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Abstract

Let G be a graph randomly selected from Gn,p, the space of Erdős-Rényi Random

graphs with parameters n and p, where p >
log6 n

n . Also, let A be the adjacency
matrix of G, and v1 be the first eigenvector of A. We provide two short proofs of
the following statement: For all i ∈ [n], for some constant c > 0
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with probability 1− o(1). This gives nearly optimal bounds on the entrywise stabil-
ity of the first eigenvector of (Erdős-Rényi) Random graphs. This question about
entrywise bounds was motivated by a problem in unsupervised spectral clustering.
We make some progress towards solving that problem.

1 Introduction

Spectral graph theory has been extensively used to study properties of graphs, and the
results from this theory have found many applications in algorithmic graph theory as well.
The study of spectral properties of Random graphs and matrices has been particularly
fruitful. Starting from Wigner’s celebrated semi-circle law [17], a number of results on
Random matrices and Random graphs have been proved (See, for example, [10, 16]).

In this paper, we will deal with the well-known Gn,p model of Erdős-Rényi Random
graphs. In this model, a random graph G on n vertices is generated by including each of
the possible edges independently with probability p. For sake of brevity, in the remainder
of the paper we will use the term Random graph to mean a graph thus generated.
Spectral properties of such Random Graphs have been extensively studied. For example,
the well known result by Furedi and Komlos (corrected and improved by Vu) [10, 16]
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implies that, for sufficiently large p, if A is the adjacency matrix of a graph G ∈ Gn,p,
then with probability 1 − o(1)

‖A − E(A)‖ 6 (2 + o(1))
√

np

Here and later ‖M‖ denotes the spectral norm of a matrix M and E(X) is the expectation
of the random variable X (in this case, a random matrix).

Instead of bounds on the spectral norm, in this paper we shall study the entrywise
perturbation for eigenvectors of Random graphs, i.e. ‖v1(A)− v1(E(A))‖∞ (where v1(M)
is the first eigenvector of a square symmetric matrix M). Perturbation of eigenvectors
and eigenspaces have been classically studied for unitarily invariant norms, in particular
for the spectral and Hilbert-Schmidt norms [3]. Perturbations in the ‖ · ‖∞ norm has
been studied in the Markov Chain literature [14] to investigate stability of steady state
distributions, however, the error model in those work do not seem to carry over to random
graphs in any useful way.

The bound on ‖A − E(A)‖ can be converted to a statement about the relationship
between v1(A) and v1(E(A)), i.e. one can show that ‖v1(A) − v1(E(A))‖ is small. This
in turn does convert to a statement about ‖ · ‖∞ norm, but it is much weaker than our
bounds. Taking random graphs from the Gn, 1

2

model as an example, on the same scale

spectral norm bounds only imply O( 1√
n
) entrywise differences, where as our results show

that the differences are no larger than O(
√

log n
n

).
Recently, the delocalization property of eigenvectors of Wigner random matrices have

been studied [15, 9] (and related papers referenced from both). These very general results
imply entrywise upper bounds on all eigenvectors of A − E(A). Not quite a bound on
the first eigenvector of A, the bounds are in addition weaker. One gets an upper bound
of O( logc n√

n
) on the absolute value on the entries of the eigenvectors, and no useful lower

bound (which is not a weakness, one cannot expect such a bound for higher eigenvectors
of random matrices). In addition, these works are not concerned with clustering problems
on (generalized) Random graphs – something we explore, as described below.

We study the connection between entry-wise bounds for eigenvectors of Random
graphs and the clustering problem on graphs generated by the Planted partition model
(See [5, 13]), which is a generalization of the Random graph model. In this probabilistic
model, the vertex set of the graph is partitioned into k subsets T1, T2, . . . , Tk. The input
graph is random generated as follows: For two vertices u ∈ Tj, v ∈ Tk the edge (u, v) is
independently chosen to be present with a probability Pjk = Pkj and absent otherwise.
So instead of a single probability p, the probability space is defined by a k × k matrix P .
The adjacency matrix A of the graph thus generated is presented as input. The task then
is to identify the latent clusters T1, T2, . . . , Tk from A.

Generalizations of spectral norm bounds discussed above have been successfully used
for analyzing spectral heuristics for the Planted partition model [5, 2, 7, 13]. The basic
outline of many of these results is this: First one observes that E(A) is easy to cluster
(by design). Since spectral norm bound imply that ‖A − E(A)‖ is small, the eigenvector
structure of A is not very dissimilar from that of E(A). This is then converted to a

the electronic journal of combinatorics 16 (2009), #R131 2



statement that most vertices of A can be put in the correct cluster by looking at the
eigenvectors of A. However, the small but non-negligible value of ‖A − E(A)‖ implies
that some vertices might be misclassified. To rectify this, one uses some sort of “clean-
up” scheme which for planted partition models invariably turn out to be combinatorial
in nature. Experimental results suggest that such clean-up schemes are unnecessary (for
large enough values of entries of P : for very small probabilities, “clean-up” schemes
cannot be avoided). In [13], McSherry made a related conjecture. Proving such a result
will most likely involve proving entrywise bounds for second and lower eigenvectors of
adjacency matrix of Planted partition models. We make a step towards resolving these
questions through computing entrywise bounds for the second eigenvector in a very simple
Planted partition model. We will show that for a simple clustering problem, the second
eigenvector obeys the cluster boundaries, thus no cleanup phase is necessary. Though
our model requires conditions stronger than the ones used in standard results for spectral
clustering, the results are non-trivial in the sense that mere eigenvalue bounds are not
enough to prove them.

In Section 2 we present useful notation, the basic Random graph model and statement
of the result for Random graphs. In Section 3 we present two proofs. Section 4 shows
that out bound is tight for quasi-random graphs. In Section 5 we present the model and
results for the Planted partition model.

2 Notation and Result

As stated in the introduction, the main object of study in this paper is the Gn,p model
of Erdős-Rényi random graphs. Gn,p is a probability space on graphs with n vertices.
To get a random element G from this space we select the edges independently, each of
its
(

n
2

)

possible edges are selected with probability p. Random graphs are widely studied
objects [4]. In this paper, we will consider a slightly different model, where in addition
to the edges between two different vertices, we also allow self loops, which are selected
independently with the same probability p. This doesn’t change the model or the result
appreciably, but allows a cleaner exposition. We will call continue to call this modified
model Gn,p, and use the notation G ∈ Gn,p to denote that the graph G is a random
element of Gn,p.

We will use A(G) to denote the adjacency matrix of the graph G, and A when G is
clear from the context. We will use λi(M) and vi(M) to denote the ith largest (in absolute
value) eigenvalue and its corresponding eigenvector of a square symmetric matrix M . Also
let λ = λ1(A). If A is the adjacency matrix of G ∈ Gn,p, then note that E(A) is the n×n
matrix where every entry is p.

For sets R, S ∈ V , e(R, S) is the number of edges between R and S. We will use the
convenient notation e(R) for e(R, V ) (where V is the set of all vertices). For a vertex v,
we will also use the shorthand e(v) = e({v}). For any set of vertices B, N(B) denotes
the set of its neighbors.

Unless otherwise specified, vectors will be of dimension n. For two vectors u and v,
(u · v) denotes their inner product. The unsubscripted norm ‖ · ‖ will denote the usual
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euclidean norm for vectors and the spectral norm for matrices. For a matrix M , Mij

denotes the entry in the ith row and the jth column. For a vector x ∈ R
n, let x(i) be its

ith entry. Let xmax = maxi∈[n] x(i), xmin = mini∈[n] x(i) and ‖x‖∞ = maxi∈[n] |x(i)|. We
will use the symbol 1 to mean a vector with all entries equal to 1. Also, c, c1, c2 . . . etc
are constants throughout the paper. We will use the phrase “with high probability” to
mean with probability 1 − o(1).

The following is the main result in our paper. Define ∆ = 4
√

log n
np

.

Theorem 1. Let G ∈ Gn,p be a random graph and A be its adjacency matrix. Assume
p > log6 n/n. Then, for all i ∈ [n]

∣

∣

∣

∣

v1(i) −
1√
n

∣

∣

∣

∣

6 c
log n

log np

1√
n

∆

with high probability, for some constant c.

3 Proofs

3.1 The First Proof

In this section we present the first proof of Theorem 1. We will need the following result
about random graphs [10, 16].

Theorem 2. Let A be the adjacency matrix of G ∈ Gn,p, where p >
log6 n

n
. Then with

high probability,
‖A − E(A)‖ 6 3

√
np

We will also need the following basic results:

Lemma 3. With probability 1 − 1
n2 , for all vertices v of G ∈ Gn,p

|e(v) − np| 6 np∆

Proof. Elementary use of the Chernoff bound.

Lemma 4. Let G be a connected graph on n vertices such that |e(v)− np| 6 np∆. Then
λ > np(1 − ∆) and λ 6 np(1 + ∆)

Proof. For the lower bound, it suffices to observe that ‖A1‖ > np(1 − ∆)‖1‖.
Now let v = v1(A). Assume without loss of generality v(1) = maxi v(i). Then by

definition

λv(1) = (Av)(1) =
∑

j:A1j=1

v(j) 6 v(1)
∑

j:A1j=1

1 6 v(1)np(1 + ∆)

⇒ λ 6 np(1 + ∆)

That proves the upper bound.
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The following is well known [10]:

Lemma 5. Let G ∈ Gn,p where p >
2 log n

n
. Then with high probability, G is connected.

Let us adopt the notation u = [a ± b]v for b > 0 to mean that u is a vector such that
a − b 6 u(i) 6 a + b for all i.

Lemma 6. Let u = [1 ± 3t∆]v for some log n > t > 0. Define u′ = 1
λ
Au. Then

u′ = [1 ± 3(t + 1)∆]v (1)

Proof. For any i ∈ [n]

λu′(i) =
∑

j∈[n]

Aiju(j) =
∑

j∈N(i)

u(j)

We know that |N(i)| 6 d(1 + ∆) and u(j) 6 1 + 3t∆. Hence,

λu′(i) 6 d(1 + ∆)(1 + 3t∆)

6 d(1 + ∆ + 3t∆ + 3t∆2) 6 d(1 + ∆ + 3t∆ + o(∆))

⇒ u′(i) 6
d

λ
(1 + ∆ + 3t∆ + o(∆))

The assertion 3t∆2 = o(∆) follows from the assumed bounds on t and p. As λ > d(1−∆)

u′(i) 6
1

1 − ∆
(1 + ∆ + 3t∆ + o(∆)) 6 1 + 2∆ + 3t∆ + o(∆) 6 1 + 3(t + 1)∆

The lower bound is similar.

Lemma 7. Let f ≡ 1√
n
1 = αv1 + βv⊥ where v⊥ ⊥ v1 and ‖v⊥‖ = 1. Then, α > (1− 2∆)

Proof. By definition, (f · v1) = α.
We claim that α > 0. A version of the Perron-Frobenius Theorem [11] implies that

the adjacency matrix of a connected graph will have a eigenvector corresponding to its
largest eigenvalue that has non-negative entries. We already know that G is connected
(Lemma 5). Now by Theorem 2 and Lemma 4, it is clear that the λ1(A) has multiplicity
1. Hence v1 is non-negative (but of course not all zero). Clearly, α = (f · v1) > 0, which
was the claim.

We know (Theorem 2),

‖A − E(A)‖ 6 3
√

np

⇒ ‖λv1v
T
1 +

∑

i>2

λiviv
T
i − npffT‖ 6 3

√
np (2)

Now

(λv1v
T
1 +

∑

i>2

λiviv
T
i − np × ffT )v1

= λv1 − np × f(f · v1) = λv1 − αnp × f

= λv1 − αnp(αv1 + βv⊥) = (λ − α2np)v1 + αβnpv⊥
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Hence ‖(λv1v
t
1 +

∑

i>2 λiviv
T
i − np × ffT )v1‖2 = (λ − α2np)2 + (αβnp)2

Comparing this with Equation (2), we get

(λ − α2np)2
6 9np

⇒ α2np > λ − 3
√

np

⇒ α > α2
>

1

np
np(1 − 2∆) = 1 − 2∆

Where α > α2 follows from 1 > α > 0. This proves the Lemma.

Now we can prove Theorem 1:

Proof. Let l = 9 log n
log np

. Also let

ut =
1

λt
At1 (3)

for t > 0. Note that A0 = I, the identity matrix. By Lemma 7, we know that 1√
n
1 =

αv1 + βv⊥ where v⊥ ⊥ v1, ‖v⊥‖ = 1 and α > (1 − 2∆)
By Lemma 6

ul = [1 ± 3l∆]v (4)

Let v⊥ =
∑

i>2 γivi. Then

1√
n

Al1 = αλlv1 + β
∑

i>2

γiλ
l
ivi

⇒ 1√
n

ul = αv1 + xǫ (5)

where xǫ = β
∑

i>2 γi(
λi

λ
)lvi

Now as λ > np(1 − ∆) and λi>2 6 3
√

np,
(

λi

λ

)l
6

(

4√
np

)l

6
1
n4

We can compute a bound on each entry of xǫ

‖xǫ‖∞ 6 ‖xǫ‖ 6
1

n4
β

∥

∥

∥

∥

∥

∑

i>2

γivi

∥

∥

∥

∥

∥

6
1

n4
β‖v⊥‖ 6

1

n4

Hence, from Equation (4)—(5)

αv1 =
1√
n

ul +

[

± 1

n4

]

v

=
1√
n

[1 ± 3(l + 1)∆]v +

[

± 1

n4

]

v

=
1√
n

[1 ± 4(l + 1)∆]v

⇒ v1 =
1

α

1√
n

[1 ± 4(l + 1)∆]v =
1√
n

[1 ± 6(l + 1)∆]v

The last line uses the bound α > 1 − 2∆. This completes the proof.
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3.2 The Second Proof

This proof is slightly longer, but is more elementary (we don’t need to use Theorem 2),
and perhaps more intuitive. In addition, the proof technique employed here will be used
in the next section on spectral clustering, so it is worth introducing.

We will actually prove a theorem on Quasi-random graphs [12]: A graph G(V, E) is
(p, α)-Quasi-random (p > 0, α > 0) if, for all subsets R, T ∈ V

|e(R, T ) − prt| 6 α
√

rt

where n = |V |, r = |R| and t = |T |.
We will prove the following Theorem

Theorem 8. Assume G is a connected (p, 2
√

np)-Quasi-random graph on n vertices. Let
A be the adjacency matrix of G. Also assume that |e(v) − np| 6 np∆ (We have already

defined ∆ = 4
√

log n
np

). Let v = γv1(A) where γ is chosen such that such that vmax = 1.

Then

vmin > 1 − c2
log n

log np
∆ (6)

for some constant c2.

The following corollary of Theorem 8 implies Theorem 1

Corollary 9. Assume G ∈ Gn,p where p > log6 n/n. Let A be the adjacency matrix of
G. Let v = γv1(A) where γ is chosen such that such that vmax = 1. Then

vmin > 1 − c2
log n

log np
∆ (7)

for some constant c2.

Proof. For p > log6 n/n, G ∈ Gn,p is (p, 2
√

np)-Quasi-random with high probability. This
property can be quickly proven by applying the standard Chernoff bound a few times (See
the survey by Krivelevich and Sudakov [12] for a reference). Lemmas 3 and 5 imply that
the other assumptions needed for Lemma 8 are satisfied. This completes the proof.

The intuition behind this proof of Theorem 8 can be demonstrated by the following
simple observation. Let v is normalized such that v(1) = 1 for vertex 1. Now, the first
eigenvalue of A is close to np, while vertex 1 has a degree of np(1 ± ∆). As (A · v)(1) ≈
npv(1) ≈ np, we need

∑

j∈N(1) v(j) ≈ np where N(1) is 1’s neighborhood set. This means

on average, N(1) will have weights in the range 1±∆. Our technical lemmas that follow
show how this intuition can be shown to be true for not only vertices but sets, and how
an absolute (not only average) result can be achieved.
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Assume, v is defined as in Theorem 8, and v(1) = vmax = 1, without loss of generality.
We define a sequence of sets {St} for t = 1 . . . in the following way:

S1 = {1} (8)

St+1 = {i : i ∈ N(St) and v(i) > 1 − c(t + 1)∆}, ∀t > 1 (9)

Now, we define nt and Ft

• nt = |S(t)|

• Ft =
∑

i∈S(t) v(i)

Note that n1 = 1 and F1 = 1.

Lemma 10. Let t′ be the last index such that nt′ 6
60
p
. For all t 6 t′

nt+1 >
np × nt

72 log2 n

Proof. Let N = N(S(t)). Note that e(S(t)) = e(S(t), N) 6 ntnp(1 + ∆).
The edges from S(t) to its neighbors must provide the multiplicative factor of λ:

λFt =
∑

i∈N

v(i)e(i, S(t))

Now,

λFt =
∑

i∈N

v(i)e(i, S(t)) =
∑

N−S(t+1)

v(i)e(i, S(t)) +
∑

S(t+1)

v(i)e(i, S(t))

6 (1 − c(t + 1)∆)e(N − S(t + 1), S(t)) + e(S(t + 1), S(t))

= (1 − c(t + 1)∆)e(S(t)) + c(t + 1)e(S(t), S(t + 1))∆

6 (1 − c(t + 1)∆)e(S(t)) + c(t + 1) (pntnt+1 + 2
√

ntnt+1np)∆

The last line uses the quasi-randomness property. Since λ > np(1 − ∆) (Lemma 4) and
Ft > nt(1 − ct∆) (by definition)

(1 − c(t + 1)∆) e(S(t)) + c(t + 1) (pntnt+1 + 2
√

ntnt+1np) ∆ > np(1 − ∆)Ft

⇒ (1 − c(t + 1)∆) ntnp(1 + ∆) + c(t + 1) (pntnt+1 + 2
√

ntnt+1np) ∆

> (1 − ct∆)np(1 − ∆)nt

⇒ pntnt+1 + 2
√

ntnt+1np >

(

1 − 2

c

)

ntnp

t + 1

As nt 6
60
p

by assumption,

60nt+1 + 2
√

ntnt+1np >

(

1 − 2

c

)

ntnp

t + 1
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Assuming c > 10, either (or both) of the following is true:

60nt+1 >
1

3

ntnp

t + 1
(10)

2
√

ntnt+1np >
1

3

ntnp

t + 1
(11)

From which we get

nt+1 > ntnp max

(

1

36(t + 1)2
,

1

180(t + 1)

)

(12)

Hence as long as t 6 log n

nt+1 >
1

72

ntnp

log2 n
(13)

All that remains to show is that t′ 6 log n.
For this, observe that with the growth rate specified in (13), nt to be at least as large

as 60
p
, t need not be larger than log(np)3/4

1
p

= 4
3

log 1

p

log np
6 log n. Hence t′ 6 log n.

The following lemma deals with the case of large sets.

Lemma 11. Let U be a set of vertices, where u = |U | >
60
p
. Also, assume that F =

∑

i∈U v(i) > u(1 − α∆) for some α > 1. Let W (U) = {i : i ∈ N(U) and v(i) >

(1 − (12α + 24)∆)}. Then w = |W (U)| > 6n
10

.

Proof. Assuming that the claim of the lemma is false, w 6
6n
10

.
We know that λF =

∑

i∈N(U) v(i)e(i, U). By the lower bound on F , we need
∑

i∈N(U)

v(i)e(i, U) > λu(1 − α∆) > npu(1 − (α + 1)∆) (14)

However, using Quasi-randomness and the fact u >
60
p

e(W (U), U) 6
6npu

10
+ 2

√

u6n2p

10
6

4npu

5

As v(i) 6 1 for all i and v(i) 6 1 − (12α + 24)∆ for i ∈ N(U) − W (U), this yields,
∑

i∈N(U)

v(i)e(i, U)

6 e(W (U), U) × 1

+(e(U, N(U)) − W (U)) × (1 − (12α + 24)∆)

6
4npu

5
+

(

u(np(1 + ∆)) − 4unp

5

)

(1 − (12α + 24)∆)

6 npu(1 + ∆) − npu

6
(12α + 24)∆

6 npu(1 − (2α + 2)∆)

This contradicts Equation 14.
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The following two lemmas follow along the same lines as Lemmas 10 and 11, respec-
tively. For these lemmas, we assume v(1) = vmin = b > 0 and define St and nt analogously:

• S1 = {1}

• St+1 = {i : i ∈ N(St) and v(i) 6 b(1 + c(t + 1)∆)}

And,

• nt = |S(t)|

• Ft =
∑

i∈S(t) v(i)

Note that n1 = 1 and F1 = b.

Lemma 12. Let t′ be the last index such that nt′ 6
60
p
. For all t 6 t′ + 1

nt+1 >
ntnp

9 log2 n

Lemma 13. Let U ⊂ V , where u = |U | >
60
p
. Also, assume that F (U) =

∑

i∈U v(i) 6

ub(1 + α∆) for some α > 1. Let W (U) = {i : i ∈ N(U) ∧ v(i) 6 b(1 + (12α + 24)∆)}.
Then w = |W (U)| > 6n

10
.

Proof of Theorem 8

Proof. Let us consider St (as defined in Eqns 8 and 9) for the first t such that nt >
60
p
.

From Lemma 10, Ft > nt(1−c log n
log n

∆). As nt >
60
p
, we can invoke Lemma 11 with U = St.

This gives us a a set W with |W | > n
2
, such that for every i ∈ W, v(i) > 1 − β∆, where

β = c1
log n
log np

for some constant c1.
A similar argument can be put forward using Lemmas 12 and 13. So, for another set

Y , where |Y | > n
2
, v(i) 6 b(1 + β∆) for each i ∈ Y . Using the pigeonhole principle to

observe that X and Y must intersect, we can conclude that

b(1 + β∆) > 1 − β∆

⇒ b > 1 − 3β∆

This completes the proof of Theorem 8.

4 Tightness

For general Quasi-random graphs, we will show that our bound is tight up to a constant
factor.

We prove the following:
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Figure 1: Construction of a Quasi-random graph depicting tightness of the bound.

Theorem 14. For any large enough n, and any
√

n > d > log6 n there exists a ( d
n
, 27

√
d)-

quasirandom graph on n nodes so that each vertex has a degree in the range d(1±2
√

log n
d

)

and

vmax − vmin >
log n

log d

√

log n

d
(15)

where v is the largest eigenvector of the adjacency matrix A of the graph.

Proof. Given large enough n and d, define l = ⌈ log n
10 log d

⌉ and ǫ =
√

log n
d

. We construct the

Quasi-random graph as follows:

Construction Starting from a single node as root, construct a d(1+ ǫ) degree complete
tree T1 of depth l. Construct another complete tree T2 of same depth, but with degree
d(1 − ǫ). Define L(T ) to be the set of leaves of a tree T . Note that V (T1) = d(1 + ǫ)l =
O(n1/5) and V (T2) = d(1 − ǫ)l = O(n1/5).

Now let M be a set of m = n−|V (T1)| − |V (T2)| new nodes. Set Q = L(T1)∪L(T2)∪
M and construct a d-regular expander on Q (by, for example, generating a random d-
regular graph on them). Expanders are Quasi-random [12], in particular, the subgraph
constructed on q = |Q| vertices is (d

q
, 2
√

d)-Quasi-random.
Now let G be the graph on vertex set V = M ∪ T1 ∪ T2 of size n and containing all

edges in the two trees and the expander on Q.
We claim:

1. G is ( d
n
, 27

√
d)-quasirandom and has vertex degree in the range d(1 ± 2ǫ).

2. Let v = γv1(A) such that vmax = 1. Then, vmin 6 1 − 1
2
l ǫ
1+ǫ

Let us prove the first claim. The claim about degrees is clear from the construction.
Proving the quasi-randomness property is a matter of checking the property for each
possible pair of vertex sets. We do a case by case analysis below and then will finally
combine the cases to come up with a unified bound.
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Case 1: Let R, S ∈ Q and define q = |Q|. As stated above, the subgraph on Q is
quasirandom, hence

|e(R, S) − d|R||S|
q

| 6 2
√

d|R||S|

⇒ |e(R, S) − d|R||S|
n

| 6 2
√

d|R||S| + d|R||S|(n− q)

nq

6 3
√

d|R||S|

The last inequality requires d|R||S|(n−q)
nq

6
√

d|R||S| which follows easily from n − q =

O(n1/5).

Case 2: Now let X, Y ∈ T1, define x = |X|, y = |Y | and assume without loss of
generality that x 6 y.

We claim, e(X, Y ) >
dxy
n

− 2
√

dxy. As, x, y 6 O(n1/5), dxy
n

< 2
√

dxy. So, the bound
is trivially true.

Next, we claim e(X, Y ) 6
dxy
n

+ 2
√

dxy. We analyze two cases:

• if x < y
d
. In this case

e(X, Y ) 6 x(d(1 + ǫ) + 1) 6 2
√

dx
√

dx

6 2
√

dx
√

y 6 2
√

dxy

We use the assumption on x in the last inequality.

• if x >
y
d
. As T1 is a tree, e(X, Y ) 6 x + y 6 2y Now,

e(X, Y ) 6 2y = 2
√

y
√

y

6 2
√

y
√

dx 6 2
√

dxy

Case 3: Let X ∈ Q and Y ∈ T1. First, we claim e(X, Y ) >
dxy
n

− 2
√

dxy. As d 6
√

n

and y = O(n1/5), dxy
n

< 2
√

dxy. So, the bound is trivially true.
For the other case, note that the only edges from T1 to Q will involve L(T1), hence

the same arguments as in Case 1 will suffice to prove the claim.
Similar bounds will work for sets involving T2.

To prove the bound for any two sets S, R ⊂ V , assume that for any set W , W1 = W ∩T1,
W2 = W ∩ T2 and W3 = W ∩ Q. Now,

∣

∣

∣

∣

e(S, T ) − dsr

n

∣

∣

∣

∣

6
∑

i,j∈{1,2,3}

∣

∣

∣

∣

e(Si, Rj) −
d

n
sirj

∣

∣

∣

∣

6
∑

i,j∈{1,2,3}
3
√

dsirj 6 27
√

dsr
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Hence the bound.
Now we prove the second part of the claim. First consider the case where λ1 6 d. For

this case, assume that the root of T1 is vertex 1. Let, u = γ1v1(A) such that u(1) = 1.
Note that |γ1| > |γ|. By Lemma 15 (which we state and prove later), at level l of T1,
there is a vertex j for which

u(j) 6 1 − 1

2
l

ǫ

1 + ǫ
Since |γ1| > |γ|, we get vmin 6 u(j). This proves the claim.

Now, if λ1 > d, we can use a similar argument on T2 and prove that if vx = 1 (where
x is the root of T2) then there exists a vertex j at level l of T2 such that vj > 1 + 1

2
l ǫ
1+ǫ

.
This proves the claim, from which the Theorem 14 follows once we plug in values of ǫ and
l.

Lemma 15. Consider a graph constructed as in the proof of Theorem 14. Assume that
λ1 6 d and that the root of T1 is vertex 1. Let, u = γ1v1(A) such that u(1) = 1. Then,
for all r 6 l (l is defined in the proof of Theorem 14), there is a vertex j at level r of T1

for which

u(j) 6 1 − 1

2
r

ǫ

1 + ǫ
.

Proof. We prove the bound inductively. The claim is trivially true at level r = 0. Assume
the hypotheis is true at level r < l, and that u(j) 6 1 − 1

2
r ǫ

1+ǫ
for some vertex j at level

r. Assume p is j parent in T1, if it has one. Now,
∑

i∈N(j)

u(i) 6 duj

⇒
∑

i∈N(j)−{p}
u(i) 6 (d − 1)uj

Since |N(j) − {p}| = d(1 + ǫ), by a basic averaging argument, for some k ∈ N(i) ,

u(k) 6
(d − 1)u(j)

d(1 + ǫ)
6 (1 − 1

2
r

ǫ

1 + ǫ
)(1 − 1

d
)(1 − ǫ + ǫ2)

6 (1 − 1

2
r

ǫ

1 + ǫ
)(1 − ǫ) 6 1 − 1

2
r

ǫ

1 + ǫ
− ǫ +

rǫ2

1 + ǫ
6 1 − 1

2
(r + 1)

ǫ

1 + ǫ

Provided ǫ > rǫ2 which is true for our construction.

5 Application to clustering

In this section we present a result on spectral clustering using our approach. We will
show that a very simple algorithm (Algorithm 1) manages to bi-partition a graph ran-
domly generated from a planted partition model with two clusters. Our model will be a
particularly simple instance of the Planted partition model, and the conditions we assume
are much stronger than those needed for standard spectral clustering algorithms [13]. The
interest, thus, lies in the simplicity of the algorithm, not the generality of the result.
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Figure 2: a) A sorted plot of v1(A)− v1(EA) where A was computer generated according
to G1000,0.1. b) A sorted plot of the second eigenvector of the planted clique problem,
where a clique of size 50 is embedded in a 500 node graph. The graph is generated by
selecting every edge with p = 1

2
. The largest 50 entries correspond to the clique.

Algorithm 1 Threshold(A, n)

1: {A is the adjacency matrix of the input graph G, n is the number of vertices}
2: Find v = v2(A), the second eigenvector of A
3: Let L = {i : v(i) < 0}
4: Return L and [n] − L

5.1 Model

The input to the algorithm is a graph G(V, E), which has two clusters T1 and T2 such
that T1 ∪ T2 = V . Assume |Ta| = n for a = 1, 2. The adjacency matrix A is generated
thus: For a, b ∈ {1, 2} there are probabilities pab(= pba) such that if r ∈ Ta and s ∈ Tb

then Asr = Ars = 1 with probability pab and 0 otherwise.
Assume

paa =
1√
n

(16)

pab 6
1√
n
− c1

√

log n

n7/6
(17)

For some large enough constant c1. Let d1 be the expected number of edges of a vertex
to vertices in its own cluster and d2 be the expected number of edges from a vertex to
vertices in the other cluster. From 16 and 17, d1 =

√
n and d2 6

√
n − c1

√

n5/6 log n,
which implies the following separation condition:

d1 − d2 > c1

√

n5/6 log n (18)

We prove:
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Theorem 16. With high probability, Given a graph G generated from the Planted partition
model described above, Algorithm 1 outputs a bi-partitioning of the graph that agrees with
the underlying clusters T1 and T2.

5.2 Related work

Clustering problems on probabilistic models have a long history (see references in [13]).
Algorithms based on the spectrum of graphs have been considered for both discrete and
continuous models by a number of papers (e.g. [1, 13]). A major part in all these papers
involves dealing with the “error” ‖A − EA‖. Some sort of clean-up method is employed
in all work of this kind. These clean-up techniques are usually simple for continuous
distributions, but often quite complicated for discrete distributions. In [13], for example,
it was shown that a spectral projection based algorithm followed by a combinatorial cross-
training succeeded in clustering the graph. The model presented in that paper is quite
general, and works under essentially tight separation conditions. For the simplified model
presented here, standard algorithms ([13, 6]) successfully partitions the graph as long as

d1 − d2 > c
√

n1/2 log n

where c is some constant. Comparing this condition with condition 18 reveals that the
latter is a much stronger assumption, as we have mentioned before.

Experiments with Random graphs as well (for example, Fig 2(b)) indicate that these
clean-up techniques might be unnecessary for large enough values of edge probabilities
(for very small values, they are unavoidable). We show that this is indeed the case for our
(simpler) model. Apart from simplicity of the algorithm involved, we believe the question
of how the spectral error is distributed is important in extending spectral methods to
more complex models.

5.3 Proof

The following two Lemmas can be proven using standard techniques in Spectral Clustering
literature [2, 6]

Lemma 17. λ2 = λ2(A) > 0.99(d1 − d2).

Lemma 18. Let v = v2(A). Then v = u + w such that

u(i) = sign(a)
1√
2n

∀i ∈ Ta

and ‖w‖ 6
5

c1n1/6
√

log n
, where sign(1) = 1 and sign(2) = −1.

Note at this point that the value of ‖w‖ is enough induce errors (in fact many of them)

of the order
√

2
n

in v, which is all that is necessary to cause Algorithm 1 to fail, and it is

the electronic journal of combinatorics 16 (2009), #R131 15



at this point that clean-up phases are necessary. We will show that this doesn’t happen.
Our idea is to use a analysis of neighborhood sets of a vertex s to show that ‖w‖ cannot
be distributed in an arbitrary fashion.

We will need the following proposition, easily proved from the relation between l1 and
l2 norms.

Proposition 19. Consider any subset S ⊂ [2n]. Then
∑

S

|w(i)| 6
√

|S|‖w‖

Here is the main lemma that implies Theorem 16 directly:

Lemma 20. For all s ∈ T1, v(s) > 4
5
√

2n
and for all s ∈ T2, v(s) < − 4

5
√

2n
.

Proof. The claims for T1 and T2 are symmetric, hence we will only prove the first claim.
Let s ∈ T1. We use the following notation Na = {Ta ∩N(s)} and Nab = {Ta ∩N(Nb(s))}.
Assume ei(S) is the number of neighbors node i has in set S. Then,

v(s) =
1

λ2

(

∑

N1

v(i) +
∑

N2

v(i)

)

=
1

λ2
2

(

∑

N11

v(i)ei(N1) +
∑

N21

v(i)ei(N1) +
∑

N12

v(i)ei(N2) +
∑

N22

v(i)ei(N2)

)

Now we claim:

Claim 21.
∑

N11

v(i)ei(N1) +
∑

N12

v(i)ei(N2)

+
∑

N21

v(i)ei(N1) +
∑

N22

v(i)ei(N2) >
4

5
√

2n
(d1 − d2)

2

This claim would prove the Lemma as it would show

v(s) >
1

λ2
2

4

5
√

2n
(d1 − d2)

2
> 0.8

1√
2n

The last inequality follows from Lemma 17.
Let’s prove the claim. First, for any a, b ∈ {1, 2}

∑

Nab

v(i)ei(Nb) =
∑

Nab

u(i)ei(Nb) +
∑

Nab

w(i)ei(Nb)

= sign(b)
1√
2n

e(Nb, Nab) +
∑

Nab

w(i)ei(Nb)

⇒
∑

a,b

∑

Nab

v(i)ei(Nb) = e(N1, N11) + e(N2, N12)

−e(N2, N22) − e(N1, N21) +
∑

a,b

∑

Nab

w(i)ei(Nb) (19)
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Now, since s ∈ T1, N1 > d1 − 4
√

d1 log n and e(N1, N11) > (d1 − 4
√

d1 log n)2. Using
similar bounds for N12, N21 and N22

e(N1, N11) + e(N2, N12) − e(N2, N22) − e(N1, N21)

> (d1 − 4
√

d1 log n)2 + (d2 − 4
√

d2 log n)2 − 2(d1 + 4
√

d1 log n)(d2 + 4
√

d2 log n)

> d2
1 + d2

2 − 2d1d2 − Θ(d
3/2
1

√

log n)

Then,

e(N1, N11) + e(N2, N12) − e(N2, N22) − e(N1, N21) > 0.95(d1 − d2)
2 (20)

Now we need to bound
∑

ab

∑

Nab
|w(i)ei(Nb)|. The four terms in the sum are of the

same order hence we will only bound one of them. We claim,

|
∑

N11

w(i)ei(N1)| 6
4

c1
n1/3

√

log n 6
1

50

1√
2n

(d1 − d2)
2 (21)

Again we start with ei(N1) 6 d1(1 + 4
√

log n
d1

). Then,

∑

N11

|w(i)ei(N1)| 6
∑

t=1... log 2d1

∑

i:ei>2t−1

2t|w(i)|

6 log n max
t6log d1

2t
∑

i:ei(N1)>2t−1

|w(i)|

The problem here is that, conceivably, for a large number of vertices i, w(i) is large
and so is ei(N1), thus amplifying the effect of w. What we will show is that ei(N1) can
be large only for a small number of vertices, thus disallowing this effect.

Let us bound for any t > 1 the value of

2t
∑

i:ei(N1)>2t−1

|w(i)|

For any f define

• M(f) = {i : e(i, N1) > f}

• m(f) = |M(f)|
Then setting f = 2t, by Proposition 19 we can write

2t
∑

i:ei>2t−1

w(i) = f
∑

M(f/2)

w(i) 6 ‖w‖
√

m(f/2)f

By the definition of M(f), e(M(f), N1) > fm(f). Now by quasi-randomness

m(f) + 2
√

n
√

m(f) > fm(f)

Then, it is easy to see that
√

m(f)f 6 4
√

n, the main point being that f doesn’t
appear on the right hand side.

Therefore
∑

i:ei>2t−1 2twi 6 ‖w‖4√n 6
4
c1

n1/3√
log n

. Eqn 21 now follows by simple manip-
ulation and by assuming an appropriate value of c1. Comparing Eqn 20 and 21, Claim 21
follows.
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