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A complete structural description and enumeration is found for

permutations that avoid both 1324 and 4231.

1. INTRODUCTION

A permutation α is said to be a subpermutation of a permutation β if β contains a
subsequence whose terms are ordered relatively the same as the terms of α. For exam-
ple 231 is a subpermutation of 31524 by virtue of the subsequence 352 whereas 231 is
not a subpermutation of 51324. Classes of permutations are sets of permutations that
are closed downwards under taking subpermutations. They are usually presented as
sets C that avoid a given set B of permutations (i.e. the permutations of C have no
subpermutation in the set B). We express this by the notation C = Av(B). Much of
the inspiration for elucidating the structure of pattern classes has been driven by the
enumeration problem: given C = Av(B), how many permutations of each length does
C contain? The answer to such a question can be a formula giving this number cn in
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terms of the length n, or it may be a generating function
∑

∞

n=1 cnxn or it may simply be
an asymptotic result about the behaviour of cn as n → ∞.
The subpermutation relation is invariant under 8 symmetries generated by rever-

sal, complementation, and inversion. These symmetries can be used to cut down the
number of cases in many investigations since, for every such symmetry σ → σω, we
have

Cω = Av(B)ω = Av(Bω)

For sets B containing only a single permutation β exact enumerations are known
for |β| 6 4 with one notable exception, the case β = 1324 (or its symmetry 4231) where
only lower and upper bounds are known [2, 6]. For setsB = {α, β} exact enumerations
are known when |α| 6 3 and |β| 6 4 but far less is known in the case |α| = |β| = 4. It is
known that there are 56 essentially different pairs (i.e. inequivalent under symmetries)
α, β of length 4 and that they give rise to 38 different enumerations [5, 7, 8, 9, 10] (some
inequivalent pairs are Wilf-equivalent meaning that they nevertheless have the same
enumeration). Of these 38Wilf classes 23 have yet to be enumerated.
Here we consider the class C = Av(1324, 4231). This class is of interest because both

Av(1324) and Av(4231) have unknown enumerations and techniques such as generat-
ing trees [13], the insertion coding [4] and the WILFPLUS program [11] seem unable to
enumerate it. Our approach in this paper is to use some of the theory of simple per-
mutations developed in [1] which appears to have considerable promise for problems
of this type.
In the next section we give some necessary notation and definitions, assemble some

technical results, and give a structural decomposition of the class Av(1324, 4231) to-
gether with a recurrence to enumerate its simple permutations. In the final section we
put all the ingredients together to give the complete generating function for the class.

2. PRELIMINARY RESULTS

An interval of a permutation π = π(1)π(2) · · ·π(n) is a subsequence π(i)π(i + 1) · · ·π(j)
whose values form a consecutive set. If a permutation has no intervals except for itself
and singletons it is said to be simple. For example 68352471 has non-trivial intervals
3524 and 6835247while 31524 is simple.
Simple permutations are precisely those that do not arise from a non-trivial infla-

tion, in the following sense. Let σ be any permutation of length m and α1, α2, . . . , αm

any sequence of permutations. Then the inflation of σ by α1, α2, . . . , αm, which we de-
note by σ[α1, α2, . . . , αm], is that permutation of length |α1| + · · · + |αm| which decom-
poses into m segments α′

1α
′

2 · · ·α′

n
where each segment α′

i
is an interval which is order

isomorphic to αi, and the sequence a1a2 · · ·an formed by any (and hence every) choice
of ai from α′

i
is order isomorphic to σ. For example the inflation of 3142 by 21, 132, 1, 123

is
3142[21, 132, 1, 123] = 87 132 9 456
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Figure 1: A permutation in Av(1324, 4231) containing 41352.

The precise connection between simple permutations and inflations is furnished by
a result from [1].

Lemma 1. For every permutation π there is a unique simple permutation σ such that π =
σ[α1, α2, . . . , αm]. Furthermore, except when σ = 12 or σ = 21 the intervals of σ that corre-
spond to α1, α2, . . . , αm are uniquely determined. In the case that σ = 12 (respectively σ = 21),
the intervals are unique so long as we require the first of the two intervals to be sum (respec-
tively, skew) indecomposable which means that it cannot be decomposed further as 12[γ, δ]
(respectively 21[γ, δ]).

Our methodology for enumerating Av(1324, 4231) is first to determine its simple
permutations and then, for each one, to determine how many inflations lie in the class.
By the previous lemma this will deliver the count of all permutations in the class. It
turns out that the simple permutations, apart from two of them, can all be constructed
in a recursive way from smaller simple permutations. The two exceptional simple
permutations are 25314 and 41352. We deal with these permutations by the following
proposition.

Proposition 2. If the permutation π ∈ Av(1324, 4231) contains 41352, then it is of the form
41352[α1, α2, 1, α4, α5] where

1. α1 ∈ Av(132, 312)

2. α2 ∈ Av(132, 231)

3. α4 ∈ Av(213, 312)

4. α5 ∈ Av(213, 231)

Conversely, all permutations of this form belong to Av(1324, 4231) and contain 41352. A
similar result holds for the reverse permutation 25314.

Proof. The proposition is readily verified by “diagram-chasing”. We begin from a di-
agram of π which displays 5 points that correspond to the subpermutation 41352, to-
gether with the regions that correspond to all the other points of π according to their
relation to these five. Then, by exploiting the 1324- and 4231-avoidance, we find that
all of the shaded regions in Figure 1 are empty.
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The avoidance conditions further imply that the 4 unshaded regions do not overlap
either by position or by value. This proves that

π = 41352[α1, α2, 1, α3, α4]

The conditions on α1, α2, α3, α4 then follow readily from the avoidance conditions. The
converse is easily checked.

The subclasses defined by two restrictions of length 3 that feature in this result are
well understood. The third one, for example, consists of all permutations that have
a division into two segments, the first increasing and the second decreasing. The di-
agram of such permutations is roughly shaped like a wedge pointing upwards and
so we denote this class by ∧. The other classes are symmetries of this class and have
wedge-shaped diagrams pointing respectively left, down, up and right and are de-
noted <,∨,∧ and >. We refer to them all as “wedge classes”.
The permutations of Av(1324, 4231) fall into three categories: they contain 41352 or

contain 25314, or contain neither of these permutations. Proposition 2 gives a descrip-
tion of the first two of these categories. It follows that Av(1324, 4231) is the union of
three classes:

• 41352[<,∨, 1,∧, >] and all its subpermutations,

• 25314[<,∧, 1,∨, >] and all its subpermutations, and

• Av(1324, 4231, 25314, 41352).

Our initial interest in this class came from this observation. First, it is rare to find
classes with only a few short basis elements which admit such nice decompositions as
unions. Moreover, the third class listed is a subclass of the “convex class” of Albert et
al. [3], that is, the class of all permutations which can be drawn in convex position. Fur-
thermore, it was observed that the simple permutations in Av(1324, 4231, 25314, 41352)
can be “drawn on a circle” in the sense of Vatter and Waton [12]. While these obser-
vations do not appear in our proof, much of our underlying intuition was drawn from
them initially.

Proposition 3. In any simple permutation in Av(1324, 4231) other than 25314 or 41352, the
maximum and minimum entries occur consecutively.

Proof. By passing to the reverse permutation if necessary we consider a simple permu-
tation π of length n in Av(1324, 4231) in which the symbol 1 precedes the symbol n. If
the symbols 1 and n do not occur consecutively, then they are horizontally separated
by some entry π(i). Proposition 2 then implies that either

• there are no entries to the right of n and vertically between 1 and π(i), or

• there are no entries to the left of 1 and vertically between π(i) and n.
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π(i) π(i)

π(j)

Figure 2: The situation in the proof of Proposition 3.

By considering the reverse-complement of π if necessary, we may assume that the for-
mer holds. Now let us choose π(i) to be the entry horizontally between 1 and n of
minimal value.
We now have the situation depicted on the left of Figure 2 where the shaded regions

are empty. Note that the region horizontally between 1 and π(i) and vertically above
π(i) is empty because any entry in this region would give rise to a copy of 1324. Because
π is simple, 1 and π(i)must be separated, and thus they must be separated by an entry
π(j) to the left. Selecting the leftmost such entry gives us the situation depicted on
the right of Figure 2 (where the region above π(i) but between π(j) and 1 is empty
because of the 1324 avoidance). As shown in the figure, however, there is now no
way to separate the interval containing this new entry, 1, and π(i), contradicting our
assumption that π is simple.

In the next proposition notation such as π \ t denotes the permutation obtained by
renumbering the points of π \ {t} so that it is a permutation. Dually (and used in the
proof of Proposition 5) we refer to inserting an entry t into a permutation π (requiring
the values greater than or equal to t to be incremented by 1).

Proposition 4. Every simple permutation π ∈ Avn(1324, 4231) other than 1, 12, 21, 25314,
or 41352 in which 1 occurs before n contains one of the following segments

1. a1n2 with a 6= n − 1; in this case π \ 1 is simple,

2. (n − 1)1nb with b 6= 2; in this case π \ n is simple, or

3. (n − 1)1n2; in this case π \ {1, n} is simple.

Proof. In the first case π \ 1 is simple because any interval must have been split by
position in π by the symbol 1. However, although the interval contains a and n it
cannot also contain 2 without being the whole of π \ 1. Hence the interval ends at n. It
is not a doubleton since a 6= n − 1 and therefore it contains a proper interval ending at
a; but this would also have been an interval of π. The second case follows by a similar
argument, while the third case is even easier. Here π \ {1, n} cannot contain an interval
since this would have been split by position in π by n1 and so would have contained 2
and n − 1.
To complete the proof we have to show that there are no more cases. In other words

we have to prove that a permutation of the type αa1nbβ with a 6= n − 1 and b 6= 2 is
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not simple. Note that not both of 2 and n − 1 can precede a (they would lead to the
forbidden sequences 2(n − 1)an or (n − 1)2a1). Nor, similarly, can both 2 and n − 1
follow b.
Next suppose that 2 precedes a and n − 1 succeeds b. Since 1324 is forbidden and

2ab(n − 1) is a subsequence we know that a < b. The positions of π up to the position
containing 2 contain no entries p larger than a (else p2a1 ∼ 4231) and the positions
between the positions of 2 and a also contain no entries larger than a (else 2pan ∼ 1324).
On the other hand there can be no entries p < a between the positions of b and n − 1
(else 1ap(n − 1) ∼ 1324) nor between the positions following the position of n − 1 (else
nb(n − 1)p ∼ 4231). It follows that the first a positions form an interval. A similar
argument holds when n − 1 precedes a and 2 succeeds b.

Proposition 5. The number sn of simple permutations of length n in Av(1324, 4231) satisfies
sn = 2sn−1 + sn−2 for n > 8.

Proof. The preceding proposition shows how the simple permutations arise. Con-
versely it is easy to see that permutations in which 1 or n or both have been inserted
into simple permutations according to the previous proposition are necessarily sim-
ple.

Proposition 6. The simple permutations of Av(1324, 4231) other than 1, 12, 21, 25314, and
41352 have the generating function 4x4/(1 − 2x − x2).

Further generating functions results we shall need appear in the next proposition.

Proposition 7. We have the following enumerative results.

permutations generating function

(a) nonempty permutations in any particular wedge class x

1−2x

(b) sum (or skew) indecomposable permutations in any wedge class x(1−x)
1−2x

(c) non-singleton sum indecomposable permutations in Av(132, 4231) x
2(1−x)

(1−2x)2

(d) Av(213, 4231) x(1−3x+3x
2)

(1−x)(1−2x)2

Proof. Consider a wedge class oriented as >, i.e., Av(231, 213). Every non-singleton
permutation in this class can be described as either 12[1, π] or as 21[1, π] for some π ∈
Av(231, 213). Thus the generating function, f , for this class satisfies f = x + 2xf , while
the generating function for the sum indecomposable elements is x+xf , verifying both
(a) and (b).
For (c), note that the permutations of Av(132, 4231) in question can be described as

21[π, σ]where π is a skew indecomposable permutation in the wedge classAv(132, 312)
and σ is an arbitrary permutation in the wedge class Av(132, 231). The generating
function for these permutations then follows from (a) and (b).
Finally, every non-singleton permutation in Av(213, 4231) is of one of two forms,

either 12[1, π] for π ∈ Av(213, 4231) or 21[π, σ] for a skew indecomposable permutation
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π in the wedge class Av(213, 312) and an arbitrary permutation σ in the wedge class
Av(213, 231). Thus we have from (a) and (b) that

f = x + xf +
x

1 − 2x
· x(1 − x)

1 − 2x
,

and solving this gives (d).

3. MAIN THEOREM

Theorem 8. The generating function (including the empty permutation) for Av(1324, 4231)
is

1 − 12x + 59x2 − 152x3 + 218x4 − 168x5 + 58x6 − 6x7

(1 − x)(1 − 2x)4(1 − 4x + 2x2)
.

Proof. With the simple permutations in Av(1324, 4231) categorized, it remains only to
consider their 1324-, 4231-avoiding inflations.
By symmetry, there are precisely as many inflations of 21 as of 12 in Av(1324, 4231),

so we count the latter (the sum decomposable permutations). Suppose that π is a sum
decomposable permutation in Av(1324, 4231). Then π = 12[α1, α2] for a sum indecom-
posable α1. It follows that α1 must avoid 132 and 4231, while α2 must avoid 213 and
4231. From Proposition 7 (c) and (d) it follows that the generating functions for infla-
tions of 12 and 21 in our class is

2
x2(1 − x)

(1 − 2x)2
· x(1 − 3x + 3x2)

(1 − x)(1 − 2x)2
=

2x3(1 − 3x + 3x2)

(1 − 2x)4
. (1)

The inflations of 25314 (and, by symmetry 41352) are also easily counted. Note that
the 3 in 25314 may not be inflated at all, while every other entry may be inflated only
by a permutation from a particular wedge class; for example, the 2 may be inflated
only by permutations from Av(132, 312). Thus the generating function for inflations of
these two simple permutations in our class is, using Proposition 7 (a),

2x

(

x(1 − x)

1 − 2x

)4

=
2x5(1 − x)4

(1 − 2x)4
. (2)

This leaves us with the remaining simple permutations, which by Proposition 3, all
have adjacent minimum and maximum elements. Figure 3 shows the general ‘shape’
of such simple permutations and, while we shall not appeal to this figure in an es-
sential way, it will be found helpful for the following arguments. We shall show that
the first, last, minimum and maximum elements can be inflated by an entire wedge
class but that all other points (interior points) can only be inflated either by an arbitrary
increasing permutation or by an arbitrary decreasing permutation. Consider any inte-
rior point which, without loss, we shall take to be to the left of the minimum-maximum
pair. This point p say, has at least one predecessor point and so is the middle point of
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Figure 3: The form of a simple permutation not containing 41352 or 25314.

either a 123 or 321 pattern (but, by the avoidance conditions or Figure 3, not both);
so p can be inflated, respectively, by any increasing permutation or by any decreasing
permutation. Now consider the first point (similar arguments will apply to the last,
minimum and maximum points). It is followed by both larger and smaller points. Be-
cause of the 1324 and 4231 avoidance conditions this point can only be inflated by a
permutation that avoids 132 and 312. Such permutations lie in the wedge class < and
clearly every inflation by such a permutation continues to avoid 1324 and 4231.
Thus, by Proposition 6, the contribution of these permutations to the generating

function of Av(1324, 4231) is

2

(

x(1 − x)

1 − 2x

)4

1 − 2x

1 − x
−

(

x

1 − x

)2 =
2x4(1 − x)6

(1 − 2x)4(1 − 4x + 2x2)
. (3)

Summing the quantities from (1)–(3) and 1 + x (which counts the empty and trivial
permutations) gives the generating function stated.

We note finally that the growth rate of Av(1324, 4231) can be read off from its gen-
erating function as the reciprocal of the smallest root of the denominator; it is therefore
2 +

√
2.
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