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Abstract

A k-cycle decomposition of a multipartite graph G is said to be gregarious if each
k-cycle in the decomposition intersects k distinct partite sets of G. In this paper we
prove necessary and sufficient conditions for the existence of such a decomposition
in the case where G is the complete equipartite graph, having n parts of size m,
and either n ≡ 0, 1 (mod k), or k is odd and m ≡ 0 (mod k). As a consequence,
we prove necessary and sufficient conditions for decomposing complete equipartite
graphs into gregarious cycles of prime length.

1 Introduction and preliminaries

We begin with some relevant definitions and terminology.
Let Kn denote the complete graph on n vertices and Kn denote the empty graph on n

vertices. For any graph G and any positive integer λ, we denote the multigraph obtained
from G by replacing each of its edges with λ parallel edges by λG.

We denote the k-cycle containing edges v1v2, v2v3, . . . , vk−1vk and v1vk by
(v1, v2, . . . , vk), or (vk, vk−1, . . . , v1), or by any cyclic shift of these. We denote the k-path
containing edges v1v2, v2v3, . . . , vkvk+1 by [v1, v2, . . . , vk+1] or [vk+1, vk, . . . , v1] (hence, in
our terminology, a k-path contains k edges and k + 1 vertices). Similarly, we denote the
directed k-cycle containing directed edges (v1, v2), (v2, v3), . . . , (vk−1, vk) and (vk, v1) by
(v1, v2, . . . , vk)D, or by any cyclic shift of this.

The lexicographic product G ∗ H of graphs G and H is the graph with vertex set
V (G) × V (H), and with an edge joining (g1, h1) to (g2, h2) if and only if g1g2 ∈ E(G),
or g1 = g2 and h1h2 ∈ E(H). For our purposes we will primarily be concerned with
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lexicographic products of the form G ∗ Km, for some G and m. We note that for all
graphs G and positive integers a and ℓ,

G ∗ Kaℓ
∼= (G ∗ Ka) ∗ Kℓ

∼= (G ∗ Kℓ) ∗ Ka.

A subgraph of a multipartite graph G is said to be gregarious in G (or simply gregarious
when G is clear) if each of its vertices lies in a different partite set of G. In order to apply
this definition, it must be clear what the partite sets of G are. With this in mind we
adopt the following convention.

Suppose G is a graph on n vertices, and a and ℓ are positive integers. Through-
out this paper, unless otherwise specified, we assume the graph G ∗ Kaℓ has vertex set
{v1, v2, . . . , vaℓ | v ∈ V (G)}, and an edge joining ui and vj in G∗Kaℓ if and only if there is
an edge joining u and v in G. The partite sets of G ∗ Kaℓ are the n sets {v1, v2, . . . , vaℓ},
v ∈ V (G). However, we may occasionally choose to express the lexicographic product of
G and Kaℓ as G ∗ Ka(ℓ), or indeed G ∗ Kℓ(a). In the first case, it is assumed that there
is a further partitioning of each of the sets {v1, v2, . . . , vaℓ} into a subsets, each of size ℓ.
It is these na sets of size ℓ which are considered the partite sets of G ∗ Ka(ℓ). Similarly
in the second case, it is assumed that there is a further partitioning of each of the sets
{v1, v2, . . . , vaℓ} into ℓ subsets, each of size a. It is these nℓ sets of size a which are con-
sidered the partite sets of G ∗ Kℓ(a). Note that this means a given subgraph H may be
gregarious in G ∗ Ka(ℓ), but not gregarious in G ∗ Kaℓ.

A decomposition of a graph G is a collection of subgraphs of G whose edge-sets partition
the edge-set of G. Let H = {H∞,H∈, . . . ,H⊔} be a family of mutually nonisomorphic
nontrivial graphs. An H-decomposition of G is a decomposition, D say, of G such that

• for each D ∈ D there is some Hi ∈ H with D ∼= Hi; and

• for each Hi ∈ H there is some D ∈ D with Hi
∼= D.

If H = {H} we often refer to such a decomposition as simply an H-decomposition. A
decomposition of a multipartite graph G is said to be gregarious if each of the subgraphs
in the decomposition is gregarious in G.

In this paper we will be concerned with gregarious k-cycle decompositions of Kn ∗Km,
the complete equipartite graph having n parts of size m. Note that every vertex in Kn∗Km

has degree (n − 1)m and the total number of edges in Kn ∗ Km is n(n − 1)m2/2. Hence,
obvious necessary conditions for the existence of such a decomposition are that

• n > k > 3;

• (n − 1)m is even; and

• n(n − 1)m2 ≡ 0 (mod 2k).

The study of gregarious cycle decompositions is relatively new and thus, compared to
“nongregarious” cycle decompositions, few results are known. Of course 3-cycle decom-
positions of complete equipartite graphs are necessarily gregarious and so by Hanani [5],
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the above necessary conditions are sufficient when k = 3. Sufficiency of these conditions
has also been proved by Billington and Hoffman [2] when k = 4, by Smith [9] when k = 5
and by Billington, Hoffman and Smith [4] when k ∈ {6, 8}. More generally, in [3] Billing-
ton, Hoffman and Rodger prove there exists a resolvable gregarious n-cycle decomposition
of Kn ∗Km if and only if (n, m) 6= (3, 2) or (3, 6); that is, the cycles in the decomposition
can be partitioned into sets in such a way that the cycles in each set induce a 2-factor
of Kn ∗ Km. (Note that there exists nonresolvable gregarious 3-cycle decompositions of
both K3 ∗K2 and K3 ∗K6.) In this paper, using the various new construction techniques
presented in Section 2, we prove sufficiency of the above necessary conditions in cases
where either n ≡ 0, 1 (mod k), or k is odd and m ≡ 0 (mod k). More formally, the main
result (split into two parts) of this paper is the following.

Theorem 1.1 Suppose n, m and k are positive integers with k > 3. Necessary conditions
for the existence of a gregarious k-cycle decomposition of Kn∗Km are that n > k, (n−1)m
is even and n(n − 1)m2 ≡ 0 (mod 2k).

(i) These conditions are sufficient whenever n ≡ 0, 1 (mod k).

(ii) These conditions are sufficient whenever k is odd and m ≡ 0 (mod k).

Part (i) of the above theorem is proved in Section 3, while part (ii) is proved in Section
4. Also, Theorem 1.1 has the following nice corollary.

Corollary 1.2 Suppose n, m and p are positive integers with p an odd prime. Then there
exists a gregarious p-cycle decomposition of Kn ∗ Km if and only if n > p, (n − 1)m is
even and n(n − 1)m2 ≡ 0 (mod 2p).

Proof Since n(n − 1)m2 ≡ 0 (mod 2p) and p is prime, we must have either n ≡ 0, 1
(mod p) or m ≡ 0 (mod p). The result then follows by Theorem 1.1. �

Hence, for arbitrary n and m, Corollary 1.2 gives the first known infinite family of
values of k for which the obvious necessary conditions for the existence of a gregarious
k-cycle decomposition of Kn ∗ Km are also sufficient.

2 Some new decomposition techniques

In this section we introduce some new techniques for obtaining gregarious cycle decompo-
sitions of complete equipartite graphs from cycle decompositions of related multigraphs.
The techniques used are similar to those introduced in [11].

We begin with the following definition.

Definition 2.1 Suppose D = {H1, H2, . . . , Ht} is a decomposition of λG. A λ-weight
function on D is any function ω which assigns an integer label, from the set {0, 1, . . . , λ−1},
to each edge of the graphs H1, H2, . . . , Ht, in such a way that distinct copies of the same
edge receive distinct labels. (Hence for each ℓ ∈ {0, 1, . . . , λ − 1}, the edges labelled ℓ
induce a copy of the graph G.) �
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Note that the above definition is a specialisation of a more general type of “weight
function” first described in [11].

The next lemma shows how a cycle decomposition of the graph 2G, together with a
2-weight function, can be used to generate a gregarious cycle decomposition of the graph
G ∗ K2 when certain extra conditions on the original decomposition are satisfied.

Lemma 2.2 Suppose there exists a k-cycle decomposition of 2G which can be partitioned
into pairs of cycles in such a way that the cycles in each pair share two adjacent edges.
Then there exists a gregarious k-cycle decomposition of G ∗ K2.

Proof Let D be a k-cycle decomposition of 2G which satisfies the conditions of the
lemma and let ω be any 2-weight function on D. Recall that G∗K2 is the graph obtained
from G by replacing each vertex v in G with the set of vertices {v1, v2}, and each edge uv
in G with the edges u1v1, u1v2, u2v1 and u2v2.

For each k-cycle C ∈ D we generate a subgraph, denoted by Ĉ, of G∗K2 by associating
each vertex v in C with the set of vertices {v1, v2}, and each edge uv in C having label
ℓ (under the function ω) with the pair of edges u1v1+ℓ and u2v2+ℓ (subscripts calculated
mod 2). Note that Ĉ is either a single 2k-cycle (if C contains an odd number of edges
labelled 1), or two vertex disjoint k-cycles which are gregarious in G∗K2 (if C contains an
even number of edges labelled 1). Since ω is a 2-weight function, the graphs Ĉ together
decompose G ∗ K2. Hence we need only show that, if C and C ′ are any “pair” of cycles
from the partition of D, then the graph Ĉ∪Ĉ ′ admits a decomposition into k-cycles which
are gregarious in G ∗ K2.

Let uv and vw be the two adjacent edges shared by C and C ′. Then Ĉ ∪ Ĉ ′ contains
the edges uivj and viwj for each i, j ∈ {1, 2}. Let H be the subgraph of Ĉ ∪ Ĉ ′ spanned

by these edges, and let H ′ be the complement of H in Ĉ ∪ Ĉ ′. (Hence {H, H ′} is a
decomposition of Ĉ ∪ Ĉ ′.) Then for some a, b ∈ {1, 2} the graph H ′ decomposes into four
gregarious (k − 2)-paths:

L1 =[wa, . . . , u1]; L2 =[wa+1, . . . , u2]; L3 =[wb, . . . , u1]; L4 =[wb+1, . . . , u2].

Now H decomposes into the four gregarious 2-paths:

P1 =[u1, v1, wa]; P2 =[u2, v1, wa+1]; P3 =[u1, v2, wb]; P4 =[u2, v2, wb+1].

The result then follows by adjoining the (k − 2)-path Li to the 2-path Pi, for each i ∈
{1, 2, 3, 4}. �

Note that the “pairing” condition in Lemma 2.2 means there must be an even number
of cycles in the decomposition of 2G. In fact, it is easy to see that we can relax this
condition slightly and obtain the following generalisation.

Lemma 2.3 Suppose there exists a k-cycle decomposition of 2G which can be partitioned
into two parts, say D1 and D2, so that every cycle in D1 shares an edge with some cycle
in D2, and D2 can be partitioned into pairs of cycles in such a way that the cycles in each
pair share two adjacent edges. Then there exists a gregarious k-cycle decomposition of
G ∗ K2.
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Proof Let D = D1 ∪ D2. We show there exists a 2-weight function ω on D with the
property that each cycle in D1 contains an even number of edges labelled 1 (under ω).
Using the notation defined in the proof of Lemma 2.2, the result then follows since for
each C ∈ D1, the graph Ĉ consists of two k-cycles which are gregarious in G ∗ K2, and
for each “pair” of cycles C and C ′ in the partition of D2 the graph Ĉ ∪ Ĉ ′ admits a
decomposition into k-cycles which are gregarious in G ∗ K2 (using the method described
in the proof of Lemma 2.2).

Let ω be any 2-weight function on D. If each cycle in D1 contains an even number
of edges labelled 1 we are done. If not, we modify ω as follows. Suppose C ∈ D1 and
C contains an odd number of edges labelled 1. Now C contains an edge, e say, which is
also contained in some cycle, C ′ say, in D2. We switch the label on the edge e in C from
either 0 to 1, or vice-versa. We then do the same for the copy of the edge e in C ′. Hence
the resulting edge labelling still induces a 2-weight function on D. Moreover, the cycle
C now contains an even number of edges labelled 1 and we have not affected the edge
labellings of any other cycles in D1. We repeat this process for each cycle in D1 having
an odd number of edges labelled 1. The resulting edge labelling then induces a 2-weight
function on D with the required property. �

In order to more fully exploit these newly defined λ-weight functions we also introduce
the idea of the “sum-weight” of a cycle. (Again, this concept was originally defined in
[11].)

Definition 2.4 Suppose C is a cycle in the graph G. Suppose furthermore that ~G is the
graph obtained by orienting the edges of G in some way, and that ω is a function which
assigns an integer label ω(e) to each edge e in the cycle C. We let ~C be a directed cycle
formed by orienting the edges of C, and for each edge e in C we denote the corresponding
directed edge in ~C by e′. (Note that there are two possible choices for ~C, and that ~C

need not be a subgraph of ~G.) The sum-weight with respect to ~G under the function ω of
the cycle C, is then defined to be the absolute value of the sum, over all edges e in C, of
f(e′)ω(e), where

f(e′) =

{

1, if e′ is an edge in ~G;

−1, otherwise.

Note that taking the “absolute value” ensures that the sum-weight is independent of the
choice of ~C. Furthermore, when both ~G and ω are clear, we will often refer simply to
the sum-weight of the cycle C, rather than the sum-weight with respect to ~G under the
function ω. �

In [11] we defined the notion of an unbalanced λ-weight function on a cycle decom-
position of a graph λG. These functions have the property that under some particular
orientation of the edges of G, say ~G, each cycle in the decomposition of λG has sum-weight
coprime to λ. Hence each k-cycle C in the decomposition of λG can be used to generate
a λk-cycle in the graph G ∗ Kλ by associating each vertex v in C with the partite set
Av = {v1, v2, . . . , vλ}, and each edge uv labelled ℓ in C with the matching between Au
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and Av consisting of the edges u1v1+ℓ, u2v2+ℓ, . . . , uλvλ+ℓ if (u, v) is an edge in ~G, or the

edges v1u1+ℓ, v2u2+ℓ, . . . , vλuλ+ℓ if (v, u) is an edge in ~G. The fact that the sum-weight of
C is coprime to λ ensures that the k matchings form a single λk-cycle in G ∗ Kλ, rather
than a collection of disjoint cycles whose lengths sum to λk. Since here we are interested
in gregarious cycle decompositions, we will instead be concerned with λ-weight functions
under which each cycle in a decomposition of λG has sum-weight a multiple of λ. In
this case, a k-cycle in the decomposition of λG will generate, using the same method as
described above, a subgraph in G ∗Kλ consisting of λ pairwise vertex-disjoint gregarious
k-cycles. We call such a function a balanced λ-weight function. More formally we define
this as follows.

Definition 2.5 Suppose D is a cycle decomposition of λG and ω is a λ-weight function
on D. Then ω is said to be balanced if, under some orientation of the edges of G, each
cycle in D has sum-weight a multiple of λ. �

The following lemma proves that such functions do indeed generate gregarious cycle
decompositions.

Lemma 2.6 Suppose D is a k-cycle decomposition of λG and ω is a balanced λ-weight
function on D. Then there exists a gregarious k-cycle decomposition of G ∗ Kλ.

Proof Let ~G be the particular orientation of the edges of G under which ω is balanced.
For each k-cycle C ∈ D we generate a subgraph in G ∗Kλ by associating each vertex v in
C with the partite set Av = {v1, v2, . . . , vλ}, and each edge uv in C having label ℓ (under
the function ω) with the matching between partite sets Au and Av consisting of the edges

u1v1+ℓ, u2v2+ℓ, . . . , uλvλ+ℓ if (u, v) is an edge in ~G, or the edges v1u1+ℓ, v2u2+ℓ, . . . , vλuλ+ℓ

if (v, u) is an edge in ~G. Hence each of these subgraphs is a 2-regular graph on λk vertices.
In fact, since the sum-weight of each cycle in D is a multiple of λ, each of these subgraphs
necessarily consists of λ pairwise vertex-disjoint k-cycles, each of which is gregarious in
G ∗ Kλ. Furthermore, since ω is a λ-weight function, the collection of all such k-cycles
forms a decomposition of G ∗ Kλ as required. �

3 The case n ≡ 0, 1 (mod k)

The aim of this section is to prove Theorem 1.1 (i). We make extensive use of the following
three obvious, but surprisingly useful, results.

Lemma 3.1 Suppose there exists a gregarious {H1, H2, . . . , Ht}-decomposition of G ∗Ka

and, for each i ∈ {1, 2, . . . , t}, there exists a gregarious H-decomposition of Hi ∗Kℓ. Then
there exists a gregarious H-decomposition of G ∗ Kaℓ.

Lemma 3.2 Suppose there exists a {H1, H2, . . . , Ht}-decomposition of G ∗ Ka and, for
each i ∈ {1, 2, . . . , t}, there exists a gregarious H-decomposition of Hi ∗ Kℓ. Then there
exists a gregarious H-decomposition of G ∗ Ka(ℓ).
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Lemma 3.3 Suppose there exists a gregarious {H1, H2, . . . , Ht}-decomposition of G ∗Ka

and, for each i ∈ {1, 2, . . . , t}, there exists an H-decomposition of Hi ∗ Kℓ. Then there
exists a gregarious H-decomposition of G ∗ Kℓ(a).

The following is a direct application of Lemma 3.2.

Lemma 3.4 Suppose there exists a k-cycle decomposition of G ∗ Ka. Then, for each
positive integer ℓ, there exists a gregarious k-cycle decomposition of G ∗ Ka(ℓ).

Proof By Lemma 3.2 we need only prove there exists a gregarious k-cycle decomposition
of C ∗ Kℓ, where C is a (generic) k-cycle. Suppose C = (1, 2, . . . , k). If ℓ is even we take
the ℓ2 cycles (1i, 2j, . . . , (k − 1)i, kj), where i, j ∈ {1, 2, . . . , ℓ}. If ℓ is odd we take the ℓ2

cycles (1i, 2j, . . . , (k − 1)j, ki◦j), where i, j ∈ {1, 2, . . . , ℓ} and i ◦ j is the entry in row i
and column j of any (fixed) latin square of order ℓ on the set {1, 2, . . . , ℓ}. It is an easy
exercise to check that these cycles decompose C ∗ Kℓ as required. �

We can apply Lemma 3.1 in a similar way and obtain the following easy result.

Lemma 3.5 Suppose there exists a gregarious k-cycle decomposition of G ∗ Ka. Then,
for each positive integer ℓ, there exists a gregarious k-cycle decomposition of G ∗ Kaℓ.

We will also make use of some well-known results involving cycle decompositions of
complete graphs and complete equipartite graphs. The first such result, due to Alspach,
Gavlas [1] and Sǎjna [8], gives necessary and sufficient conditions for the existence of a
k-cycle decomposition of the complete graph Kn.

Theorem 3.6 ([1],[8]) Suppose n and k are positive integers with n > 3 and k > 3. Then
there exists a k-cycle decomposition of Kn if and only if n > k, n is odd and n(n− 1) ≡ 0
(mod 2k).

We note that if there exists a k-cycle decomposition of Kn then, by Lemma 3.4, for
each positive integer m there exists a gregarious k-cycle decomposition of Kn∗Km. Hence
we have the following obvious corollary to Theorem 3.6.

Corollary 3.7 Suppose n, m and k are positive integers with n > 3 and k > 3. Then
there exists a gregarious k-cycle decomposition of Kn ∗Km whenever n > k, n is odd and
n(n − 1) ≡ 0 (mod 2k).

The next theorem follows from a stronger result of Liu [6],[7] involving resolvable
cycle decompositions of complete equipartite graphs. Note that we have removed the
“resolvability” condition from Liu’s original result since we will not be concerned with
that property here (this also allows us to easily remove the “exceptions” from Liu’s original
result).

Theorem 3.8 ([6],[7]) Suppose n, m and k are positive integers with n > 3 and k > 3.
Then there exists a k-cycle decomposition of Kn ∗ Km whenever (n − 1)m is even and
nm ≡ 0 (mod k).
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Combining this result with Lemma 3.4 we have the following easy corollary.

Corollary 3.9 Suppose n, ℓ, a and k are positive integers with n > 3 and k > 3. Then
there exists a gregarious k-cycle decomposition of Kn ∗Kak(ℓ) whenever (n− 1)ak is even.

We now state a result of Billington et al. [3] involving gregarious k-cycle decompositions
of Kk∗Km. We note, as mentioned in the introduction, that they actually proved necessary
and sufficient conditions for the existence of a resolvable gregarious k-cycle decomposition
of Kk ∗ Km however, as already noted, we will not be concerned with this additional
property here.

Theorem 3.10 ([3]) Suppose k and m are positive integers with k > 3. Then there exists
a gregarious k-cycle decomposition of Kk ∗Km if and only if either k is odd or m is even.

This result has the following simple corollary in the case that k is even.

Corollary 3.11 Suppose n, m and k are positive integers with m and k even, and k > 4.
Then there exists a gregarious k-cycle decomposition of Kn∗Km whenever n ≡ 0 (mod k).

Proof If n = k the result follows immediately by Theorem 3.10. Suppose then that
n = qk, with q > 2. It is easy to see that there exists a {Kk, Kq ∗ Kk}-decomposition of
Kn

∼= Kqk ∗ K1. Moreover, there exist gregarious k-cycle decompositions of Kk ∗ Km, by
Theorem 3.10, and of Kq ∗ Kk(m), by Corollary 3.9. Hence the result follows by Lemma
3.2. �

Using the techniques developed in Section 1 (in particular Lemma 2.3), we now present
a series of three lemmas (each followed immediately by a corollary) in which we obtain
some useful gregarious cycle decompositions of complete equipartite graphs having parts
of even size. The first of these decompositions deals with cases in which the cycle length
is also even.

Lemma 3.12 Suppose k and m are positive integers with k > 4. Then there exists a
gregarious k-cycle decomposition of Kk+1 ∗ Km whenever k and m are both even.

Proof If k = 4 the result follows from [2]. Suppose then k > 6. Note that we need
only consider the case m = 2 and the result then follows by Lemma 3.5. Furthermore, in
the case m = 2 we need only give a k-cycle decomposition of 2Kk+1 which satisfies the
conditions of Lemma 2.3. We do this as follows.

Let the vertex set of 2Kk+1 be Zk ∪ {∞}, and let ρ = (0 1 2 · · · (k − 1))(∞) be a
permutation of order k on V (2Kk+1). We define the k-cycles C and D on 2Kk+1 by

C = (0, 1, k − 1, 2, k − 2, . . . , k/2 − 1, k/2 + 1,∞); and

D = (0, 1, 2, . . . , k − 1).

(See for example Figure 1, which shows the cycles C and D in the case k = 16.)
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Figure 1: The cycles C and D when k = 16

It is a simple exercise to check that D = {D, ρ0(C), ρ1(C), . . . , ρk−1(C)} is a k-cycle
decomposition of 2Kk+1. We note that, for each i ∈ {0, 1, . . . , k/2 − 1}, the cycles ρi(C)
and ρi+k/2(C) both contain the 2-path [i + 1, i − 1, i + 2]. Hence, setting D1 = {D}
and D2 = {ρ0(C), ρ1(C), . . . , ρk−1(C)}, it is easy to see that D satisfies the conditions of
Lemma 2.3 and the result follows. �

Corollary 3.13 Suppose n, m and k are positive integers with m and k even, and k > 4.
Then there exists a gregarious k-cycle decomposition of Kn ∗ Km whenever n > k and
n ≡ 1 (mod k).

Proof If n = k + 1 the result follows immediately by Lemma 3.12. Suppose then that
n = qk+1, with q > 2. It is easy to see that there exists a {Kk+1, K2∗Kk}-decomposition
of Kn

∼= Kqk+1∗K1. Moreover, there exist gregarious k-cycle decompositions of Kk+1∗Km,
by Lemma 3.12, and of K2 ∗Kk(m), by Corollary 3.9. Hence the result follows by Lemma
3.2. �

The next result is analogous to that of Lemma 3.12 in the case that k is odd.

Lemma 3.14 Suppose k and m are positive integers with k > 3. Then there exists a
gregarious k-cycle decomposition of Kk+1 ∗ Km whenever k is odd and m is even.

Proof As in the proof of Lemma 3.12, we need only give a k-cycle decomposition of
2Kk+1 which satisfies the conditions of Corollary 2.3. The result then follows for m = 2
by Lemma 2.3, and subsequently for all even m by Lemma 3.5.

Let the vertex set of 2Kk+1 be Zk ∪ {∞}, and let ρ = (0 1 2 · · · (k − 1))(∞) be
a permutation of order k on V (2Kk+1). We then split the problem according to the
congruence of k modulo 4.
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Case I. Suppose k ≡ 1 (mod 4). Let k = 4ℓ + 1 and define the (4ℓ + 1)-cycles C and D
on 2K4ℓ+2 by

C = (0, 1, 4ℓ, 2, 4ℓ− 1, . . . , ℓ, 3ℓ + 1, ℓ + 2, 3ℓ, ℓ + 3, . . . , 2ℓ, 2ℓ + 2, 2ℓ + 1,∞); and

D = (0, 2ℓ, 4ℓ, 2ℓ− 1, 4ℓ − 1, . . . , 1, 2ℓ + 1).

(See for example Figure 2, which shows the cycles C and D in the case k = 17.)
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Figure 2: The cycles C and D when k = 17

It is a simple exercise to check that D = {D, ρ0(C), ρ1(C), . . . , ρ4ℓ(C)} is a k-cycle
decomposition of 2K4ℓ+2. We note that, for each i ∈ {0, 1, . . . , 2ℓ − 1}, the cycles ρi(C)
and ρi+2ℓ(C) both contain the 2-path [∞, i, i + 1]. Hence, setting D1 = {D, ρ4ℓ(C)} and
D2 = {ρ0(C), ρ1(C), . . . , ρ4ℓ−1(C)}, it is easy to see that D satisfies the conditions of
Lemma 2.3 and the result follows.

Case II. Suppose k ≡ 3 (mod 4). Let k = 4ℓ + 3 and define the (4ℓ + 3)-cycles C and D
on 2K4ℓ+4 by

C =(0, 1, 4ℓ + 2, 2, 4ℓ + 1, . . . , 3ℓ + 3, ℓ + 1, 3ℓ + 1, ℓ + 2, 3ℓ, . . . , 2ℓ, 2ℓ + 2, 2ℓ + 1,∞); and

D =(0, 2ℓ + 1, 4ℓ + 2, 2ℓ, 4ℓ + 1, . . . , 1, 2ℓ + 2).

It is a simple exercise to check that D = {D, ρ0(C), ρ1(C), . . . , ρ4ℓ+2(C)} is a k-cycle
decomposition of 2K4ℓ+4. We note that, for each i ∈ {0, 1, 2, . . . , 2ℓ− 1}, the cycles ρi(C)
and ρi+2ℓ+2(C) both contain the 2-path [∞, i, i + 1]. Hence, setting D1 = {D, ρ2ℓ+1(C)}
and D2 = {ρ0(C), ρ1(C), . . . , ρ2ℓ(C), ρ2ℓ+2(C), ρ2ℓ+3(C), . . . , ρ4ℓ+2(C)}, it is easy to see
that D satisfies the conditions of Lemma 2.3 and the result follows. �

Corollary 3.15 Suppose n, m and k are positive integers with n and m even, k odd and
k > 3. Then there exists a gregarious k-cycle decomposition of Kn ∗ Km whenever n > k
and n ≡ 1 (mod k).
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Proof If k = n − 1, the result follows immediately from Lemma 3.14. Suppose then
n = qk + 1, with q > 3 and q odd (since n is even). It is easy to see that there exists
a {Kk+1, Kq ∗ Kk}-decomposition of Kn

∼= Kqk+1 ∗ K1. Moreover, there exist gregarious
k-cycle decompositions of Kk+1 ∗ Km, by Lemma 3.14, and of Kq ∗ Kk(m), by Corollary
3.9. Hence the result follows by Lemma 3.2. �

The third and final lemma will be used to give the analogous result to Corollary 3.11
in the case that k is odd.

Lemma 3.16 Suppose k and m are positive integers with k > 3. Then there exists a
gregarious k-cycle decomposition of K2k ∗ Km whenever k is odd and m is even.

Proof The case k = 3 (in which all cycles are necessarily gregarious) was settled by
Hanani [5]. Assume then k > 5.

Similar to the proof of Lemma 3.14, we need only give a decomposition of 2K2k into
k-cycles which satisfies the conditions of Lemma 2.2. The result then follows for m = 2
by Lemma 2.2, and subsequently for all even m by Lemma 3.5.

Let the vertex set of 2K2k be Z2k−1 ∪ {∞}, and let ρ = (0 1 2 · · · (2k − 2))(∞) be a
permutation of order 2k − 1 on V (2K2k). We then split the problem according to the
congruence of k modulo 4.

Case I. Suppose k ≡ 1 (mod 4). Let k = 4ℓ + 1, then ℓ > 1 and 2k − 1 = 8ℓ + 1. Define
the (4ℓ + 1)-cycles C and D on 2K8ℓ+2 by

C = (0, 1, 8ℓ, 2, 8ℓ− 1, . . . , 6ℓ + 2, 2ℓ, 6ℓ); and

D = (0, 1, 8ℓ, 2, 8ℓ− 1, . . . , 7ℓ + 1, ℓ + 2, 7ℓ, ℓ + 3, 7ℓ − 1, . . . , 6ℓ + 2, 2ℓ + 1,∞).

(See for example Figure 3, which shows the cycles C and D in the case k = 9.)

1

2

4

0

5

3

7

6

9 8

15

14

13

12

11

10

161

2

4

0

5

3

7

6

9 8

15

14

13

12

11

10

16

∞
∞

Figure 3: The cycles C and D when k = 9

It is a simple exercise to check that D = {ρi(C), ρi(D) | 0 6 i 6 2k − 2} is a k-cycle
decomposition of 2K8ℓ+2. We note that the cycles C and D both contain the 2-path
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[0, 1, 8ℓ]. Hence it is easy to see that D satisfies the conditions of Lemma 2.2 and the
result follows.

Case II. Suppose k ≡ 3 (mod 4). Let k = 4ℓ+3, then ℓ > 1 and 2k− 1 = 8ℓ+5. Define
the (4ℓ + 3)-cycles C and D on 2K8ℓ+6 by

C = (0, 1, 8ℓ + 4, 2, 8ℓ + 3, . . . , 6ℓ + 4, 2ℓ + 1, 6ℓ + 3); and

D = (0, 1, 8ℓ + 4, 2, 8ℓ + 3, . . . , ℓ, 7ℓ + 5, ℓ + 2, 7ℓ + 4, ℓ + 3, . . . , 6ℓ + 4, 2ℓ + 2,∞).

It is a simple exercise to check that D = {ρi(C), ρi(D) | 0 6 i 6 2k − 2} is a k-cycle
decomposition of 2K8ℓ+2. We note that the cycles C and D both contain the 2-path
[0, 1, 8ℓ + 4]. Hence it is easy to see that D satisfies the conditions of Lemma 2.2 and the
result follows. �

Corollary 3.17 Suppose n, m and k are positive integers with n and m even, k odd and
k > 3. Then there exists a gregarious k-cycle decomposition of Kn ∗ Km whenever n > k
and n ≡ 0 (mod k).

Proof If n = 2k the result follows immediately from Lemma 3.16. If n = 4k it is easy to
see that there exists a {Kk, K4 ∗ Kk}-decomposition of Kn

∼= K4k ∗ K1. Moreover, there
exists a gregarious k-cycle decomposition of Kk ∗Km, by Theorem 3.10, and there exists
a gregarious k-cycle decomposition of K4 ∗Kk(m) as follows. Since m is even, there exists
a gregarious K3-decomposition of K4 ∗ Km by Hanani [5]. Furthermore, there exists a
k-cycle decomposition of K3 ∗Kk by Theorem 3.8. Hence there exists a gregarious k-cycle
decomposition of K4 ∗ Kk(m), by Lemma 3.3. The result then follows by Lemma 3.2.
Assume then n = 2qk for some q > 3.

It is easy to see that there exists a {K2k, Kq ∗K2k}-decomposition of Kn
∼= K2qk ∗K1.

Moreover, there exist gregarious k-cycle decompositions of K2k ∗ Km, by Theorem 3.16,
and of Kq ∗ K2k(m), by Corollary 3.9. Hence the result follows by Lemma 3.2. �

We are now ready to present the proof of Theorem 1.1 (i).

Proof of Theorem 1.1 (i) Let n, m and k satisfy the conditions of the theorem. We
note first that if n and m are both odd and n ≡ 1 (mod k), then n ≡ 1 (mod 2k) since
n(n − 1)m2 ≡ 0 (mod 2k). We then split the problem according to the parity of k and
whether n ≡ 0 or 1 (mod k).

Case I. Suppose k is even and n ≡ 0 (mod k). We note that n is even and hence m is
also even. The result then follows by Corollary 3.11.

Case II. Suppose k is even and n ≡ 1 (mod k). If m is even the result follows by
Corollary 3.13. If m is odd then n is odd and, as noted above, n ≡ 1 (mod 2k). The
result then follows by Corollary 3.7.

Case III. Suppose k is odd and n ≡ 0 (mod k). If n is odd the result follows by Corollary
3.7. Otherwise, both n and m are even and the result follows by Corollary 3.17.
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Case IV. Suppose k is odd and n ≡ 1 (mod k). If n is odd the result follows by Corollary
3.7. Otherwise, both n and m are even and the result follows by Corollary 3.15.

This completes the proof. �

4 The case m ≡ 0 (mod k)

The aim of this section is to prove Theorem 1.1 (ii). The critical ingredient in our proof
is the following lemma.

Lemma 4.1 Suppose n and λ are odd with n > λ > 3. Then:

(i) there exists a λ-cycle decomposition of λKn with balanced λ-weight function ω; and

(ii) if λ > 5, there exists a gregarious λ-cycle decomposition of 2(Kn+1 ∗Kλ) which can
be partitioned into pairs in such a way that the cycles in each pair share two adjacent
edges.

Proof Note that the following λ-cycle decomposition of λKn was first given by the
author in [10].

Let n = 2t + 1, λ = 2µ + 1, the vertex set of λKn be Z2t+1 and ρ = (0 1 · · · 2t) be
a permutation of order 2t + 1 on V (λK2t+1). We define the difference of an edge uv in
λK2t+1 to be the unique value d ∈ {1, 2, . . . , t}, such that u and v differ modulo 2t + 1 by
d. Define values v1, v2, . . . , v2t (calculated modulo 2t + 1 from the residues 0, 1, . . . , 2t) by

vi = −vt+i =

{

i(−1)i+1, for 1 6 i 6 ⌈t/2⌉;

i(−1)i, for ⌈t/2⌉ + 1 6 i 6 t.

These values satisfy the following properties.

(P1) For each v ∈ Z2t+1\{0} there is a unique i ∈ {1, 2, . . . , 2t} such that vi = v.

(P2) For each d ∈ {1, 2, . . . , t} there is a unique i ∈ {1, 2, . . . , t} such that vi and vi+1, as
well as vt+i and vt+i+1, differ modulo 2t + 1 by d.

(P3) For each d ∈ {1, 2, . . . , t} there is a unique i ∈ {1, 2, . . . , t} such that vi and vt+i

differ modulo 2t + 1 by d.

In particular, property (P1) allows us to think of these vi as alternative labellings for the
non-zero vertices in λK2t+1. Then D = {ρα(Ci) | 0 6 α 6 2t and 1 6 i 6 t}, where

Ci = (vi, vi+1, . . . , vi+µ−1, 0, vt+i+µ−1, vt+i+µ−2, . . . , vt+i)

for each i ∈ {1, 2, . . . , t} and subscripts of v are calculated modulo 2t from the residues
1, 2, . . . , 2t, is a λ-cycle decomposition of λK2t+1 (see [10] for more detail). We use this
decomposition D to deal with cases (i) and (ii) separately.
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(i) For each i ∈ {1, 2, . . . , t} we label the edges of the cycle Ci so that the edge vt+ivi has
label 0, the edge vivi+1 has label 1, the edge vi+1vi+2 has label 2 and so on, up to the edge
vt+i+1vt+i which has label λ−1. It is clear from properties (P1), (P2) and (P3) above, that
for each d ∈ {1, 2, . . . , t} and each ℓ ∈ {0, 1, . . . , λ − 1}, there is a unique i ∈ {1, 2, . . . , t}
for which the cycle Ci contains an edge of difference d with label ℓ. Taking advantage of
this fact, we extend this labelling to the edges of each cycle in D by assigning, for each
α ∈ {1, 2, . . . , 2t} and each i ∈ {1, 2, . . . , t}, the edge ρα(u)ρα(v) in cycle ρα(Ci) the same
label as the edge uv in cycle Ci = ρ0(Ci). The resulting edge labelling thus induces a
λ-weight function ω on D. It remains to show that ω is balanced.

Let ~K2t+1 be the directed version of K2t+1 with directed edge-set

E = {(v, v + d) | 0 6 v 6 2t and 1 6 d 6 t},

where v + d is calculated modulo 2t + 1 from the residues 0, 1, . . . , 2t. Hence ~K2t+1 is
invariant under the permutation ρ and we need only show that, for each i ∈ {1, 2, . . . , t},

the sum-weight (with respect to ~K2t+1) of the cycle Ci is a multiple of λ. We do this as
follows.

Orient the edges of the cycle Ci to form the directed cycle

~Ci = (vi, vi+1, . . . , vi+µ−1, 0, vt+i+µ−1, vt+i+µ−2, . . . , vt+i)D.

Recall that for each ℓ ∈ {0, 1, . . . , λ−1} there is precisely one edge in Ci labelled ℓ. Since
the edge labelled 0 contributes nothing to the sum-weight of Ci, we need only show that
for each ℓ ∈ {1, 2, . . . , µ} (recall that λ = 2µ + 1), if e1 and e2 are the directed versions

(in ~Ci) of the edges labelled ℓ and λ − ℓ in Ci, then either e1 and e2 both belong to E,
or neither e1 nor e2 belongs to E. (Hence their contribution to the sum-weight of Ci will

be either λ or −λ.) Consider first the directed versions (in ~Ci) of the edges labelled µ
and µ + 1 in Ci; that is, the directed edges (vi+µ−1, 0) and (0, vt+i+µ−1) respectively. By
definition, vt+i+µ−1 ≡ −vi+µ−1 (mod 2t + 1). Hence

0 − vi+µ−1 ≡ vt+i+µ−1 − 0 (mod 2t + 1),

and the result follows by the definition of E. Similarly, for each ℓ ∈ {1, 2, . . . , µ − 1},

the directed versions (in ~Ci) of the edges labelled ℓ and λ − ℓ in Ci are (vi+ℓ−1, vi+ℓ) and
(vt+i+ℓ, vt+i+ℓ−1) respectively. By definition, vt+i+ℓ ≡ −vi+ℓ (mod 2t + 1) and vt+i+ℓ−1 ≡
−vi+ℓ−1 (mod 2t + 1). Hence

vi+ℓ − vi+ℓ−1 ≡ vt+i+ℓ−1 − vt+i+ℓ (mod 2t + 1),

and the result follows by the definition of E.

(ii) Note that in this case we assume that µ > 2. For each i ∈ {1, 2, . . . , t} label the
edges of the cycle Ci as in the proof of (i) above, and define Di to be an exact copy
of the edge-labelled cycle Ci. Hence {ρα(Ci), ρ

α(Di) | 0 6 α 6 2t and 1 6 i 6 t}
is a λ-cycle decomposition of 2λK2t+1. Moreover, for each d ∈ {1, 2, . . . , t} and each
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ℓ ∈ {0, 1, . . . , λ − 1}, there is a unique i ∈ {1, 2, . . . , t} for which the cycles Ci and Di

each contain a copy of the same edge of difference d with label ℓ.
Now, for each i ∈ {1, 2, . . . , t} the cycles Ci−µ+1 and Di−µ+1 (with subscripts calculated

modulo t from the residues 1, 2, . . . , t) each contain the 2-path [vi, 0, vt+i]. Moreover, the
edges of this 2-path, namely vi0 and 0vt+i, each have difference i, and are labelled µ and
µ + 1 respectively in both Ci−µ+1 and Di−µ+1. For each i ∈ {1, 2, . . . , µ} we “modify” the
cycle Ci−µ+1 by removing this 2-path, hence forming the (λ − 2)-path

Li−µ+1 = [vt+i, vt+i−1, . . . , vt+i−µ+1, vi−µ+1, vi−µ+2, . . . , vi].

Thus in total we remove one edge of each difference d ∈ {1, 2, . . . , µ} labelled µ, and one
edge of each difference d ∈ {1, 2, . . . , µ} labelled µ+ 1, from the cycles Ci−µ+1, 1 6 i 6 µ.
We do the same, this time for each i ∈ {2, 3, . . . , µ}, to the cycle Di−µ+1, leaving the
(λ − 2)-path

Pi−µ+1 = [vt+i, vt+i−1, . . . , vt+i−µ+1, vi−µ+1, vi−µ+2, . . . , vi]

in each case. Thus in total we remove one edge of each difference d ∈ {2, . . . , µ} labelled
µ, and one edge of each difference d ∈ {2, . . . , µ} labelled µ + 1, from the cycles Di−µ+1,
2 6 i 6 µ. (Note that the subscripts for both Li−µ+1 and Pi−µ+1 are also calculated
modulo t from the residues 1, 2, . . . , t.) We then define two new (λ− 2)-paths G0 and H0

on 2λK2t+1 as follows (the reason for using this notation will soon become clear).
For each j ∈ {1, 2, . . . , µ} define

xj =

j
∑

i=1

(−1)i+1(µ − i + 1),

and for each j ∈ {1, 2, . . . , µ − 1} define yj = (2t + 1) − xj . Hence x1 = µ and, for each
j ∈ {1, 2, . . . , µ − 1}, the values xj and xj+1 differ by µ − j. Similarly y1 = (2t + 1) − µ
and, if µ > 2, then for each j ∈ {1, 2, . . . , µ − 2} the values yj and yj+1 differ by µ − j.
Then define

G0 = H0 = [xµ, xµ−1, . . . , x1, 0, y1, y2, . . . , yµ−1].

It is easy to see this is indeed a (λ − 2)-path in 2λK2t+1. We assign the edge xµxµ−1 the
label µ in G0 and µ + 1 in H0. We then assign each of the edges

xµ−1xµ−2, xµ−2xµ−3, . . . , x10

the label µ in both G0 and in H0; and we assign the remaining edges

0y1, y1y2, . . . , yµ−2yµ−1

the label µ + 1 in both G0 and in H0. Hence G0 contains one edge of each difference
d ∈ {1, 2, . . . , µ} labelled µ, and one edge of each difference d ∈ {2, 3, . . . , µ} labelled
µ + 1. Similarly, the path H0 contains one edge of each difference d ∈ {2, . . . , µ} labelled
µ, and one edge of each difference d ∈ {1, 2, . . . , µ} labelled µ + 1. Thus together these
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two paths use edges of the exact same differences and labels as those we removed from
the cycles Ci−µ+1, 1 6 i 6 µ, and the cycles Di−µ+1, 2 6 i 6 µ. Moreover, since µ > 1,
the paths G0 and H0 share at least two adjacent edges which also have the same labels
in both G0 and H0.

Then for each i ∈ {1, 2, . . . , t} we let Gi be either the edge-labelled cycle Ci, if Ci

was not one of the “modified” cycles from above, or the edge-labelled path Li otherwise.
Hence t − µ of the graphs Gi are λ-cycles, and the remaining µ (plus the graph G0) are
(λ−2)-paths. Similarly, we let Hi be either the edge-labelled cycle Di, or the edge-labelled
path Pi, depending on whether Di was one of the “modified” cycles. Hence t−µ+1 of the
graphs Hi are λ-cycles, and the remaining µ−1 (plus the graph H0) are (λ−2)-paths. We
note also that for each i ∈ {0, 1, . . . , t} the graphs Gi and Hi share at least two adjacent
edges which also have the same labels in both Gi and Hi (even in the one case where Gi

is a path and Hi is a cycle).
Hence {ρα(Gi), ρ

α(Hi) | 0 6 α 6 2t and 0 6 i 6 t} is a decomposition of 2λK2t+1 into

• (2t + 1)(2t − 2µ + 1) = n(n − λ + 1) cycles of length λ; and

• (2t + 1)(2µ + 1) = nλ paths of length λ − 2.

Moreover, suppose ω′ is the λ-weight function on this decomposition obtained by extend-
ing the edge labelling of each of the graphs Gi and Hi under the permutation ρ (as in part
(i) above). Then, under ω′, each cycle in the decomposition has sum-weight a multiple

of λ with respect to ~Kn (also defined above). Hence using the function ω′ we generate a
decomposition, D′ say, of the graph 2(Kn ∗ Kλ) into λn(n − λ + 1) gregarious λ-cycles
and nλ2 gregarious (λ−2)-paths (by associating vertices and labelled edges of 2λKn with
partite sets and matchings of 2(Kn ∗ Kλ) as in the proof of Lemma 2.6).

For each i ∈ {0, 1, . . . , t} we let X(Gi) (respectively, X(Hi)) be the set of λn cycles,
or paths, in D′ generated by the graphs ρα(Gi) (respectively, ρα(Hi)), 0 6 α 6 2t.
Then, by the remarks above, we can pair up the graphs in X(Gi) with those in X(Hi)
so that the graphs in each pair share two adjacent edges. Finally we note that if Gi

(respectively, Hi) is a path, then due to the cyclic nature of the decomposition of 2λKn,
each vertex in 2(Kn ∗ Kλ) appears as an endpoint of exactly two paths in the set X(Gi)
(respectively, X(Hi)). Since there are precisely µ + 1 graphs Gi which are paths, say
Gα1

, Gα2
, . . . , Gαµ+1

, and µ graphs Hi which are paths, say Hαµ+2
, Hαµ+3

, . . . , Hαλ
, we can

thus add an extra partite set of size λ to our graph 2(Kn ∗ Kλ), say {∞1,∞2, . . . ,∞λ},
and attach the ends of each path in the sets X(Gα1

), . . . , X(Gαµ
), X(Hαµ+1

), . . . , X(Hαλ
),

to the vertices ∞1,∞2, . . . ,∞λ respectively. Thus these form gregarious λ-cycles in each
case. Note that every vertex in the part {∞1,∞2, . . . ,∞λ} is attached to every vertex in
the graph 2(Kn ∗ Kλ) twice. Hence we have a decomposition of the graph 2(Kn+1 ∗ Kλ)
into gregarious λ-cycles. Moreover, since we haven’t affected the underlying graphs from
our decomposition of 2(Kn ∗ Kλ), we can partition the cycles in this decomposition into
pairs in such a way that the cycles in each pair share two adjacent edges. This completes
the proof. �

We are now ready to present the main result of this section.
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Proof of Theorem 1.1 (ii) Let n, m and k satisfy the conditions of the theorem. We
then split the problem according to whether n is odd or even.

Case I. Suppose n is odd. Since n and k are both odd with n > k > 3, there exists
a gregarious k-cycle decomposition of Kn ∗ Kk by Lemma 4.1 (i) and Lemma 2.6. The
result then follows by Lemma 3.5.

Case II. Suppose n is even. If k = 3 the result follows by Hanani [5]. Suppose then
k > 5. Since n is even and n > k > 5, there exists a gregarious k-cycle decomposition of
Kn ∗ K2k by Lemma 4.1 (ii) and Lemma 2.2. Moreover, since n is even, m is also even
and hence m ≡ 0 (mod 2k). The result then follows by Lemma 3.5. �
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