with initial onditions a(0) = a(1) = 1. More generally, the three-term Gale-Robinsonsequenes are governed by reurrenes of the form

a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ), (1)with initial onditions a(n) = 1 for n = 0, 1, . . . , m − 1. Here, i, j, k and ℓ are positiveintegers suh that i + j = k + ℓ = m, and we adopt the following (important) onvention
j = min{i, j, k, ℓ}.Our purpose in this setion is to onstrut a sequene of (losed) pineones (P (n))n>0 ≡

(P (n; i, j, k, ℓ))n>0 for eah set of parameters {i, j, k, ℓ} suh that i+j = k+ℓ = m, and toshow that the mathing numbers of the pineones in our sequene satisfy the orrespondingGale-Robinson reurrene. More spei�ally, our family of graphs will be onstruted insuh a way that
• P (n)C is P (n − m) transplanted to (2, 0) (that is, shifted two steps to the right),
• P (n)W is P (n − i),
• P (n)E is P (n − j) transplanted to (2, 0),
• P (n)N is P (n − k) transplanted to (1, 1), and
• P (n)S is P (n − ℓ) transplanted to (1,−1).In our onstrution, we use the fat that a losed pineone is ompletely determined byits set of odd vertial edges, that is, vertial edges of the form {(a, b), (a, b + 1)} where

a + b is odd. We introdue two funtions, an upper funtion U and a lower funtion L,whih will be used to determine the positions of the odd vertial edges in the (losed)pineone P (n; i, j, k, ℓ): for r > 0, let
U(n, r, c) = 2c + r − 3 − 2

⌊

mc + kr + i − n − 1

j

⌋

,

L(n, r, c) = 2c + r − 3 − 2

⌊

mc + ℓr + i − n − 1

j

⌋

.

(2)Observe that the parameters k and ℓ play symmetri roles. Also, U(n, 0, c) = L(n, 0, c).The funtion U will desribe the upper part of the pineone, while L will desribe itslower part. Reall that, by onvention, the longest row of a standard pineone is row 0and its South-West orner lies at oordinates (0, 0), as shown in Figure 4.To loate the vertial odd edges in row r > 0, alulate the values U(n, r, c) for
c = 0, 1, . . . This will be a (stritly) dereasing sequene, sine m > 2j (reall that
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i + j = m and j 6 i). Retain those values U(n, r, c) that are larger than r, and plae avertial edge in the rth row at absissa U(n, r, c), that is, an edge onneting (U(n, r, c), r)and (U(n, r, c), r+1) (an odd edge, sine U(n, r, c)+r is odd). The �rst row not ontainingsuh an edge (and therefore not inluded in the pineone) is the �rst one for whih
U(n, r, 0) < r. Observe that U(n, r, 0)−r is a dereasing funtion of r (sine j 6 k). Thisproperty guarantees that if the rth row is empty, then all higher rows are empty too. It alsoimplies that the rightmost vertial edge in row r (whih is loated at absissa U(n, r, 0)) liesto the right of the rightmost vertial edge in row r+1. (To see this, note that U(n, r, 0)−ris always an odd number.) So the inequality U(n, r+1, 0)−(r+1) < U(n, r, 0)−r implies
U(n, r + 1, 0)− (r + 1) 6 U(n, r, 0)− r − 2, or U(n, r + 1, 0) < U(n, r, 0). That is, the setof odd edges (equivalently, of blak squares) given by Formula (2) satis�es the �top part�of the monotoniity ondition desribed at the end of Setion 2.3: the rightmost odd edgein row r > 0, if it exists, lies to the left of the rightmost odd edge in row r − 1.Similarly, to loate the edges in row −r 6 0, alulate the values of L(n, r, 0) >
L(n, r, 1) > · · · and retain those larger than r. For eah, plae a vertial edge in row −rat absissa L(n, r, c), that is, onneting (L(n, r, c),−r) and (L(n, r, c),−r + 1). Observethat L(n, 0, c) = U(n, 0, c), so that the olletion of odd vertial edges in row 0 is thesame whether it is determined from U or from L.The monotoniity properties satis�ed by the positions of the odd edges imply thatthere exists a unique standard losed pineone whose set of odd vertial edges oinideswith the set we have onstruted via the funtions U and L. To obtain this pineone, drawhorizontal edges from (r, r + 1) to (U(n, r, 0), r + 1) and from (−r,−r) to (L(n, r, 0),−r)for all r > 0. Finally, plae all the appropriate even vertial edges. Sine these steps areso routine, we regard the pineone as fully desribed one the set of odd vertial edgeshas been spei�ed. This point of view simpli�es the exposition.Observe that P (n) is empty if and only if U(n, 0, 0) < 0, whih is equivalent to
U(n, 0, 0) 6 −1 (sine U(n, 0, 0) is odd), whih is easily seen to be equivalent to n < m(using the fat that m = i + j).Example. Take (i, j, k, ℓ) = (5, 2, 3, 4) and determine P (12). The above de�nition of Uand L speializes to

U(n, r, c) = 2c + r − 3 − 2

⌊

7c + 3r − 8

2

⌋

,

L(n, r, c) = 2c + r − 3 − 2

⌊

7c + 4r − 8

2

⌋

.In row 0, we �nd odd edges with lower verties (5, 0) and (1, 0). In row 1, there is one oddedge at (4, 1). This is the top row of the diagram beause U(12, 2, 0) = 1 < 2. Turningto the lower portion of the diagram, there is one odd edge with lower vertex (2,−1) andnone in row −2 or below. Completing the diagram is now routine, and gives the pineone
P (12) whih is shown in Figure 10, together with its 14 perfet mathings. Aordingly,the Gale-Robinson sequene a(n) assoiated with (5, 2, 3, 4) satis�es a(12) = 14.A larger example is presented after Corollary 10.
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(2)(4)(4) (4)(0, 0)Figure 10: The pineone P (12; 5, 2, 3, 4), with blak squares indiated, and its 14 perfetmathings (a ross stands for any of the two mathings of a square).The pineones based on the funtions U and L satisfy a remarkable property: the oddedges (or, equivalently, the blak squares) in rows r and r + 1 are interleaved. That is,between two blak squares in row r > 0, there is a blak square in row r+1, and similarly,between two blak squares in row r 6 0, there is a blak square in row r− 1. This an beheked on the small example of Figure 10, but is more visible on the bigger example ofFigure 12.Lemma 6 (The interleaving property) For all values of n, r and c, the funtions Uand L de�ned by (2) satisfy
U(n, r, c + 1) + 1 6 U(n, r + 1, c) 6 U(n, r, c) − 1and
L(n, r, c + 1) + 1 6 L(n, r + 1, c) 6 L(n, r, c) − 1.Proof. We have

U(n, r + 1, c) − U(n, r, c + 1) =

2

⌊

mc + kr + i − n − 1 + m

j

⌋

− 2

⌊

mc + kr + i − n − 1 + k

j

⌋

− 1.But
mc + kr + i − n − 1 + m

j
−

mc + kr + i − n − 1 + k

j
=

ℓ

j
> 1,so that the two �oors ourring in the above identity di�er by 1 at least. Consequently,

U(n, r + 1, c) − U(n, r, c + 1) > 2 − 1 = 1.The three other inequalities are proved in a similar manner.We now wish to apply the ondensation theorem (Theorem 5) to the pineones P (n) wehave just de�ned. Using the notation of Theorem 5, we will verify that, up to translation,
P (n)W = P (n − i), P (n)E = P (n − j), P (n)N = P (n − k), P (n)S = P (n − ℓ) and
P (n)C = P (n−m). These equivalenes will follow from the interleaving property and thefollowing algebrai equalities.
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Lemma 7 For any hoie of parameters (i, j, k, ℓ), the funtions U and L de�ned by (2)satisfy:
U(n − i, r, c − 1) = U(n, r, c), L(n − i, r, c − 1) = L(n, r, c),

U(n − j, r, c) = U(n, r, c) − 2, L(n − j, r, c) = L(n, r, c) − 2,
U(n − k, r − 1, c) = U(n, r, c) − 1, L(n − ℓ, r − 1, c) = L(n, r, c) − 1,

U(n − ℓ, r + 1, c − 1) = U(n, r, c) − 1, L(n − k, r + 1, c − 1) = L(n, r, c) − 1,
U(n − m, r, c − 1) = U(n, r, c) − 2, L(n − m, r, c − 1) = L(n, r, c) − 2.Proof. The L-identities are symmetri to the U-identities upon exhanging k and ℓ, sothat there are really 5 identities to prove. These an all be veri�ed by routine algebraimanipulations. Let us hek for instane the fourth identity satis�ed by U :

U(n − ℓ, r + 1, c − 1)

= 2(c − 1) + (r + 1) − 3 − 2

⌊

m(c − 1) + k(r + 1) + i − (n − ℓ) − 1

j

⌋

= 2c + r − 4 − 2

⌊

mc + kr + i − n − 1 − m + k + ℓ

j

⌋

= 2c + r − 4 − 2

⌊

mc + kr + i − n − 1

j

⌋ sine m = k + ℓ

= U(n, r, c) − 1.We leave it to the reader to verify the remaining 4 identities.We now hek that these identities imply that the pineones are related to one anotheras laimed.Proposition 8 Let P (n) ≡ P (n; i, j, k, ℓ) be the sequene of pineones assoiated with theparameters (i, j, k, ℓ). Then for n > m, the �ve losed sub-pineones of P (n) satisfy
P (n)W = P (n − i), P (n)E = P (n − j),

P (n)N = P (n − k), P (n)S = P (n − ℓ),and
P (n)C = P (n − m).These identities hold up to a translation.Proof. Begin by heking that P (n)W = P (n − i). Using the desription of P (n)W givenin Proposition 4, and the fat that the blak squares of P (n) are interleaved, we see thatthe odd vertial edges in P (n)W are those of P (n), exept that the rightmost odd edgein eah row has been removed. (If this was the only odd edge in the row, then the entirerow disappears.) Therefore P (n)W an be onstruted by following the onstrution for

P (n), but beginning with c = 1, 2, . . . instead of c = 0, 1, . . .. This means that in row
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r > 0 of P (n)W , odd edges appear at positions U(n, r, 1), U(n, r, 2), . . . as long as thesevalues ontinue to exeed r. (Similarly in rows r 6 0, using L instead of U .)Let us now ompare this with P (n − i). In row r > 0 of P (n − i), odd edges appearin positions U(n − i, r, 0), U(n − i, r, 1), . . ., as long as these values ontinue to exeed r.However we showed in Lemma 7 that U(n − i, r, c − 1) = U(n, r, c), so the sequene ofodd edges in row r is the same in P (n)W and in P (n− i). The situation is similar in rows
r < 0 using the equality for L. As we remarked above, a pineone is determined by itsodd edges (and the position of its leftmost edge), so P (n)W = P (n − i).The other four equivalenes are similar. The only new development is that instead ofbeing positioned at the origin, the smaller pineones are now o�set by one or two olumns(in all four ases) and possibly rows (in the ase of P (n)N and P (n)S). We will look at
P (n)S as an example, and let the reader supply the details for the remaining three ases.As noted after Proposition 4, for r 6 0, row r of P (n)S oinides with row r−1 of P (n).For r > 0, the leftmost ell of row r of P (n)S lies two steps to the right of the leftmostell of row r − 1 of P (n). Moreover, the interleaving property implies, by indution on
r > 0, that the last (i.e., rightmost) blak square of row r of P (n)S is the next-to lastblak square of row r−1 of P (n). Thus the odd edges of P (n)S are loated as follows: forrows −r, with r = 1, 2, . . ., in olumns L(n, r, 0), L(n, r, 1), . . ., as long as these numbersontinue to exeed r; and for rows r = 0, 1, 2, . . ., in olumns U(n, r, 1), U(n, r, 2), . . ., aslong as these numbers ontinue to exeed r + 2.Let us now look at a opy of P (n− ℓ) positioned with its origin at (1,−1). After thistranslation, the odd vertial edges in rows −r, with r = 1, 2, . . . are loated at absissas
L(n−ℓ, r−1, c)+1, for c > 0 and as long as these numbers ontinue to exeed r. Lemma 7then implies that the bottom parts of P (n)S and of the translate of P (n − ℓ) oinide.After the translation, the odd vertial edges of P (n−ℓ) lying in rows r, with r = 0, 1, 2, . . .are loated at absissas U(n − ℓ, r + 1, c) + 1, for c > 0 and as long as these numbersontinue to exeed r + 2. Lemma 7 then implies that the top parts of P (n)S and of thetranslate of P (n − ℓ) oinide.This ompletes the analysis for P (n)S; the veri�ations for P (n)N , P (n)E and P (n)Care similar (and even idential, up to symmetry, in the ase of P (n)N).Remark: a reursive onstrution of the pineones P (n). The above proposition,ombined with Proposition 4, provides an alternative way of onstruting the sequene ofpineones P (n) assoiated with a given set of parameters (i, j, k, ℓ). For 0 6 n < m, we put
P (n) equal to the empty graph (whih has one perfet mathing), and for m 6 n < m+j,we put P (n) equal to the graph with four verties and four edges surrounding one squarefae (whih has 2 perfet mathings). Then, for n > m + j, it su�es to superimpose
P (n − i), P (n − j), P (n − k) and P (n − ℓ), and add a 2-by-1 retangle to the left of thelongest row of P (n − j). More preisely, the four above pineones must be positionedin suh a way the leftmost ell of P (n − i) (resp. P (n − j), P (n − k), P (n − ℓ)) has itsSouth-West orner at (0, 0) (resp. (2, 0), (1, 1), (1,−1)), while the 2-by-1 retangle has itsSouth-West orner at (0, 0). (This retangle is atually only neessary if P (n− i) is empty
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P (10) =

P (7) =P (5) = P (6) =

P (8) =

P (4) =

P (5)E = P (4)
P (6)E = P (5) P (7)W = P (4), P (7)E = P (6)

P (9)N = P (7)
P (10)W = P (7)

P (8)N = P (8)S = P (6)

P (9) =

Figure 11: Reursive graphial onstrution of the pineones assoiated with the Somos-4sequene. At eah stage, one (or two) of the omponents that are superimposed to formthe pineone is highlighted.or onsists of a single blak square. Typially this 2-by-1 retangle omes for free as partof P (n − i). Note that we do not laim that this retangle is a fae of the pineone; theodd edge joining (1, 0) and (1, 1) will be present or absent in P (n), aording to whetherit is present or absent in P (n− i).) This gives a graphial, indutive way of onstruting
P (n). This method is illustrated in Figure 11 by the ase of the Somos-4 sequene, forwhih

a(n)a(n − 4) = a(n − 3)a(n − 1) + a(n − 2)2.That is, (i, j, k, ℓ) = (3, 1, 2, 2) and m = 4.We an now state our ombinatorial interpretation of the Gale-Robinson numbers.Theorem 9 Let P (n) ≡ P (n; i, j, k, ℓ) be the sequene of pineones assoiated with theparameters (i, j, k, ℓ). Let a(n) denote the number of perfet mathings of P (n). Then
a(n) = 1 for n < m, and for n > m, the sequene a(n) satis�es the following Gale-Robinson reurrene:

a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ).Proof. We have already observed that the pineone P (n) is empty for n < m. Hene theinitial onditions apply orretly. Now for n > m, Theorem 5 states that the mathingmathing of P (n) is related to the mathing numbers of its losed sub-pineones by
m(P (n))m(P (n)C) = m(P (n)W )m(P (n)E) + m(P (n)N)m(P (n)S).Proposition 8 then implies that m(P (n)C) = m(P (n − m)), et. Therefore,

m(P (n))m(P (n − m)) = m(P (n − i))m(P (n − j)) + xm(P (n − k))m(P (n − ℓ)),whih is the reurrene relation satis�ed by a(n).
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Before we study a spei� example, let us state an obvious orollary of Theorem 9.Corollary 10 Let i, j, k, ℓ be positive integers suh that i+j = k+ℓ = m. The reurrenerelation
a(n)a(n − m) = a(n − i)a(n − j) + a(n − k)a(n − ℓ),with initial onditions a(n) = 1 for n < m, de�nes a sequene of positive integers.Example. We give a spei� example in the ase where (i, j, k, ℓ) = (6, 2, 5, 3) and

n = 25. We also show how to use the VAXmaple software pakage (available athttp://jamespropp.org/vaxmaple.) to ompute the number of perfet mathings inthe onstruted pineone, whih an be seen to be the 25th term in the appropriateGale-Robinson sequene.Considering �rst the upper portion of P (n), we �x r and then onsider the �rst fewvalues of U(n, r, c) as c = 0, 1, 2, 3, . . .:
r = 0 : {17, 11, 5,−1, . . .}

r = 1 : {14, 8, 2,−4, . . .}

r = 2 : {9, 3,−3,−9, . . .}

r = 3 : {6, 0,−6 − 12, . . .}

r = 4 : {1,−5,−11,−17, . . .}Sine the c = 0 value for r = 4 is already less than r, there are only three non-empty rowsabove the middle (longest) row in this pineone. For the lower portion of the diagram,we obtain the following values of L(n, r, c):
r = 0 : {17, 11, 5,−1, . . .}

r = 1 : {16, 10, 4,−4, . . .}

r = 2 : {13, 7, 1,−5, . . .}

r = 3 : {12, 6, 0,−6, . . .}

r = 4 : {9, 3,−3,−9, . . .}

r = 5 : {8, 2,−4,−10, . . .}

r = 6 : {5,−1,−7,−13, . . .}

Figure 12: The pineone P (25; 6, 2, 5, 3).
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Completing the onstrution, we arrive at the graph of Figure 12.It is easy to translate this into the format required by the omputer programVAXmaple, written by Greg Kuperberg, Jim Propp and David Wilson to ount per-fet mathings of �nite subgraphs of the in�nite square grid. In this format, eah vertexpresent in the graph is represented by a letter. The hoie of letter indiates whetherany edges are omitted when onneting the vertex to its nearest neighbours � eahvertex having up to four of these. An X indiates that no edges are omitted; an Aindiates that the edge leading upward from the vertex is omitted; a V indiates theomission of the downward edge. (For a more detailed explanation of the software, seehttp://jamespropp.org/vaxmaple.do.) The enoding of the pineone of Figure 12 isgiven in Figure 13. XVXXXXAVXVXXXXXVAVAXXVXVXXXVXVAXAVXVAXAVXVXXXAVAXXVAVAXXVAVAXXXAVXVAXAVXVAXAXXXAVAXXVAVAXXXAVXVAXAXXXAVAXXXAXXFigure 13: The pineone P (25; 6, 2, 5, 3) as a VAX �le.Counting the perfet mathings in this pineone by running the above input throughthe VAXmaple program and then through Maple produes 167,741, as it should, sine the
25th term of the Gale-Robinson sequene onstruted from (6, 2, 5, 3) is 167,741.4 The Gale-Robinson bivariate polynomialsAs stated in Corollary 10, Theorem 9 implies that the three-term Gale-Robinson sequenesonsist of integers. In this setion, we re�ne this result as follows.Theorem 11 Let i, j, k, ℓ and m be positive integers suh that i + j = k + ℓ = m. Let
w and z be two indeterminates, and de�ne a sequene p(n) ≡ p(n; w, z) by p(n) = 1 for
n < m and for n > m,

p(n)p(n − m) = w p(n − i)p(n − j) + z p(n − k)p(n − ℓ).Then p(n) is a polynomial in w and z with nonnegative integer oe�ients.The proof goes as follows: we have already seen that p(n; 1, 1) ounts perfet mathings ofthe pineone P ≡ P (n; i, j, k, ℓ) onstruted in Setion 3. We will prove that p(n; u2, v2)
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ounts these mathings aording to two parameters. More preisely, we begin by givingin Setion 4.1 a ondensation theorem that omputes indutively the mathing polynomial(rather than the mathing number) of losed pineones. We observe that this theoremtakes a simpler form when applied to interleaved pineones (a lass of pineones thatontains all Gale-Robinson pineones). In Setion 4.2, we de�ne the speial horizontaledges of a pineone. We then de�ne the partial mathing polynomial of a pineone Pas the mathing polynomial M(P ) in whih the weights of non-speial edges are set to1. We speialize the ondensation theorem of Setion 4.1 to a ondensation theoremfor the partial mathing polynomial of interleaved pineones. Its appliation to the Gale-Robinson pineones P (n; i, j, k, ℓ) implies that the polynomial q(n) ≡ q(n; u, v) that ountsperfet mathings of P (n) aording to the number of vertial edges (the exponent of v)and horizontal speial edges (the exponent of u) satis�es q(n) = 1 for n < m and
q(n)q(n − m) = u2q(n − i)q(n − j) + v2q(n − k)q(n − ℓ)for n > m. This shows that q(n; u, v) = p(n; u2, v2) and implies Theorem 11.4.1 A ondensation theorem for the mathing polynomialLet us go bak to the ondensation theorem for losed pineones (Theorem 5). We nowstate and prove a stronger result dealing with the mathing polynomial rather than themathing number. Let P be a losed pineone and A the smallest diamond graph thatontains it, with G de�ned as in the beginning of Setion 2.5 and with n, s, e, w as inTheorem 1 and Figure 2. Sine P is the ore of G, the mathing polynomial M(G) equals

M(P )M(G \ P ). Similar results hold for the sub-pineones P C , P W , P E, P N and P S.Corollary 2 gives:
M(P )M(G \ P )M(P C)M(GC \ P C) = nsM(P W )M(GW \ P W )M(P E)M(GE \ P E)

+ ewM(P N)M(GN \ P N)M(P S)M(GS \ P S). (3)Sine P is the ore of G, the graph G \P has a unique perfet mathing, whih is formedof horizontal edges only. Hene M(G \ P ) is a monomial. The same holds for the othergraph di�erenes ourring in (3). We an thus rewrite this identity as
M(P )M(P C) = αM(P W )M(P E) + βM(P N)M(P S)for some Laurent monomials α and β (indeed, negative exponents may arise from thedivision by M(G\P )M(GC \P C)). Our objetive in this subsetion is to prove that thesemonomials only involve nonnegative exponents (so that they are ordinary monomials),and to desribe them in a more onise way.We introdue the following de�nition, illustrated in Figure 14.De�nition 12 Let P be a losed pineone. A horizontal edge is a left edge if it is theleftmost horizontal edge in the horizontal segment of P that ontains it.A horizontal edge with leftmost vertex (i, j) is even if i + j is even, odd otherwise.
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Figure 14: The left edges of a losed pineone.For a (standard) pineone P , we denote by P> (resp. P>) the pineone formed of rows
0, 1, 2, . . . of P (resp. rows 1, 2, . . .). We use similar notations for the bottom part of P .These de�nitions are extended to transplanted pineones in a natural way: for instane,
(P N)>, whih we simply denote P N

> , onsists of rows 1, 2, . . . of P .
P C

6P N
<

P N
>P C

>

Figure 15: The inlusion properties P N
< ⊂ P C

6 and P C
> ⊂ P N

> (the small subpineonesare dashed). The leftmost �gure also shows some edges of the horizontal mathing of
P C

6 \ P N
< .Observe that, for any pineone P ,

P N
< ⊂ P C

6 while P C
> ⊂ P N

> . (4)Both properties are illustrated in Figure 15. Consequently, the graph di�erene P C \ P Nis formed of edges that lie in P C
6 , and P C \P N ⊂ P C

6 \P N
< . Let us desribe more preiselythe horizontal edges of these two graph di�erenes. For j 6 1, if there are any horizontaledges of P C

6 \ P N
< lying at ordinate j, then the number of them is odd, say 2kj + 1, andthese edges are the 2kj+1 rightmost horizontal edges of P C found at ordinate j (Figure 15,left). If j 6 0, all these edges belong to P C \ P N . However, for j = 1, only a subset ofthese edges, of even ardinality, belong to P C \ P N . (In the example of Figure 15, thetwo leftmost thik edges shown at ordinate 1 do not belong to P C \ P N .) The graph

P C
6 \P N

< thus has a unique horizontal mathing, whih has kj +1 edges at ordinate j 6 1.We denote by H−(P C \ P N) the produt of the edges of this mathing having ordinate
6 0. The fat that the horizontal edges of P C \ P N found at ordinate j oinide withthose of P C

6 \ P N
< allows us to use the notation H−(P C \ P N) rather than something like

H−(P C
6 \ P N

< ) whih would have been heavier.
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Symmetrially,
P S

> ⊂ P C
> while P C

< ⊂ P S
6, (5)so that the graph P C \ P S lies in P C

> . We denote by H+(P C \ P S) the produt of theedge-weights of the horizontal mathing of P C
> \ P S

> lying at a positive ordinate.
E1

rightmost ell of P N

E2
2

H−(P C \ P N)

E1
2

e

rightmost ell of P S

w

Figure 16: Left: The edges ourring in the �rst term of the re�ned ondensation theorem,with the pineone P W shown. Right: The edges ourring in the seond term. Here
H+(P C \ P S) = 1. The two distinguished pineones are P C and P N (dashed).We an now state a ondensation theorem for the mathing polynomial of losedpineones. See Figure 16 for an illustration.Theorem 13 (The mathing polynomial of losed pineones)The mathing polynomial of a losed pineone P is related to the mathing polynomialof its sub-pineones by

M(P )M
(

P C
)

=

(

∏

a∈E1

a

)

M
(

P W
)

M
(

P E
)

+

(

∏

a∈E2

a

)

H−(P C \ P N)H+(P C \ P S)M
(

P N
)

M
(

P S
)

,where
• E1 is the set of left edges of P not belonging to P W ,
• E2 is the union of three edge-sets Ei

2, for 0 6 i 6 2:� E0
2 = {e, w} ontains the eastmost and westmost vertial edges of P ,� E1
2 ontains the even edges at ordinate 1 not belonging to P N ,� E2
2 ontains the odd edges at ordinate 0 not belonging to P S.
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Proof. In this proof, we adopt the following notation: for eah edge set E, we also denoteby E the produt of the edges of the set. For a graph G having a unique horizontal(perfet) mathing, we denote this mathing by H(G).Let us return to (3). Reall that G\P has a unique mathing, onsisting of horizontaledges only. Denoting by A the smallest diamond graph ontaining P , we observe that
M(G \ P ) = H(A)/H(P ) (see Figure 8). Similar identities hold for the other pineonesourring in (3). For instane, M(GW \ P W ) = H(AW )/H(P W ). This allows us torewrite (3) as

M(P )M(P C) = ns
H(AW )H(AE)

H(A)H(AC)

H(P )H(P C)

H(P W )H(P E)
M(P W )M(P E)

+ ew
H(AN)H(AS)

H(A)H(AC)

H(P )H(P C)

H(P N)H(P S)
M(P N)M(P S).Let us begin with the two fators involving A and its subgraphs. It is easy to see, withthe help of Figure 3, that

ns
H(AW )H(AE)

H(A)H(AC)
= 1.The seond fator involving A, namely ewH(AN)H(AS)/(H(A)H(AC)), is a multiple of

e and w (all the other edges are horizontal) and thus annot be equal to 1. Denoting by
L

(e)
1 the graph formed by the even horizontal edges lying at ordinate 1, and introduingsimilar notations L

(o)
1 , L

(e)
0 and L

(o)
0 , one �nds

H(AN)H(AS)

H(A)H(AC)
=

L
(e)
1 L

(o)
0

L
(o)
1 L

(e)
0

. (6)It remains to desribe the two fators that involve P and its subgraphs. For the �rst one,we note that H(P )/H(P E) is simply the produt of the left edges of P . Similarly, as
P C = (P W )E, the ratio H(P W )/H(P C) is the produt of the left edges of P W . This givesthe following expression for the �rst fator:

H(P )H(P C)

H(P W )H(P E)
=
∏

a∈E1

a,with E1 de�ned as in the theorem.To express the seond fator involving P , let us �rst separate in H(P ) the edges thatlie at ordinate j = 0, j = 1, j > 1, j < 0. This gives
H(P ) = L

(e)
0 · L

(o)
1 ·

H(P N
> )

L
(e)
1 ∩ P N

·
H(P S

6)

L
(o)
0 ∩ P S

.For the other 3 pineones that are involved in this fator, we write:
H(P C) =

H(P C
> )H(P C

6 )

(L
(e)
0 ∩ P C)(L

(o)
1 ∩ P C)

, H(P N) =
H(P N

> )H(P N
< )

L
(o)
1 ∩ P N

<

, H(P S) =
H(P S

6)H(P S
>)

L
(e)
0 ∩ P S

>

.
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The division by (L
(e)
0 ∩ P C)(L

(o)
1 ∩ P C) in the �rst identity omes from the fat that

H(P C
> ) and H(P C

6 ) have edges in ommon at ordinates 0 and 1. The other divisions arejusti�ed in a similar way. These identities, together with (6), give:
H(AN)H(AS)

H(A)H(AC)

H(P )H(P C)

H(P N)H(P S)
=

(L
(e)
1 \ P N)(L

(o)
0 \ P S)

(L
(o)
1 ∩ P N

< )H(P C
6 )

(L
(o)
1 ∩ P C)H(P N

< )

(L
(e)
0 ∩ P S

>)H(P C
> )

(L
(e)
0 ∩ P C)H(P S

>)
.The ratio H(P C

6 )/(L
(o)
1 ∩ P C) is the produt of the edges found at non-positive ordinatesin the horizontal mathing of P C

6 . Similarly, the ratio H(P N
< )/(L

(o)
1 ∩ P N

< ) is the produtof the edges found at non-positive ordinates in the horizontal mathing of P N
< . But

P N
< ⊂ P C

6 (see (4) and its aompanying Figure 15), so the quotient of the two ratios is
H−(P C \ P N), the produt of the edges found at non-positive ordinates in the horizontalmathing of P C

6 \ P N
< . The remaining quotient involving P S

> is, symmetrially, equal to
H+(P C \ P S). This yields the result stated in the theorem.The re�ned ondensation theorem speializes niely to interleaved pineones.De�nition 14 (Interleaved pineones) A losed pineone is interleaved if, betweentwo blak squares in row r, one �nds a blak square in row r + 1 and a blak square inrow r − 1.This implies that, between two onseutive blak squares in row r, there is exatly oneblak square in row r + 1, and one in row r − 1. For instane, the pineone to the rightof Figure 17 is interleaved. Going bak to Theorem 13, it is easy to see that for aninterleaved pineone, the graphs P C

6 \P N
< and P C

> \P S
> are empty, so that H−(P C \P N) =

H+(P C \ P S) = 1.Corollary 15 (The mathing polynomial of interleaved pineones) The math-ing polynomial of an interleaved pineone P is related to the mathing polynomial ofits losed sub-pineones by
M(P )M(P C) =

(

∏

a∈E1

a

)

M(P W )M(P E) +

(

∏

a∈E2

a

)

M(P N)M(P S),where the sets E1 and E2 are desribed in Theorem 13. Moreover, the �ve sub-pineonesof P are also interleaved.The last statement follows from the fat that eah of the �ve sub-pineones an be de�nedas the largest losed pineone ontaining two presribed vertial edges.
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4.2 Speial edgesWe will now simplify further the expression of Corollary 15, by assigning weight 1 toertain horizontal edges, alled ordinary. If P is interleaved, the set of blak squares of
P W is obtained by deleting the rightmost blak square in eah row of P . Consequently, therows that disappear when onstruting P W from P are those that ontain only one blaksquare. These are the rows that ontain a left edge ontributing to the set E1. Moreover,the top and bottom rows of P ontain exatly one blak square, otherwise P would notbe interleaved. Hene E1 has ardinality at least 2. We are going to assign weight 1 toall the edges of E1 that lie neither on the top segment of P nor on its bottom segment.Similarly, we will assign weight 1 to the edges of E1

2 and E2
2 , so that the produt of theedge-weights in E2 will redue to ew. As we want to apply the ondensation theoremiteratively, this fores us to set to 1 the weights of other horizontal edges, ourring forinstane in the sets E1

2 and E2
2 assoiated to the �ve sub-pineones of P . Iterating thisproedure, we arrive at the following de�nition of ordinary horizontal edges � those thatwill have weight 1. This de�nition is illustrated in Figure 17. Note that it does not assumethat the pineone is interleaved.De�nition 16 An even horizontal edge a, lying at ordinate r in a pineone (that is,between rows r − 1 and r), is ordinary if the losest blak square found in rows r − 1 and

r weakly to the right of a is in row r−1. Otherwise, a is said to be speial. In partiular,if an even edge a lies in the bottom segment of P , it is speial.Symmetrially, an odd horizontal edge a, lying at ordinate r, is ordinary if the losestblak square found in rows r − 1 and r weakly to the right of a is in row r. Otherwise,
a is said to be speial. In partiular, if an odd edge a lies in the top segment of P , it isspeial. even

oddFigure 17: The ordinary edges of a pineone. The even ones are in blak, the odd ones inwhite. The pineone to the right is interleaved.It is easy to hek that in an interleaved pineone, the edges of E1
2 and E2

2 are ordinary.The following lemma tells whih edges of E1 are speial.Lemma 17 Let P be an interleaved losed pineone. There are exatly two left edges of
P that do not belong to P W and are speial. One of them is even, and is the lowest leftedge of P . The other is odd, and is the highest left edge of P .
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Proof. As noted at the beginning of this subsetion, the left edges of P that do not belongto P W are those that belong to rows ontaining exatly one blak square. Take an evenedge of this type. It belongs to the bottom portion of P . Figure 18 shows that it is alwaysordinary, unless it lies on the bottommost horizontal segment of P . The proof is similarfor odd left edges.

Figure 18: The even ordinary left edges of P \ P W .Lemma 18 Let P be a losed pineone, and Q one of the �ve sub-pineones P C, P W ,
P E, P N , P S. The ordinary edges of Q are exatly the ordinary edges of P belonging to
Q.Proof. Let a be an even ordinary edge of P , lying at ordinate r. Let c be the �rst blaksquare found in row r − 1 weakly to the right of a. By de�nition of ordinary edges, thereis no blak square in row r between a and c. Assume a belongs to Q and is not ordinaryin Q. Sine we do not add squares when going from P to Q, this means that c does notbelong to Q. Then there is no blak square in row r − 1 to the right of a in Q. However,sine a belongs to Q, there must be a blak square c′ to the right of a in row r of Q.This square c′ is also in P , and to the right of c. But Q is de�ned as the largest losedsubpineone of P having ertain presribed rightmost and leftmost edges, so that if itontains a and c′, it has to ontain c as well. We have thus reahed a ontradition, and
a is ordinary in Q.

. . .
. . .

a

Q

c′

P
cConversely, assume a is speial in P , but ordinary in Q. The latter property impliesthat there is a blak square c in row r− 1 of Q to the right of a. Of ourse, c also belongsto P . Sine a is speial in P , there is a blak square c′ in row r of P lying between a and

c. As Q is the largest pineone ontaining two presribed edges, and ontains a and c,the square c′ must be in Q as well, ontraditing the assumption that a is ordinary in Q.
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a

QP

c′

c
. . .
. . .Of ourse, the proof is ompletely similar for odd speial edges.4.3 The partial mathing polynomialFor any pineone P , de�ne its partial mathing polynomial M̃(P ) to be the value of M(P )when the weights of all ordinary edges are set to 1. We emphasize that this polynomialounts perfet mathings (all verties of P belong to an edge in the mathing), but someof the edges have weight 1. Assume P is interleaved, and apply Corollary 15. As observedafter De�nition 16, all the edges of E1

2 and E2
2 are ordinary, so that they have weight 1.This means that the seond monomial ourring in the ondensation formula is simply

ew. Moreover, the speial edges of E1 are desribed in Lemma 17. This, ombined withLemma 18, implies the following orollary.Corollary 19 The partial mathing polynomial of an interleaved losed pineone P isrelated to the partial mathing polynomials of its sub-pineones by
M̃(P )M̃(P C) = aa′M̃(P W )M̃(P E) + ewM̃(P N)M̃(P S),where a and a′ are the highest and lowest left edges of P .Sine the Gale-Robinson pineones onstruted in Setion 3 are interleaved, we haveobtained a ombinatorial interpretation of the Gale-Robinson polynomials.Theorem 20 Let P (n) ≡ P (n; i, j, k, ℓ) be the sequene of pineones assoiated with theparameters (i, j, k, ℓ). Let q(n) ≡ (n; u, v) be the polynomial in u and v that ounts theperfet mathings of P (n) aording to the number of vertial edges (the exponent of v)and horizontal speial edges (the exponent of u). Then q(n) = 1 for n < m and for n > m,
q(n)q(n − m) = u2q(n − i)q(n − j) + v2q(n − k)q(n − ℓ).This proves Theorem 11, as the reurrene shows that q(n; u, v) = p(n; u2, v2).5 Perspetives5.1 Variations and extensionsThere is a good deal of overlap between this artile and the paper by David Speyer on thegeneral otahedron reurrene, of whih the Gale-Robinson reurrene is a very speialase [25℄. Speyer's method allows him to onstrut, for eah (i, j, k, ℓ) with i + j = k + ℓ,
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a sequene of graphs having the same number of perfet mathings as the pineones weonstrut. We believe that our graphs are the same as the ones that are given by Speyer'sproedure, but we have not proved that this holds in general.One undesirable feature of our desription of Gale-Robinson pineones is that it breakssome of the symmetries between the parameters i, j, k, and ℓ. Clearly, exhanging k and
ℓ re�ets the pineone aross a horizontal line. But the onvention j = min{i, j, k, ℓ}implies that i and j do not play symmetri roles, nor the pairs {i, j} and {k, ℓ}. Thisexplains why the desription of the bivariate polynomials q(n; u, v) of Theorem 20 is notsymmetri in u and v. Perhaps some of this asymmetry is unavoidable, but it wouldbe good to �nd a more symmetrial de�nition or else ahieve some insight into why theasymmetry annot be avoided.Indeed, part of the point of view that led to both this artile and Speyer's is that thetruly fundamental objets of study are funtions that map a three-dimensional lattie tosome ring and that obey the otahedron relation

f(x + i)f(x − i) + f(x + j)f(x − j) + f(x + k)f(x − k) = 0(where x is an arbitrary vetor in the lattie and i, j, k are �xed generators of the lattie)and more general versions of the relation that inlude oe�ients of various kinds. Thereis no intrinsi �arrow of time� here (as there is when one thinks of running a reurrenerelation forward from some set of initial onditions), but some sets of initial onditionsare su�iently large that they allow one to reonstrut the entirety of f , and some ofthese subsets of the lattie an be viewed as �spae-like�, so that one an think of thereonstrution of suessive slies of the lattie as a kind of propagation. In the fullysymmetrial version, there is no reason to privilege one diretion over its reverse, or oneaxis over another.In ontrast, when one desends from this level to the more onrete world of graphs andperfet mathings, the symmetry appears to be broken. A full theory of the otahedronreurrene would inorporate graph-theoreti analogues of all the symmetries of the three-dimensional lattie; suh an understanding is urrently laking. Just as Ehrhart theoryfor enumeration of lattie-points in polytopes an best be understood in a ontext thatinludes inside-out polytopes [2℄, the theory of Azte diamonds, rosses-and-wrenhes,and pineones requires notions of geometri graphs in whih ombinatorial parametersthat are ordinarily required to be positive an take on negative values as well. (E.g., oneneeds a theory in whih the notion of an Azte diamond of order 4 and an Azte diamondof order −4 enter on an equal footing, and the latter graph turns out to be essentiallythe same things as an Azte diamond graph of order 3.) As a hint of what suh a theorymight look like, the interested reader should look at [19℄ and [1℄.The bivariate polynomials p(n; w; z) studied in Setion 4 generalize Gale-Robinsonnumbers. A di�erent extension of these numbers omes from replaing the initial ondi-tions (a string of m 1's) by generi initial onditions (indeterminates x0 through xm−1).Here again, Fomin and Zelevinsky proved algebraially, and Speyer proved ombinato-rially, that the rational funtions one obtains are Laurent polynomials in x0, . . . , xm−1.Speyer's work shows that these variables, in ontrast to the formal oe�ients w and
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z mentioned above, are most naturally viewed as being assoiated with the faes of agraph, rather than its edges. So there should be a way to assoiate these m variableswith the faes of our pineones and use them to assign weights to the perfet math-ings so that the weight of eah perfet mathing of a pineone is a Laurent monomialin x0, . . . , xm−1. Indeed, there should be an extension of Theorem 20 that desribesthe Laurent polynomials that arise from setting a(n) = xn for 0 6 n 6 m − 1 and
a(n) = (wa(n − i)a(n − j) + za(n − k)a(n − ℓ))/a(n − m) for n > m, and in parti-ular identi�es eah Laurent monomial in a(n) as the weight of a perfet mathing of
P (n; i, j, k, ℓ).Most of the work of this artile was done in 2005 and 2006, as the study of lusteralgebras was beginning its (still ontinuing) outward explosion, so there are now otherapproahes to proving positivity results that have some overlap with the approah takenhere. In partiular, it is possible that pineones graphs an also be viewed as Aztediamond graphs with defets, in the manner of [9℄.5.2 Random pineone mathingsA rather di�erent diretion that might be studied is the �typial� behavior of perfetmathings of large pineones. Figure 19 shows two tilings assoiated with mathingsof Somos-4 pineones. (Here we make use of the standard duality between a tiling ofa polyomino by dominos and a perfet mathing of the dual graph of the polyomino,in whih verties orrespond to ells of the polyomino and edges orrespond to pairs ofadjoining ells, i.e. legal positions of a domino in a tiling.) The �rst one orrespondsto n = 26 (that is, to a perfet mathing of the graph P (26; 3, 1, 2, 2)), the seond oneto n = 50. Both were hosen uniformly at random from the set of all perfet math-ings of that graph. These examples were produed using Propp and Wilson's paperson �exat sampling� [21, 20℄ whih show how the method of �oupling from the past�permits one to generate random perfet mathings of bipartite planar graphs. Indeed,this algorithm was inorporated into a program alled vaxrandom that aepts a VAX-�le as input and produes a perfet mathing of the assoiated graph as output, orrather, the dual piture of a domino tiling of a region. The soure ode for the programis ontained in the �les http://jamespropp.org/tiling/soures/vaxrandom. andhttp://jamespropp.org/tiling/soures/alloate.h, and information on the pro-gram's use an be found at http://jamespropp.org/tiling/do/vaxrandom.html.)The reader will quikly notie that in both of these random tilings, the randomness isnot spatially distributed in a uniform manner. Near the boundary, there is a good deal oforder, with tiles lined up the same way as their neighbors; only in the interior does one�nd random-looking behavior.This phenomenon is not spei� to pineones, but has been observed for a wide varietyof two-dimensional tiling models over the past deade, from [7℄ and [8℄ to [16℄. The most-studied ase is the Azte diamond graph ((i, j, k, ℓ) = (1, 1, 1, 1), in our notation); in thisase, it has been shown that in a suitable asymptoti sense there is a sharp boundarybetween the part of the tiling that is random and the part that is orderly, and that
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Figure 19: The domino tilings assoiated with random perfet mathings of the pineone
P (n; 1, 3, 2, 2), for n = 26 and then n = 70.this boundary is (asymptotially) a perfet irle. A similar sort of domain-boundary isvisible in Figure 19; assuming that the theory for pineones is analogous to the theoryfor Azte diamond graphs, it would be interesting to know the asymptoti shape of thedomain-boundary for (i, j, k, ℓ)-pineones as n → ∞.One interesting feature of Gale-Robinson pineones is that we an write the de�nitionin a way that makes sense even when the parameters (i, j, k, ℓ) ease to be integers.Formula (2) an be rewritten as

U(t, r, c) = 2c + r − 3 − 2 ⌊µc + κr + ι − t⌋ ,

L(t, r, c) = 2c + r − 3 − 2 ⌊µc + λr + ι − t⌋ .
(7)where ι = i/j, κ = k/j, λ = ℓ/j, µ = m/j = ι + 1 = κ + λ, and t = (n + 1)/j. So thereis a sense in whih all the pineones disussed in this artile are part of a four parameterfamily, parametrized by ι, κ, λ and t. Of ourse, the graphs do not vary ontinuouslyin these variables (being disrete elements in a ountable set, namely the set of all �nitegraphs, how ould they?), but this parametrization seems likely to be natural for somepurposes, e.g., the study of random perfet mathings of pineones. (It is to be expetedthat a oherent limit-law with t → ∞ will prevail for any �xed hoie of (ι, κ, λ), whetheror not ι, κ, and λ are rational.) It should be noted, inidentally, that if one hoosesparameters (i, j, k, ℓ) with a greater ommon divisor d > 1, the sequene of pineones one
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gets from our onstrution is the same as the sequene of pineones that one gets fromthe parameters (i/d, j/d, k/d, ℓ/d), exept that eah pineone in the latter sequene isrepeated d times in the former sequene; this observation follows easily from the ι, κ, λformulation of the de�nitions of U(·) and L(·).5.3 Closed-form expressionsOne feature ommon to sequenes satisfying three-term or four-term Gale-Robinson re-urrenes is that the terms grow at quadrati exponential rate. Indeed, it is easy to verify,from the disussion of pineones, that in the in�nite sequene of graphs assoiated withany partiular three-term Gale-Robinson reurrene, the nth graph has O(n2) verties,with eah vertex having degree at most 4. It follows from this that Gale-Robinson se-quenes have at most exponential-quadrati growth; that is, the nth term is boundedabove by Cn2 for all su�iently large C. In some ases, an exat formula is possible; wehave already mentioned the �Azte diamond ase� i = j = k = ℓ = 1, and in the ase
(i, j, k, ℓ, m) = (6, 1, 4, 3, 7) there is an exat formula for a(n) of the form 2e2(n)3e3(n) wherethe exponents e2(n) and e3(n) are given by quadrati polynomials in n whose oe�ientsare periodi funtions of n (we thank Mihael Somos for bringing this speial ase of theGale-Robinson reurrene to our attention, and we raise the question of whether thereare other instanes of Gale-Robinson sequenes being given by simple exat formulas).However, in general suh algebrai formulas do not exist. Instead, one must be ontentwith formulas that express the nth term in terms of Jaobi theta funtions. This link withthe analyti world is what motivated Mihael Somos to introdue the Somos-k sequenesto begin with. E.g., bak in 1993, Somos announed (without proof) that the nth termof the Somos-6 sequene is given by f(n − 2.5, n − 2.5) where

f(x, y) = c1c
xy
2

∞
∑

k2=−∞

(−1)k2

∞
∑

k1=−∞

g(k1, k2, x, y),

g(k1, k2, x, y) = c
k2

1

3 c
k2

2

4 ck1k2

5 cos(c6k1x + c7k2y),

c1 = 0.875782749065950194217251...,

c2 = 1.084125925473763343779968...,

c3 = 0.114986002186402203509006...,

c4 = 0.077115634258697284328024...,

c5 = 1.180397390176742642553759...,

c6 = 1.508030831265086447098989...,

c7 = 2.551548771413081602906643...(See http://jamespropp.org/somos/ellipti for a similar but simpler formula for theSomos-4 sequene.) However, as far as we are aware, nobody has proposed (or even
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onjetured) a fully general analyti formula for the terms of sequenes satisfying three-term Gale-Robinson reurrenes. A more detailed disussion of the analyti propertiesof suh sequenes an be found in [15℄, whih also gives some of the history of thesesequenes.It is worth mentioning that for the Somos-4 sequene, there exists a unique onstant
c suh that s(n) (the nth term of the sequene) is on the order of cn2 , but that thebehavior of s(n)/cn2 is osillatory; see http://jamespropp.org/somos/ellipti. Letus also mention a reent paper by Xin [27℄ where the Somos-4 numbers are expressed asdeterminants of Hankel matries with integer oe�ients.5.4 Analogy with the KP hierarhyWe onlude with some remarks (based on some unpublished remarks of Andrew Hone)about the analogy between Somos sequenes and the like and the hierarhy of solutionsto an integrable PDE like the KdV equation, followed by our own speulation about adiretion for further study that the analogy might suggest.The equation

uxxx + 6uux + ut = 0,where u = u(x, t) is the funtion we want to solve for and subsripts indiate partialdi�erentiation (e.g., uxxx = ∂3u
∂x3 ) is known as the KdV equation, and has played a ruialrole in the modern theory of partial di�erential equation, as part of a large family ofequations with related properties (the �KP hierarhy�). If one sets u = 2(∂x)

2 log F onean rewrite the PDE in the ompat form
(DxDxDxDx + DxDt)(F ⊗ F ) = 0where Dx and Dt are the �Hirota D-operators� ating on tensor-pairs of funtions via

Dx(f(x, t) ⊗ g(x, t)) = (∂x1
− ∂x2

)f(x1, t)g(x2, t)|x1=x2=xand
Dt(f(x, t) ⊗ g(x, t)) = (∂t1 − ∂t2)f(x, t1)g(x, t2)|t1=t2=t.(Note that in the literature on KdV, this tensor produt is traditionally written as f · grather than f ⊗ g and is alled the �dot-produt�, but it is a tensor produt, not an innerprodut). More generally, the bilinear method is the trik of rewriting PDEs in the form

P (Dx, Dy, . . .)(F ⊗ F ) = 0. Hirota operators are antisymmetri, so we an think of themas ations on the antisymmetri square of a vetor spae of funtions. For more on theHirota method, see e.g. [14℄.Analogously, if we take V to be the vetor spae of real- (or omplex-) valued bilaterallyin�nite sequenes (. . . , s0, . . .), we may de�ne, for every pairs of integers i, j, a bilinearshift operator V ⊗ V → V sending (sn)
∞
−∞ ⊗ (tn)∞−∞ to (sn+itn+j)

∞
−∞ (the sequene whose

nth term is sn+itn+j for all n ∈ Z). These operators, graded by i + j, generate a gradedring of bilinear shift-operators, and the Somos sequenes and Gale-Robinson sequenes
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are speial instanes of sequenes (sn)∞−∞ for whih the tensor-square (sn)
∞
−∞ ⊗ (sn)

∞
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