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Abstract

Recently, Storm [10] defined the Ihara-Selberg zeta function of a hypergraph,
and gave two determinant expressions of it by the Perron-Frobenius operator of a
digraph and a deformation of the usual Laplacian of a graph. We present a new
determinant expression for the Ihara-Selberg zeta function of a hypergraph, and
give a linear algebraic proof of Storm’s Theorem. Furthermore, we generalize these
results to the Bartholdi zeta function of a hypergraph.

1 Introduction

Graphs and digraphs treated here are finite. Let G be a connected graph and D the
symmetric digraph corresponding to G. Set D(G) = {(u, v), (v, u) | uv ∈ E(G)}. For
e = (u, v) ∈ D(G), set u = o(e) and v = t(e). Furthermore, let e−1 = (v, u) be the inverse
of e = (u, v).

A path P of length n in G is a sequence P = (e1, · · · , en) of n arcs such that ei ∈
D(G), t(ei) = o(ei+1)(1 6 i 6 n − 1). If ei = (vi−1, vi) for i = 1, · · · , n, then we write
P = (v0, v1, · · · , vn−1, vn). Set | P |= n, o(P ) = o(e1) and t(P ) = t(en). Also, P is
called an (o(P ), t(P ))-path. We say that a path P = (e1, · · · , en) has a backtracking or
a bump at t(ei) if e−1

i+1 = ei for some i(1 6 i 6 n − 1). A (v, w)-path is called a v-cycle
(or v-closed path) if v = w. The inverse path of a path P = (e1, · · · , en) is the path
P−1 = (e−1

n , · · · , e−1
1 ).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, · · · , em)
and C2 = (f1, · · · , fm) are called equivalent if fj = ej+k for all j. The inverse cycle of C

is not equivalent to C. Let [C] be the equivalence class which contains a cycle C. Let Br

be the cycle obtained by going r times around a cycle B. Such a cycle is called a multiple
of B. A cycle C is reduced if both C and C2 have no backtracking. Furthermore, a cycle
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C is prime if it is not a multiple of a strictly smaller cycle. Note that each equivalence
class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the
fundamental group π1(G, v) of G at a vertex v of G.

The Ihara-Selberg zeta function of G is defined by

Z(G, t) =
∏

[C]

(1 − t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of G. Ihara [6] defined
zeta functions of graphs, and showed that the reciprocals of zeta functions of regular
graphs are explicit polynomials. A zeta function of a regular graph G associated with a
unitary representation of the fundamental group of G was developed by Sunada [11,12].
Hashimoto [4] treated multivariable zeta functions of bipartite graphs. Bass [2] generalized
Ihara’s result on the zeta function of a regular graph to an irregular graph G.

Let G be a connected graph with n vertices and m edges. Then two 2m×2m matrices
B = B(G) = (Be,f)e,f∈D(G) and J0 = J0(G) = (Je,f)e,f∈D(G) are defined as follows:

Be,f =

{

1 if t(e) = o(f),
0 otherwise

,Je,f =

{

1 if f = e−1,
0 otherwise.

Theorem 1 (Bass) Let G be a connected graph with n vertices and m edges. Then the
reciprocal of the Ihara-Selberg zeta function of G is given by

Z(G, t)−1 = det(I2m − t(B − J0)) = (1 − t2)m−n det(In − tA(G) + t2(DG − In)),

where DG = (dij) is the diagonal matrix with dii = deg G vi (V (G) = {v1, · · · , vn}).

The first identity in Theorem 1 was also obtained by Hashimoto [5]. Bass proved the
second identity by using a linear algebraic method.

Stark and Terras [9] gave an elementary proof of this formula, and discussed three
different zeta functions of any graph. Various proofs of Bass’ Theorem were given by
Kotani and Sunada [7], and Foata and Zeilberger [3].

Let G be a connected graph. Then the cyclic bump count cbc(π) of a cycle π =
(π1, · · · , πn) is

cbc(π) =| {i = 1, · · · , n | πi = π−1
i+1} |,

where πn+1 = π1.
Bartholdi [1] introduced the Bartholdi zeta function of a graph. The Bartholdi zeta

function of G is defined by

ζ(G, u, t) =
∏

[C]

(1 − ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of G, and u, t are complex
variables with | u |, | t | sufficiently small.

Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.
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Theorem 2 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

ζ(G, u, t)−1 = det(I2m − t(B − (1 − u)J0))

= (1 − (1 − u)2t2)m−n det(I − tA(G) + (1 − u)(DG − (1 − u)I)t2).

Storm [10] defined the Ihara-Selberg zeta function of a hypergraph. A hypergraph
H = (V (H), E(H)) is a pair of a set of hypervertices V (H) and a set of hyperedges E(H),
which the union of all hyperedges is V (H). In general, the union of all hyperedges is a
subset of V (H). For example, if a graph (that is, a 2-uniform hypergraph) has an isolated
vertex, then the union of all edges is a proper subset of V (H). A hypervertex v is incident
to a hyperedge e if v ∈ e.

A bipartite graph BH associated with a hypergraph H is defined as follows: V (BH) =
V (H) ∪ E(H) and v ∈ V (H) and e ∈ E(H) are adjacent in BH if v is incident to e. Let
V (H) = {v1, . . . , vn}. Then an adjacency matrix A(H) of H is defined as a matrix whose
rows and columns are parameterized by V (H), and (i, j)-entry is the number of directed
paths in BH from vi to vj of length 2 with no backtracking.

For the bipartite graph BH associated with a hypergraph H , let V1 = V (H) and

V2 = E(H). Then, the halved graph B
[i]
H of BH is defined to be the graph with vertex set

Vi and arc set {P : reduced path | | P |= 2; o(P ), t(P ) ∈ Vi} for i = 1, 2.
Let H be a hypergraph. A path P of length n in H is a sequence P = (v1, e1, v2, e2, · · ·,

en, vn+1) of n+1 hypervertices and n hyperedges such that vi ∈ V (H), ej ∈ E(H), v1 ∈ e1,
vn+1 ∈ en and vi ∈ ei, ei−1 for i = 2, . . . , n − 1. Set | P |= n, o(P ) = v1 and t(P ) = vn+1.
Also, P is called an (o(P ), t(P ))-path. We say that a path P has a hyperedge backtracking
if there is a subsequence of P of the form (e, v, e), where e ∈ E(H), v ∈ V (H). A
(v, w)-path is called a v-cycle (or v-closed path) if v = w.

We introduce an equivalence relation between cycles. Two cycles C1 = (v1, e1, v2, · · ·,
em, v1) and C2 = (w1, f1, w2, · · · , fm, w1) are called equivalent if wj = vj+k and fj = ej+k

for all j. Let [C] be the equivalence class which contains a cycle C. Let Br be the cycle
obtained by going r times around a cycle B. Such a cycle is called a multiple of B. A
cycle C is reduced if both C and C2 have no hyperedge backtracking. Furthermore, a
cycle C is prime if it is not a multiple of a strictly smaller cycle.

The Ihara-Selberg zeta function of H is defined by

ζH(t) =
∏

[C]

(1 − t|C|)−1,

where [C] runs over all equivalence classes of prime, reduced cycles of H , and t is a
complex variable with | t | sufficiently small(see [10]).

Let H be a hypergraph with E(H) = {e1, . . . , em}, and let {c1, . . . , cm} be a set of m

colors, where c(ei) = ci. Then an edge-colored graph GHc is defined as a graph with vertex
set V (H) and edge set {vw | v, w ∈ V (H); v 6= w; v, w ∈ e ∈ E(H)}, where an edge vw

is colored ci if v, w ∈ ei. Note that GHc is identified with the “undirected” halved graph
B

[1]
H with colors.
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Let GHo
c be the symmetric digraph corresponding to the edge-clored graph GHc. Then

the oriented line graph Ho
L = (VL, Eo

L) associated with GHo
c by

VL = A(GHo
c ), and Eo

L = {(ei, ej) ∈ A(GHo
c ) × A(GHo

c ) | c(ei) 6= c(ej), t(ei) = o(ej)},

where c(ei) is the same color as the one of the corresponding undirected edge in D(GHo
c ).

Also, Ho
L is called the oriented line graph of GHc. The Perron-Frobenius operator T :

C(VL) −→ C(VL) is given by

(Tf)(x) =
∑

e∈Eo(x)

f(t(e)),

where Eo(x) = {e ∈ Eo
L | o(e) = x} is the set of all oriented edges with x as their origin

vertex, and C(VL) is the set of functions from VL to the complex number field C.
Storm [10] gave two nice determinant expressions of the Ihara-Selberg zeta function

of a hypergraph by using the results of Kotani and Sunada [7], and Bass [2].

Theorem 3 (Storm) Let H be a finite, connected hypergraph such that every hypervetex
is in at least two hyperedges. Then

ζH(t)−1 = det(I − tT) (1)

= Z(BH ,
√

t)−1 = (1 − t)m−n det(I −
√

tA(BH) + tQBH
), (2)

where n =| V (BH) |, m =| E(BH) | and QBH
= DBH

− I.

In Theorem 3, can the equality between the first identity (1) and the second identity
(2) be proved by an analogue of Bass’ method ?

In Section 2, we present a new determinant expression for the Ihara-Selberg zeta
function of a hypergraph. In Section 3, we show that, in Theorem 3, the first identity (1)
is obtained from the second identity (2) by using a linear algebraic method. In Section 4,
we generalize theses results to the Bartholdi zeta function of a hypergraph.

2 A new determinant expression of the zeta function

of a hypergraph

Let H = (V (H), E(H)) be a hypergraph, V (H) = {v1, . . . , vn} and E(H) = {e1, . . . , em}.
Let BH have ν vertices and ǫ edges, where ν = n + m. Then we have

D(BH) = {(v, e), (e, v) | v ∈ e, v ∈ V (H), e ∈ E(H)}.

Let f1, . . . , fǫ be arcs in BH such that o(fi) ∈ V (H) for each i = 1, . . ., ǫ. Then two ǫ× ǫ

matrices X = (Xij) and Y = (Yij) are defined as follows:

Xij =

{

1 if there exists an arc f−1
k such that (fi, f

−1
k , fj) is a reduced path,

0 otherwise

the electronic journal of combinatorics 16 (2009), #R132 4



and

Yij =

{

1 if there exists an arc fk such that (f−1
i , fk, f

−1
j ) is a reduced path,

0 otherwise.

Remark that Y = tX.

Theorem 4 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Set ǫ =| E(BH) |. Then

Z(BH ,
√

t)−1 = det(Iǫ − tX) = det(Iǫ − tY).

Proof. Let H = (V (H), E(H)) be a hypergraph, V (H) = {v1, . . . , vn} and E(H) =
{e1, . . . , em}. Let BH have ν vertices and ǫ edges. By Theorem 1, we have

Z(BH ,
√

t)−1 = (1 − t)ǫ−ν det(Iν −
√

tA(BH) + t(DBH
− Iν))

= det(I2ǫ −
√

t(B(BH) − J0(BH))).

Arrange arcs of BH as follows: f1, . . . , fǫ, f
−1
1 , . . . , f−1

ǫ . We consider two matrices B
and J0 under this order. Let

B(BH) − J0(BH) =

[

0 F
G 0

]

.

It is clear that both F and G are symmetric, but F 6= tG. Furthermore,

FG = X and GF = Y. (3)

Thus, we have

det(I2ǫ −
√

t(B(BH) − J0(BH))) = det

([

Iǫ −
√

tF

−
√

tG Iǫ

])

= det

([

Iǫ − tFG −
√

tF
0 Iǫ

])

= det(Iǫ − tFG) = det(Iǫ − tX)

= det(Iǫ − tGF) = det(Iǫ − tY).

Therefore, the result follows. Q.E.D.
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3 A linear algebraic proof of Storm Theorem

We show that, in Theorem 3, the identity (1) is obtained from the identity (2) by using
a linear algebraic method.

Let H = (V (H), E(H)) be a hypergraph, V (H) = {v1, . . . , vn} and E(H) = {e1, . . .,
em}. Let BH have ν vertices and ǫ edges, and D(BH) = {f1, . . . , fǫ, f

−1
1 , . . . , f−1

ǫ } such
that o(fi) ∈ V (H)(1 6 i 6 ǫ). Furthermore, let R (or S) be the set of reduced paths P in
BH with length two such that o(P ), t(P ) ∈ V (H) ( or o(P ), t(P ) ∈ E(H)). Set r =| R |
and s =| S |. For a path P = (x, y, z) of length two in BH , let

oe(P ) = (x, y), te(P ) = (y, z),

where (x, y, z) = (v, e, w) or (x, y, z) = (e, v, f) (v, w ∈ V (H); e, f ∈ E(H)).
Now, we introduce two r× ǫ matrices K = (KPf−1

j
)P∈R;16j6ǫ and L = (LPfj

)P∈R;16j6ǫ

are defined as follows:

KPf−1

j
=

{

1 if te(P ) = f−1
j ,

0 otherwise,
LPfj

=

{

1 if oe(P ) = fj,
0 otherwise.

Furthermore, two s × ǫ matrices M = (MQf−1

j
)Q∈S;16j6ǫ and N = (NQfj

)Q∈S;16j6ǫ are

defined as follows:

MQf−1

j
=

{

1 if oe(Q) = f−1
j ,

0 otherwise,
NQfj

=

{

1 if te(Q) = fj ,
0 otherwise.

Then we have
tLK = F and tMN = G. (4)

and, K tM = (bPQ)P∈R;Q∈S and N tL = (cQP )P∈R;Q∈S are given as follows:

bPQ =

{

1 if te(P ) = oe(Q),
0 otherwise,

cQP =

{

1 if te(Q) = oe(P ),
0 otherwise.

Thus, we have
K tMN tL = T. (5)

Furthermore, by (3) and (4),

tLK tMN = FG = X.

Here it is known that, for a m × n matrix A and n × m matrix B,

det(Im + AB) = det(In + BA). (6)

Therefore, it follows that
det(Ir − tT) = det(Iǫ − tX).

By Theorem 4 and the fact that ζH(t)−1 = Z(BH ,
√

t)−1, we have

ζH(t)−1 = det(Ir − tT).

Q.E.D.
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4 Bartholdi zeta function of a hypergraph

Let H be a hypergraph. Then a path P = (v1, e1, v2, e2, · · · , en, vn+1) has a (broad)
backtracking or (broad) bump at e or v if there is a subsequence of P of the form (e, v, e)
or (v, e, v), where e ∈ E(H), v ∈ V (H). Furthermore, the cyclic bump count cbc(C) of a
cycle C = (v1, e1, v2, e2, · · · , en, v1) is

cbc(C) =| {i = 1, · · · , n | vi = vi+1} | + | {i = 1, · · · , n | ei = ei+1} |,

where vn+1 = v1 and en+1 = e1.
The Bartholdi zeta function of H is defined by

ζ(H, u, t) =
∏

[C]

(1 − ucbc(C)t|C|)−1,

where [C] runs over all equivalence classes of prime cycles of H , and u, t are complex
variables with | u |, | t | sufficiently small.

If u = 0, then the Bartholdi zeta function of H is the Ihara-Selberg zeta function of
H .

Sato [8] presented a determinant expression of the Bartholdi zeta function of a hyper-
graph.

Theorem 5 (Sato) Let H be a finite, connected hypergraph such that every hypervetex
is in at least two hyperedges. Then

ζ(H, u, t)−1 = ζ(BH, u,
√

t)−1

= (1 − (1 − u)2t)m−n det(I −
√

tA(BH) + (1 − u)t(DBH
− (1 − u)I)),

where n =| V (BH) | and m =| E(BH) |.

Let H = (V (H), E(H)) be a hypergraph, V (H) = {v1, . . . , vn} and E(H) = {e1, . . .,
em}. Let BH have ν vertices and ǫ edges, V1 = V (H) and V2 = E(H). Then, the

broad halved graph B
(i)
H of BH is defined to be the graph with vertex set Vi and arc set

{P : path | | P |= 2; o(P ), t(P ) ∈ Vi} for i = 1, 2. Furthermore, let {c1, . . . , cm} be a set

of m colors such that c(ei) = ci for i = 1, . . . , m. We color each arc of B
(1)
H as follows:

c(P ) = c(e) for P = (v, e, w) ∈ D(B
(1)
H ).

Then the line digraph ~L(B
(1)
H ) of B

(1)
H is defined as follows: V (~L(B

(1)
H )) = D(B

(1)
H ), and

(P, Q) ∈ A(~L(B
(1)
H )) if and only if t(P ) = o(Q) in BH .

Next, let R′ (or S ′) be the set of paths P in BH with length two such that o(P ), t(P ) ∈
V (H) ( or ∈ E(H)). Furthermore, let fk = (vik , ejk

), Pk = (vik , ejk
, vik) and Qk =

(ejk
, vik , ejk

) for each k = 1, . . . , ǫ. Then we have

R′ = R∪ {P1, . . . , Pǫ} and S ′ = S ∪ {Q1, . . . , Qǫ}.
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Furthermore, we have | R′ |= r + ǫ and | S ′ |= s + ǫ.
Now, we introduce a (r + ǫ) × (r + ǫ) matrix T′ = (T ′

PP ′)P,P ′∈R′ for the line digraph
~L(B

(1)
H ) of the halved graph B

(1)
H is defined as follows:

T ′
PP ′ =























































u2 if t(P ) = o(P ′), P = P ′ ∈ R′ \ R,
u2 if t(P ) = o(P ′), P ∈ R′ \ R, P ′ ∈ R and c(P ) = c(P ′),
u if t(P ) = o(P ′), P, P ′ ∈ R′ \ R and c(P ) 6= c(P ′),
u if t(P ) = o(P ′), P ∈ R′ \ R, P ′ ∈ R and c(P ) 6= c(P ′),
u if t(P ) = o(P ′), P ∈ R,P ′ ∈ R′ \ R and c(P ) = c(P ′),
u if t(P ) = o(P ′), P, P ′ ∈ R and c(P ) = c(P ′),
1 if t(P ) = o(P ′), P ∈ R,P ′ ∈ R′ \ R and c(P ) 6= c(P ′),
1 if t(P ) = o(P ′), P, P ′ ∈ R and c(P ) 6= c(P ′),
0 otherwise,

We present a new determinant expression for the Bartholdi zeta function of a hyper-
graph.

Theorem 6 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Set ǫ =| E(BH) | and r =| R |. Then

ζ(H, u, t)−1 = det(Ir+ǫ − tT′)

= det(Iǫ − t(X + u(F + G) + u2Iǫ)) = det(Iǫ − t(Y + u(F + G) + u2Iǫ)).

Proof. Let H = (V (H), E(H)) be a hypergraph, V (H) = {v1, . . . , vn} and E(H) =
{e1, . . . , em}. Let BH have ν vertices and ǫ edges. By Theorems 2 and 5, we have

ζ(H, u, t)−1 = det(I2ǫ −
√

t(B(BH) − (1 − u)J0(BH)))

= (1 − (1 − u)2t)ǫ−ν det(Iν −
√

tA(BH) + (1 − u)t(DBH
− (1 − u)Iν)).

Arrange arcs of BH as follows: f1, . . . , fǫ, f
−1
1 , . . . , f−1

ǫ such that o(fi) ∈ V (H)(1 6

i 6 ǫ) . We consider two matrices B and J0 under this order. Let

B(BH) − (1 − u)J0(BH) =

[

0 F + uIǫ

G + uIǫ 0

]

.

Thus, by (3), we have

det(I2ǫ −
√

t(B(BH) − (1 − u)J0(BH)))

= det

([

Iǫ −
√

t(F + uIǫ)

−
√

t(G + uIǫ) Iǫ

])

= det

([

Iǫ − t(F + uIǫ)(G + uIǫ) −
√

t(F + uIǫ)
0 Iǫ

])

= det(Iǫ − t(FG + u(F + G) + u2Iǫ)) = det(Iǫ − t(X + u(F + G) + u2Iǫ))

= det(Iǫ − t(GF + u(F + G) + u2Iǫ)) = det(Iǫ − t(Y + u(F + G) + u2Iǫ)).
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Arrange elements of R′ and S ′ as follows:

P1, . . . , Pǫ,R; Q1, . . . , Qǫ,S,

where Pk = (vik , ejk
, vik) and Qk = (ejk

, vik , ejk
) if fk = (vik , ejk

) for k = 1, . . . , ǫ. Then we
introduce two (r + ǫ) × ǫ matrices K′ = (K ′

Pf−1

j

)P∈R′;16j6ǫ and L′ = (L′
Pfj

)P∈R′;16j6ǫ are

defined as follows:

K ′
Pf−1

j

=







1 if te(P ) = f−1
j and te(P ) 6= oe(P )−1,

u if te(P ) = oe(P )−1 = f−1
j ,

0 otherwise,
L′

Pfj
=

{

1 if oe(P ) = fj ,
0 otherwise.

Furthermore, two (s + ǫ)× ǫ matrices M′ = (M ′
Qf−1

j

)Q∈S′;16j6ǫ and N′ = (N ′
Qfj

)Q∈S′;16j6ǫ

are defined as follows:

M ′
Qf−1

j

=

{

1 if oe(Q) = f−1
j ,

0 otherwise,
N ′

Qfj
=







1 if te(Q) = fj and te(Q) 6= oe(Q)−1,
u if te(Q) = oe(Q)−1 = fj,
0 otherwise.

Here we have

K′ =

[

uIǫ

K

]

,L′ =

[

Iǫ

L

]

,M′ =

[

Iǫ

M

]

and N′ =

[

uIǫ

N

]

.

Thus, we have

K′ tM′ N′ tL′ =

[

u2Iǫ + u tMN u2 tL + u tMN tL
uK + K tMN uK tL + K tMN tL

]

. (7)

A nonzero element of u2Iǫ, u tMN, u2 tL, u tMN tL, uK, K tMN, uK tL and K tMN tL
corresponds to a sequence of eight paths of length two, respectively:

Pi → Qi → Pi; Pi → Q → Pj(c(Pi) 6= c(Pj)); Pi → Qi → R(c(Pi) = c(R));

Pi → Q → R(c(Pi) 6= c(R)); P → Qi → Pi(c(P ) = c(Pi)); P → Q → Pi(c(P ) 6= c(Pi));

P → Qi → R(c(P ) = c(R)); P → Q → R(c(P ) 6= c(R)),

where P, R ∈ R, Q ∈ S, i = 1, . . . , ǫ, and the notation P → Q implies that te(P ) = oe(Q)
in BH . Therefore, it follows that

K′ tM′ N′ tL′ = T′. (8)

By (3) and (4), we have

tL′K′ tM′N′ = u2Iǫ + u tLK + u tMN + tLK tMN = u2Iǫ + u(F + G) + X. (9)

By (6),(8) and (9), it follows that

det(Ir+ǫ − tT′) = det(Iǫ − t(X + u(F + G) + u2Iǫ)).

Q.E.D.
If u = 0, then Theorem 6 implies (1) of Theorem 3.
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Corollary 1 Let H be a finite, connected hypergraph such that every hypervetex is in at
least two hyperedges. Set r =| R |. Then

ζH(t)−1 = det(Ir − tT).

Proof. Set ǫ =| E(BH) | and u = 0. By Theorem 6 and (5), (7), we have

ζH(t)−1 = det(Ir+ǫ − tT′) = det

([

Iǫ 0
−tK tMN Ir − tT

])

= det(Ir − tT).

Q.E.D.

5 Example

Let H be the hypergraph with V (H) = {v1, v2, v3} and E(H) = {e1, e2, e3}, where e1 =
{v1, v2}, e2 = {v1, v3} and e3 = {v1, v2, v3}. Furthermore, let BH be the bipartite graph
associated with H . Let f1 = (v1, e1),f2 = (v1, e2), f3 = (v1, e3), f4 = (v2, e1), f5 = (v2, e3),
f6 = (v3, e2) and f7 = (v3, e3). Then we have D(BH) = {f1, . . . , f7, f

−1
1 , . . . , f−1

7 }. The
matrices X is given as follows:

X =





















0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 1 0 1 0
0 1 1 0 0 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 0
1 1 0 1 0 0 0





















.

By Theorem 4, we have

ζ(H, t)−1 = det(I7 − tX) = (1 − t)(1 + t + t2)(1 − 4t2 − t3 + 4t4).

Next, two matrices F and G are given as follows:

F =





















0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 1 0 0





















,G =





















0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0





















.

Then it is certain that FG = X.
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Furthermore,

X + uF + uG + u2I7 =





















u2 u u u 1 0 0
u u2 u 0 0 u 1
u u u2 1 u 1 u

u 1 1 u2 u 0 0
1 1 u u u2 1 u

1 u 1 0 0 u2 u

1 1 u 1 u u u2





















.

By Theorem 6, we have

ζ(H, u, t)−1 = det(I7 − t(X + uF + uG + u2I7))

= (1 − (1 − u)2t)(1 + (1 − 2u2)t + (1 − u2)2t2)

× (1 − 2u(1 + 2u)t + (−4 − 2u − 5u2 − 6u3 + 6u4)t2

− (1 − u)2(1 + 4u + 14u2 + 14u3 + 4u4)t3 + (1 − u)4(1 + u)2(2 + u)2t4).

Now, we consider arcs of B
(1)
H . Let R1 = (v1, e1, v2),R2 = (v1, e2, v3), R3 = (v1, e3, v2),

R4 = (v1, e3, v3), R5 = R−1
1 , R6 = R−1

3 , R7 = (v2, e3, v3), R8 = R−1
2 , R9 = R−1

4 , R10 =

R−1
7 and Pi = (fi, f

−1
i )(1 6 i 6 7). Arrange elements of R′ = D(B

(1)
H ) as follows:

P1, · · · , P7, R1, · · · , R10. We consider the matrix T′ under this order, and then, we have

T′ =





























































u2 u u 0 0 0 0 u2 u u u 0 0 0 0 0 0
u u2 u 0 0 0 0 u u2 u u 0 0 0 0 0 0
u u u2 0 0 0 0 u u u2 u2 0 0 0 0 0 0
0 0 0 u2 u 0 0 0 0 0 0 u2 u u 0 0 0
0 0 0 u u2 0 0 0 0 0 0 u u2 u2 0 0 0
0 0 0 0 0 u2 u 0 0 0 0 0 0 0 u2 u u

0 0 0 0 0 s u2 0 0 0 0 0 0 0 u u2 u2

u 1 1 0 0 0 0 0 0 0 0 u 1 1 0 0 0
1 u 1 0 0 0 0 0 0 0 0 0 0 0 u 1 1
1 1 u 0 0 0 0 0 0 0 0 1 u 0 0 0 0
1 1 u 0 0 0 0 0 0 0 0 0 0 0 1 u 0
0 0 0 u 1 0 0 u 1 1 1 0 0 0 0 0 0
0 0 0 1 u 0 0 1 1 u 0 0 0 0 0 0 0
0 0 0 1 u 0 0 0 0 0 0 0 0 0 1 0 u

0 0 0 0 0 u 1 1 u 1 1 0 0 0 0 0 0
0 0 0 0 0 1 u 1 1 0 u 0 0 0 0 0 0
0 0 0 0 0 1 u 0 0 0 0 1 0 u 0 0 0





























































.

By Theorem 6, we have
det(I17 − tT′) = ζ(H, u, t)−1.
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Let u = 0. By the proof of Corollary 1, the matrix T in Theorem 3 is the submatrix
of T′ consisting of 8, . . . , 17 rows and 8, . . . , 17 columns. Thus,

T =

































0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

































.

By Theorem 3, we have
det(I10 − tT) = ζ(H, t)−1.
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