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Abstract

We introduce a pair of natural, equivalent models for randbrashold graphs and use
these models to deduce a variety of properties of randonstibid graphs. Specifically, a
random threshold grap® is generated by choosinglID valuesxg, ..., X, uniformly in
[0, 1]; distinct verticed, | of G are adjacent exactly wheq + x; > 1. We examine various
properties of random threshold graphs such as chromatidagnalgebraic connectivity,
and the existence of Hamiltonian cycles and perfect magshin

1 Introduction and Overview of Results

Threshold graphs were introduced by Chvatal and Hamm@, i6][ see alsd ]6,13]. There are
several, logically equivalent ways to define this family odhs, but the one we choose works
well for developing a model of random graphs. A simple gr&abk athreshold graphf we can
assign weights to the vertices such that a pair of distindioes is adjacent exactly when the
sum of their assigned weights is or exceeds a specified thicesWithout loss of generality, the
threshold can be taken to be 1 and the weights can be redttecte in the interval [Q1]; see
Definition[Z1. Reference§l[2, 9,116] provide an extensittuction to this class of graphs.

If we choose the weights for the vertices at random, we indupeobability measure on
the set of threshold graphs and thereby create a notion afidoma threshold graph. Given
that we may assume the weights lie in I it is natural to take the weights independently
and uniformly in that interval; a careful definition is givém §3.1. The idea of choosing a
random representation has been explored in other contegtsas random geometric graphs
[18] (choose points in a metric space at random to represatites that are adjacent if their
points are within a specified distance) and random intemagdlgs [19] (choose real intervals at
random to represent vertices that are adjacent if theirvate intersect).

A different approach to random threshold graphs that is basedemuesive description of
their structure (see TheordmR.7) was presented in [11] evgoal was to use threshold graphs
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to approximate real-world networks (such as social netgpri/e use the core idea ofJ11] to
develop a second, alternative model of random threshojohgrései3.2).

Our principal result is that these two ratheftdrent definitions of random threshold graphs
result in precisely the same probability distribution omghs; this is presented §8.4 and
proved in§dl. We then exploit this alternative description of randomesimold graphs to deduce
various properties of these graphs§fi. In nearly all cases, our results are exact; this stands in
stark contrast to the theory of Erdés-Rényi random grapkgich most results are asymptotic.

In particular we consider the following properties of randthreshold graphs:

e degree and connectivity properties, including the algelrannectivity;
¢ the clique and chromatic number;

e Hamiltonicity;

¢ perfect matchings; and

e statistics on small induced subgraphs and vertices of metidegree.

For example, we prove that the probability a random thresgohph om vertices has a Hamil-
tonian cycle is exactly

1 -2
21\[(n-2)/2]
which is asymptotic to AV2rn; see Theore 5.21.

2 Threshold Graphs

Most of the definitions and results presented in this sedcienpreviously known; seél[4] but
especially[2[ B, 16] for a broad overview.

2.1 Definitions

The graphs we consider are simple graphs (undirected arebutitoops or multiple edges).
Often the vertex set dB, denotedv(G), is [n] := {1,2,...,n}. The edge set o& is denoted
E(G).

There are a variety of equivalent ways to define thresholglggawe choose this one as
particularly convenient for our purposes.

Definition 2.1 (Threshold graph, representatiohet G be a graph. We say th&tis athreshold
graphprovided there is a mapping: V(G) — R such that for all pairs of distinct verticesv
we have

uve E(G) & f(u)+ f(v)> 1.

The mappingf is called athreshold representatioof f. The numberf (v) is called thewveight
assigned to vertex
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Definition 2.2 (Proper representation).et G be a threshold graph and let V(G) — R, be a
threshold representation &f. We say thaff is aproperrepresentation provided:

1. for all verticesvof G, 0 < f(v) < 1,
2. for all pairs of distinct vertices, v of G, f(u) # f(v), and
3. for all pairs of distinct vertices, v of G, f(u) + f(v) # 1.
The following is well known; see [16].
Proposition 2.3. Let G be athreshold graph. Then G has a proper threshold ssr&ation. O

Because the graphs we consider he{@) = [n], a threshold representatidn: V(G) — R,
can be identified with a vector € R" in which thei™ coordinate ofk, x;, is f(i). A threshold
graph and representation for this graph are shown in Figure 1

By PropositiorZI3 we may restrict our attention to repréiservectors in the following set.

Definition 2.4 (Space of proper representationtet n be a positive integer. Thepace of
proper representationis the sef?, defined as those vectaxss R" such that

1. foralli,0< x < 1,
2. foralli # j, x # x;, and
3. foralli # j, x +x; # 1.

Givenx € P, definel'(x) to be the threshold grap® with V(G) = [n] so thati — X is a
threshold representation. Thatiige E(G) if and only if x; + x; > 1. ThusI' is a mapping from
PP, onto the set of threshold graphs on vertex st |

We denote the set of threshold graphs with vertexnsstT,. Thereford : P, — T,.

Note that for a threshold gragh with V(G) = [n], I}(G) is the subset aP, of all proper
representations d@b.
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2.2 Characterization theorems

See|[16] for details on these well-known results.
It is easy to check that the property of being a thresholdlgra@ hereditary property of
graphs. By this we mean

e if Gis athreshold graph and is isomorphic tdG, thenH is a threshold graph, and
e if Gis athreshold graph and is an induced subgraph &, thenH is a threshold graph.

Therefore, threshold graphs admit a forbidden subgraphactexization; in addition td_[16],
see also[2].

Theorem 2.5.[4] Let G be a graph. Then G is a threshold graph if and only if Ged not
contain an induced subgraph isomorphic tg, €, or 2K,. O

Of greater utility to us is a structural characterizatioritoeshold graphs based on extremal
vertices which we define here.

Definition 2.6. Let G be a graph and lete V(G). We say thav is extremalprovided it is either
isolated(adjacent to no other vertices G or dominating(adjacent to all other vertices &).

Theorem 2.7.Let G be a graph. Then G is a threshold graph if and only if G hagxremal
vertex u and G- u is a threshold graph.

We include a proof of this well-known result because it istcarto the notion of creation
sequence developed in section 2.3.

Proof. Suppose first tha is a threshold graph and Igtbe a proper threshold representation.
Select vertices andb such that

Xa = Min{x, : ve V(G)} and x, =maxXx,:Vve V(G)}.

Note that ifx,+ X, < 1, thenx,+ X, < 1 for all verticesv and sm is an isolated vertex. However,

if Xa + X, > 1thenx, + x, > 1 for all vertices and sb is a dominating vertex. Hendg has

an extremal vertex (eithera or b). Furthermore, any induced subgraph of a threshold graph is
again a threshold graph, €>— uis threshold.

Conversely, supposeis an extremal vertex db and thaiG — u is a threshold graph. Let
be a threshold representation®f- u. Without loss of generality, we can choaseo that all
weights are strictly between 0 and 1.

Definex, to be 0 ifuis an isolated vertex or to be 1igs a dominating vertex. One checks
that so augmented,is a threshold representation®f and therefor& is a threshold graph. o

Corollary 2.8. A graph G is a threshold graph if and only if its compleménis a threshold
graph. O

As usual,for a vertex of a graphG we write N(v) = {w € V(G) : vw € E(G)} for the set of
neighbors ofv andd(v) = |[N(v)| for the degree o¥.
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Proposition 2.9. Let v, w be vertices of a threshold graph G. The following are eqeiva
1. d(v) < d(w).
2. In every threshold representation f of G we haye k& f(w). m|

Proof. (1) = (2): Supposel(v) < d(w) and letf be any representation &f. For contradiction,
supposd (v) > f(w). Choose any vertex # v,w. If u~ wthenf(u) + f(w) > 1 which implies
f(v) + f(w) > 1 and sau ~ v. This impliesd(v) > d(w), a contradiction.

(2) = (1): Suppose in every representationfobf G we havef(v) < f(w). Then, arguing
as above, for all # v,w, u ~ v = u ~ w. This impliesd(v) < d(w). If (for contradiction) we
hadd(v) = d(w), then for allu # v,w, u ~ v < u ~ w. Fix a representatioh and define a
new functionf’ by

f(w) if x=v,
f'(u) =4 f(v) if x=w, and
f(u) otherwise.
One checks that’ is also a representation Gbut f’(v) > f’(w), a contradiction. |

Proposition 2.10.Let G be athreshold graph and letw € V(G). The following are equivalent:
1. d(v) = d(w).
2. N(v) —w = N(w) —v.

3. There is an automorphism of G that fixes all vertices othantv and w and that trans-
poses v and w.

4. There is a threshold representation f of G such th@ £ f(w). O

Proof. The implications (4)= (3) = (2) = (1) are straightforward, so we are left to argue
that (1)= (4). By Propositioi 219, there are representatibrsdg of G with f(v) < f(w) and
g(v) > g(w). Defineh by h(u) = %[f(u) + g(u)]. One checks that is a representation @ in
which h(v) = h(w). O

Verticesv, w that satisfy any (and hence all) of the conditions of PrapmsZI0 are called
twins

2.3 Creation sequences

The concept of a creation sequence was developédlin [11]d€inition is a modest modifica-
tion of their original formulation.

LetG be athreshold graph. Theorémli2.7 implies thaan be constructed as follows. Begin
with a single vertex. Iteratively add either an isolatedt@ei(adjacent to none of the previous
vertices) or a dominating vertex (adjacent to all of the pres vertices). We can encode this
construction as a sequence of 0Os and 1s where 0 represeraddition of an isolated vertex
and 1 represents the addition of a dominating vertex.
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Definition 2.11 (Creation sequence).et G be a threshold graph with vertices. Itscreation
sequenceeq() is ann — 1-long sequence of Os and 1s recursively defined as folloetss he

an extremal vertex d6. Then sedg) = seqG - V) || x (here|| represents concatenation) where
x = 0if visisolated anc = 1 if vis dominating.

For example, consider the threshold graphin Figure[l. It has a dominating vertex (6)
so the final entry in se) is a 1, i.e., se@§) = xxxx1. Deleting vertex 6 fronG gives a
graph with an isolated vertex (5), so s&j(= xxx01. Deleting that vertex leaves vertex 4 as a
dominating vertex. Continuing this way we see &qg€ 01101.

Note that there is a mild ambiguity in Definitian 2111 in thatheeshold graph may have
more than one extremal vertex One checks, however, that the same creation sequence is
generated regardless of which extremal vertex is used erymeate the last term of se@j. The
creation sequence #f; is the empty sequence.

It is easy to check that for every— 1-long sequencs of Os and 1s, there is a threshold
graphG with seqG) = s. We also have the following.

Proposition 2.12. Let G and H be threshold graphs. Then%H if and only ifseqG) =
seqH). m|

2.4 Unlabeled graphs

In the sequel we consider both labeled and unlabeled grapbsdeal with these concepts
carefully, we include the following discussion.

For us, there is no distinction between the tegrepphandlabeled graph

An unlabeled graplis an isomorphism class of graphs, but we define it in a stragt w

Definition 2.13(Unlabeled graph)Let G be a graph om vertices. Let (5] denote the set of all
graphs on vertex seh] that are isomorphic t&. We call [G] an unlabeledgraph.

Since there are only finitely many graphs with vertex sgtunlabeled graphs are finite sets
of (labeled) graphs. Indeed, if the automorphism grouf® dias cardinalitya, then [G] is a set
of n!/a graphs.

We typically denote labeled graphs with upper case itatitets, G, and unlabeled graphs
with upper case bold letter§.

Let G be an unlabeled threshold graph. By Proposifion]2.12, foGat’ € G, we have
seq@) = seq@’). Therefore, we write se€q) to denote this common sequence.

Proposition 2.14. [1L7] Let n be a positive integer. There aB&! unlabeled threshold graphs
on n vertices.

Proof. Unlabeled threshold graphs orvertices are in one-to-one correspondence withl-
long sequences of Os and 1s. O
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Figure 2 The graph from FigurEl1 canonically labeled.

2.5 Canonical labeling of threshold graphs

Let G be an unlabeled threshold graph. It is useful to have a meti@elect a canonical
representativés € G. We denote the canonical representativ&dsy £(G) which we define as
follows.

Definition 2.15(Canonical labeling)Let G be an unlabeled graph. L&t= £(G) be the unique
graph inG with the property that

Yv,w e V(G), dg(V) < dg(W) = v < w.

In other words, we number sequentially starting with theiges of lowest degrees working
up to the vertices of largest degree.

The uniqueness dfG) follows from Propositiong219 arid Z]10.

Here is an equivalent description 6iG). For a vectorx, let sortk) be the vector formed
from x by arrangingx’s elements in ascending order. bebe a proper representation for any
graph inG. Then{(G) = I'(sort(x)). This observation leads to the following result.

Proposition 2.16.Letx, X’ € P, and suppos€&(x) = I'(x’). Lety = sortf) and lety’ = sort(x’).
ThenI'(y) = T'(Y'). m|

For example, leG be the graph in Figurel 1. One checks tRat (l 1135 1 63) is a

proper representation f@. Lety = sort() = ( s L 6—3) to produce the grapH = I'(y)
in Figurel2.

3 Random Models

We now present two models of random threshold graphs. In bagkes, aandom threshold
graphonn vertices is a pairT,, P) whereP is a probability measure di,.

3.1 Random vector model

Let n be a positive integer. A natural way to define a random thrielsip@ph omn vertices is to
pick n random numbers independently and uniformly fromfand use these as the weights.
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Equivalently, we pick uniformly at random in [01]". Note that with probability 1x € P,. Let
G be the threshold gragi(x). This leads us to the following formal definition.

Definition 3.1 (Random vector threshold graph)et n be a positive integer. Define the proba-
bility space T\, P’) by setting

P(G) = u(I"*(G))
whereG € T, andu is Lebesgue measure ..

Note: By definitionl" : P,, — T,, and s ~}(G) is a subset of,. Observe thau(P,) = 1.
Definition[371 can be rewritten like this:

P (G) = u{x € P, : T'(X) = G}

Example 3.2. We calculateP’(G) whereG is the path on three vertices~12 ~ 3. To do this
we need to find

u{(x,y,2 e P3: T([xY,2]) = G} :p{(x,y,z) e[0,1P:x+y>1Ly+z>1x+z< 1}.

We break up this calculation into two cases< zandx > zto get

1-x
P(G) = f f f d dzdx_—
( ) X=0 Jz=Xx y=1-x y 12

(The triple integral is based on the case& z.)

We define7; to be the se{(T,,P’) : n > 1}. We call7; the random vector moddior
threshold graphs.

3.2 Random creation sequence model

Our second model of random threshold graphs is based onares#quences. Leat be a
positive integer and letbe ann— 1-long sequence of Os and 1s. Defjge) to be the unlabeled
threshold grapl& with seqG) = s. In other words,

¥(9) = {G e T, : seq) = s}.

Our second model of random threshold graph can be descmifeaially as follows. Len be

a positive integer. Choose a random 1-long sequence of 0s and §ach element adis an
independent fair coin flip; that is, al"? sequences are equally likely. Then randomly apply
labels to the unlabeled threshold gragls); that is, select a graph uniformly at random from
v(s). Here is a formal description.

Definition 3.3 (Random creation sequence threshold grapB} n be a positive integer. Define
the probability spac€l,, P”) by setting,

1

PO = r G

whereG € T,,.
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One checks that

> P =1
GeTh

Example 3.4. We calculate”” (G) whereG is the path on three vertices~12 ~ 3. Note that
I[G]| = 3!/|Aut(G)| = 3!/2 =3 and so
1 1

PO = ze = 12

Note that the calculation dP” (Example[3.}4) is much easier than the calculatiorPof
(Exampldz3R) and gives the same result—a phenomenon tht inayeneral (Theoref3.7).

Example 3.5. We calculateP” for the graphG in Figure[l. Note that Au) contains exactly
four automorphisms as we can independently exchange eertie> 2 and 3« 4. Therefore

1 4 1

2|[G]| 25-6! 5760

Let75 = {(T,, P”) : n > 1}. We call7, therandom creation sequence modet threshold
graphs.

Note that in this model, the probability that a random thadglgraph has a particular cre-
ation sequence is/2"1. Furthermore, all graphs with creation sequesege equally likely in
this model.

P’(G) =

3.3 Computing P"(G)
As suggested by ExamplEsT3.4 3.5, the computatid? () for a threshold grapks is

easy.
By Definition[33, ifG is a threshold graph with vertex sef[then
,7 _ 1
O = e
Of coursg[G]| = n!/| Aut(G)|, so this can be rewritten
” | Aut(G)|
P"(G) = ol

For a general graph, the computation|&ut(G)| is nontrivial. However, for a threshold
graph, itis easy.

Proposition 3.6. Let G be a threshold graph with n vertices. FdK i < n—1, let n be the
number of vertices of degree iin G. Then

| Aut(G)| = no!ng!ny! - - N4

Proof. By PropositioZ.100 it follows that every degree-presegvpermutation of the vertex
set of a threshold grap@ is an automorphism db. Hence AutG) is isomorphic tdS,,, x Sy, X
.-+ X Sy, and the result follows. o
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3.4 Equivalence of models

Model 77 is an especially natural way to define threshold graphs—itfloomfortably from
the definition of these graphs. Modg}, however, is more tractable. Fortunately, these two
models are equivalent.

Theorem 3.7.71 = 7. That s, if G is a threshold graph, theri(®) = P”(G).

The proof of this result rests on a geometric analysis §gBef the space of proper repre-
sentationsP,. Before we present the proof, two comments are in order.

Remark 3.8. The choice of the uniform distribution on,[0] for the weights in modeJ; is
natural, but other distributions might be considered a$.wetlose reading of the proof of The-
orem[3.Y reveals that replacing the uniformIPdistribution with any continuous distribution
that is symmetric abouj (such as the normal distributios(3, 1) with mean; and variance 1)
results in the same model of random threshold graphs.

Remark 3.9. We can maintain the uniform [Q] distribution for the vertex weights, but change
the threshold for adjacency. Lebe a real number with & t < 2 and letx € [0, 1]". Define
I'i(x) to be the graplG with vertex set fi] in which ij is an edge exactly wher + x; > t.
This gives rise to a model of random threshold graphigenerated by choosing the weights
uniformly at random in [01]. In this model, one can work out that the probability of alge is

Plij € EG)} = p =

1-12 forO<t<1and
{ 2 (1)

2(2-1)? forl<t<2.

In caset = 1, this model reduces t0;.

It is natural to ask if there is an analogue to Theokem 3.7Hemhodel7; whent # 1. Let
7, be the random creation sequence model in which the Os andtfis ofeation sequence are
independent coin tosses, but in which the probability of &das given in equatiorii1).

For 0< t < 1, note that the probability &z in 77 is t> but in 7}’ this graph has probability
(1-p)?= %t“; these are dierent for all O< t < 1. A similar argument, based on the gragh
shows that{ # 7, for1 <t < 2.

4 Decomposing?, and the Proof of Theorem[3.¥

4.1 The regions ofP,

The space of proper representatiahig,is an open subset of the open cubgl{0. Note thaftP,
is dissected into connected regions by slicing the open withehe following 2(2) hyperplanes:

o Vi,je[nwithi= |, IL; ={xe(0,1): x =%} and
° Vi,je[n]withi;&j,Hi’j ={xe(0,1)": x+x =1}

Figure[3 illustrates hows is dissected by these hyperplanes.
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Figure 3 The regions oP3. The left portion of the figure shows two of the 24 connectegines
of P3. The right portion shows how these pieces fit together.

Proposition 4.1. Letx, X’ be points in the same connected regioi?f ThenI'(x) = I'(X’).

Proof. Note that for all vertices # |, we havex + X; # 1 andx’ + X # 1. Therefore, to
establish thaf'(x) = I'(x’), is enough to show

Vi), X+X<1le x+x<L

But if this were false, thex andx’ would lie on opposite sides of a hyperplane of the form
II; . m|

Thus the set ok € P, that represent a given graghis a disjoint union of connected regions
of P,.

4.2 Counting the regions

Theorem 4.2. There are2™n! connected regions &,. Moreover, there is a bijection between
the set of regions df, and the set of ordered pail, 7) whereG is an unlabeled threshold
graph on n vertices and € S,,, i.e., a permutation ofn].

Forn=1,2,3,4,..., the number of regions is 4, 24,192 . . .; this is sequence A002866 in
[21.

Proof. We establish a bijection between connected regiorg,&nd the set of ordered pairs
(G, ) whereG is an unlabeled threshold graphwrertices andr € S,,. The result then follows
from Propositiod Z14.

Let Rbe a region of?,, and letx € R. First, tox we associate a permutatiarso that

(Xa(1)s Xx(2)s - - - » Xa(ry) = SOM).
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Figure 4 The four regions oP, corresponding to all ordered pairs, G) wherenr € S, andG
is an unlabeled threshold graph on two vertices.

This unambiguously definesbecause no two componentsxoére equal. Furthermore, Xt X’
are distinct points oR, they determine the same permutation. [Otherwise, we Isaye; < X;
andx > x; placing the points on opposite sides of the hyperplapea contradiction.] Thus
we may associate this permutation with the entire regionrafed to it asrg.

Next, to a pointx € R we associate the unlabeled graplix)]. Furthermore, given two
pointsx and x’ of R, note thatl'(x) = I'(x’). [Otherwise, we have, sayj € E[I'(x)] but
ij ¢ E[T(x)]. This givesx + X; > 1 andX + x; < 1, placing the points on opposite sides of
the hyperplanél};.=<«] Thus, all points<in Ryield the same grap anda fortiori, the same
unlabeled graphl](x)]. We call this graplGg.

Hence the mappinB — (Gg, 7r) is well defined. We claim that this mapping is a bijection.
For example, see Figuké 4 for the simple case?2.

We first show thaR — (Gg, 71Rr) is surjective. LeG be any unlabeled threshold graphon
vertices and let be any permutation is,,.

Choose anys € G and lety be a proper representation@f Rearrange the coordinatesyof
to givex subject to the condition thag 1) < X;2) < - - - < Xy(n). LetR be the region that contains
X. Note thatl'(x) = I'(y) and soGg = [['(X)] = [T'(y)] = G. In addition,x was constructed so
that

(Xe(@)» Xx(2)s - - - » %n(n)) = SOItK)
and sarg = 7.
Finally, we need to show th& — (Gg, 7rg) is injective. LetR, R be distinct regions o,

and choos& € Randx’ € R. If ng # nr then we are done, so suppoge= nr. Sincex and
X" are from diferent regions, there exist: j so that (without loss of generality) + X; < 1 but
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X +Xx; > 1. Thereford'(x) # I'(x’). SinceGg = [I'(X)] andGgr = [['(x)] it suffices to show that
I'(x) ¢ I'(x’).

Suppose, for contradiction, thR{x) = I'(x’). Then,G = [['(X)] = [['(X’)]. Let £(G) be
the canonical labeling 0. By definition, we have/(G) = I'(sortfk)) = I'(sort(x’)). Define
y = sort) andy’ = sorti’). Becausd'(y) = I'(y’), we see thay; +y; > 1 if and only if
y, +y; > 1. Byour earlier assumption thak = nr, we know thaty; = X, andy = x;R(i).
Thus we haveG) + Xy > Lifand only ifx . +x . > 1implying thatx andx’ admit the
same threshold graph. This is a contradiction. Therefoeeconclude thal'(x) ¢ I'(x’) and
R+ (Gg, 7R) is injective. O

Definition 4.3. Letn be a positive integer. L&t be an unlabeled threshold graph andidet S,,.
Define R(G, ) to denote the connected region®f corresponding to the ordered pa,(r)
given by the bijection in the proof of TheordmM#.2.

4.3 Congruence of the regions

We have established th&t, decomposes into"2'n! regions, and each regioR is uniquely
associated with an ordered paBg, 7). Our next goal is to establish that these regions all have
the same shape, and hence the sardi#nensional volume: A2"1n!).

Theorem 4.4. All regions ofP,, are congruent and therefore have the same n-dimensional vol
ume.

Proof. To show that tha!2"-! regions ofP, are congruent we perform the following transfor-
mation:
X Xi=x-11
wherel is a vector of all ones. This translates the cube whose corre{0, 1}" to the cube
whose corners are-3, ",
The hyperplanes; = x; andx + x; = 1 are transformed as follows:
1 1 .

Xi=Xj >“<i+§:>“<j+§ = X=X

and

1 1
Xi+X=1 - ()?i+§)+(§(j+§):l = X =X

Thus the translated, now centered at the origin is dissected by ti{§) Byperplanesq =
+X;. By symmetry, all the regions have the same shape, and tierttfe same-dimensional
volume. m|

Corollary 4.5. Let R be a connected region®f. Then

1
N(R) = 2n_1n' *
Proof. From Theoreni’4l4 we deduce that all regiéhbave the sama-dimensional volume.
Since by Theorem 4.2 there arerh! regions andu(P,,) = 1, the result follows. m|

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R130 13



4.4 Proofof71=9>

Proof of Theorer 3l7Let G € T, be a threshold graph. We must show tR4G) = P (G).
Recall (DefinitiorZ311) thaP’(G) is the measure of the spt € P,, : T'(X) = G}. This set is
the disjoint union of regions whose points repreggrisee Proposition4.1).
Let Rg denote the set of regiomsc P, such thakk e R= I'(x) = G. Then

[Ra|

P, (G) = W

because every region R has the same volume (Corolldry ¥.5).
Recall (Sectioi=3]13) that
| Aut(G)|
ni2n-1
the result follows once we establigRs| = | Aut(G)|.
Let G = [G] be the unlabeled version &.
Claim 1. Let RG, n) € Rg and leto- € Aut(G). Then RG, 7 o o) € Re.

P"(G) =

Proof. By Theorenl 4R, there is a bijection between regidtsand unlabeled
graph and permutation pair$;(r). Thus, it follows thaR(G, 7 o o) € P,

It is clear thatR(G, r) andR(G, 7 o o) correspond to isomorphic graphs. By
Propositio 2716, they have the same canonical labéli@y. To obtain the graph
G = I'(R(G, n)), we apply the isomorphism to £(G). Similarly, to obtain the
graphG’ = I'(R(G, o )), we apply the isomorphisnx o)1 to £(G).

Becauser is an automorphism o6 (and therefore so is1), we obtain the
same graphG, after applyinge—! to G. In other words, by first applying to
£(G) and then applying! to the result, we obtain the same graplas we would
by simply applyingz—! to £(G). However, applying:—! and thero—! is equivalent
to applying r o o)~ to £(G) which results inG’ as defined above. Thug, = G
andR(G, o o) € Re. |

Claim 2. Let RG, 71), R(G, o) € Rs. Thenr ! o o € Aut(G).

Proof. Let ¢(G) be the canonical labeling @. Notice thato is the isomor-
phism that takes us frof{R(G, o)) to £(G) andx~? is the isomorphism that takes
us from¢(G) to I'(R(G, n)). Thus,n7! o o is an isomorphism froni’(R(G, o)) to
['(R(G, n)). SinceR(G, n),R(G, o) € Rs, we haveG = I'(R(G, 0)) = I'(R(G, n)).
Therefores o o is, in fact, an automorphism @&. O

Let R(G, n) € Rs. The claims show that every region®§ is precisely of the forniR(G, 7o
o) for someo € Aut(G). TherefordRg| = | Aut(G)|, completing the proof of Theoreln 8.7 0
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5 Properties of Random Threshold Graphs

Having established the equivalence of modeland7 >, we drop the subscripts and simply call
theserandom threshold graphd=urthermore, we now write R®) to denote the probability of
a graphG in this common model.

The bits of a creation sequensare denote®;S,... S, 1. If S = $5...5,.1, we define
S = 5%...5.1 to be thecomplemenbf s. Thatis,5 = 1 - 5. The following is easy to
establish.

Proposition 5.1. Let G be a threshold graph. If s seq@), thens = seqG) whereG is the
complement of G. |

Corollary 5.2. Let G be a threshold graph. ThelRti{G} = Pr{G}.

Proof. Notice that seds) andseq() are equally likely to occur. The result follows by Propo-
sition[51. 0

5.1 Degree and connectivity properties

Proposition 5.3. Let G be an instance of a random threshold graph. Then,
: 1
Pr{G is connected= >

Proof. Gis connected if and only if the last bit of s€j(is 1, and that occurs with probability
1

5 a

Proposition 5.4. Let G be an instance of a random threshold graph on n vertiddé®n, the
maximum degree of G has the following distribution:

1/2"1 fori =0,
PHA(G) =i} =41/2"" forl<i<n-1,and
0 otherwise.

Proof. First, notice that\(G) = O ifand only ifs = Oforall 1 <i < n-1. So, P{A(G) =
0} =1/2"1 Forl<i<n-1, A(G) =iifand onlyifs = 1 ands; = O for all j > i. Thus,

Pia@ =it =(3)- ()" = ()" g
Proposition 5.5. Let G be an instance of a random threshold graph on n vertiddé®n, the
expected maximum degree of G R\EG)] = n -2+ >.

Proof. Using Propositio 514,

1 1 1 1
E[A(G)] :O-2n_1+1.2n_1+2.2n_2+...+(n_1)._

n-1 i 1
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Corollary 5.6. Let G be an instance of a random threshold graph on n verti€hsn,

1/2™1 fori=n-1,
Pr{6(G) =i} =31/2*1 forO<i<n-2, and
0 otherwise.

Proof. Recall that(G) = n— 1 - A(G). Thus,
Pri6(G) =i} =Pin-1-A(G) =i} = PHA(G) = n—-1-i}.

The result then follows from Proposition’b.4 and Corollafd.5 |

Corollary 5.7. Let G be an instance of a random threshold graph. Thga(®] = 1 - 2—11

Proof. The result follows from the fact tha(G) = n — 1 — A(G) and Propositiof5]5. m|

Let G be a graph witin vertices. TheLaplacianof G, denotedL(G), is ann x n-matrix
defined byL(G) = D(G) — A(G) whereD(G) is the diagonal matrix 0&’s degrees ané\(G) is
G’s adjacency matrix. In other words, takiMfG) = [n] we have

d(i) wheni = j,
D(G)ij =1-1 whenij € E(G), and
0 otherwise

The matrixL(G) is positive semidefinite and with spectrum

The second smallest eigenvalug, is known as the graphalgebraic connectivity

Note that1, > 0 if and only if the graph is connected.

There is a beautiful relation between the eigenvaluels(@) and the degree sequence of
G for threshold graphs due to Merris J10]. Merris observed tha eigenvalues of a threshold
graph’s Laplacian are all integers. Furthermore, congidehe trace ot (G) gives

n n
D A =tlL©@)] = ) d(j) = 2EG).
i=2 j=0
Thus, the eigenvalues &{G) and the degrees @ are partitions of the same integer. Moreover,

Merris proved the following relationship between thesdipans.

Theorem 5.8. Let G be a connected threshold graph, et d; < d» < --- < d, be the
degrees of its vertices and I8t< 1, < A3 < --- < A, be the nonzero eigenvalues of G’s
Laplacian matrix. Then the sequende@s,...,d;) and(4,,..., 1,) are Ferrer’'s conjugates of
each other. O
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Figure 5 The degree sequence and the nonzero Laplacian eigenvahiggeshold grapfs are
conjugate partitions of|E(G)|. In this example, the degrees of the vertices ar8,& 2,1,1)
and the nonzero eigenvalueslqfs) are (64,2, 1, 1).

eigenvalues

For example, see the graph in Figlite 5. The degrees of thee®gre (53, 2, 2, 1, 1) which
is conjugate to the nonzero eigenvalues of the graph’s taga(64,2,1,1).

Corollary 5.9. Let G be a threshold graph that is not a complete graph. Themlgebraic
connectivity equals its minimum degree, i®(G) = §(G).

Note that1,;(K,) = nbutdé(K,) = n-1.

Proof. Let G # K, be a threshold graph amvertices and let &= 1; < A, < --- < A, be the
eigenvalues of its Laplacian.

If Gis not connected, thaf(G) = 1,(G) = 0.

Otherwise,G is connected and lex = seq). Becauses is not completes contains at
least one zero. The vertex of smallest degree corresporttie tast zero irs. Its degree is the
number of 1s to its right, which is the number of vertices okimaum degree. Since there are
6 vertices of maximum degree, the last column in the Ferrerigugate hag boxes, and so
Ao = 0. O

Corollary 5.10. Let G be an instance of a random threshold graph on n vertiteen
1/2"1 fori =n,

PrA,(G) =i} ={1/2*' for0<i<n-2, and
0 otherwise

In particular E[2;] = 1.
Proof. Immediate from Corollaries 5.6 aid 5.9 and the fact théK,,) = n. O

We can also deduce from Theoréml5.8 that the largest eigenedla threshold grap6
equals|V(G)| — i(G) wherei(G) is the number of isolated vertices & whose distribution is
given in Proposition 5.26.
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Another degree property that can be readily deduced frorordetion sequence is the num-
ber of distinct degrees in a threshold graph.

Proposition 5.11. Let G be a threshold graph and let=sseq(G) be its creation sequence. The
number of contiguous blocks & andOs equals the number offgerent degrees in G.

Proof. If seq@) is entirely Os or 1s, then the graph is either edgeless optete respectively.
In either case, all vertices have the same degree.

Otherwises consists of alternating blocks of Os and 1s. Note that allices within a
contiguous run have the same degree. Furthermore, the otex tieat does not correspond to
an entry ins has the same degree as the vertices in the first block. m|

Proposition 5.12. Let G be an instance of a random threshold graph on n verticeslet g
denote the number of distinct degrees in G. Thenlfgri < n— 1 we have

. 1 (n-2
Prig=1i}= 2”—2(?— 1).

Proof. We count the number of creation sequencesi thums. The first bit can be either zero
or one (2 choices). After that, we select 1 locations from then — 2 “spaces” between the
bits to show where a block of 1s changes to 0s and vice versaceHbere are(Z_‘f) creation
sequences withruns, and the result follows. m|

It follows that the expected number of distinct degrees iaredom threshold graph am
vertices is .
1 ©—./n-2\ n
Eldl = 5 .Z‘ '(i - 1) ~ 2

5.2 Chromatic number

Because threshold graphs are perfect (see, for examp)ey§¢an deduce information about
the chromatic number from the cliqgue number which is, in fudmectly available from the
creation sequence.

Proposition 5.13. Let G be an instance of a random threshold graph on hvertices. Then,
the chromatic number and the clique number of G have theviotig distribution with support
[n]:

n-1

Prx(G) = k} = Pw(G) = k} = (k_ )

)/2”‘l forl<k<n.
Proof. Threshold graphs are perfect. Therefore, the chromatichauns the size of the maxi-
mum clique of the graph. However, the size of the maximunudig one more than the number
E)f 1)3 in the creation sequence. This implies that fer & < n, PAy(G) = k} = PHw(G) = k} =
n-1 -1

/2" O
k-1

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R130 18



Corollary 5.14. Let G be an instance of a random threshold graph ga hvertices. Then, the
independence number of G has the following distributioh witpportn]:

n-1

PHa(G) = k} = (k I

)/2”‘1 forl<k<n.

Proof. This follows from the fact tha#(G) = w(G). O

Proposition 5.15. Let G be an instance of a random threshold graph. Then, theated
chromatic number of G, and thus the expected clique numb@r 'm"lzl.

Proof. By Propositio 5113,

Ek(G)] =

1 & -1\ n+1
2“—1Zk(k—l)_ 2 -

k=1

Corollary 5.16. Let G be an instance of a random threshold graph. Then, theat&g inde-
pendence number of G 5.

Proof. Apply Propositiorf5.115 and the fact tha(G) = w(G). O

5.3 Cycles

Proposition 5.17. Let G be an instance of a random threshold graph on n vertithen,

PrG is acyclig =

n
on-1°
Proof. Let s = seqG). Becausés is a threshold graph, then by TheorEml 2.5, it cannot contain

C, as an induced subgraph. Th&gcontains a cycle if and only if it contain&; as an induced
subgraph. However, this occurs if and only if there are adtleéso 1s ins.

Thus,
-1 -1
PG is acyclig = Pr{shas at most 1=(n°)+(n1)— n
G Is acyclig = Pr{shas at most one} o1 = o1 O
Corollary 5.18. Let G be an instance of a random threshold graph on n vertidésen, the
probability G has a cycle i — n/2"1. m|

Notice that, as goes to infinity, the probability tha& has a cycle goes to 1.

Next, we consider the probability that a random thresholpgris Hamiltonian. There is
a nice connection between Hamiltonicity and a threshol@ljsacreation sequence. For more
background on Hamiltonian threshold graphs, ek [12].

For a sequencsof 1s and 0s, leti(s) be the number of 1s in the lasbits andz(s) be the
number of 0s in the ladt bits.

Definition 5.19. Let G be a graph and(G) denote the number of connected components.of
We say thaG is toughif for every nonempty subs& C V(G) we havec(G - S) < |S|.
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Figure 6 The (b)=(c) case for Theorefn5.20: toughness implies the strictgd&@ck property.
At some poink, we haveu(s) < z(9) (illustrated by the dotted box). B is the set of vertices
corresponding to the 1s in the box, th&® — S) > |S|.

S

[To[ 11 oot ol ]1]!

other component(s)

isolated

Note that a tough graph with three or more vertices must beected.
Theorem 5.20.Let G be a threshold graph with:a 3 vertices. The following are equivalent:
(@) G is Hamiltonian.
(b) G istough.
(c) If s=seq@), then y(s) > z(s)forall 1<k<n-1.

The conditioruy(s) > z(s) for all k means that the reversal sfi.e., s,.1S2 . . . S;) satisfies
the strict partial Dyck property; see Appendik A.

Proof. (a) = (b): This is well-known.

(b) = (c): Supposé&s is tough. Label the vertices @ by the integers 0 through— 1 so that
vertexi (with i > 0) corresponds to th bit of s = seq@).

Suppose, for contradiction, there is an indeso thatu,(s) < z(s). Let S be the set of those
vertices corresponding to 1s in the l&diits of s. Note that if we delet& from G, the resulting
graph has at leag(s) + 1 components: the component®f- S containing vertex 0 and the
z(s) isolated vertices. This is illustrated in Figlife 6. It falls that

c(G=S) > z(s) +1> z(s) > |S|
contradicting the fact thds is tough.

(c) = (a): Suppose that = seq@) satisfiequ(s) > z(s) for all k with 1 < k < n-1. This
implies that the last two bits afare both 1s.

We prove that is Hamiltonian by induction on the number of verticas,

In casen = 3, then sed§) = 11 and sdG = K3 which is Hamiltonian. In case = 4, then
seq@G) = 111 or 011. In the first cagé = K4 and in the second ca§e= K, — €, both of which
are Hamiltonian.
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Figure 7 Induction step in (cp(a).

We now assume the theorem has been shown for all graphs wién feann vertices (where
we may assuma > 5), and letG be a threshold graph with vertices that satisfies condition
(c).

Without loss of generality, we assume the verticescodre numbered from 0 ta — 1
corresponding to their position in the creation sequeneeseq(). If sdoes not contain any
zeros, thers = K,, which is Hamiltonian. Otherwise, Igtbe the index of the last O ig note
thatj <n-2.

Let H be the graph formed by deleting verticesndn — 1 from G. Observe thaH is a
threshold graph whose creation sequence is formed &dy deleting bitsj andn - 1. One
checks thaH'’s creation sequence satisfies property (c) and so, by irau¢d is Hamiltonian.

Fix a Hamiltonian cycleC of H and letx be a vertex oH that is adjacent to vertex— 2 on
the cycleC. (See Figur&l7.) Note that because the last two bitsayk 1s, vertices — 2 and
n— 1 are adjacent to bothandx. Thus, if we delete the edde, n — 2} from C and insert the
pathx ~n—1~ j ~n-2inits stead, we create a Hamiltonian cycl&an O

Theorem 5.21.Let G be an instance of a random threshold graph with 8 vertices. Then
n-2 ) 1

L(n-2)/2])  v2zn’

Proof. The number of sequences of length- 1 that satisfy condition (c) of Theorem 5120

is( nrj‘zf/zj). This is shown in Proposition A.2. The asymptotic valuedal$ from a routine
a

!
ppiication of Stirling’s formula. m|

. I 1
Pr{G is Hamiltonian = F(

5.4 Perfect matchings

The existence of a perfect matching in a threshold graph usvatgnt to a condition that is
similar to that for a Hamiltonian cycle. Recall that for a segces of 1s and 0Os thati(s) and
z«(s) denote the number of 1s and 0s, respectively, in theklbgs of s. We have the following
result that is analogous to Theorém’5.20.

Theorem 5.22.Let G be a threshold graph on n vertices with n even and letseqG). Then
G has a perfect matching if and only if(8) > z(s) for all k.
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Proof. First, suppose that for sonke uc(s) < z(s). Let S be the set of vertices corresponding
to the 1s in the lask bits of s, so|S| = u(s). Note thatG — S containsz(s) isolated vertices
plus (perhaps) other odd components. Therefore, by TuttesremG does not have a perfect
matching.

Conversely, suppose that for &) u(s) > z(s). We assume that the vertic®gG) are
numbered from O to — 1 with vertexi > 0 corresponding to th&' bit in s. Let

U={v:s=1U{0} and Z={v:s, =0}

Note thatU is a clique and is an independent set.
Claim. G contains a matching M of edges between U and Z that saturates

Proof of claim. Consider the bipartite grap®” consisting of all vertices o and
all edges of5 with one end irZ and the otheritJ. LetY C Z. The set of neighbors
of Y, N(Y) ={ue U :u~y3ye Y}, corresponds exactly to the set of all 1ssito
the right of positiory for y € Y. Sinceuk(s) > z(s) for all k, we haveN(Y)| > |Y|
forall Y C Z. Therefore, by Hall's theorenG’ has a matchingv that saturates
Z. O

Finally, we can extendl to a perfect matching since all vertices unsaturated/Ibfwhich
are necessarily even in number) lie in the clidlie m|

Theorem 5.23.Let n be an even integer and let G be an instance of a randomahblé graph
on n vertices. Then

n-1 ) 2
L(n-1)/2]
Proof. From Theoreni 5.225 has a perfect matching if and onlysf= seqQ) is the reverse of

a partial Dyck sequence of length-1 (see Appendik]A). By PropositiénAa.1 there érg‘lm)
such sequences. The asymptotic expression follows froningts formula.

Pr{G has a perfect matching %( —
T

5.5 Edges and extremal vertices

Proposition 5.24. Let G be an instance of a random threshold graph on n verticedgnote
the number of edges of G, andkX) denote the number of partitions of k into distinct parts
whose largest part is less than or equaltoThen, for0 < i < (g) we have thaPrim = i} =

Q(i,n-1)/2"1,
Proof. Let s= seqG). Then,
n-1
m= Z S - . 2)
=1

Thus, a creation sequence results in a graph ingttiges whenevercan be written as the sum
of distinct integers between 1 and- 1. There areQ(i, n — 1) ways to do this and"* creation
sequences total. The result follows. O
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Proposition 5.25. Let G be an instance of a random threshold graph. Then, theateg

number of edges of G is[f] = %(2) Also, the variance of the number of edge¥as(m) =
n(n-1)(2n-1)
24 '

1
2!

S
2 22
Using the independence of tiseand taking the variance of equatidn (2), we obtain

n-1 n-1 -1 .
.. |] ZVar[s-]- :Z _n(n- 1)(2n 1)

i=1 i=1

Proof. Let s = seq(). Since for alli we haveE[s] =

equation[(R) gives

n—

1
M=E[m]=E[Zs-i

i=1

o? = Var[m] = Var

It is interesting to note that an Erd6s-Rényi random gnafth p = % has the same expected
number of edges, but the variance of the number of edges seartler of? while the variance
for a random threshold graph is on the orden&f

Later §5.8) we show thatrf— u)/o converges to a normal distribution.

Next, we consider the number of isolated and universaleestof a random threshold graph.
For a graphG, we leti(G) denote the number of isolated vertices®and letu(G) denote the
number of universal vertices @&.

Proposition 5.26. Let G be an instance of a random threshold graph on n verti¢égn, the
number of isolated vertices of G has the following distridmit

1/2™1 for j=n,
Pri(G) = j} ={1/2** forO0< j<n-2 and
0 otherwise.

Proof. First, notice that it is impossible to hane- 1 isolated vertices. So, f{G) = n— 1} 0
Now, lets = seqG). Then,i(G) = nifand only ifs = O for alli. Therefore, Ri(G) = n} zn .
For0< j < n-2, we notice that(G) = jifand only if s,.1-; = 1 and the las§ bits equal 0.
Thus, we have Ri(G) = j} O

2]+l

Corollary 5.27. Let G be an instance of a random threshold graph on n vertiddgen the
number of universal vertices of G has the following disttidar:

1/21 forj=n,
Pr{u(G) = j} ={1/2*' forO0<j<n-2,and
0 otherwise.

Proof. Notice thati(G) = u(G). The result follows from Propositidn 5.26. m|
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Proposition 5.28.Let G be an instance of a random threshold graph. Thp(&] = E[u(G)] =
1.

Proof. Note thati(G) andu(G) have the same distribution, so it is enough to find the exgukect
value of just one of them.

: n o1 n n
E[|(G)]:2n_1+ = :—+(1—F):1. O

We note that the existence of a common neighbor between twice® increases the like-
lihood that those vertices are adjacent. This clusterirenpmena may be a reason that some
have considered random threshold graphs as a model foll setieorks [11]. Here is a formal
statement.

Proposition 5.29. Let a b, ¢ be distinct vertices of a random threshold graph. Then
Pla~b|a~c~b}>Pra~ b}

Proof. Using Exampl€33]2, we have

1 1 1
Pr{a~c~b}_Pr{a~c~banda~b}+Pr{a~c~banda+b}_Z+1—2_§
Therefore,
_Pla~banda~c~b} 1/4 3 1
Pla~bla~c~b}= Pia~c-Dl _1/3_4>2 Pr{a ~ b} O

5.6 Small induced subgraphs

Let H be a threshold graph. We are interested in determining thebeu of copies oH ap-
pearing in a random threshold gra@h Specifically, we wish to understand the behavior of the
random variabléNy (G) which we define to be the number of induced copiesiofThis is an
extension of Propositidn 5.5 in whidth = K,. Of course, ifH is not a threshold graph, then
NH = O

With a modest abuse of notation, we also whkg(x) to meanNyx[I'(X)], i.e., the number of
copies ofH in the threshold graph representedxy

Theorem 5.30.Let H be a threshold graph on h vertices and lgt be the number of induced
copies of H in an n-vertex random threshold graph. Then tipeebed value of Nis E[Ny] =
(E)/Z“‘1 and its variance i8/ar(Ny) ~ cr™? for some constant s O.

For example, foH = K,, Propositioi5.25 gives

n

nn-1)(2n-1) 1 4
2 ~ .

) and Var(\y) = o4 1—2n

E(Ny) = %(
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Proof. Let A be anh-element subset oh] and defineX, to be the indicator random variable
thatG[A] (the induced subgraph of the random threshold gi@m vertex sef\) is isomorphic
toH, i.e.,Xa = 1{G[A] = H}. HenceNy = Y Xa.

As there aréh! /| Aut(H)| different ways in whictH might be realized on a set bfvertices,
we have

_h _h |Aut(H)l 1
| Aut(H)| PR} = |Aut(H)]  2"-tht — 201

E[Xa] = PH{G[A] = H}

It follows thatE[Ny] = (E)/Z“‘1 by linearity of expectation.

It is useful to present a second derivation EJiNy] based on creation sequences. In this
approach, we prepend a “wild card” symbe) (o all creation sequences to stand for the first
vertex in the graph. This wild card can be considered eitlleona O; it does not matter as it is
the first vertex in the creation list.

Let sy be the creation sequence for the grapltincluding the initial wild card) and le®
be a random creation sequence (an initidllowed by a random sequencem#f 1 1s and 0s).
Then the number of induced copiestéfin the random threshold graph generatedsbgquals
the number oh-long subsequences 8fthat matchs, where thex in s can match any symbol
inS.

Therefore, given a fixed subs&bf h entries inS, the probability that those entries matgh
is 1/2™1 and so PiX, = 1} = 1/2™1, As there ar({ﬂ) such subsets we ha®Ny] = (E)/Zh‘l.

For the second claim, note that
Z XA] = Z Z Cov(Xa, Xg) =
A A B

where the double sums are overAJB c [n] with |A| = |B| = h, but the second is organized by
the size of the intersection éfandB. Note that the number of summands in whjdn B| = i

G0 -ee

Note that whenA and B are disjoint, then Cow,, Xg) = 0. Wheni > 1, this expression is
o(n®"1). We therefore concentrate solely on the terms GavKg) in @) for which|AnB| = 1.
There arG(Zhn_l) ways to choose the elementsAt) B for which|An B| = 1. For each such

union, there ar¢”},*)h choices for the ordered paiA(B) and the restricted sum of CoY, Xs)
is the same for all possible choicesAt) B of size h — 1. That is, we have

Var(Ny) = Var Cov(Xa, Xs) (3)

h
i=0 AB:
|[ANB|=i

n

oh— 1 Cov(Xa, Xg) (4)

Z Cov(Xa, Xg) = (

|ANBI=1 ) AUB=[2h-1]

|[ANB|=1

We consider a particular term in the second sunidn (4).Aet{a; < a < --- < a,} and
B={b <b,<---<bywhereAU B = [2h - 1]. Leta, 8 be the indices oA, B [respectively]
of their unique common element; that &, = b.
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Figure 8 An illustration of the constrainf]5). In this examgie- 4, s, = *001,A = {1, 3, 4, 5},
B=1{2,4,6,7}, AnB = {4}, o = 3, andB = 2. The five elements afmust be as shown in order
for Xa = Xg = 1. The probability this happens is@-3 = 25,

(04

* 0(0 |1

* 0 0|1

Recall thatsis the (random) creation sequence of the grgmmndsy is the (fixed) creation
sequence foH. We calculate CoWa, Xg) in the three cases: (a)= 1 org = 1, (b)e,5 > 1 and

su(@) = su(B), and (3)x, B > 1 andsy(e) # su(B). Inall caseE(Xa)E(Xg) = (2—(h—1>)2 = 222
We also have the following constraint:

Xa=Xg=1 = Vi>1 sy(i) =s(@) and VYj>1 sy(j)=s(b). (5
This condition is illustrated in Figuid 8.

(@) Claim: If @ = 1 or 8 = 1thenCov(Xa, Xg) = O.

Consider the case = 1 (as the casg = 1 is the same). Conditio](5) imposels 2 2
constraints ors, and soE[XaXg] = Pr{Xa = Xg = 1} = 2-@2 and so CoWXa, Xg) = 0.

(b) Claim: If a,8 > 1 and s4(a) = s4(8) thenCov(Xa, Xg) = 27?2,

In this case, conditiorl]5) imposek 2 3 constraints ors (the constraintsy(a) = (&)
andsy(b;) = s(b;) are redundant). Thus P, = Xg = 1} = 27®3 and so

Cov(Xa, Xg) = E[XaXg] — E[XA]E[Xg] = -3 _ o-2n2 _ 5-2h+2.

(c) Claim: If a,8 > 1 and si(a) # su(B), thenCov(Xa, Xg) = —27@"2),

If sy(a) # su(B) we have the contradictory requirements tb@,) # s(bs) even though
a, = bg. ThusXa = Xg = 1is not possible. Therefore

COVO(A’ XB) = E[XAXB] - E[XA]E[XB] =0- 2—2h+2.

Thus, the only possible values of Coy( Xg) are 0 and:2-"2) and so next we determine
how often each of these cases [(a), (b), or (c)] occur. Ini@dér, we must show that case (b)
occurs more often than case (c) to complete the proof.
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We continue our assumption thatu B = [2h — 1] andAn B = {a,} = {bs}. For a fixed
choice ofa, 8, the number of pairsA, B) is

a+pB-2\(2h—a-p
)
as there arer + 8 — 2 elements oA U B smaller tharma, = b (and we putr — 1 in A and the
others inB) and there arel2— « — g elements oA U B greater thara, = bg.
To calculate the right-hand sum id (4) we use the followingdyanotation. For I< i < h
put
0 fori=1,
X =4+1 fori>1andsy(i) =0, and
-1 fori>1andsy(i) = 1.
Then, the right-hand sum il(4) equals

1 a+B-2\(2h—a-p
ZM;( a—1 )( h- o )waﬁ (6)
and we want to show that this term is positive.

Note that this double sum ifl(6) is a quadratic fothMx whereM is thehx h matrix whose

a, B-entry is
a+pB-2\(2h—a-p
Myg = : 7
=" )
Note thatM is symmetric. Thus, to show that Mx > 0, we show thaM is positive definite.
Thanks to the representatidn (7), we note fdat the Hadamard produd = P o P where
P is the Pascal-triangle matrix whogg-entry is('*ijf) andP is formed fromP by reversing
the rows and columns d¥. For example, witth = 5, the matrixM = Po P is

70 3515 5 1 (11 1 1 1} [70 35 15 5
35 40 30 16 12 3 4 5 (35 20 10 4
15 30 36 30 1%=|1 3 6 10 13015 10 6 3
5 16 30 40 3 1 4 10 20 3 5 4 3 2
1 5 15 35 7 1 515 35 7 1 1 1 1

It is known [1,[3] that the Pascal matriX is positive definite and since is formed fromP
simply by reversing the rows and columns, it is also positleéinite. Finally, sinceM is the
Hadamard product of positive definite matrices, Schur'sipob theorem (see, for examplie, [15]
Theorem 7.5.3) implies thaM is positive definite. O

As an example, we find the (asymptotic) variance in the nurobeopies of a complete
subgraph orh vertices.

Proposition 5.31. Let H = K, the complete graph on 2 vertices. Then
2(h-1)(37) ( n )

Varn ~ —zmz (2n-1
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Proof. Recall that by equationEl(3) arid (4) we have that

n
VarNy ~ C , X
ar Ny (2h B 1) AUB:Z[Zh—l] oV(Xa, Xg)

|[ANB|=1
We count the number of terms in equati@h (4) that fall undeheaf the cases in the proof
of TheorenT5.30. Because setj(= x111---1, the only terms we have are those covered in
claims (a) and (b). Because terms in case (a) contributecmsariance, we count the number
of terms in case (b); that is,

AnNB={ay<a<---<anni{by<by<---<by) ={a,} = {bg}

wherea, 8 > 1.

First, notice that the element 1 belongs to exactly on@ @i B; there are 2 choices for
which. Without loss of generality, suppos& JA. Then, there ar(azhh_‘zz) ways to choose the rest
of the setA from [2h — 1] — {1}, not including elemenrd,, where the setéd andB intersect. This
leavesh elements from [B — 1] all of which are all to be assigned Band one of which is the
intersection ofA andB. The smallest element & cannot be the common elementdandB
(because we are not in case (a) of the proof of Thedren 5.39}h&e areh — 1 choices for
the intersectiom, = bs. Once the intersection @& andB has been chosen, the sétandB are
fully determined. Thus, there are

2h -2
2(h- 1)( ho 2 )

positive terms in equatiofl(4) whefeu B = [2h — 1], each contributing 22" to the variance.
The right hand side of equatiod (4) becomes

2(h—1)(2h-2\( n
s o)

as desired. O

Note that among all threshold grapHson h vertices, the graphi, andK;, give the largest
value for VarNy because there are no negative covariance terni$ in (4).

Next we show that when suitably centered and rescalgdhas an asymptotically normal
distribution. This is a direct consequence of a theorem dadffdong [14] (see alsd [20], Theo-
rem 5.5.1.A) on U-statistics.

We can writeNy as

No= DL KOG X %) ®)
1<iz<ip<---<ipgn
where
1 ifI’(y)=Hand
k(yi, ...,V = )
\z o) {O otherwise.
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Writing Ny as in [8) shows thalil, (or more preciselyNy/(f) is a U-statistic and Hdtding’s
result enables us to establish asymptotic normality.
One technical condition needs to be checked. Let

Ki(X) = E{k(X, X2, X3, ..., Xp)}

wherex is a fixed value in [01] and the expected value is computed by integrating over the
remainingh — 1 variables (indicated by capital letters). Note thatiihas a universal vertex,
thenk;(0) = O because one vertex would necessarily be isolated. On liee bandk;(1) =
21-(-1) = 22-h The point is thak; is not constant. Put

= Va.rkl

and therefore we havg& > 0. With this notation in place, Hégling's theorem immediately
gives the following result.

Theorem 5.32.Let H be a threshold graph on h vertices and lgi Nenote the number of
induced copies of H in a random threshold graph on n vertiGégn

N
Wil - 21—“]
(7
converges in distribution to a normal distribution with nme@and variance A;. O

A Partial Dyck Sequences

The results in this section are known; proofs are included f@ convenience. References for
this work include[[7|B].

A Dyck pathis a lattice path from (@) to (n, n) (for some nonnegative integey that never
goes below the diagonal. EquivalentlyDgck sequences a sequence ofregsymbols (say 1s
and 0s) so that (a) there are an equal number of 1s and 0s aimde@yh initial portion of the
sequence the number of 1s is equal to or greater than the mwhBs. It is well known that
the number of Dyck sequences of lengthi2 the Catalan numbey, = i(znn) with generating

. n+1
function
- V1-4x

C(x) = Z CaX" = 1 ™ 9)
n=0

By a partial Dyck sequencgve mean an initial portion of a Dyck sequence. That is, a
sequence of 1s and@o that each initial portion of the sequence has at least ay figas 0s.
In other words, the sequence satisfies condition (b) but eog¢ssarily (a) above.

Let p, denote the number of partial Dyck paths of lengtf he listpg, p1, p2, . . . is sequence
A001405 in [Z21] in which the following result is implicitlysserted.
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Proposition A.1. Let p, be the number of partial Dyck sequences of length n. Then foOn

we have
_ n
m%wﬁ‘

Proof. We begin with the case themis even. We claim that
m-1
Dom = 22m _ Z Ck22m—2k—1. (10)
k=0

Proof of equatior{I0). Consider those sequences of lengtttiat fail to be partial
Dyck paths. We index these sequences beginning with index O.

There are 2" length-2n sequences of 1s and Os. If such a sequence fails to be a
partial Dyck sequence, the first initial subsequence th@ates condition (b) does

so at an odd indexK+ 1. [The subsequence from index O to indéxi® a Dyck
sequence and then the next symbol is a 0.] The sum in the ragitt side of[(TI0)
counts these failures exactly. m|

With equation[(ID) established, we define the generatingtioms

A(X) = Z PomX" and
m=0

N 2
T(X)=O+2X+8X2+32x3+...:ZZZK—lxk: X_
=1 1-4x

UsingC(x) from (@), we note that the céiécient of X™ in C(X)T(X) is

m-1
Co2?™ 4223 4 12t + 6y 0= Z g 22m-2-1
k=0

which is precisely the sum il {ILO). Therefore

A = ) ponX”
m=0

— i 22mxm _ i (S}l CI(22m—2k—1) XM
m=0

m=0 \ k=0

O SN (1— 21—4x)( 2x)

T 1-4x 1-4x X 1— 4x
1 =\ (2m
= = Xm
V1 - 4x ;)(m)

and thereforg,, = (%) or, equivalently, whem is even,p, = (., )-
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We now turn to the case whanis odd, sayn = 2m - 1 wherem > 0. Such a sequence
has more 1s than 0s, so it can be extended to a partial Dycleseguof length & by the
addition of a 0 or a 1. Conversely, any partial Dyck sequeridermth 2n can be truncated to
a partial Dyck sequence of lengtim2- 1 by deleting the last symbol. Hence, there is a 2-to-
1 correspondence between partial Dyck sequences of lemgthith those of length & — 1.
Thereforepam = 2pom-1.

Thus forn odd
_ _1 _1if2m
pn - p2m—l— 2p2m— 2 m
1{/2m-1 2m-1 L .
_E[(m—l)Jr( m )] (Pascal’s identity)
3 2m-1 (N
“\m-=-1/ \|n/2]
as claimed. O

Let us call a partial Dyck sequenstict if in every initial subsequence the number of 1s is
greaterthan the number of 0s.

Proposition A.2. Let s, denote number of strict partial Dyck sequences of lengtronnk- 0

( )

Proof. Every strict partial Dyck sequence of lengtibegins with a 1 followed by a (not nec-
essarily strict) partial Dyck sequence of lengthk 1. Therefores, = p,_1 and the result now
follows from Propositiofi AlL. m
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