
Trees and Meta-Fibonacci Sequences

Abraham Isgur, David Reiss, and Stephen Tanny
Department of Mathematics

University of Toronto, Ontario, Canada

abraham.isgur@utoronto.ca, david.reiss@utoronto.ca, tanny@math.toronto.edu

Submitted: Apr 3, 2009; Accepted: Oct 21, 2009; Published: Oct 31, 2009

Mathematics Subject Classification: 05A15, 11B37, 11B39, 05C05

Abstract

For k > 1 and nonnegative integer parameters ap, bp, p = 1..k, we analyze the

solutions to the meta-Fibonacci recursion C(n) =
∑k

p=1 C(n − ap − C(n − bp)),
where the parameters ap, bp, p = 1..k satisfy a specific constraint. For k = 2 we
present compelling empirical evidence that solutions exist only for two particular
families of parameters; special cases of the recursions so defined include the Conolly
recursion and all of its generalizations that have been studied to date. We show
that the solutions for all the recursions defined by the parameters in these families
have a natural combinatorial interpretation: they count the number of labels on
the leaves of certain infinite labeled trees, where the number of labels on each node
in the tree is determined by the parameters. This combinatorial interpretation
enables us to determine various new results concerning these sequences, including
a closed form, and to derive asymptotic estimates. Our results broadly generalize
and unify recent findings of this type relating to certain of these meta-Fibonacci
sequences. At the same time they indicate the potential for developing an analogous
counting interpretation for many other meta-Fibonacci recursions specified by the
same recursion for C(n) with other sets of parameters.

1 Introduction

In this paper all values are integers. For k > 1 and nonnegative parameters ap, bp, p = 1..k,
consider the general meta-Fibonacci (also called “self-referencing” or “nested”) homoge-
neous recursion

C(n) =
k

∑

p=1

C(n − ap − C(n − bp)) (1.1)

Many well-known meta-Fibonacci recursions, with appropriate initial conditions, are
special cases of (1.1), which we often write as (a1, b1 : a2, b2 : · · · : ak, bk). For example, the

the electronic journal of combinatorics 16 (2009), #R129 1

Hofstadter recursion [12] is (0, 1 : 0, 2) while the Conolly recursion [6] is (0, 1 : 1, 2). We
call the sequences that appear as solutions to meta-Fibonacci recursions meta-Fibonacci
sequences.

In recent years various special cases of (1.1), together with alternative sets of initial
conditions, have been analyzed. See, for example, [1], [2], [3], [4], [5], [6], [7], [11], [14], [15],
[18], [20]. These contributions illustrate the very wide range of behavior that can be
exhibited by meta-Fibonacci sequences that derive from (1.1). Some sequences, like the
one defined by Conolly, are very well behaved, with discernable and provable structure.
Others, including the Hofstadter sequence, appear to be quite chaotic, but nonetheless
display some evidence of structural regularities [15]. Still others are wild with no hint of
any structure but nonetheless appear to remain well defined for all n (for example, the
W-sequence originally defined by Hofstadter that is discussed in [2]).

For a given set of initial conditions (1.1) may not have a solution, that is, for some
index n one or more of the arguments of C on the right hand side of (1.1) is no longer
a positive integer so the recursion cannot be evaluated at this point. In this case we say
that the sequence “dies” at n0 if n0 is the smallest index for which n0−ap−C(n0−bp) 6 0
for one or more values of p.

In this paper we focus on those values of the parameters ap, bp in (1.1) and the initial
conditions for which the resulting meta-Fibonacci sequence is “slow growing” (or simply
slow), by which we mean that the sequence is monotone non-decreasing, and successive
terms differ by 0 or 1.1 Clearly such sequences are entirely determined by their frequency
function, that is, the number of times that they hit each positive integer.

In Table 1.1 we illustrate the initial 19 terms of three meta-Fibonacci sequences derived
from special cases of (1.1). The first sequence is generated by the Conolly recursion
(0,1:1,2) with the two initial conditions 1,2 (the initial conditions highlighted in bold).
The second is generated by a close relative of the Conolly recursion defined in [20], together
with the three initial conditions 1,1,2.2 Both of these sequences are slow. Notice that
the second sequence is the same as the first except for the extra repetition of the powers
of 2. This kind of kinship among the solutions to certain closely related meta-Fibonacci
recursions derived from (1.1) is well-known (see, for example, [4], [5], and [14]); it will also
be a feature of some of the new results for other special cases of (1.1) that we introduce
later in this paper.

The third meta-Fibonacci sequence in Table 1.1 is not slow. It is also a solution to the
same recursion (1,1 : 2,2) as the second, but this time the sequence satisfies a different
set of three initial conditions, namely, 2,1,1.

Recently it has been shown in [3], [14] and [7] that for any nonnegative s and k > 1
there is a fascinating connection between certain labeled infinite trees and slow growing
meta-Fibonacci sequences that arise as solutions to the recursions in the families (s, 1 :
1 + s, 2 : 2 + s, 3 : · · · : k − 1 + s, k) for k > 1 and (s, 1 : 2 + s, 3) respectively, each
of which is a special case of (1.1). In each case the meta-Fibonacci sequence counts the

1This terminology is due to Frank Ruskey.
2It is readily seen that three initial conditions are required to define the recursion (1,1:2,2) whereas

only two initial conditions are required for the Conolly recursion (0,1 : 1,2).

the electronic journal of combinatorics 16 (2009), #R129 2

Table 1.1: Examples of meta-Fibonacci sequences.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
(0,1:1,2)(n) 1 2 2 3 4 4 4 5 6 6 7 8 8 8 8 9 10 10 11
(1,1:2,2)(n) 1 1 2 2 2 3 4 4 4 4 5 6 6 7 8 8 8 8 8
(1,1:2,2)(n) 2 1 1 3 3 3 2 4 6 4 4 5 4 8 9 6 7 8 8

number of leaves in particular subtrees of the infinite tree that is related to the sequence.
This graphical interpretation for these meta-Fibonacci sequences provides an elegant,
intuitive basis for proving certain of their properties, such as that they are slow growing,
and for deriving their generating functions and asymptotic behavior. It also provides a
clear understanding for the very close relationship among the sequences in each family for
different values of the parameter s, where we find that the sequences in each family are
identical except for the number of repetitions of powers of k or 2 respectively. 3

Other meta-Fibonacci sequences also can be related to infinite trees in an analogous
manner to the one developed in [14] and [3]. For example, for s nonnegative, consider the
sequence gs(n) defined by the (non-homogeneous) meta-Fibonacci recursion

gs(n) = gs(n − s − gs(n − 1)) + 1 (1.2)

with initial conditions gs(n) = 1 for n = 1, 2, .., s+1. See Table 1.2 for the first few values
of gs(n) for s = 0, 1, 2. The initial data suggests that each of these sequences is slow,
which in fact turns out to be the case for all values of s. The special case of (1.2) with
s = 0 is one of the earliest known meta-Fibonacci recursions, appearing in [8]; it is an
example of the rare instance when a meta-Fibonacci recursion has a simple closed form

solution, namely, g0(n) = ⌊ ⌊
√

8n⌋+1
2

⌋.

Table 1.2: The sequences gs(n), s=0,1 and 2.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
s = 0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6
s = 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5
s = 2 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4 4 4 4 5 5

To see how gs(n) relates to a labeled tree, first we define a tree structure Gs that
consists of an infinite number of rooted trees joined together at their respective roots. To
create Gs first we join an infinite chain of nodes {vi} with node vi+1 connected to node
vi for i = 1, 2, 3, We distinguish these nodes, calling them s-nodes; in Figure 1.1 these
are indicated by the square boxes. The ith s-node is the root of a chain with i (ordinary)
nodes below it. In addition, there is an extra ordinary node connected to the first s-node
at the very beginning of Gs.

3For example, the two slow sequences in Table 1.1 are solutions to the recursion (s, 1 : 1+ s, 2), which
is (s, 1 : 1 + s, 2 : 2 + s, 3 : · · · : k − 1 + s, k) for k = 2, for s = 0 and s = 1 respectively. The graphical
interpretation of these sequences explains why they are essentially the same except for the occurrence of
one additional repetition at every power of 2 in the sequence for s = 1.

the electronic journal of combinatorics 16 (2009), #R129 3

We label the nodes of Gs with the positive integers 1, 2, 3, .. in the following way: the
initial (ordinary) node receives the label 1, then in turn each s-node, starting with the
first, receives the smallest s consecutive labels not yet used (note that if s = 0 then the
s-nodes do not receive any labels). Once an s-node receives its labels, then all of its
descendants are labeled, each with a single label, in order from top to bottom, with the
smallest available labels. Then the next s-node is labeled, together with its descendants,
and so on. Figure 1.1 shows the initial portion of Gs for s = 2.

The leaves of Gs consist of the initial node in Gs and the last node in each of the
chains that descend from the s-nodes. It is readily verified that gs(n) counts the number
of leaves in Gs that have a label that is less than or equal to n.

Figure 1.1: The tree G2 up to label 13. The s-nodes are drawn as squares and the j-nodes
as circles.

It is natural to ask if there is some way to identify other meta-Fibonacci sequences
that might be related to trees in this way, and how to determine the tree structure that
would apply in such instances; that is, we look for some unifying method that would
help to identify how to relate the solutions of certain classes of meta-Fibonacci recursions
to different labeled infinite trees. We turn our attention to this question, focusing on
slow growing sequences since these appear to be the most likely candidates for such a
relationship.

In the next section we experiment with the recursion (1.1) for k = 2. Furthermore,
we impose a constraint on the parameters, discussed below, that appears a priori to
be potentially interesting. Through this process we identify two new families of meta-
Fibonacci sequences that are promising candidates for a combinatorial interpretation and
on which we focus in the balance of the paper. In Sections 3 and 4 we show that indeed
these meta-Fibonacci sequences are related to infinite trees; in fact, it turns out that
they are related to the same infinite trees identified in [18] and [3] but with modified
labeling schemes. As such, our findings generalize and unify earlier known results relating
meta-Fibonacci sequences and infinite trees. We apply these counting interpretations
in Section 5 to derive a closed form for the solution to one of the recursions and an
asymptotic estimate to the solution for the other. In Section 6 we comment on the role
of the initial conditions in determining the properties of the meta-Fibonacci sequences
that derive from the recursions. We conclude in Section 7 with a brief discussion of some
potential directions for further inquiry in this area.

the electronic journal of combinatorics 16 (2009), #R129 4

2 A Brief Empirical Interlude

Recall from Section 1 that for any nonnegative s and appropriate initial conditions both
the recursions (s, 1 : 1 + s, 2) and (s, 1 : 2 + s, 3) have a solution that is a slow growing
sequence that counts the number of leaves in certain infinite labeled trees. Observe that
each of these recursions has four parameters that, in the notation of (1.1), satisfy the
relation a1 + b2 = a2 + b1.

Motivated by this observation we investigate more generally the nature of the solutions,
if any, to the recursion (1.1) with k = 2 and a1 + b2 = a2 + b1. Without loss of generality
assume that a1 6 a2. To begin we set a1 = 0 and test all the different possible recursions
for b2 6 20.

To generate the solution for each such recursion we need to provide at least b2 initial
conditions. The initial conditions we adopt are inspired by the previous work in [14] and
[3] for the recursions (s, 1 : 1 + s, 2) and (s, 1 : 2 + s, 3) respectively. In both cases the
initial conditions that yielded a solution with a combinatorial interpretation consisted of
a string of consecutive 1s followed by a single 2. For the recursion (s, 1 : 1 + s, 2) there
were s + 1 1s; for the recursion (s, 1 : 2 + s, 3) there were s + 2 1s.

For the present more general situation we adapt the above pattern by taking as initial
conditions a string of (b2 − 1) 1s followed by a single 2. Using these initial conditions we
attempt to generate a solution sequence for each recursion up to 1 million terms, to test
if the sequence appears to live and to examine its properties.

Our findings from these calculations are summarized in Table 2.1. We indicate by the
letter S that the recursion with that particular set of parameters generates a sequence to
1 million terms, so appears to have a solution; a * indicates that there is no solution (the
sequence dies). The results are striking: the only recursions for which a solution appears
to exist have the parameters (0, j : j, 2j) and (0, j : 2j, 3j), j > 0. Further, from the
data, all of the solution sequences appear to be slow growing. Note that for j = 1 these
recursions are precisely those already known to us from [14] and [3] for the special case
s = 0.

Table 2.1: Recursions with solutions (S): (0, b1 : a2, b2), b2 = a2 +b1 with initial conditions
1, . . . , 1, 2

b1/b2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 * S S * * * * * * * * * * * * * * * * *
2 * * S * S * * * * * * * * * * * * * *
3 * * * S * * S * * * * * * * * * * *
4 * * * * S * * * S * * * * * * * *
5 * * * * * S * * * * S * * * * *
6 * * * * * * S * * * * * S * *
7 * * * * * * * S * * * * * *
8 * * * * * * * * S * * * *
9 * * * * * * * * * S * *
10 * * * * * * * * * * S

We repeat the above exercise allowing non-zero values for the parameter a1. This
time we test all possible values of the parameters a1, b1, and b2 up to 5, with a2 =

the electronic journal of combinatorics 16 (2009), #R129 5

a1 + b2 − b1. For the initial conditions once again we take a string of 1s followed by a
single 2. The precise number of 1s depends on the relations among the parameters; we take
the minimum number required to allow the recursion to begin to compute the solution.
For each recursion we attempt to generate 1 million terms of the solution sequence.

Table 2.2: Parameters for recursion (a1, b1 : a2, b2): a1 + b2 = a2 + b1, a1 > 0. Recursions
with solutions indicated by S.

1 1 1 1 * 2 1 6 5 * 3 2 6 5 * 4 4 4 4 *
1 1 2 2 S 2 2 2 2 * 3 3 3 3 * 4 4 5 5 *
1 1 3 3 S 2 2 3 3 * 3 3 4 4 * 4 5 4 5 *
1 1 4 4 * 2 2 4 4 S 3 3 5 5 * 5 1 5 1 *
1 1 5 5 * 2 2 5 5 * 3 4 3 4 * 5 1 6 2 S
1 2 1 2 * 2 3 2 3 * 3 4 4 5 * 5 1 7 3 S
1 2 2 3 * 2 3 3 4 * 3 5 3 5 * 5 1 8 4 S
1 2 3 4 S 2 3 4 5 * 4 1 4 1 * 5 1 9 5 *
1 2 4 5 * 2 4 2 4 * 4 1 5 2 S 5 2 5 2 *
1 3 1 3 * 2 4 3 5 * 4 1 6 3 S 5 2 6 3 *
1 3 2 4 * 2 5 2 5 * 4 1 7 4 * 5 2 7 4 S
1 3 3 5 S 3 1 3 1 * 4 1 8 5 * 5 2 8 5 *
1 4 1 4 * 3 1 4 2 S 4 2 4 2 * 5 3 5 3 *
1 4 2 5 * 3 1 5 3 S 4 2 5 3 * 5 3 6 4 *
1 5 1 5 * 3 1 6 4 * 4 2 6 4 S 5 3 7 5 *
2 1 2 1 * 3 1 7 5 * 4 2 7 5 * 5 4 5 4 *
2 1 3 2 S 3 2 3 2 * 4 3 4 3 * 5 4 6 5 *
2 1 4 3 S 3 2 4 3 * 4 3 5 4 * 5 5 5 5 *
2 1 5 4 * 3 2 5 4 S 4 3 6 5 *

The results of this second set of calculations are highlighted in Table 2.2. Here too
the letter S indicates that for a particular set of the parameters the recursion generates a
sequence to 1 million terms while a * indicates that there is no solution. Once again the
results are intriguing: with just one exception, namely, (1, 3 : 3, 5)4, the only recursions
with an apparent solution have the parameters (s, j : j + s, 2j) or (s, 1 : 2 + s, 3), where
s > 0 and j > 0; further, all of these solutions are slow growing sequences!5

The recursion (s, j : s + j, 2j) is a natural generalization of the recursion (0, j : j, 2j)
identified in the first set of calculations with “shift” parameter s;6 in addition, it is a

4Subsequently, additional investigation over a greater range of values for the parameters has lead to
the identification of another exception, the recursion (2, 5 : 4, 7). Both of these exceptional recursions
have essentially the same slow solution, namely, the ceiling function for n

2
. Further discussion of these

exceptions in the context of another family of recursions with different initial conditions would take us
too far afield here and will appear in a forthcoming communication.

5Unfortunately, this result is dependant on the choice of initial conditions. If we do not restrict
ourselves to the initial conditions of 1s followed by a single 2, more exceptions arise which we have not
yet been able to categorize. In this paper we restrict our focus to the aforementioned sequences and their
close relatives.

6Unlike the case for j = 1, for fixed j > 1 there does not appear to be any simple relationship among
the solutions for different values of s > 0.

the electronic journal of combinatorics 16 (2009), #R129 6

natural generalization of the recursion (s,1 : 1+s,2) studied in [14] and for which com-
binatorial interpretations are known. For ease of reference we describe the family of
recursions (s, j : j + s, 2j), s > 0 and j > 0, as well as its natural k-term analogue
(s, j : j +s, 2j : 2j +s, 3j : · · · : (k−1)j +s, kj), to be of type [0, j : j, 2j] (note the square
brackets to denote the entire family, whereas round brackets denote a specific recursion
in the family).

It will be convenient to be able to refer to individual terms in the solution to the
recursion (s, j : j + s, 2j : 2j + s, 3j : · · · : (k − 1)j + s, kj) with particular values of
s, j and k. For this reason we write out the recursion explicitly in traditional function
notation as follows:

As,j,k(n) =

k
∑

p=1

As,j,k(n − (p − 1)j − s − As,j,k(n − pj)) (2.1)

A combinatorial interpretation is also known for (s, 1 : 2 + s, 3) (see [3]), which gener-
alizes the recursion (0, j : 2j, 3j) identified in the first set of calculations by introducing
the shift parameter s, but only for j = 1. 7 We say that recursions in the family
(s, j : s + 2j, 3j), s > 0 and j > 0 are of type [0, j : 2j, 3j]. In this case too it will
be convenient to introduce a traditional notation for the generic recursion of this type.
Anticipating our results we adopt the following:

Bs,j(n) = Bs,j(n − s − Bs,j(n − j)) + Bs,j(n − 2j − s − Bs,j(n − 3j)) (2.2)

Our empirical evidence suggests that there are no solutions for the analogue of (2.2)
with k > 2. For both (2.1) and (2.2), we drop the subscripts when the meaning is clear.

The data described above places a clear focus on recursions that are natural general-
izations of those for which a combinatorial interpretation is already known. In so doing it
points strongly to the possibility that there might be some combinatorial interpretation
involving trees for these more general recursions. As we shall see in the next two sections,
this turns out to be the case.

3 Combinatorial Interpretation for the Family

[0,j : j,2j]

The structure of (2.1) is the same for all values of the parameter j. Since a combinatorial
interpretation is known for the case j = 1 in terms of infinite labeled binary and k-ary trees
it seems reasonable to expect that the sequences derived from the more general recursion
(2.1) for j > 1 might have an analogous interpretation in terms of similar infinite trees.
Whatever tree works for general j must reduce to the k-ary tree for the special case j = 1.

7For j > 1 and s > 0 the recursion (s, j : s + 2j, 3j) does not appear to ever have a solution for
the initial conditions that we assumed. In Section 4 we will have more to say about this recursion with
different initial conditions.

the electronic journal of combinatorics 16 (2009), #R129 7

This observation led us to focus on introducing an alternate labeling scheme on the
infinite k-ary tree used in [18] that incorporates the inclusion of the general parameter
j but reduces when j = 1 to the usual labeled k-ary tree. But this means that we can
no longer count nodes of the labeled tree, since the number and position of the nodes in
the tree will not vary with alternate values of j. So we must count something else: that
something is the labels on the nodes. With this by way of motivation, we now describe the
construction and labeling process that we have discovered for the k-ary tree that provides
the basis for the counting interpretation that we seek for sequences from (2.1).

Let Ts,j,k with s > 0, j > 1, k > 2 denote an infinite k-ary tree. All the nodes on
the absolute left (except for the bottom leftmost node) are s-nodes containing s positive
integer labels; all other nodes are j-nodes containing j positive integer labels. (Note that
in [14], [18], nodes analogous to the s-nodes are referred to as super nodes). We refer to
levels in the tree as follows: the bottom level consists of the j-nodes with no children;
we also call these j-nodes leaves. The parents of the leaves are at the penultimate level
and are called penultimate nodes. We refer to the successive levels above the penultimate
level as the third level, fourth level, and so on.

Label each of the nodes of Ts,j,k in pre-order, starting from 1. Each j-node (respectively
s-node) receives j (respectively s) consecutive numbers and no number is used more than
once. Define the finite tree Ts,j,k(n) to be that portion of Ts,j,k consisting of only those
nodes (both s-nodes and j-nodes) and labels up to the label n and the node containing
it (this last node containing n may be only partially filled in). See Figure 3.1 where
s = 2, j = 3, k = 2 and n = 89.

For m > 1 we define the mth k-ary subtree of Ts,j,k or Ts,j,k(n) to be the subtree
consisting of the (m − 1)st s-node together with all of its descendants on lower levels of
the tree; for m = 1 the first k-ary subtree is the initial j-node that is the first leaf.

Let Rs,j,k(n) be the number of labels in the leaves of Ts,j,k(n). We call the resulting
sequence R(n) a label counting sequence. See Table 3.1 for the first twenty terms of the
sequence R2,3,2(n) corresponding to Figure 3.1.

In the following we fix the parameters s, j, k; for convenience, where there is no con-
fusion we drop the subscripts on Ts,j,k, Ts,j,k(n) and Rs,j,k(n), writing T, T (n) and R(n)
respectively. We do similarly for the terms of the recursion (2.1), writing A(n) in place
of As,j,k(n).

Table 3.1: The sequence R2,3,2(n), n = 1..20

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
R(n) 1 2 3 3 3 4 5 6 6 6 6 6 6 7 8 9 10 11 12 12

In what follows we establish several important structural properties of the trees T and
T (n). Unless otherwise noted we assume that the final label n in T (n) is in a node further
along in pre-order than the third k-ary subtree. It is readily verified that this assumption
requires n > 2s + k2j + kj − j. For such n we show combinatorially that R(n) and A(n)
both satisfy the recursion (2.1). From this we conclude that R(n) = A(n) for all n so long

the electronic journal of combinatorics 16 (2009), #R129 8

Figure 3.1: T2,3,2(89). The s-nodes are drawn as squares and the j-nodes as circles.

the electronic journal of combinatorics 16 (2009), #R129 9

as we take for initial conditions that R(n) = A(n) for n up to the end of the third k-ary
subtree (that is, n 6 2s + k2j + kj − j). We say that these initial conditions for (2.1)
follow the tree.

The condition that n > 2s + k2j + kj − j is made necessary because we seek a com-
binatorial argument that applies to all the values of n under consideration. In evaluating
A(n) the recursion (2.1) looks back to terms much earlier in the sequence. So in order to
apply the calculation from the recursion to match the sequence R(n) that counts labels
in the tree, it is necessary for a sufficiently large portion of the tree prior to the label n
to be defined.8

The pruning process, analogous to the one introduced in [14], yields a property of T
that is central to its connection to the recursion (2.1). Delete all the leaves of T . In
the resulting tree convert the first s-node (the one now in the bottom left position) to a
j-node (note that doing so just means changing the number of labels in it from s to j).
Denote this new tree by T ∗. It is evident from the structure of T that T ∗ and T are the
same up to renumbering of the labels in T ∗. That is, we have the following:

Lemma 3.1. The k-ary trees T ∗ and T are the same, up to renumbering of the labels.

Likewise, we define T ∗(n) to be the pruned version of T (n): take T (n), remove all its
leaves, replace the first s-node with a j-node, and relabel T ∗(n) in pre-order. Note that
T ∗(n) is another k-ary tree. Denote by R∗(n) the number of leaf labels of T ∗(n).

We apply this pruning process to establish certain counting results. In order to clarify
and simplify our discussion, but in an abuse of notation, we describe the labels on the tree
T ∗(n) that results from the pruning process in terms of the original labels of T (n). That
is, in the course of the argument we speak of deleting or shifting around existing labels of
T (n). As a result the labels of T ∗(n) consist of a subset of the labels of T (n) and we do
not bother to relabel T ∗(n) from 1 on. For example, if we delete the label 1 in the first
spot of T (n), then move the label 11 into the first spot formerly occupied by the label
1, we will describe this as putting an “11” in place of 1, or in 1′s spot, and deleting the
eleventh spot (formerly occupied by the label 11). For our present purposes this approach
is convenient and acceptable: as we shall soon see, our only interest is in counting the
number of labels in the leaves of T ∗(n). The precise numbers that comprise these labels
are irrelevant, all that matters is the quantity of these labels and their placement. 9

The next result relates R∗(n), the number of labels in the leaves in the pruned tree
T ∗(n), to the number of labels in the nodes on the penultimate level of T (n).

Lemma 3.2. If T (n) and T (m) have the same number of penultimate level labels (say x
labels), then R∗(n) = R∗(m) = x − s + j.

8In fact, fewer initial conditions suffice. We can prove that for s = 0, kj initial conditions are required
while for s > 0, we require (s− 1)+ (k +1)j initial conditions. However, if we assume only the minimum
number of initial conditions the combinatorial argument becomes unnecessarily more complicated by
some special cases for the early parts of the tree.

9All of this is equivalent to saying that R(n) is not affected if we take T (n) and permute its labels.
Formally speaking, we are showing correspondences with equivalence classes of trees rather than the trees
themselves.

the electronic journal of combinatorics 16 (2009), #R129 10

Proof. The leaves of T ∗(n) are exactly the penultimate level nodes of T (n), and the
number of labels in them is x−s+ j: there are x labels in the penultimate nodes of T (n),
but when we change the first s-node to a j-node in the course of creating T ∗(n), s labels
are deleted and j are added. Thus, R∗(n) = x − s + j. Applying the same argument to
T (m) we conclude that R∗(n) = R∗(m) = x − s + j.

Lemma 3.3. For all n > 0 the tree T ∗(n) is identical to the tree T (n− s + j −R(n)), up
to renumbering of labels.

Proof. Clearly T ∗(n) = T (y) for some y 6 n. To see that y = n − s + j − R(n), note
that in the pruning process to form T ∗(n) we delete R(n) labels by removing the leaves of
T (n) (since by definition R(n) is the number of entries in the entire bottom row), while
by changing the first s-node to a j-node we remove s labels and add j labels.

It follows immediately that R∗(n) = R(n − s + j − R(n)), which, like Lemma 3.2,
provides an expression for evaluating R∗(n). Substituting n − qj for n in the previous
equation, we obtain a key relation between R∗ and R, which we now state as a lemma.

Lemma 3.4. Suppose 0 < q 6 k. Then R∗(n − qj) = R(n − s − (q − 1)j − R(n − qj)).

The term R(n−s−(q−1)j−R(n−qj)) in the above formula bears a clear resemblance
to the general term on the right hand side of the recursion (2.1). The basic idea behind
our proof that the sequence R(n) satisfies (2.1) is to show how the number of labels in the
leaves of T (n) relates to the number of labels in the leaves of T ∗(n − qj) for 0 < q 6 k.

As might be expected, the placement of the nth label turns out to be important in
this calculation. Our strategy is to demonstrate first that it is easy to count the number
of labels in the leaves of complete trees T (n), by which we mean trees where all the
penultimate nodes present have their full complement of k children each, and each of
these children (leaves) contains j labels. For trees that are not complete we apply this
idea by filling in the missing labels so that we have a complete tree, and then adjusting
the leaf label count on this completed tree.

In the next two lemmas we establish some easy facts about the position of labels on
nodes in general and on penultimate nodes in particular.

Lemma 3.5. Suppose that n is the dth label on a j-node, where 1 6 d 6 j. Suppose that
for some integer q all the labels between n− qj and n are on j-nodes. Then n− qj is the
dth label on its j-node.

Proof. The label n − d + 1 is necessarily the first label on the same node as n. Thus the
labels n − d − j + 1 through n − j are the first d labels on the preceding (with respect
to pre-order) j-node, that is, n − j is the dth label on this node. The result follows by
repeating this argument.

Lemma 3.6. If the label n is on a penultimate level node, then that node is the only
penultimate node containing any of the kj labels from n − kj + 1 through n. If n is on a
leaf, then the parent of that leaf is the only penultimate node that can contain any of the
labels n−kj +1 through n. If n is neither on a leaf nor on a penultimate node, then none
of the labels n − kj + 1 through n are on penultimate level nodes.

the electronic journal of combinatorics 16 (2009), #R129 11

Proof. Note that (by pre-order) every penultimate level node (except the first one) in T is
followed immediately by k leaves, each with j labels. Thus, if n is on a penultimate level
node, then there are at least kj labels between n and the preceding penultimate node
(since the leaves of the preceding penultimate node contain kj labels). The same logic
shows that if n is on a leaf, the only penultimate node that can contain any of the labels
n − kj through n is the parent of that leaf. Finally, if n is not on a leaf or a penultimate
node then none of the preceding kj labels can be on any penultimate level node since
there would have to be at least kj labels on the children of that penultimate node, and
all of these labels would have to be prior to the label n in pre-order. This completes the
proof.

We now formalize the notion of completeness that we discussed above.

Definition 3.7. For a given value of n, we say that T (n) is complete if each of its
penultimate level nodes has k children and each of these children has all j labels filled in.

For example, looking at Figure 3.1, we see that both T2,3,2(33) and T2,3,2(49) are
complete. Note that if T (n) is complete, it is not necessarily the case that T ∗(n) is
complete, for example T2,3,2(49). The next result shows that as promised above, it is
relatively easy to evaluate R(n) in terms of R∗(n) when T (n) is complete.

Lemma 3.8. If T (n) is complete, then R∗(n) = R(n)
k

.

Proof. Since T (n) is complete all its penultimate level nodes have k children and each

child has j labels. But T (n) has R(n) labels in its leaves so there are R(n)
j

leaves in T (n)

(since the leaves of T (n) are precisely the children of the penultimate nodes) and R(n)
jk

penultimate level nodes (counting the first s-node). Thus T ∗(n) will have R(n)
kj

leaves and
R(n)

k
labels in these nodes (each leaf node has j labels, what was formerly the first s-node

is now a j-node, and all of the former penultimate level nodes have k children so have
their full complement of j labels). By definition, this means R(n)

k
= R∗(n).

As Lemma 3.8 illustrates, calculations involving the number of leaf labels become
greatly simplified when the tree is complete. For this reason, the following lemma, which
relates the leaf label count of a tree with the leaf label count of its completion, is central
to much of the remainder of the discussion in this section. We define ∆s,j,k(n), or ∆(n)
where there is no confusion, as the least nonnegative number such that Ts,j,k(n+∆s,j,k(n))
is complete.

Lemma 3.9. If ∆(n) 6 kj then R∗(n) = R(n+∆(n))
k

= R(n)+∆(n)
k

while if ∆(n) > kj then

R∗(n) = R(n+∆(n))
k

− ∆(n) + kj.

Proof. Since n is the final label on T (n) and T (n) is not complete, n must be either on a
penultimate level node or on a leaf (but it cannot be the last entry on the kth child of a
penultimate node, since then T (n) would be complete). If n is either the last entry on a
penultimate node or is on a leaf, then ∆(n) 6 kj (since we have to fill in at most kj leaf

the electronic journal of combinatorics 16 (2009), #R129 12

entries to make T (n) complete). In this case, T (n) and T (n + ∆(n)) are identical except
on the leaf level, and so by Lemma 3.2, R∗(n) = R∗(n + ∆(n)). By Lemma 3.8, since

T (n + ∆(n)) is complete, R∗(n) = R∗(n + ∆(n)) = R(n+∆(n))
k

= R(n)+∆(n)
k

, where the last
equality holds as R(n + ∆(n)) = R(n) + ∆(n) in this case, since the labels from n + 1
through n + ∆(n) are all leaf labels.

If n is on a penultimate level node but is not the last entry on that node then ∆(n) >
kj. We can use the same argument as above, but we also need to account for the fact that
the penultimate node containing n is missing ∆(n)− kj labels. Simply subtract them off

at the end of the above calculation to show that R∗(n) = R(n+∆(n))
k

− ∆(n) + kj.

We now show how R(n), the number of leaves in T (n), relates to the number of leaves
in pruned subtrees of T (n). When combined with Lemma 3.4, this result provides the
correspondence we seek between the labeled k-ary trees and the meta-Fibonacci sequences
A(n) defined by (2.1).

Theorem 3.10. For all n > 2s + k2j + kj − j,

R(n) = R∗(n − j) + R∗(n − 2j) + · · ·+ R∗(n − kj). (3.1)

Proof. We consider various cases that depend on the location of the label n in the tree
T (n).

Case 1: The label n is on a leaf. In this case, note that by Lemma 3.6 the only
penultimate level node located in the last kj labels is the parent of the leaf containing
the label n. We need to know the location of the leaf that contains the label n in order
to determine the location of the label n − kj, which is either on the parent of the leaf
containing n, or on a node previous (with respect to pre-order) to the parent of the leaf
containing n.

We consider two possibilities: either n is on the kth leaf of its parent (that is, the
rightmost leaf), or it is not.

Subcase 1.1: The label n is on a rightmost leaf. Let n be the (kj − c)th label on the
set of its sibling leaves, where c < j. Because all of the trees T (n− j), . . . , T (n− (k−1)j)
have the same number of labels in penultimate nodes, we apply Lemma 3.2 to conclude
that R∗(n − j) = R∗(n − 2j) = · · · = R∗(n − (k − 1)j). Since all of these trees are
missing fewer than kj labels to be complete, the first part of Lemma 3.9 applies, so
each of these quantities equals R∗(n − j) = R(n−j)+∆(n−j)

k
= R(n)−j+(j+c)

k
= R(n)+c

k
, since

clearly ∆(n − j) = j + c. On the other hand, the tree T (n − kj) necessarily requires an
additional ∆(n − kj) = kj + c labels to be complete. By the second part of Lemma 3.9

R∗(n−kj) = R(n−kj+∆(n−kj))
k

−∆(n−kj)+kj = R(n+c)
k

− c = R(n)+c
k

− c, the last equality
holding because the final c labels are all leaf labels. Thus, R∗(n− j) + R∗(n− 2j) + · · ·+

R∗(n − kj) = (k − 1)R(n)+c
k

+ (R(n)+c
k

− c) = R(n) as required.
Subcase 1.2: The label n is not on a rightmost leaf. Once again we examine the trees

T (n− j), . . . , T (n−kj). In this case some of these trees are missing the parent of the leaf
with the label n. Let n be the (qj−c)th label on the set of sibling leaves, where 0 6 c < j;
note that q < k since n is not on a rightmost leaf. From Lemma 3.6 we have that the

the electronic journal of combinatorics 16 (2009), #R129 13

labels n−qj + c+1 through n are on leaves, while the j labels n− (q+1)j + c+1 through
n − qj + c are on the parent node of n, which is on the penultimate level since n is on a
leaf. As discussed above n − (q + 1)j + c + 1 through n − qj + c are the only labels in
the last kj that are on the penultimate level. Thus the exact location of the labels in the
last kj prior to n − (q + 1)j + c + 1 is irrelevant; they are either on the first level (they
are leaves), or on at least the third level.

By the above argument the trees T (n), T (n − j), . . . , T (n − (q − 1)j) all have the
same number of penultimate level labels. Thus, by Lemma 3.2, R∗(n) = R∗(n − j) =
R∗(n − 2j) = · · · = R∗(n − (q − 1)j). Since n is the (qj − c)th label we apply Lemma

3.9 with ∆(n) = c + (k − q)j to T (n) to yield R∗(n) = R(n)+c+(k−q)j
k

. Thus, R∗(n) =

R∗(n−j) = R∗(n−2j) = · · · = R∗(n−(q−1)j) = R(n)+c+(k−q)j
k

. Next, T (n−qj) is missing

∆(n−qj) = kj + c labels to be complete, so by Lemma 3.9 R∗(n−qj) = R(n)+c+(k−q)j
k

−c.
Finally we calculate the number of leaf labels in T (n−(q+1)j), . . . , T (n−kj). By Lemma
3.6 none of the labels n − kj + 1 through n − qj are on the penultimate level. It follows
that the number of penultimate level labels in each of these trees is precisely j − c less
than the number of penultimate level labels in T (n − qj), since this latter tree contains
j − c labels in the penultimate node that is the parent of the leaf containing n. Thus,
R∗(n− (q+1)j) = · · · = R∗(n−kj) = R∗(n−qj)− (j−c) = R(n)+c+(k−q)j

k
−j. So the sum

R∗(n−j)+· · ·+R∗(n−kj) = R(n)+c+(k−q)j
k

(q−1)+R(n)+c+(k−q)j
k

−c+(R(n)+c+(k−q)j
k

−j)(k−q)

= R(n)+c+(k−q)j
k

k − c − j(k − q) = R(n) + c + (k − q)j − c − (k − q)j = R(n), as required.
Case 2: The label n is not on a leaf. While n may or may not be on a node on the

penultimate level, it follows by Lemma 3.6 that the labels n−kj+1 through n−j cannot be
on nodes on the penultimate level. Thus all of the trees T (n−j), T (n−2j), . . . , T (n−kj)
have the same number of penultimate nodes, so by Lemma 3.2 R∗(n − pj) are all equal
for 1 6 p 6 k.

We complete the proof by showing that R∗(n − pj) = R(n)
k

for 1 6 p 6 k. There are
two cases to consider: the label n is on a penultimate node or not.

Assume that n is not on a node on the penultimate level. Then T (n) must be complete,
since it cannot be the case that there are missing labels on a penultimate node (since that
would imply n was on this penultimate node, which is not the case) and it cannot be that
a penultimate node has leaf children with missing labels (since by preorder, after filling
in the labels of a penultimate node, all the leaves are filled in before filling labels in nodes
on another level). Thus, by Lemma 3.8 R∗(n) = R(n)

k
. But since n is not on a node on

the penultimate level (and n is not on a leaf), T (n) has the same number of penultimate

nodes as T (n−j). Hence by Lemma 3.2 R∗(n−pj) = R(n)
k

for 0 6 p 6 k, which completes
the argument in this case.

Assume that n is on a node on the penultimate level. Then n−j must be on a rightmost
leaf node or a node that is at least level 3 (note that here we use our assumption that n
is past the third complete binary subtree). If n− j is on level 3 or higher then T (n− j) is
complete and the labels n−j +1, . . . , n are on nodes that are not leaves.. Otherwise n−j
is on a rightmost leaf node and T (n − j) is missing ∆(n − j) = c labels to be complete,
0 6 c 6 j − 1. If c = 0 then T (n − j) is complete and again the labels n − j + 1, . . . , n

the electronic journal of combinatorics 16 (2009), #R129 14

are on nodes that are not leaves.. Otherwise, the labels n− j + 1, . . . n− j + c are on the
rightmost leaf with n−j and the labels n−j +c+1, . . . , n are on a node that is not a leaf.
So, in all cases T (n− j) is missing c leaf labels and j− c nonleaf labels compared to T (n).

Thus, R(n− j) + c = R(n). By Lemma 3.9, R∗(n− j) = R(n−j)+∆(n−j)
k

= R(n−j)+c
k

= R(n)
k

,
as required.

Combining equation (3.1) and Lemma 3.4 we have the following result: for all s, j ∈
N, k > 1, and for all n > 2s + k2j + kj − j

R(n) =

k
∑

q=1

R(n − s − (q − 1)j − R(n − qj)). (3.2)

That is, R(n), the number of labels in the leaves of the binary tree T (n), equals A(n),
where A(n) is defined by (2.1) together with the following initial conditions: for all i in
the interval 0 6 i 6 2s + k2j + kj − j, A(i) = R(i).

Finally, as in [18], the above result also holds for s < 0, where once again the initial
conditions for the recursion must follow the tree. We briefly sketch how this works. In
this case the labeling scheme for the tree, which generalizes the one explained in [18], is
as follows: initially we label as for s = 0, then for each level of the binary tree except
for the leaf level we delete the smallest −s labels on that level (that is, the −s labels
immediately to the right of each s-node). Finally we renumber all the remaining labels
in the tree according to preorder. See Figure 3.2 for the case s = −3, j = 2, k = 2.

Figure 3.2: The initial part of the tree T−3,2,2.

The pruning process for the tree extends in the natural way. As before delete all the
leaves and change the first s-node to a j-node. Now however we must add −s labels to
fill in the empty j-nodes on the new bottom level (because there is no longer an s-node
on this level). From this point the proof of the result follows essentially as above.

the electronic journal of combinatorics 16 (2009), #R129 15

4 Combinatorial Interpretation for the Family

[0,j : 2j,3j]

In this section we turn our attention to the meta-Fibonacci recursion (2.2), which gener-
alizes the recursion (s, 1 : 2 + s, 3) for which a combinatorial interpretation is described
in [3]. It turns out that for j > 1 we can generalize this interpretation by adapting the
labeling scheme and pruning process to the same infinite tree structure described in [3]10.

This infinite labeled tree, which we call the BLT tree, can be constructed as follows:
Let Hs,j denote a tree that consists of an infinite number of rooted trees joined together
at their respective roots plus a single initial isolated node. Figure 4.1 shows the initial
portion of Hs,j where s = 3 and j = 2. The ith rooted subtree of Hs,j has 2i−1 chains of
length 2 descending from the root. We say that the roots of these subtrees are at level 3 in
Hs,j; the children of these nodes (that is, the first node in the chains of length 2 from the
roots) are said to be at level 2, while the children of the level 2 nodes (the grandchildren
of the roots) are at level 1, the bottom of the tree. These bottom nodes are also called
the leaves of Hs,j. This ordering of the levels of Hs,j, which differs from that described in
[3], is selected because it is analogous to the one in the previous section. Note that each
successive root has twice as many level 1 and level 2 descendants as the previous root.
The isolated node is also considered to be a leaf on level 1.

We label the nodes of the tree Hs,j with the positive integers as follows: all of the nodes
except the nodes on level 3 receive j labels (so are called j-nodes). The nodes on level 3
receive s labels (so are called s-nodes). Note that if s = 0 the level 3 nodes have no labels.
The tree is labeled in pre-order: we begin with the isolated node, which receives the j
labels 1 through j. The first s-node is labeled next with the s labels j + 1, .., j + s. The
unique level 2 child of the first s-node is labeled next, followed by its level 1 grandchild,
each with the first j consecutive integers not yet used. This process is repeated so that
each s-node is labeled, followed by its first child, then first grandchild, second child, second
grandchild and so on from left to right. For example, the second s-node has two level 2
children and two level 1 grandchildren, so the labeling takes place as s-node, level 2 node,
level 1 node, level 2 node, level 1 node. See Figure 4.1, where the labeling for H3,2 is
shown up to the label 39.

Let Hs,j(n) denote that portion of the tree Hs,j up to and including the nth label. Note
that the last node may not contain its full complement of either s or j labels. See Figure
4.2 for H3,2(28). Let Gs,j(n) be the number of labels that occur in the leaves of Hs,j(n).
For example, G3,2(28) = 10, since there are 10 leaf labels in H3,2(28). Where there is no
confusion we often drop the subscripts on H , H(n) and G(n). In what follows we show
that G(n) satisfies the meta-Fibonacci recursion (2.2).

For each s-node beyond the first s-node, we call the leftmost level 2 child (respectively,
level 1 grandchild) of this s-node and every second child subsequent to it an odd level
2 (respectively, level 1) node. The remaining level 2 (respectively, level 1) nodes of this

10Although the results we will derive in this section can also be proved inductively, the proofs would
be excessively difficult. Therefore we proceed with an argument similar to that of Section 3.

the electronic journal of combinatorics 16 (2009), #R129 16

Figure 4.1: The BLT tree H3,2

Figure 4.2: The BLT tree H3,2(28)

s-node are called even nodes. The descendants of the first s-node are called even. For
example, in Figure 4.1, the node containing the labels 15 and 16 is odd, and the node
containing the labels 28 and 29 is even. In this way, since the isolated node (which we
consider odd) occurs before the first s-node is a level 1 node, we are able to maintain the
pattern that there is one even level 2 node for every two level 1 nodes. This is analogous
to the previous section, where there were two level 1 nodes for every level 2 node. This
proves to be important for the pruning process that we define below for this tree.

As in Section 3, we establish several important structural properties of the trees H and
H(n). Here too, we assume that the final label in H(n) is in a node sufficiently far along
in the tree; in this case we assume n > 2s + 4j. With this assumption, we demonstrate
combinatorially that for such values of n, G(n) = B(n). With this, we conclude that
G(n) = B(n) for all n, so long as we take as initial conditions for B(n) that B(n) = G(n)
for n 6 2s+4j; we say that these initial conditions follow the tree11. We call the sequence
G(n) a label counting sequence.

We now define a pruning process on both H and H(n) respectively that creates a new
BLT tree of each type by removing certain nodes, rearranging others and labeling the
resulting tree. The pruning process on the infinite tree H is as follows: begin by removing
the first s-node, together with all its labels, and all the leaves (and their respective labels)
of H (including the isolated node). In the new tree we take the lone level 2 node of the
first s-node (that was removed) and slide it down to make it the first isolated node at

11As in the previous section, fewer initial conditions suffice. We can prove that for s = 0, 3j initial
conditions are required while for s > 0, we require s − 1 + 4j initial conditions. However, if we assume
only the minimum number of initial conditions the combinatorial argument becomes unnecessarily more
complicated by some special cases for the early parts of the tree.

the electronic journal of combinatorics 16 (2009), #R129 17

Figure 4.3: The pruning process on the infinite BLT tree H

level 1. Take every even node formerly at level 2 (the even children of the s-nodes) and
shift them down to level 1 as the child of its former level 2 sibling on its immediate left.
See Figure 4.3. Call this new infinite tree H∗. It is evident from Figure 4.3 that H∗ is
the same infinite tree as H once the labels of H∗ are renumbered. That is, we have the
following proposition:

Proposition 4.1. The infinite trees H∗ and H are identical up to renumbering of the
labels.

The pruning process that we adopt for the finite tree Hs,j(n) is very similar to that for
H , but with one additional step at the end: in the nodes of the new pruned tree, which
we call H∗

s,j(n), we place j new labels in the first j available positions with respect to
preorder. Adding j labels after deleting the first s-node mirrors the step in the pruning
process in Section 3, where we change the first s-node to a j-node. For convenience we

the electronic journal of combinatorics 16 (2009), #R129 18

Figure 4.4: The pruning process on the BLT tree H1,4(24)

can use the j labels 1, . . . , j, all of which are no longer in H∗
s,j(n) (since they necessarily

were in the original isolated node of Hs,j(n) that was eliminated from the tree in the
pruning process). See Figure 4.4 for an example of the pruning process on H1,4(24) and
the resulting tree H∗

1,4(24). Note that when adding these additional j labels it may be
necessary to create a new node (either a j-node or s-node) in which to place some of
these j additional labels; this new node may be only partially filled in. Denote by G∗

s,j(n)
the number of labels on the leaves of H∗

s,j(n); where convenient we drop the subscripts,
writing H∗(n) and G∗(n).

It is evident that H∗(n) is H(x) for x = n−s−G(n)+j: this is because in the pruning
process on Hs,j(n) that results in H∗(n) we are removing s + G(n) labels (the s labels
come from the s-node that is removed, and the G(n) labels correspond to the labels in
all the leaves that are removed) and then adding back j labels. Therefore, we have the
following fact:

Proposition 4.2. The tree H∗(n) is identical to H(x) up to renumbering of the labels,
where x = n − s − G(n) + j.

To make this identification precise we should really complete the construction of the
tree H∗(n) by re-labeling H∗(n) according to the same rules that we applied to label the
original tree Hs,j(n) from which it was derived. If we were to do so then it is evident
that the two trees would be the same. As in Section 3, in what follows we omit this
final gloss in the interests of simplicity, since generally we do not need to refer to the
individual labels of H∗(n) in our arguments; further, by numbering the j labels that we
add as 1, . . . , j it is easier for the reader to keep track of them in the figures.

The pruning process that we have defined on Hs,j(n) leads directly to some key results

the electronic journal of combinatorics 16 (2009), #R129 19

for showing that G(n) satisfies the meta-Fibonacci recursion (2.2).

Lemma 4.3. G∗(n−j) = G(n−s−G(n−j)) and G∗(n−3j) = G(n−s−2j−G(n−3j))

Proof. By the definition of G(n) and G∗(n) it suffices to show that H∗(n−j) = H(n−s−
G(n− j)) and H∗(n−3j) = H(n− s−2j −G(n−3j)). Both of these follow immediately
from Proposition 4.2 with n − j and n − 3j, respectively, in place of n.

From Lemma 4.3 it is evident that if G(n) = G∗(n − j) + G∗(n − 3j) then G(n)
satisfies the meta-Fibonacci recursion (2.2). Thus, our interest lies in counting G∗(n− j)
and G∗(n − 3j), the number of leaves in the pruned trees H∗(n − j) and H∗(n − 3j),
respectively. In certain cases this is a relatively easy task. For example, suppose that
H(n) has the property that its last label n occurs as the jth label on an even leaf (an even
level 1 node). Adopting similar terminology to the preceding section, we call such a BLT
tree H(n) complete. Then we have the following result:

Proposition 4.4. If H(n) is complete, then (1) G∗(n− j) = G(n)
2

; (2) G∗(n− 3j) = G(n)
2

;
and (3) G(n) = G(n − s − G(n − j)) + G(n − s − 2j − G(n − 3j)).

Proof. Note that (3) is is an immediate consequence of (1) and (2) together with Lemma
4.3. We focus on the proof of (1) and (2) in turn.

(1) The sequence G∗(n− j) counts the number of leaves in the pruned tree H∗(n− j),
so we apply the pruning process to H(n − j). Since H(n) is complete, the label n is the
jth label in an even level 1 node. Thus n − j is the jth label in the level 2 parent of the
node containing n. When we apply the pruning process to H(n− j) this last level 2 node
becomes the final leaf in H∗(n − j), and n − j is the jth and final label on this leaf. To
complete the pruning process we add j new labels to the end of the pruned tree; since
a level 1 node is followed by a node on level 2 or by a node on level 3 and then another
node on level 2, it is necessarily the case that none of these additional j labels appear in
a leaf.

We now count the number of leaf labels in H∗(n− j). The leaf nodes in H∗(n− j) are
precisely the nodes that previously were even level 2 nodes in H(n − j). But the level 2
nodes (and their labels) are the same in both H(n−j) and H(n), since the only difference
between these trees is the last leaf node in H(n) that is not in H(n − j). Since H(n) is
complete, the number of even level 2 nodes in H(n) is exactly half the total number of
level 2 nodes in the tree, which in turn is the same as the number of leaf nodes in H(n).
Finally, again since H(n) is complete, all the level 2 nodes contain the full complement of
j labels. Combining these observations we deduce that G∗(n−j), the number of labels on
the leaves of H∗(n− j) equals the number of labels on the even level 2 nodes of H(n− j),
which is the same as the number of labels on the even level 2 nodes of H(n), which is
G(n)

2
. That is, G∗(n − j) = G(n)

2
.

(2) The argument is similar to the above. Since H(n) is complete, it has an even
number of leaves, the last level 2 node is even and n − 3j is the jth (and last) label in an
odd level 2 node that has its full complement of labels. Thus, H(n − 3j) has two fewer
leaves than H(n) so G(n− 3j) = G(n)− 2j. Further, when we apply the pruning process

the electronic journal of combinatorics 16 (2009), #R129 20

to H(n− 3j) this final odd level 2 node remains in place, and the additional j labels that
are added in forming H∗(n − 3j) must necessarily be placed in a new level 1 node (leaf)
that is the child of this final level 2 node.

The leaf labels on H∗(n− 3j) consist of the labels that were on the even level 2 nodes
of H(n − 3j), as well as the additional j labels added to the final leaf in H∗(n − 3j)
as just described. But we have already seen that the last node of H(n − 3j) is an odd
level 2 node so H(n− 3j) has an even number of leaves, in fact, precisely two fewer than
H(n). Thus, H(n− 3j) has half as many even level 2 nodes as leaves. Since all the leaves
have j labels we get that the number of labels in the even level 2 nodes of H(n − 3j) is
G(n−3j)

2
= G(n)

2
− j. Thus we have that G∗(n − 3j) = (G(n)

2
− j) + j = G(n)

2
.

To establish more generally that G(n) = G(n−s−G(n−j))+G(n−s−2j−G(n−3j))
we analyze how the tree H(n) can deviate from being complete and amend the calculation
of G∗(n− j) and G∗(n− 3j) accordingly. The details of this approach are provided in the
following series of lemmas, culminating in the proof of Theorem 4.10.

At the outset we fix n, s and j and define two new parameters. Let ∆s,j(n), or ∆(n)
where it is clear, be the smallest nonnegative integer such that the tree Hs,j(n + ∆s,j(n))
is complete. If ∆(n) = 0 then Hs,j(n) is complete. Otherwise, the magnitude of ∆(n)
provides some indication of how far the tree Hs,j(n) is from being complete. Note that
∆(n) < 4j + s since at worst the label n is the first label of an s-node; in this case, to
complete the tree we must add s − 1 labels to that node and j labels to each of four
additional j-nodes following this s-node.

We denote by δs,j(n), or δ(n) where it is clear, the smallest non-negative integer such
that all of the j-nodes of Hs,j(n+δs,j(n)) contain j labels. If δ(n) = 0 then the last j-node
contains j labels. Otherwise the last node of Hs,j(n) (in preorder) is a j-node that has
j − δ(n) labels.

In the next lemma we derive some formulas for G(n) and G(n − 2j) involving ∆(n)
and δ(n) that we use to evaluate G∗(n − j) and G∗(n − 3j) when H(n) is not complete.

Lemma 4.5. (1) If 0 6 ∆(n) < j (that is, the label n is on an even level 1 node) then
G(n + ∆(n)) = G(n) + ∆(n) and G(n − 2j) + j = G(n).

(2) If j 6 ∆(n) < 2j(that is, the label n is on an even level 2 node) then G(n + ∆(n)) =
G(n) + j and G(n − 2j) + j = G(n).

(3) If 2j 6 ∆(n) < 3j (that is, the label n is on an odd level 1 node) then G(n + ∆(n)) =
G(n) + j + δ(n). In this case the location of the label n − 2j varies by s, j, and whether
or not n is on the first odd level 1 node of a s-node.

(a) If n − 2j is on a level 3 node, then G(n − 2j) + j − δ(n) = G(n).

(b) If n − 2j is on a level 1 node, then G(n − 2j) + j = G(n) if the node containing the
label n − 2j and the node containing the label n are both descendants of the same s-node;
otherwise, G(n − 2j) + j − s = G(n).

(4) If 3j 6 ∆(n) (that is, n is on an odd level 2 node or a s-node (level 3 node)) then
G(n + ∆(n)) = G(n) + 2j. Again, we need to split into subcases based on where n − 2j
is located, which varies by the relative value of s, j, and δ(n) and by whether n is on the
first odd level 2 node of a s-node.

the electronic journal of combinatorics 16 (2009), #R129 21

(a) If n − 2j is on a level 3 node, then G(n − 2j) = G(n).

(b) If n−2j is the (j−β)th label on a level 1 node (where β > 0), then G(n−2j)+β = G(n).

(c) If n − 2j is on a level 2 node, then G(n − 2j) + j = G(n).

Proof. A tree is complete when its last label occurs as the jth label on an even level 1
node. In each case above, to derive the formula for G(n) the basic idea is to figure out how
many of the ∆(n) labels that must be added to complete the tree H(n) are leaf labels.
To derive the formula for G(n − 2j) we count those leaf labels that are present in H(n)
but are not in H(n − 2j).

(1) In this case all of the missing ∆(n) labels are leaf labels, so G(n+∆(n)) = G(n)+∆(n).
Notice that here ∆(n) = δ(n).

Since the label n in H(n) is on an even level 1 node, the label n − 2j in the tree
H(n − 2j) is the last label on an odd level 1 node. Clearly this node contains j − ∆(n)
labels, so the tree H(n− 2j) requires j +∆(n) = ∆(n− 2j) labels to be complete. So the
leaf labels that are on H(n) but not H(n− 2j) are the ∆(n) leaf labels missing from the
leaf with label n−2j and the j−∆(n) leaf labels in H(n) that are on the leaf with n. Thus
we get a total of j leaf labels that are on H(n) but not H(n−2j). So G(n−2j)+j = G(n).

(2) Since n is on an even level 2 node in H(n), the leaf labels that are added to H(n)
to obtain H(n + ∆(n)) are exactly the j labels of the level 1 child of the node with n.
Hence G(n + ∆(n)) = G(n) + j.

The label n− 2j will always be on the odd level 2 node directly to the left of the node
with label n, so the leaf labels that are present in H(n) but not in H(n − 2j) are the j
labels on the level 1 child of the node with label n − 2j. Hence, G(n − 2j) + j = G(n).

(3) To complete H(n) we must fill the node containing the label n, then add a new
level 2 node with j labels, together with its level 1 child and j labels, immediately to
the right of the node in H(n) containing the label n. This adds δ(n) leaf entries to fill
the level 1 node with n, and j leaf entries to fill the newly created level 1 node to its
immediate right. Thus G(n + ∆(n)) = G(n) + j + δ(n).

We now compute the value of G(n − 2j) in subcases (a) and (b) in the statement of
the lemma.

(a) The level 3 node containing the label n− 2j has two descendants in H(n) - a level
2 node with j labels and a level 1 node with j − δ(n) labels containing the final label n.
The only leaf labels on H(n) but not on H(n − 2j) are the j − δ(n) leaf labels on the
node with n, and so G(n − 2j) + j − δ(n) = G(n).

(b) If both the labels n and n − 2j are on level 1 nodes that are descendants of the
same s-node then the situation is essentially identical to (1) for the present purposes and
G(n−2j)+j = G(n). If this is not the case, then there is an s-node between the two level
1 nodes containing the labels n and n−2j. But there are only a total of 2j labels missing
between H(n− 2j) and H(n), and we know that j + s of these are not leaf labels. Hence,
the number of missing leaf labels is 2j − (j + s) = j − s so G(n − 2j) + j − s = G(n).

(4) To complete H(n) we need to add and completely label two level 1 j-nodes. This
means that G(n + ∆(n)) = G(n) + 2j. Note that in the process of completing H(n),
depending on where the label n is located, we may also need to add and/or label one or

the electronic journal of combinatorics 16 (2009), #R129 22

perhaps two level 2 nodes and possibly add labels to the level 3 node if it contains the
label n.

(a) This case only occurs when s is large enough so that the label n is either on a
s-node or n is the only level 2 child of an s-node and n− 2j is on this same s-node. This
means that there are no leaf labels between n and n − 2j and hence G(n − 2j) = G(n),
or else we would be in case (c).

(b) Note that it must be the case that there is an s-node between n−2j and n (if n is
on an s-node, then that s-node is the one between the nodes containing the labels n− 2j
and n). Since n is on a level 2 or s-node the only leaf labels that are on H(n) but not
H(n−2j) are the β leaf labels on the leaf with the label n−2j. Thus G(n−2j)+β = G(n).

(c) In this case there may or may not be an s-node between n−2j and n. Regardless,
the only leaf labels between n − 2j and n are on the node that is the level 1 child of the
level 2 node with the label n−2j. Because n is not on that child node, all j of the labels on
that level 1 node are on H(n) but not on H(n−2j). Therefore, G(n−2j)+j = G(n).

When H(n) is not complete, the computation of G∗(n − j), the number of leaves in
the tree that results from pruning the tree H(n − j), is influenced by the nature of the
additional ∆(n) labels required to complete H(n). In the following we consider separately
four cases, each of which is defined by the location of the label n.

Recall that pruning the tree H(n − j) involves three separate steps: (1) eliminate all
the leaves and the first s-node, together with the labels in these nodes; (2) shift down
each even level 2 node to level 1 so that it is the unique child of the odd level 2 node that
is to its immediate left; and (3) add j additional labels 1,2,. . .,j to the tree (which may
involve adding a new s-node or j-node that is partially filled). In the course of the proofs
of the following four lemmas, we find ourselves simultaneously pruning a pair of trees,
such as H(n − j) and H(n + ∆(n) − j), and comparing the pruned trees H∗(n − j) and
H∗(n + ∆(n) − j) that result. It is useful to compare what the trees look like after the
first two steps in the pruning process, that is, before the additional j labels are added to
the trees. For convenience we refer to the tree that results from just these first two steps
on the tree H(x) as the intermediate tree of H(x) in the pruning process.

Lemma 4.6. If n is a label on an even level 1 node in H(n), then G∗(n− j) = G(n)+δ(n)
2

.

Proof. Here 0 6 ∆(n) < j and δ(n) = ∆(n). By the definition of ∆(n), the tree H(n +

∆(n)) = H(n + δ(n)) is complete. By Proposition 4.4(1), G∗(n + δ(n) − j) = G(n+δ(n))
2

.
By Lemma 4.5(1), G(n + δ(n)) = G(n) + δ(n). To complete the proof we show that
G∗(n + δ(n) − j) = G∗(n − j)

Consider the two trees H(n − j) and H(n + δ(n) − j). The only difference between
these two trees is that H(n + δ(n) − j) has a full complement of j labels in its last node,
whereas H(n − j) has j − δ(n) labels in its last node. We will simultaneously transform
these trees to H∗(n − j) and H∗(n + δ(n) − j) respectively.

Following the pruning procedure outlined earlier in this section we eliminate the leaves
of both trees and the first s-nodes. Then in each tree we shift each even level 2 node to
be level 1 child of its neighbor on its immediate left. Since the last node in each of the

the electronic journal of combinatorics 16 (2009), #R129 23

trees H(n − j) and H(n + δ(n) − j) is an even level 2 node, this node gets shifted down
to a level 1 node in H∗(n − j) and H∗(n + δ(n) − j). Finally, we add j labels to each of
the trees H∗(n − j) and H∗(n + δ(n) − j). For the tree H∗(n + δ(n) − j), since the final
node at present is a leaf node with all j labels, it follows that all of these additional j
labels will be placed into either a new level 2 node or in a new s-node and possibly also
into a new level 2 node. For the tree H∗(n − j) that derives from H(n), the first δ(n)
labels are placed into the last node, which again is a leaf node. The remaining j − δ(n)
labels are placed into either a new level 2 node or possibly into a new s-node as well as
a new level 2 node, depending on the relative sizes of δ(n), s and j. In any event, both
the trees H∗(n − j) and H∗(n + δ(n) − j) have a leaf label count that is equal; that is,
G∗(n + δ(n) − j) = G∗(n − j), as desired.

Lemma 4.7. If n is a label on an even level 2 node in H(n), then G∗(n − j) = G(n)+j
2

.

Proof. Since the label n is on an even level 2 node in H(n), we have j 6 ∆(n) < 2j.

By Proposition 4.4(1), G∗(n + ∆(n) − j) = G(n+∆(n))
2

. By Lemma 4.5(2), G(n + ∆(n)) =
G(n) + j. To complete the proof we must show that G∗(n + ∆(n) − j) = G∗(n − j)

As in the previous lemma we simultaneously transform H(n− j) and H(n+∆(n)− j)
to H∗(n − j) and H∗(n + ∆(n) − j) respectively and argue that the leaf label count of
these transformed trees are equal. Note that since the label n is on an even level 2 node,
the label n+∆(n) on the complete tree H(n+∆(n)) is the last label on an even leaf, the
label n + ∆(n) − j is the last label on an even level 2 node and the label n − j is on an
odd leaf. See Figure 4.5 for an illustration of the simultaneous pruning process.

Initially, H(n−j) and H(n+∆(n)−j) have only full level 2 nodes, and H(n+∆(n)−j)
has 1 more level 2 node. In the pruning process on the trees H(n−j) and H(n+∆(n)−j)
first we eliminate all the leaves and the initial s-node, then shift even level 2 nodes down.
At this point the tree that began as H(n+∆(n)−j) has one more leaf node than the tree
that started as H(n−j) so the leaf label count in this tree is higher by j. To complete the
pruning process on each tree we add j labels to each tree in the first j available positions
in preorder. We will show that these j additional labels are leaves for H∗(n − j) and not
leaves for H∗(n + ∆(n) − j), which cancels out the difference of j leaf labels.

Consider first the situation for the tree that started as H(n − j): since the label
n− j was on an odd leaf that was eliminated in the pruning process, the last node in the
intermediate tree is an odd level 2 node that has its full complement of j labels. So the
first available position with respect to pre-order is a level 1 node. Thus, the addition of j
labels to the intermediate tree of H(n− j) to complete the pruning process increases the
leaf label count by j.

The label n+∆(n)− j is the last label on an even level 2 node in H(n+∆(n)− j). In
the pruning process of H(n+∆(n)− j) this even level 2 node shifts down to a leaf, so the
next available position in the intermediate tree at this stage is a level 2 node, unless the
next node with respect to pre-order is an s-node. In this case, some or all of the labels
will be placed into the s-node before the next level 2 node. In either case the additional
j labels that complete the process of creating the pruned tree H∗(n + ∆(n) − j) do not
affect its leaf count.

the electronic journal of combinatorics 16 (2009), #R129 24

Figure 4.5: Simultaneous pruning process as in Lemma 4.7 with n = 25, so ∆(n) =
3, δ(n) = 1. On the right is H2,2(n− j) = H2,2(23), and on the left is H2,2(n− j +∆(n)) =
H2,2(26).

The intermediate tree for H(n + ∆(n) − j) has j more labels than the intermediate
tree for H(n − j). But the j labels added at the end of the pruning process add j to the
leaf label count for H∗(n − j) but nothing to the leaf label count for H∗(n + ∆(n) − j).
It follows that the leaf counts in H∗(n − j) and H∗(n + ∆(n) − j) are equal, that is,

G∗(n+∆(n)− j) = G∗(n− j). Thus we have G∗(n− j) = G∗(n+∆(n)− j) = G(n+∆(n))
2

=
G(n)+j

2
.

Lemma 4.8. If the label n is on an odd level 1 node in H(n), then G∗(n−j) = G(n)+j−δ(n)
2

.

Proof. Since the label n is on an odd level 1 node, 2j 6 ∆(n) < 3j. By Proposition

4.4(1), G∗(n + ∆(n)− j) = G(n+∆(n)
2

. By Lemma 4.5(3), G(n + ∆(n)) = G(n) + j + δ(n).
To complete the proof we must show that G∗(n + ∆(n) − j) = G∗(n − j) + δ(n)

It is evident that the label n − j is on the odd level 2 node that is the parent of the
odd level 1 node containing n. Since the tree H(n + ∆(n)) is complete, it contains two
additional nodes (one even level 2 and level 1 node, respectively) compared to H(n); each
of these nodes has its full complement of j labels. The tree H(n + ∆(n)− j) has just the
additional even level 2 node with its j labels. Further, in H(n + ∆(n) − j) the odd level

the electronic journal of combinatorics 16 (2009), #R129 25

1 node containing the label n − j contains δ(n) more labels than the odd level 1 node
containing the label n − j in H(n − j).

We simultaneously prune the trees H(n − j) and H(n + ∆(n) − j) to H∗(n − j) and
H∗(n + ∆(n)− j) respectively. For each tree first we begin by eliminating the leaves and
the first s-node, together with their respective labels. Then we shift the even level 2 nodes
to be level 1 nodes.

Note that in the intermediate tree formed in the pruning process for H(n− j) the odd
level 2 node containing the label n − j, which is its last node, does not get eliminated
and does not get shifted down. We now complete the pruning process on H(n − j) by
adding j labels to this intermediate tree, placing δ(n) labels in its last odd level 2 node
containing the label n − j and j − δ(n) in the odd level 1 child of this node.

In the intermediate tree formed in the pruning process for H(n + ∆(n) − j) the odd
level 1 node that is the child of the odd level 2 node containing the label n− j is already
full. Thus the j labels added to complete the pruning process for this tree are placed
in an even level 2 node, so the leaf label count is not affected. It follows that the only
difference between H∗(n+∆(n)− j) and H∗(n− j) on the leaf level is that the final level
1 node in H∗(n − j) is missing δ(n) labels. Hence G∗(n + ∆(n) − j) = G∗(n − j) + δ(n)
as required.

Lemma 4.9. If the label n is on an odd level 2 node or a level 3 node in H(n), then

G∗(n − j) = G(n)
2

.

Proof. Because of the position of the label n in H(n), we know that 3j 6 ∆(n) 6 4j+s−1.

By Prop. 4.4(1), G∗(n + ∆(n) − j) = G(n+∆(n))
2

. By Lemma 4.5(4), G(n + ∆(n)) =
G(n)+2j. To complete the proof we must now show that G∗(n+∆(n)−j) = G∗(n−j)+j

Since the label n is on an odd level 2 node or a level 3 node, the label n − j is on an
even level 1 node or an s-node. It follows that the tree H(n + ∆(n) − j) has two more
level 2 nodes (one even, one odd) than the tree H(n − j).

We simultaneously prune H(n − j) and H(n + ∆(n) − j) to H∗(n − j) and H∗(n +
∆(n) − j) respectively. For each tree first we eliminate the leaves and the initial s-node
and shift the even level 2 nodes to become level 1 nodes. Since the label n − j is on an
even level 1 node or an s-node, it follows that the intermediate tree for H(n − j) must
have a final level 1 node with a full complement of j labels. Since it only has full level 2
nodes, the intermediate tree formed from H(n + ∆(n) − j) has one additional leaf node
with j labels compared to the intermediate tree from H(n− j), coming from its one extra
even level 2 node.

We now complete the pruning process on H(n − j) by adding the j labels to its
intermediate tree. From what we have just noted above, these labels are added to a level
2 node, unless the next available node with respect to preorder is an s-node, in which
case some or all of the labels are placed in this s-node first. In any case, the labels are
not placed in a level 1 node and so do not affect the leaf count.

Similarly, we complete the pruning process on H(n + ∆(n) − j) to produce H∗(n +
∆(n) − j). Here too since the last node in the intermediate tree is a level 1 node with j
labels, none of the additional j labels are placed in a level 1 node.

the electronic journal of combinatorics 16 (2009), #R129 26

It follows that the difference in the leaf label count between H∗(n − j) and H∗(n +
∆(n) − j) is the difference in the leaf label count between the two intermediate trees,
which is j. Thus, we have shown G∗(n + ∆(n) − j) = G∗(n − j) + j. This completes the
proof.

We are now ready to prove the main result of this section.

Theorem 4.10. Let H(n) be a BLT-tree as described above, and let G(n) be the number
of leaf labels of H(n). Then for n > 2s + 4j, G(n) satisfies the [0,j : 2j,3j]-type meta-
Fibonacci recursion (2.2) G(n) = G(n − s − G(n − j)) + G(n − s − 2j − G(n − 3j))

Proof. By Lemma 4.3, G(n − s − G(n − j)) + G(n − s − 2j − G(n − 3j)) = G∗(n − j) +
G∗(n− 3j), so we need to show that G∗(n− j) + G∗(n− 3j) = G(n). As in the preceding
lemmas we examine four cases based upon the value of ∆(n), or equivalently, the location
of the final label n in H(n).

Case 1: Suppose 0 6 ∆(n) < j. Then n is a label on an even level 1 node and
n − 2j is a label on an odd level 1 node. From Lemmas 4.6, 4.8 and 4.5(1), we obtain

G∗(n − j) + G∗(n − 3j) = G(n)+δ(n)
2

+ G(n−2j)+j−δ(n)
2

= G(n)+δ(n)
2

+ G(n)−δ(n)
2

= G(n).
Case 2: Suppose j 6 ∆(n) < 2j. Then n is a label on an even level 2 node and

n − 2j is a label on an odd level 2 node. From Lemmas 4.7, 4.9 and 4.5(2) we obtain

G∗(n − j) + G∗(n − 3j) = G(n)+j
2

+ G(n−2j)
2

= G(n)+j
2

+ G(n)−j
2

= G(n).
Case 3: Suppose 2j 6 ∆(n) < 3j. Then n is a label on an odd level 1 node. We must

consider three subcases based on the location of n − 2j.
Subcase 3.1: If n − 2j is on an s-node node, then applying Lemmas 4.8, 4.9 and

4.5(3a), we determine that G∗(n− j)+G∗(n− 3j) = G(n)+j−δ(n)
2

+ G(n−2j)
2

= G(n)+j−δ(n)
2

+
G(n)−j+δ(n)

2
= G(n).

Subcase 3.2: If n − 2j is a label on a level 1 node, and there is no s-node between
n − 2j and n, then n − 2j is the (j − δ(n))th label on its node. Applying Lemmas

4.8, 4.6 and 4.5(3b), we see that G∗(n − j) + G∗(n − 3j) = G(n)+j−δ(n)
2

+ G(n−2j)+δ(n)
2

=
G(n)+j−δ(n)

2
+ G(n)−j+δ(n)

2
= G(n).

Subcase 3.3: If n − 2j is a label on a level 1 node, and there is an s-node between
n − 2j and n, then n − 2j is the (j − δ(n) + s)th label on its node. Applying Lemmas

4.8, 4.6 and 4.5(3b), we see that G∗(n − j) + G∗(n − 3j) = G(n)+j−δ(n)
2

+ G(n−2j)+δ(n)−s
2

=
G(n)+j−δ(n)

2
+ G(n)−j+s+δ(n)−s

2
= G(n).

Case 4: Suppose 3j 6 ∆(n) < s + 4j. Then the label n is on either an odd level 2
node or an s-node. We consider three subcases based on the position of n− 2j (note that
we do not need to have direct information about whether n is on an odd level 2 node or
an s-node).

Subcase 4.1: If n − 2j is on a level 3 node, then applying Lemmas 4.9 and 4.5(4a) we

obtain G∗(n − j) + G∗(n − 3j) = G(n)
2

+ G(n−2j)
2

= G(n)
2

+ G(n)
2

= G(n).
Subcase 4.2: The label n − 2j is on a level 1 node; let it be the (j − β)th label on

its node, where β > 0. Then applying Lemmas 4.9, 4.6 and 4.5(4b), we observe that

G∗(n − j) + G∗(n − 3j) = G(n)
2

+ G(n−2j)+β
2

= G(n)
2

+ G(n)−β+β
2

= G(n).

the electronic journal of combinatorics 16 (2009), #R129 27

Subcase 4.3: The label n−2j is on a level 2 node. Applying Lemmas 4.9, 4.7 and 4.5(4c)

yields the result that G∗(n− j)+G∗(n−3j) = G(n)
2

+ G(n−2j)+j
2

= G(n)
2

+ G(n)−j+j
2

= G(n).
This completes the proof of the final case and the proof of Theorem 4.10.

That is, G(n), the number of labels in the leaves of the BLT tree H(n), equals B(n),
where B(n) is defined by (2.2) together with the following initial conditions: for all i in
the interval 0 6 i 6 2s + 4j, B(i) = G(i).

To date, in contrast to the situation in Section 3, we have not found any way to extend
the above result for s < 0. In fact, there doesn’t seem to be any set of initial conditions
for which the recursion (2.2) with s < 0 has a solution.

5 Applications of the Combinatorial Interpretations

In this section we demonstrate how the combinatorial interpretations that we have devel-
oped for the solution sequences to the meta-Fibonacci recursions (2.1) and (2.2) provide
a powerful tool for deriving properties of these sequences, such as closed forms, asymp-
totic properties, and frequency functions. The frequency function associated with a given
integer sequence L(n) is fL(m) := |L−1(m)|, that is, fL(m) is the number of n such
that L(n) = m. The frequency function is especially useful when dealing with slow (or
at least monotone) integer sequences, since all of the appearances of a given m appear
consecutively.

We begin by providing a simple derivation for the frequency function of Gs,j(n) (or
G(n) where there is no confusion), the leaf-label counting sequence which solves (2.2).
If n is the mth leaf label on H but is not the last label on its node, then the frequency
function fG(m) = 1, since n will be immediately followed in H by another leaf label. If
n is the mth leaf label on H and is the last label on its node but not the last label on its
subtree, then n will be followed immediately by a level 2 node with j nonleaf entries, and
then another level 1 node, so G will assume the value m at n and continue until n+ j +1,
the next leaf label. Thus, fG(m) = 1 + j. If n is the mth leaf label on H and is the last
label on its subtree, then n will be immediately followed by a s-node, a level 2 node, and
then a level 1 node, since s-nodes occur only directly after the end of subtrees. Therefore,
n is followed by exactly s+ j nonleaf labels, so fG(m) = 1+ s+ j. This covers all possible
cases, and we have determined that the frequency function for G(n) is:

fG(m) =

1 if m 6≡ 0 mod j
1 + s + j if m = 2dj for some d > 0

1 + j otherwise

Using our combinatorial interpretation we now determine a closed form expression
for Gs,j(n) that generalizes very broadly the formulas derived in [3] for the special cases
s = 0, j = 1 and s = 1, j = 1.

Theorem 5.1. For fixed s and j, let Gs,j(n) be the number of labels that occur in the
leaves of Hs,j(n). For convenience we usually write G(n) in place of Gs,j(n) where the

the electronic journal of combinatorics 16 (2009), #R129 28

abbreviated notation is clear. Then for n 6 j, G(n) = n. For m ∈ N and n in the interval
(m − 1)s + (2m − 1)j < n 6 ms + (2m+1 − 1)j, set f(n) = max{n − ms − (2m − 1)j, 0}.

Then G(n) = (2m−1j) + (⌊f(n)
2j

⌋j) + max{f(n) − ⌊f(n)
2j

⌋2j − j, 0}.

Proof. For n 6 j the result is immediate from the definition of G(n) (the isolated node of
the tree H(n) contains j labels). Suppose that n is in the interval (m− 1)s+ (2m − 1)j <
n 6 ms + (2m+1 − 1)j. This is equivalent to the statement that the label n in the tree
H(n) is on the mth rooted subtree, that is, n is either on the mth s-node or is on a j-node
that is a descendant of the mth s-node. To see this, note that the term (m − 1)s in the
lower bound accounts for the number of labels in the first (m − 1) s-nodes, while the
term (2m − 1)j counts the j labels in each of the (1 + 2 + . . . + 2m−1) j-nodes that are
descendants of these initial m − 1 s-nodes. In a similar way we can show that the upper
bound is the last label on the last leaf that descends from the mth s-node.

For any such label n on the mth rooted subtree, we compute G(n), the number of
labels in the leaves of H(n). First, it is easy to see that (1+1+2+ · · ·+2m−2)j = (2m−1j)
counts the number of labels in the leaves prior to the mth rooted subtree of H(n). Next,
note that f(n) is the number of labels in all of the j-nodes in the mth rooted subtree.
This is because, by our earlier observations, n − (m − 1)s − (2m − 1)j is the number of
labels in the mth rooted subtree. If we subtract the s entries on the mth s-node itself
(taking 0 instead if we get a negative number) we have the number of entries after the
mth s-node. A fully filled level 2 node and its level 1 descendant contain 2j nodes (taken

together). Therefore, ⌊f(n)
2j

⌋ calculates the number of completely filled pairs of level 2 and

level 1 nodes on the mth rooted subtree, so the term ⌊f(n)
2j

⌋j counts the labels in the level

1 nodes (leaves) of these pairs on the mth rooted subtree.
The only possible leaf labels not yet counted are the labels in the last leaf if this node

contains fewer than j labels. But since f(n) is the number of labels in all of the j-nodes

in the mth rooted subtree, it follows that f(n) − ⌊f(n)
2j

⌋2j is 0 if all the leaves contain j
labels, or else is the number of labels in any pair of level 2 and level 1 j-nodes that do not
contain their full complement of labels (note that this can only happen for the last level
2 and possibly level 1 j-node). Further, the number of leaf labels associated with such a
partly filled in pair of j-nodes can only be non-zero if the level 2 node contains j labels.
Thus, we subtract j and take 0 if this difference is negative; that is, the number of leaf
labels in the last partly filled in leaf, if there is one, is max{f(n) − ⌊f(n)

2j
⌋2j − j, 0}. This

completes the proof.

We now focus our attention on Rs,j,k(n), the number of labels in the leaves of the tree
Ts,j,k(n) and the solution to the meta-Fibonacci recursion (2.1) (we drop the subscripts
and use R(n) and T (n) where there will be no confusion). The situation for R(n) is more
complicated than H(n). Unlike H(n), R(n) does not seem to have a comparably simple
closed form expression. However, the combinatorial interpretation for R(n) provides a
very elegant basis for deriving certain asymptotic properties of this sequence. It is well
known that any slow solution to the meta-Fibonacci recursion (2.1) approaches k−1

k
n as n

the electronic journal of combinatorics 16 (2009), #R129 29

increases.12 However, using the combinatorial interpretation for R(n) we obtain a much
stronger result, namely, R(n) = k−1

k
n + O(logk(n)). In what follows, for simplicity, we

focus on the case k = 2 with s > 0; in fact it is possible to adapt our argument for general
k and s.

We apply a notion we introduced in Section 3. Recall that the mth binary subtree of
T is the subtree containing the (m− 1)st s-node and all of its descendants. For example,
in Figure 3.1, the fourth binary subtree is T2,3,2(42). We define the first binary subtree to
be just the first j-node.

Since the mth binary subtree is a binary tree with m levels, it has 2m − 1 nodes in
total. By definition, m− 1 of these are s-nodes so the remaining 2m −m are j-nodes. So
there are (m− 1)s+(2m −m)j labels on the nodes of the mth binary subtree. For ease of
reference we define λ(m) = (m− 1)s + (2m − m)j. Further, since the mth binary subtree
has m levels, it has 2m−1 leaves, so the leaves of the mth binary subtree contain 2m−1j
labels. By what we have just observed, the last label in the last leaf of the mth binary
subtree is λ(m).

By a straightforward calculation it is immediate that 2m−1j, the number of labels on
the leaves of the mth binary subtree, can be expressed as λ(m)+j+(m−1)(j−s)

2
. From this

formula we deduce that in the special case where T (n) is the mth binary subtree (in other

words, n = λ(m)) then R(n) − n
2

is precisely j+(m−1)(j−s)
2

.
For any value of n, with fixed s and j, it is clear that the tree T (n) is a subtree of

a smallest binary subtree; that is, there exists a smallest m such that T (n) is a subtree
of the mth binary subtree but not of the (m − 1)st binary subtree. Note that this means
λ(m−1) = (m−2)s+(2m−1−m+1)j < n 6 (m−1)s+(2m−m)j = λ(m). It follows that
T (n) contains the first n − λ(m − 1) labels from mth binary subtree that are not in the
(m− 1)st binary subtree; the nodes in T (n) on which these labels reside are the (m− 1)st

s-node, its right child, and the descendants of the right child. We refer to the portion
of T (n) consisting of these nodes as the mth binary residual of T (n), or just the binary
residual when m is clear. Let r(n, m) be the number of these n − λ(m − 1) labels that
are not in the (m − 1)st binary subtree and that are on the leaves of T (n). Equivalently,
r(n, m) is the number of leaf labels in the mth binary residual of T (n). Then we have the
following result, which bounds the difference between the number of labels in the leaves
and half the total number of labels of the binary residual of the tree T (n).

Lemma 5.2. For fixed n, s and j let m be the smallest integer such that T (n) is a subtree
of the mth binary subtree. Let λ(m − 1) be the number of labels in the (m − 1)st binary
subtree of T . Let r(n, m) be the number of leaf labels in the binary residual of T (n). Then

min(1
2
, s−j

2
) 6

n−λ(m−1)
2

− r(n, m) 6
(m−2)j+s

2
.

Proof. First we show that the boundary conditions are the best possible. We begin with
the lower bound. Note that if s − j 6 1 then the minimum is s−j

2
, and otherwise, when

s − j > 1, the lower bound is 1
2
. However, regardless of the value of s − j, we show in

what follows that n−λ(m−1)
2

− r(n, m) will assume both values, at two distinct values of n.

12See [8], [5]. [2], [11], and [20] for examples of recursions with a similar structure where the solutions
display this same behavior.

the electronic journal of combinatorics 16 (2009), #R129 30

First we prove that when n is the last label in the mth binary subtree, that is, when
n = λ(m), then r(n, m) assumes the value n−λ(m−1)+j−s

2
. To see this, consider the binary

residual of T (n) (the portion of T (n) that consists of the (m− 1)st s-node, the right child
of the (m− 1)st s-node, and all of its descendants). Since this portion of T (n) consists of
the (m−1)st s-node and then a binary tree with m−1 levels, there are 2m−1 −1 j-nodes,
of which 2m−2 are leaves. There are 2m−2j leaf labels in this portion of T (n) and these
include all of the leaf labels in the binary residual. So r(n, m) = 2m−2j. If we change the
(m− 1)st s-node to a j-node, then include it in the count, we have 2m−1 total nodes, and

exactly half are leaves. So, in this case, r(n, m) = n−λ(m−1)+j−s
2

(note that the +j − s

transforms the s-node to a j-node), and thus s−j
2

= n−λ(m−1)
2

− r(n, m).
Now consider the subtree T (n) of T when n is the first label in the binary residual,

meaning n = λ(m − 1) + 1. This label n must appear in the (m − 1)st s-node if s > 0
and otherwise in a j-node that is not a leaf. So for this n we have that n− λ(m− 1) = 1

and r(n, m) = 0. Thus, n−λ(m−1)
2

− r(n, m) = 1
2
. Thus, we have shown that for any s and

j there are always two distinct values of n such that n−λ(m−1)
2

− r(n, m) assumes both

possible lower bounds. Which one of 1
2

and s−j
2

is smaller determines the greatest lower
bound.

We now illustrate the value of n for which the difference n−λ(m−1)
2

− r(n, m) assumes

the upper bound (m−2)j+s
2

. Let n be the last label in preorder before the first leaf label of
the binary residual of T (λ(m)−1), that is, n occurs immediately before the first leaf in the
mth but not (m−1)st binary subtree. For example, if s = 2, j = 3 and m = 4 then n = 27.

See Figure 3.1, where it is easily verified that n−λ(m−1)
2

− r(n, m) = 4 = (m−2)j+s
2

. Note
that for such a value of n we always have r(n, m) = 0 as we have not yet filled in any leaf
labels in the binary residual. Also, by the nature of the preorder for the labeling of T , the
only nodes that receive labels up to such a value of n are the (m − 1)st s-node, the right
child of this s-node, the left child of this latter node, and the left children of successive
nodes all the way down to the parent of the leftmost leaf in the binary residual. But this
sequence of nodes comprises 1 s-node and m − 2 j-nodes. Hence, n−λ(m−1)−(m−2)j−s

2
= 0,

so n−λ(m−1)
2

− r(n, m) = (m−2)j+s
2

.
Finally we show that the stated inequalities hold for any n in the indicated interval.

First, we show that if s − j > 1 then 1
2

6
n−λ(m−1)

2
− r(n, m), and otherwise s−j

2
6

n−λ(m−1)
2

− r(n, m). Suppose that n0 is a label in the mth binary subtree and is on or
after (in preorder) the first leaf in the binary residual. We show that that the value of
n0−λ(m−1)

2
− r(n0, m) is bigger than or equal to the value of the corresponding difference

for n′ = λ(m), that is, λ(m)−λ(m−1)
2

− r(λ(m), m) 6
n0−λ(m−1)

2
− r(n0, m).

Our general approach is to add labels and nodes to T (n) in certain discrete blocks
so as ultimately to end up with the tree T (λ(m)). We may need to do so several times.
For any positive integer k, define nk to be the last label on the rightmost leaf descendant
of the node containing the label nk−1 + 1. The labels added in the kth discrete block
consist of those numbered from nk−1 +1 to nk. Note that the labels added at the kth step
comprise a full binary tree, less the number αk of labels on the node containing the label
nk−1 + 1. By our construction αk = 0 unless k = 1. For example, in Figure 3.1, if the

the electronic journal of combinatorics 16 (2009), #R129 31

starting node n0 = 55 then n1 = 56, α1 = 2, n2 = 59, α2 = 0, n3 = 68, α3 = 0, and we
end up with the tree T (λ(5)) at n4 = 90 = λ(5).

We show that after each such block is added, the value of nk−λ(m−1)
2

− r(nk, m) is no

bigger than
nk−1−λ(m−1)

2
− r(nk−1, m). Recall that the total number of nodes on any full

binary tree is twice the number of leaf nodes, less 1. Thus, for our labeled binary trees with
j labels per node, the total number of labels on any full binary tree is twice the number
of leaf labels less j. Therefore (nk − nk−1), the number of labels added, equals twice the
number of leaf labels added, less the j labels on the one less node, then corrected by −αk.
So, nk − nk−1 = 2(r(nk, m) − r(nk−1, m)) − j − αk so we have nk − nk−1 − 2(r(nk, m) −

r(nk−1, m)) 6 0. This shows that nk−λ(m−1)
2

− r(nk, m) − (
nk−1−λ(m−1)

2
− r(nk−1, m)) 6 0

as desired. So we have shown that if n is on or after the first leaf of the mth but not
(m − 1)st binary subtree, than the value of n−λ(m−1)

2
− r(n, m) is larger than the value

when n = λ(m) (that is, at the end of the binary subtree).
In the case where n is before this first leaf of the binary residual, r(n, m) = 0. It

is obvious that reducing the value of n to λ(m − 1) + 1 will not increase the value of
n−λ(m−1)

2
− r(n, m), since we delete no leaf entries in doing so. Note that we must stay

past the (m − 1)st binary subtree by our assumption about the minimum value of n.

Figure 5.1: The binary residual of T (n).

Now we show that for the values of n we are considering, namely, the condition that n
must be in the mth binary residual, n−λ(m−1)

2
− r(n, m) 6

(m−2)j+s
2

holds. We begin with

the claim that n−λ(m−1)
2

− r(n, m) is maximized when n’s parent, grandparent, etc. are
all left children, except for the right child of the s-node.

Suppose this claim is false, that is, for some n with a right child in its ancestry (other

than the right child of the (m − 1)st s-node), n−λ(m−1)
2

− r(n, m) is maximal. See Figure
5.1 where we have indicated the location of the label n. Locate the node that is the

the electronic journal of combinatorics 16 (2009), #R129 32

(a) (b)

Figure 5.2: (a) T (n) with X and all of its descendants removed. (b) T (b)

uppermost right child from which n descends (other than the right child of the (m− 1)st

s-node). In Figure 5.1 this node is called Z. We define Y to be the parent of Z; denote by
X the left child of Y (we will return to X later). Call e the right edge descending from Y.
We consider the label b on T (n) which is found by following the same path from Y as n,
except that instead of proceeding down e, we instead take the left edge at the first step.
Note that X,Y and Z refer to entire j-nodes while each of b and n is an individual label
among the j on its respective j-node. For example, in Figure 3.1, if n = 35, then b = 26,
if n = 78, then b = 57 and if n = 57, then b = 54.

We compare n−λ(m−1)
2

− r(n, m) and b−λ(m−1)
2

− r(b, m) and we show that b−λ(m−1)
2

−

r(b, m) is larger. In order to evaluate b−λ(m−1)
2

− r(b, m), we take T (n) and remove X and
all of its descendants. See Figure 5.2a. Note that doing this gets us a tree that is identical
to T (b) up to relabeling (and changing e to a left turn); see Figure 5.2b.

By preorder, since the edge e indicates a right turn, the portion of T (n) that is X
and all of its descendants is a full binary tree. If Y is on the yth level in T (n), then X
is on the (y − 1)th level so deleting X and all of its descendants removes 2y−2 leaf nodes
and 2y−1 − 1 total nodes. This means that the total number of nodes we are removing in
going from T (n) to T (b) is one less than the number of leaf nodes we are removing. For
example in Figure 5.2a, we are removing four leaf nodes and seven total nodes. Since we
are only removing j-nodes with their full complement of j labels each, this means that
the total number of labels removed, n − b, is twice the number of leaf labels removed,
r(n, m)−r(b, m), minus j. We write this as n−b = 2(r(n, m)−r(b, m))−j, which implies
n − 2r(n, m) = b − 2r(b, m) − j. Dividing by 2 we have n

2
− r(n, m) = b

2
− r(b, m) − j

2
.

Finally, we subtract λ(m−1)
2

from both sides, yielding the equation b−λ(m−1)
2

− r(b, m) =

the electronic journal of combinatorics 16 (2009), #R129 33

j
2

+ n−λ(m−1)
2

− r(n, m). But this contradicts our hypothesis that n−λ(m−1)
2

− r(n, m) is

maximal, as we have just shown that b−λ(m−1)
2

−r(b, m) is larger by j
2
. Therefore, our claim

must be true: n−λ(m−1)
2

−r(n, m) can only be maximal when n’s parent, grandparent, etc.
are all left children, except for the right child of the s-node.

It remains to show that n−λ(m−1)
2

− r(n, m) is maximal when, in addition to having an
all left ancestry as described above, n is the last label on a level 2 node (ie, n comes just
before the first leaf of the binary residual).

Clearly, given any n on level 2 or above, we could increase the value of n−λ(m−1)
2

−
r(n, m) by filling in the rest of the node with n and all of its left children until we reached
the end of a level 2 node, since this would not add any leaves. So, this means that the
only possible candidates for the maximal position are the label right before the first leaf
label in the binary residual, or the leaf labels on that first leaf. It is obvious that adding
leaf labels decreases n−λ(m−1)

2
− r(n, m), as each leaf label added increases n−λ(m−1)

2
by 1

2

and increases r(n, m) by 1, the net effect of which is to decrease n−λ(m−1)
2

− r(n, m) by 1
2

per leaf label added.
Therefore it must be true as claimed that n−λ(m−1)

2
− r(n, m) can only be maximal

when n is the final label before the first leaf label that is not in the (m − 1)st binary
subtree. This establishes the desired result.

Collecting the above results we readily obtain the following bounds on n
2
− R(n).

Theorem 5.3. Suppose (m−2)s+(2m−1−m+1)j < n 6 (m−1)s+(2m−m)j), ie, n is in

the mth binary residual. Then min{1−j+(m−2)(s−j)
2

, s−2j+(m−2)(s−j)
2

} 6
n
2
−R(n) 6

ms−s−j
2

.

Proof. From Lemma 5.2 we have upper and lower bounds for the part of n
2
− R(n) that

comes from binary residual of T (n), namely min(1
2
, s−j

2
) 6

n−λ(m−1)
2

−r(n, m) 6
(m−2)j+s

2
.

By the definition of r(n, m), r(n, m) + R(λ(m − 1)) = R(n), so to change these bounds

into bounds on n
2
− R(n), we need to add λ(m−1)

2
and subtract R(λ(m − 1)).

Applying this to the entire inequality from Lemma 5.2 we get min(1
2
, s−j

2
) + λ(m−1)

2
−

R(λ(m − 1)) 6
n
2
− R(n) 6

(m−2)j+s
2

+ λ(m−1)
2

− R(λ(m − 1)).

Recall from our discussion before Lemma 5.2 that R(λ(m)) − λ(m)
2

= j+(m−1)(j−s)
2

,

so λ(m−1)
2

− R(λ(m − 1)) = − j+(m−2)(j−s)
2

. We substitute this value into our previous
inequality and simplify to get the desired inequality.

Note that the above result is much stronger than just stating that R(n) approaches
n
2

as the difference n
2
− R(n) grows linearly with m whereas the value of n increases

exponentially with m.

Corollary 5.4. R(n) = n
2

+ O(log2(n)) as n → ∞

Proof. If n is on the mth residual subtree, then (m − 2)s + (2m−1 − m + 1)j < n 6

(m − 1)s + (2m − m)j). It follows that m ∈ O(log2(n)). Now apply Theorem 5.3 to get
the desired result.

the electronic journal of combinatorics 16 (2009), #R129 34

Lastly, we use the combinatorial interpretation for the sequence R(n) to derive its
frequency function, which is significantly more complicated than the frequency function
for G(n). To begin, we first define the k-ary ruler r

(k)
q as 1 plus the k-adic valuation of

q. That is, if q = kpv where v is not divisible by k, then r
(k)
q = p + 1. Next we define a

function φ that we claim is the frequency function we seek. We start with the subcase
s = 0, in which

φ0,j,k(m) =

{

1 if m 6≡ 0 mod kj

jr
(k)
m/j − j + 1 if m ≡ 0 mod kj

In general, for s > 0 we define φs,j,k in terms of the special case when s = 0:

φs,j,k(m) =

{

φ0,j,k(m) if m 6= jkp for some nonnegative integer p
φ0,j,k(m) + s if m = jkp for some nonnegative integer p

We now prove that φs,j,k(m) = fRs,j,k
(m), the frequency function of Rs,j,k(n).

Theorem 5.5. Let Rs,j,k(n) be the leaf label for the tree Ts,j,k(n), and φs,j,k(n) be as defined
above. Let fRs,j,k

(n) be the frequency function for Rs,j,k(n). Then fRs,j,k
(m) = φs,j,k(m).

Proof. We begin by proving that φ0,j,k(m) = fR0,j,k
(m). We consider three cases:

Case 1: m = jkq for some nonnegative integer q. Note that jkq is precisely the number
of leaf labels in the (q +1)st complete subtree. Therefore, the leaf label counting sequence
R0,j,k(n) will first assume the value m at the last leaf label in the (q+1)st complete subtree
and will first assume the value m+1 at the first leaf label in the (q+2)nd residual subtree.
Recall that the (q + 2)nd complete subtree descends from the (q + 1)st s-node which is
a level q + 2 node, therefore, there are q nonleaf j-nodes between the (q + 1)st s-node
and the first leaf of the (q + 2)nd residual subtree. Hence R0,j,k(n) assumes the value m
one time (on the last leaf label of the (q + 1)st complete subtree) plus jq times (on the

aforementioned first q nonleaf j-nodes of the (q+2)nd residual subtree. Since q = r
(k)
m/j −1,

we have shown fR0,j,k
(jkq) = jq + 1 = jr

(k)
kq − j + 1 = φ0,j,k(jk

q).
Case 2: m < j. Note if j = 1, this case is vacuously proven. Otherwise, since T0,j,k(n)

begins with a j-node, the first j labels will be leaf labels and so the frequency of m for
m < j is 1, as is φ0,j,k(m).

Case 3: m > j and m 6= jkq for any nonnegative integer q. Let z be the largest integer
such that jkz < m. We begin this case by showing that φ0,j,k(m) = φ0,j,k(m − jkz). If j
does not divide m, then j does not divide m − jkz either, so it follows that φ0,j,k(m) =
φ0,j,k(m − jkz) = 1. On the other hand, if j does divide m, then m = jxky where x is a
natural number such that k does not divide x. In order to show φ0,j,k(m) = φ0,j,k(m−jkz),

it suffices to show r
(k)
m/j = r

(k)
(m−jkz)/j . If y < z, then r

(k)
(m−jkz)/j = r

(k)
xky−kz = r

(k)
ky(x−kz−y) =

y +1 = r
(k)
m/j , where the penultimate equality holds because z−y > 0 and thus k does not

divide x−kz−y. If y = z, then note that 1 < x < k, since if x = 1 or x = k, our hypothesis
that m 6= jkq for any q is false, and if x > k, then jkz+1 < m, which contradicts z being the
largest integer such that jkz < m. Thus, r

(k)
(m−jkz)/j = r

(k)
xkz−kz = r

(k)
kz(x−1) = z + 1 = r

(k)
m/j ,

where the penultimate equality holds because, as 1 < x < k, 0 < x− 1 < k− 1 and hence

the electronic journal of combinatorics 16 (2009), #R129 35

k cannot divide x−1. Clearly, y > z is impossible by the assumption that z is the largest
integer such that jkz < m. So we have shown that φ0,j,k(m) = φ0,j,k(m − jkz).

Next, we show that fR0,j,k
(m) = fR0,j,k

(m − jkz). Recall that the (z + 2)nd residual
subtree (the one to which the mth leaf label belongs) consists of an s-node, and k − 1
copies of the (z + 1)st complete subtree (with the s-nodes replaced by j-nodes). Since
m 6= jkq for any q, the mth leaf label is not the last label in its complete subtree. We now
go to subcases.

Sub-case 3.1: if the mth leaf label belongs to the pth of these k−1 copies of the (z+1)st

complete subtree for p > 1, then the (m − jkz)th leaf label occupies the same position in
the (p − 1)st copy. Hence fR0,j,k

(m) = fR0,j,k
(m − jkz).

Sub-case 3.2: the mth leaf label belongs to the first of these k−1 copies of the (z +1)st

complete subtree, but is not the last label in that copy. Then the (m − jkz)th leaf label
occupies the same relative position in the (z + 1)st complete subtree as the mth leaf label
does in the first copy of the (z + 1)st complete subtree that lies in the (z + 2)nd residual
subtree. The only difference between the original (z + 1)st complete subtree in which the
(m − jkz)th leaf label lies, and the first copy of the (z + 1)st complete subtree in which
the mth leaf label lies, is that the original has empty (since s = 0) s-nodes in place of the
upper left j-nodes in the first copy. However, the upper left j-nodes in the first copy come
in preorder before the leaves in the first copy (unlike the s-nodes, which are dispersed in
preorder between leaves). But since the s-nodes in the original are empty, this difference
has no effect on the number of nonleaf labels following the mth and (m−jkz)th leaf labels.
Therefore, because they have the same relative positions and the change between s and
j-nodes from the original to the copy does not matter, fR0,j,k

(m) = fR0,j,k
(m − jkz).

Sub-case 3.3: if the mth leaf label is the last label in the first copy of the (z + 1)st

complete subtree that lies in the (z + 2)nd residual subtree, then the mth leaf label is
immediately followed in preorder by the 2nd copy of the (z+1)st complete subtree. Observe
that because m 6= jkq for any q, this sub-case only arises if k > 2. Then m − jkz will be
the last label in the (z + 1)st complete subtree, and hence will be followed by an s-node
(empty, as s = 0) and then the first copy of the (z + 1)st complete subtree lying in the
(z + 2)nd residual subtree. Thus the labels following both the mth and (m − jkz)th leaf
labels are the labels of a copy of the (z + 1)st complete subtree lying in the (z + 2)nd

residual subtree, so fR0,j,k
(m) = fR0,j,k

(m − jkz).
Now that we have shown that if m > j and m 6= jkq for any nonnegative integer q,

then φ0,j,k(m) = φ0,j,k(m − jkz) and fR0,j,k
(m) = fR0,j,k

(m − jkz) where z is the largest
integer such that jkz < m. So, given such m, replace m with m′ = m − jkz, and we
know that φ0,j,k(m) = fR0,j,k

(m) if and only if φ0,j,k(m
′) = fR0,j,k

(m′). If we repeat this
process, we will eventually either reach a m′ < j or an m′ such that m′ = jkq for some
nonnegative integer q, at which point either Case 1 or Case 2 covers that value of m′.
Therefore, φ0,j,k(m) = fR0,j,k

(m) for all j, k, m.
Finally, we show that for s > 0, φs,j,k(m) = fRs,j,k

(m). To do so, it suffices to
show that if m = jkp for some integer p, then fRs,j,k

(m) = fR0,j,k
(m) + s, and otherwise

fRs,j,k
(m) = fR0,j,k

(m). But this is obvious, since the only difference between Ts,j,k and
T0,j,k is the s-nodes, which appear directly after the end of complete subtrees, and hence

the electronic journal of combinatorics 16 (2009), #R129 36

their inclusion will add s to the frequency of m = jkp for p any nonnegative integer, since
jkp is the leaf label count in the (p + 1)st complete subtree.

6 Revisiting the Initial Conditions

Earlier we noted that the behavior of the solutions to the recursions (2.1) and (2.2)
depends on the initial conditions that are assumed. Here we explore the role of the initial
conditions further.

In Section 2 we described the empirical investigation of (1.1) that led to the identifi-
cation of the parameters for the recursions (2.1) and (2.2). But note that in a manner of
speaking we have carried out a “bait and switch” regarding the initial conditions. The
initial conditions used in Section 2 to identify (2.1) and (2.2) consisted of some number of
1s followed by a single 2. But our analysis of these recursions in Sections 3 and 4 via the
infinite trees T and H incorporated initial conditions that follow the trees. These initial
conditions (for j > 1) are very different from a string of 1s followed by a single 2. Indeed,
the first j initial conditions for each of the trees is the sequence of integers 1, 2, 3, . . . , j.

So far we have proved nothing about the solutions to (2.1) and (2.2) with the initial
conditions from Section 2, although we did speculate there that based on the empirical
data it appears that these sequences, like the ones described in Sections 3 and 4, are slow
growing. Rather than prove directly that these solutions are slow, we ask more generally
if it is possible to identify which sets of initial conditions together with the recursion (2.1)
or (2.2) will lead to a slow growing solution. It is evident that if the entire sequence is to
be slow then it is necessary that the initial conditions are slow. 13 However, this condition
is not sufficient: for example, the recursion (2,3 : 5,6) together with the slow six initial
conditions 1, 2, 3, 4, 5, 6 generates the solution whose next six values are 2, 2, 2, 7, 3, 10 so
the sequence is not slow.

At this stage we provide a test that identifies whether a given set of initial conditions
for the recursion (2.1) in the special case with s > 0 and k = 2 generates a slow growing
sequence.14 Notice that in this case we must have at least 2j initial conditions to start
the calculation of the solution sequence from the recursion.

Fix s > 0, j > 0, k = 2 and the set of r initial conditions, r > 2j. If the solution is
to be slow, these r initial conditions must be slow. Let A(n) = As,j,2(n) be the sequence
generated by the recursion (2.1) and the given r initial conditions. Observe that A(n)
may become undefined. For notational convenience, define A1(n) = A(n − s − A(n − j))
and A2(n) = A(n − s − j − A(n − 2j)) (note A2(n) = A1(n − j)). Further, define the
difference sequences Λ(n) := A(n + 1) − A(n), Λ1(n) = A1(n + 1) − A1(n) = A(n + 1 −
s−A(n + 1− j))−A(n− s−A(n− j)) and Λ2(n) = A2(n + 1)−A2(n) = A(n + 1− s−

13We have identified sets of initial conditions that are not slow and where the resulting solution is
eventually slow, by which we mean that the sequence is slow from some point on. An example is the
recursion (1,2 : 3,4) with the initial conditions 5, 3, 1, 2, 2, 2, 2.

14Substantial empirical evidence suggests that a comparable test may hold for the recursion (2.2) but
so far we have not been able to prove it.

the electronic journal of combinatorics 16 (2009), #R129 37

j − A(n + 1 − 2j)) −A(n − s − j −A(n − 2j)). Clearly, Λ(n) = Λ1(n) + Λ2(n) and A(n)
is slow if and only if for all n, Λ(n) ∈ {0, 1}.

Lemma 6.1. Suppose that A(n) is slow up to at least the term m > r (that is, for all
p < m, Λ(p) ∈ {0, 1}). Then for i ∈ {1, 2}, Λi(m) ∈ {0, 1}.

Proof. Since j > 0 and A(n) is slow up to at least m, Λ(m− j) ∈ {0, 1}. If Λ(m− j) = 1,
then m − s − A(m − j) = m − s − (A(m + 1 − j) − 1) = m + 1 − s − A(m + 1 − j), so
A1(m + 1) = A1(m) and hence Λ1(m) = A1(m + 1) − A1(m) = 0. On the other hand, if
Λ(m−j) = 0, then m+1−s−A(m+1−j) = m+1−s−A(m−j) = 1+(m−s−A(m−j)),
and hence Λ1(m) = A(m + 1 − s − A(m + 1 − j)) − A(m − s − A(m − j)) = A(1 + m −
s − A(m − j)) − A(m − s − A(m − j)) = Λ(m − s − A(m − j)) ∈ {0, 1}.

Since A2(n) = A1(n − j), then Λ2(n) = Λ1(n − j) so the above result also holds for
Λ2.

From Lemma 6.1 the following is immediate:

Lemma 6.2. Suppose that m > r is the smallest integer such that Λ(m) /∈ {0, 1}. Then
Λ1(m) = Λ2(m) = 1 and Λ(m) = 2.

Proof. Since A(n) is slow up to m, by Lemma 6.1, Λ1(m), Λ2(m) ∈ {0, 1}. Since Λ(m) =
Λ1(m) + Λ2(m) /∈ {0, 1}, it must be that Λ1(m) = Λ2(m) = 1 and Λ(m) = 2.

In order to use the preceding lemma, we want to have a useful way to determine the
value of Λi.

Lemma 6.3. Assume that A(n) is slow up to at least m > r. Then for all p 6 m,
Λ1(p) = 1 if and only if Λ(p − j) = 0 and Λ(p − s − A(p − j)) = 1, and Λ2(p) = 1 if and
only if Λ(p − 2j) = 0 and Λ(p − s − j − A(p − 2j)) = 1. Equivalently, Λ1(p) = 0 if and
only if Λ(p− j) = 1 or Λ(p−s−A(p− j)) = 0, and Λ2(p) = 0 if and only if Λ(p−2j) = 1
or Λ(p − s − j − A(p − 2j)) = 0.

Proof. This result has already been proved as part of the proof of Lemma 6.1.

We now prove the condition that confirms that the recursion (2.1) has a slow solution.

Theorem 6.4. Assume that A(n) is slow up to at least n = r + j. Then A(n) is slow.

Proof. Suppose not. Then there must be a minimum index m so that Λ(m) /∈ {0, 1}.
By Lemma 6.2, Λ(m) = 2 and Λ1(m) = Λ2(m) = 1. By Lemma 6.3, Λ1(m) = 1 implies
that Λ(m − j) = 0 and Λ(m − s − A(m − j)) = 1; in a similar way, from Λ2(m) = 1 we
conclude that Λ(m− 2j) = 0 and Λ(m− s− j −A(m− 2j)) = 1. Because Λ(m− j) = 0,
by Lemma 6.3, Λ(m − 2j) = 1 or Λ(m − s − j − A(m − 2j)) = 0. But this contradicts
what we just proved, hence our initial assumption must have been false. Therefore, A(n)
is a slow solution.

the electronic journal of combinatorics 16 (2009), #R129 38

7 Next Steps

We have seen that there appears to be a correspondence between certain families of meta-
Fibonacci sequences defined by recursions whose parameters satisfy certain constraints
and infinite trees that are closed under a natural pruning operation. In particular, shifting
and multiplying the parameters of the recursion corresponds to changing the number of
labels in the nodes of the tree in a way that is consistent across all three families of
sequences that we have discussed.

This suggests the existence of a more general correspondence between slow-growing
meta-Fibonacci sequences that arise from appropriate specifications of the parameters and
labeled trees. Further work could focus directly on identifying different sets of constraints
for the parameters for such other families of meta-Fibonacci recursions, together with
suitable initial conditions; some initial efforts in this direction have already led to some
interesting findings that will be reported in a subsequent communication. Conversely,
it may be possible to reverse the process, that is, define trees closed under pruning and
try to relate their label count to a meta-Fibonacci sequence. In either case, as has been
shown elsewhere, it could be fruitful to consider a broader range of (possibly weighted)
labeling schemes for the trees. In this vein, we do not discount the possibility that a
different labeling scheme on one or more of our existing trees, together with a different
set of initial conditions, could lead to a graphical combinatorial interpretation for more
families of slow meta-Fibonacci sequences.

Acknowledgements

We are very grateful to Professor Frank Ruskey for helpful discussions of this material and
his review of earlier versions of this paper, and to Nigel Chan for his excellent research
assistance.

References

[1] R.B.J.T. Allenby and R.C. Smith, Some sequences resembling Hofstadter’s, J. Korean
Math. Soc. 40 (2003), 921-932.

[2] B. Balamohan, A. Kuznetsov and S. Tanny, On the behaviour of a variant of Hofs-
tadter’s Q-sequence, J. Integer Sequences 10 (2007), Article 07.7.1.

[3] B. Balamohan, Z. Li, and S. Tanny, A combinatorial interpretation for certain rela-
tives of the Conolly sequence, J. of Integer Sequences 11 (2008), Article 08.2.1.

[4] M. Cai and S. Tanny, How the shift parameter affects the behavior of a family of
meta-Fibonacci sequences, J. of Integer Sequences (2008), Article 08.3.6.

[5] J. Callaghan, J. J. Chew III and S. Tanny, On the behavior of a family of meta-
Fibonacci sequences, SIAM J. Discrete Math. 18 (2005), 794-824.

the electronic journal of combinatorics 16 (2009), #R129 39

[6] B. W. Conolly, Meta-Fibonacci sequences, in S. Vajda, ed., Fibonacci & Lucas Num-
bers, and the Golden Section, Wiley, New York, 1986, pp. 127-137.

[7] C. Deugau and F. Ruskey, Complete k-ary trees and generalized meta-Fibonacci
sequences, Fourth Colloquium on Mathematics and Computer Science: Algorithms,
trees, Combinatorics and Probabilities, DMTCS Proceedings Series, 2006 AG, pp.
203-214.

[8] S. Golomb, Discrete chaos: sequences satisfying “strange” recursions, preprint, un-
dated.

[9] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Second Edi-
tion, Addision-Wesley, Massachusetts, 1994,

[10] R.K. Guy, Unsolved problems in number theory, Problem Books in Math, Springer,
New York, Third Edition, 2004.

[11] J. Higham and S. Tanny, More well-behaved meta-Fibonacci sequences, Congr. Nu-
mer., 98 (1993), 3-17.

[12] D.R. Hofstadter, Godel, Escher, Bach: An Eternal Golden Braid, Basic Books, New
York, 1979.

[13] D.R. Hofstadter, Metamagical Themas, Basic Book, NY, 1985.

[14] B. Jackson and F. Ruskey, Meta-Fibonacci sequences, binary trees and extremal
compact codes, Electron. J. of Combin. 13 (2006), R26.

[15] K. Pinn, Order and chaos in Hofstadter’s Q(n) sequence, Complexity 4 (1999), no.
3, 41-46.

[16] F. Ruskey, private communication, August 2007.

[17] F. Ruskey, S. Chandran, A. Das, and B. Jackson, Isoperimetric sequences for infinite
complete binary trees and their relation to meta-Fibonacci sequences and signed
almost binary partitions, preprint, 2009.

[18] F. Ruskey and C. Deugau, The combinatorics of certain k-ary meta-Fibonacci se-
quences, preprint, 2009.

[19] N. J. A. Sloane, Online Encyclopedia of Integer Sequences,
http://www.research.att.com/∼njas/sequences.

[20] S. Tanny, A well-behaved cousin of the Hofstadter sequence, Discrete Math. 105
(1992), 227-239.

the electronic journal of combinatorics 16 (2009), #R129 40

http://www.research.att.com/~njas/sequences

	Introduction
	A Brief Empirical Interlude
	Combinatorial Interpretation for the Family [0,j : j,2j]
	Combinatorial Interpretation for the Family [0,j : 2j,3j]
	Applications of the Combinatorial Interpretations
	Revisiting the Initial Conditions
	Next Steps

