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Abstract

We investigate the Laplacian eigenvalues of a random graph G(n,d) with a given
expected degree distribution d. The main result is that w.h.p. G(n,d) has a large
subgraph core(G(n,d)) such that the spectral gap of the normalized Laplacian of

core(G(n,d)) is > 1 − c0d̄
−1/2
min with high probability; here c0 > 0 is a constant,

and d̄min signifies the minimum expected degree. The result in particular applies
to sparse graphs with d̄min = O(1) as n → ∞. The present paper complements the
work of Chung, Lu, and Vu [Internet Mathematics 1, 2003].

1 Introduction and Results

1.1 Spectral Techniques for Graph Problems

Numerous heuristics for graph partitioning problems are based on spectral methods: the
heuristic sets up a matrix that represents the input graph and reads information on
the global structure of the graph out of the eigenvalues and eigenvectors of the matrix.
Since there are rather efficient methods for computing eigenvalues and -vectors, spectral
techniques are very popular in various applications [22, 23].

Though in many cases there are worst-case examples known showing that certain
spectral heuristics perform badly on general instances (e.g., [16]), spectral methods are in

∗An extended abstract version of this paper appeared in the Proc. 33rd ICALP (2006) 15–26.
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common use and seem to perform well on many “practical” inputs. Therefore, in order
to gain a better theoretical understanding of spectral methods, quite a few papers deal
with rigorous analyses of spectral heuristics on suitable classes of random graphs. For
example, Alon and Kahale [2] suggested a spectral heuristic for Graph Coloring, Alon,
Krivelevich, and Sudakov [3] dealt with a spectral method for Maximum Clique, and
McSherry [20] studied a spectral heuristic for recovering a “latent” partition.

However, a crucial problem with most known spectral methods is that their use is
limited to essentially regular graphs, where all vertices have (approximately) the same
degree. The reason is that most of these algorithms rely on the spectrum of the adjacency
matrix, which is quite susceptible to fluctuations of the vertex degrees. In fact, as Mihail
and Papadimitriou [21] pointed out, in the case of irregular graphs the eigenvalues of the
adjacency matrix just mirror the tails of the degree distribution, and thus do not reflect
any global graph properties.

Nevertheless, in the recent years it has emerged that many interesting types of graphs
actually share two peculiar properties. The first one is that the distribution of the vertex
degrees is extremely irregular. In fact, ‘power law’ degree distributions where the number
of vertices of degree d is proportional to d−γ for a constant γ > 1 are ubiqutuous [1, 12].
The second property is sparsity, i.e., the average degree remains bounded as the size of the
graph/network grows over time. Concrete examples include the www and further graphs
related to the Internet [12].

Therefore, the goal of this paper is to study the use of spectral methods on a simple
model of sparse and irregular random graphs. More precisely, we are going to work with
the following model of random graphs with a given expected degree sequence from Chung
and Lu [7].

Let V = {1, . . . , n}, and let d = (d̄(v))v∈V , where each d̄(v) is a positive
real. Let d̄ = 1

n

∑

v∈V d̄(v) and suppose that d̄(w)2 = o(
∑

v∈V d̄(v)) for all
w ∈ V . Then G(n, d) has the vertex set V , and for any two distinct vertices
v, w ∈ V the edge {v, w} is present with probability pvw = d̄(v)d̄(w)(d̄n)−1

independently of all others.

Of course, the random graph model G(n, d) is simplistic in that edges occur independently.
Other models (e.g., the ‘preferential attachment model’) are arguably more meaningful
in many contexts as they actually provide a process that naturally entails an irregular
degree distribution [4]. By contrast, in G(n, d) the degree distribution is given a priori.
Hence, one could say that this paper merely to provides a ‘proof of concept’: spectral
methods can be adapted so as to be applicable to sparse irregular graphs.

Let us point out a few basic properties of G(n, d). Assuming that d̄(v) ≪ d̄n for
all v ∈ V , we see that the expected degree of each vertex v ∈ V is

∑

w∈V −{v} pvw =

d̄(v)(1 − (d̄n)−1) ∼ d̄(v), and the expected average degree is (1 − o(1))d̄. In other words,
G(n, d) is a random graph with a given expected degree sequence d. We say that G(n, d)
has some property E with high probability (w.h.p.) if the probability that E holds tends
to one as n → ∞.
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While Mihail and Papadimitriou [21] proved that in general the spectrum of the ad-
jacency matrix of G(n, d) does not yield any information about global graph properties
but is just determined by the upper tail of the degree sequence d, Chung, Lu, and Vu [8]
studied the eigenvalue distribution of the normalized Laplacian of G(n, d). To state their
result precisely, we recall that the normalized Laplacian L(G) of a graph G = (V, E) is
defined as follows. Letting dG(v) denote the degree of v in G, we set

ℓvw =







1 if v = w and dG(v) > 0,

−1/
√

dG(v)dG(w) if {v, w} ∈ E,
0 otherwise

(v, w ∈ V (G)) (1)

and define L(G) = (ℓvw)v,w∈V . Then L(G) is singular and positive semidefinite, and its
largest eigenvalue is 6 2. Letting λ1 6 λ2 6 · · · 6 λ#V denote the eigenvalues of L(G), we
call λ(G) = min{λ2, 2 − λ#V } the spectral gap of L(G). Now, setting d̄min = minv∈V d̄(v)
and assuming d̄min ≫ ln2 n, Chung, Lu, and Vu proved that

λ(G(n, d)) > 1 − (1 + o(1))4d̄− 1

2 − d̄−1
min ln2 n (2)

w.h.p. As for general graphs with average degree d̄ the spectral gap is at most 1 − 4d̄− 1

2 ,
the bound (2) is essentially best possible.

The spectral gap is directly related to various combinatorial graph properties. To see
this, we let e(X, Y ) = eG(X, Y ) signify the number of X-Y -edges in G for any two sets
X, Y ⊂ V , and we set dG(X) =

∑

v∈X dG(v). We say that G has (α, β)-low discrepancy
if for any two disjoint sets X, Y ⊂ V we have

∣

∣eG(X, Y ) − dG(X)dG(Y )(2#E)−1
∣

∣ 6 (1 − α)
√

dG(X)dG(Y ) + β and (3)
∣

∣2eG(X, X) − dG(X)2(2#E)−1
∣

∣ 6 (1 − α)dG(X) + β. (4)

An easy computation shows that dG(X)dG(Y )(2#E)−1 is the number of X-Y -edges that
we would expect if G were a random graph with expected degree sequence d = (dG(v))v∈V .
Similarly, dG(X)2(4#E)−1 is the expected number of edges inside of X in such a random
graph. Thus, the closer α < 1 is to 1 and the smaller β > 0, the more G “resembles” a ran-
dom graph if (3) and (4) hold. Finally, if λ(G) > γ, then G has (γ, 0)-low discrepancy [6].
Hence, the larger the spectral gap, the more G “looks like” a random graph.

As a consequence, the result (2) of Chung, Lu, and Vu shows that the spectrum of the
Laplacian does reflect the global structure of the random graph G(n, d) (namely, the low
discrepancy property), provided that d̄min = minv∈V d̄(v) ≫ ln2 n, i.e., the graph is dense
enough. Studying the normalized Laplacian of sparse random graphs G(n, d) (e.g., with
average degree d̄ = O(1) as n → ∞), we complement this result.

1.2 Results

Observe that (2) is void if d̄min 6 ln2 n, because in this case the r.h.s. is negative. In fact,
the following proposition shows that if d̄ is “small”, then in general the spectral gap of
L(G(n, d)) is just 0, even if the expected degrees of all vertices coincide.
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Proposition 1.1 Let d > 0 be arbitrary but constant, set dv = d for all v ∈ V , and let
d = (dv)v∈V . Let 0 = λ1 6 · · · 6 λn 6 2 be the eigenvalues of L(G(n, d)). Then w.h.p.
the following holds.

1. There are numbers k, l = Ω(n) such that λk = 0 and λn−l = 2; in other words, the
eigenvalues 0 and 2 have multiplicity Ω(n), and thus the spectral gap is 0.

2. For each fixed k > 2 there exist Ω(n) of indices j such that λj = 1 − k−1/2 + o(1).

3. Similarly, for any fixed k > 2 there are Ω(n) of indices j so that λj = 1+k−1/2+o(1).

Nonetheless, the main result of the paper shows that even in the sparse case w.h.p.
G(n, d) has a large subgraph core(G) on which a similar statement as (2) holds.

Theorem 1.2 There are constants c0, d0 > 0 such that the following holds. Suppose that
d = (d̄(v))v∈V satisfies

d0 6 d̄min = min
v∈V

d̄(v) 6 max
v∈V

d̄(v) 6 n0.99. (5)

Then w.h.p. the random graph G = G(n, d) has an induced subgraph core(G) that enjoys
the following properties.

1. We have
∑

v∈G−core(G) d̄(v) + dG(v) 6 n exp(−d̄min/c0).

2. Moreover, the spectral gap satisfies λ(core(G)) > 1 − c0d̄
−1/2
min .

The first part of Theorem 1.2 says that w.h.p. core(G) constitutes a “huge” subgraph
of G. Moreover, by the second part the spectral gap of the core is close to 1 if d̄min exceeds
a certain constant. An important aspect is that the theorem applies to very general degree
distributions, including but not limited to the case of power laws.

It is instructive to compare Theorem 1.2 with (2), cf. Remark 3.7 below. Further, in
Remark 3.6 we point out that the bound on the spectral gap given in Theorem 1.2 is best
possible up to the precise value of c0.

Theorem 1.2 has a few interesting algorithmic implications. Namely, we can extend a
couple of algorithmic results for random graphs in which all expected degrees are equal
to the irregular case.

Corollary 1.3 There is a polynomial time algorithm LowDisc that satisfies the following
two conditions.

Correctness. For any input graph G LowDisc outputs two numbers α, β > 0 such that
G has (α, β)-low discrepancy.

Completeness. If G = G(n, d) is a random graph such that d satisfies the assump-

tion (5) of Theorem 1.2, then α > 1 − c0d̄
−1/2
min and β 6 n exp(−d̄min/(2c0)) w.h.p.
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LowDisc relies on the fact that for a given graph G the subgraph core(G) can be
computed efficiently. Then, LowDisc computes the spectral gap of L(core(G)) to bound
the discrepancy of G. If G = G(n, d), then Theorem 1.2 entails that the spectral gap is
large w.h.p., so that the bound (α, β) on the discrepancy of G(n, d) is “small”. Hence,
LowDisc shows that spectral techniques do yield information on the global structure of
the random graphs G(n, d).

One might argue that we could just derive by probabilistic techniques such as the “first
moment method” that G(n, d) has low discrepancy w.h.p. However, such arguments just
show that “most” graphs G(n, d) have low discrepancy. By contrast, the statement of
Corollary 1.3 is much stronger: for a given outcome G = G(n, d) of the random experiment
we can find a proof that G has low discrepancy in polynomial time. This can, of course,
not be established by the “first moment method” or the like.

Since the discrepancy of a graph is closely related to quite a few prominent graph
invariants that are (in the worst case) NP-hard to compute, we can apply Corollary 1.3 to
obtain further algorithmic results on random graphs G(n, d). For instance, we can bound
the independence number α(G(n, d)) efficiently.

Corollary 1.4 There exists a polynomial time algorithm BoundAlpha that satisfies the
following conditions.

Correctness. For any input graph G BoundAlpha outputs an upper bound α > α(G) on
the independence number.

Completeness. If G = G(n, d) is a random graph such that d satisfies (5), then α 6

c0nd̄
−1/2
min w.h.p.

1.3 Related Work

The Erdős-Rényi model Gn,p of random graphs, which is the same as G(n, d) with d̄(v) =
np for all v, has been studied thoroughly. Concerning the eigenvalues λ1(A) 6 · · · 6 λn(A)
of its adjacency matrix A = A(Gn,p), Füredi and Komlós [15] showed that if np(1− p) ≫
ln6 n, then max{−λ1(A), λn−1(A)} 6 (2 + o(1))(np(1− p))1/2 and λn(A) ∼ np. Feige and
Ofek [13] showed that max{−λ1(A), λn−1(A)} 6 O(np)1/2 and λn(A) = Θ(np) also holds
w.h.p. under the weaker assumption np > ln n.

By contrast, in the sparse case d̄ = np = O(1), neither

λn(A) = Θ(d̄) nor max{−λ1(A), λn−1(A)} 6 O(d̄)1/2

is true w.h.p. For if d̄ = O(1), then the vertex degrees of G = Gn,p have (asymptotically) a
Poisson distribution with mean d̄. Consequently, the degree distribution features a fairly
heavy upper tail. Indeed, the maximum degree is Ω(ln n/ ln ln n) w.h.p., and the highest
degree vertices induce both positive and negative eigenvalues as large as Ω(ln n/ ln ln n)1/2

in absolute value [19]. Nonetheless, following an idea of Alon and Kahale [2] and building
on the work of Kahn and Szemerédi [14], Feige and Ofek [13] showed that the graph
G′ = (V ′, E ′) obtained by removing all vertices of degree, say, > 2d̄ from G w.h.p.
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satisfies max{−λ1(A(G′)), λ#V ′−1(A(G′))} = O(d̄1/2) and λ#V (G′)(A(G′)) = Θ(d̄). The
articles [13, 15] are the basis of several papers dealing with rigorous analyses of spectral
heuristics on random graphs. For instance, Krivelevich and Vu [18] proved (among other
things) a similar result as Corollary 1.4 for the Gn,p model. Further, the first author [10]
used [13, 15] to investigate the Laplacian of Gn,p.

The graphs we are considering in this paper may have a significantly more general (i.e.,
irregular) degree distribution than even the sparse random graph Gn,p. In fact, irregular
degree distributions such as power laws occur in real-world networks, cf. Section 1.1. While
such networks are frequently modeled best by sparse graphs (i.e., d̄ = O(1) as n → ∞),
the maximum degree may very well be as large as nΩ(1), i.e., not only logarithmic but even
polynomial in n. As a consequence, the eigenvalues of the adjacency matrix are determined
by the upper tail of the degree distribution rather than by global graph properties [21].
Furthermore, the idea of Feige and Ofek [13] of just deleting the vertices of degree ≫ d̄ is
not feasible, because the high degree vertices constitute a significant share of the graph.
Thus, the adjacency matrix is simply not appropriate to represent power law graphs.

As already mentioned in Section 1.1, Chung, Lu, and Vu [8] were the first to obtain
rigorous results on the normalized Laplacian (in the case d̄min ≫ ln2 n). In addition to (2),
they also proved that the global distribution of the eigenvalues follows the semicircle law.
Their proofs rely on the “trace method” of Wigner [24], i.e., Chung, Lu, and Vu (basically)
compute the trace of L(G(n, d))k for a large even number k. Since this equals the sum of
the k’th powers of the eigenvalues of L(G(n, d)), they can thus infer the distribution of
the eigenvalues. However, the proofs in [8] hinge upon the assumption that d̄min ≫ ln2 n,
and indeed there seems to be no easy way to extend the trace method to the sparse case.
Furthermore, a matrix closely related to the normalized Laplacian was used by Dasgupta,
Hopcroft, and McSherry [11] to devise a spectral heuristic for partitioning sufficiently
dense irregular graphs (with minimum expected degree ≫ ln6 n). The spectral analysis
in [11] also relies on the trace method.

The techniques of this paper can be used to obtain further algorithmic results. For
example, in [9] we present a spectral partitioning algorithm for sparse irregular graphs.

1.4 Techniques and Outline

After introducing some notation and stating some auxiliary lemmas on the G(n, d) model
in Section 2, we prove Proposition 1.1 and define the subgraph core(G(n, d)) in Section 3.
The proof of Proposition 1.1 shows that the basic reason why the spectral gap of a sparse
random graph G(n, d) is small actually is the existence of vertices of degree ≪ d̄min, i.e.,
of “atypically small” degree. Therefore, the subgraph core(G(n, d)) is essentially obtained
by removing such vertices. The construction of the core is to some extent inspired by the
work of Alon and Kahale [2] on coloring random graphs.

In Section 4 we analyze the spectrum of L(core(G(n, d))). Here the main difficulty
turns out to be the fact that the entries ℓvw of L(core(G(n, d))) are mutually dependent
random variables (cf. (1)). Therefore, we shall consider a modified matrix M with entries

(d̄(v)d̄(w))−
1

2 if v, w are adjacent, and 0 otherwise (v, w ∈ V ). That is, we replace the
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actual vertex degrees by their expectations, so that we obtain a matrix with mutually
independent entries (up to the trivial dependence resulting from symmetry, of course).
Then, we show that M provides a “reasonable” approximation of L(core(G(n, d))).

Furthermore, in Section 5 we prove that the spectral gap of M is large w.h.p., which
finally implies Theorem 1.2. The analysis of M in Section 5 follows a proof strategy
of Kahn and Szemerédi [14]. While Kahn and Szemerédi investigated random regular
graphs, we modify their method rather significantly so that it applies to irregular graphs.
Moreover, Section 6 contains the proofs of Corollaries 1.3 and 1.4. Finally, in Section 7
we prove a few auxiliary lemmas.

2 Preliminaries

Throughout the paper, we let V = {1, . . . , n}. Since our aim is to establish statements
that hold with probability tending to 1 as n → ∞, we may and shall assume throughout
that n is a sufficiently large number. Moreover, we assume that d0 > 0 and c0 > 0 signify
sufficiently large constants satisfying c0 ≪ d0. In addition, we assume that the expected
degree sequence d = (d̄(v))v∈V satisfies

d0 6 d̄min = min
v∈V

d̄(v) 6 max
v∈V

d̄(v) 6 n0.99, which implies (6)

Vol(Q) =
∑

v∈Q

d̄(v) > d0#Q for all Q ⊂ V. (7)

No attempt has been made to optimize the constants involved in the proofs.
If G = (V, E) is a graph and U, U ′ ⊂ V , then we let e(U, U ′) = eG(U, U ′) signify the

number of U -U ′-edges in G. Moreover, we let µ(U, U ′) denote the expectation of e(U, U ′)
in a random graph G = G(n, d). In addition, we set Vol(U) =

∑

v∈U d̄(v). For a vertex
v ∈ V , we let NG(v) = {w ∈ V : {v, w} ∈ E}.

If M = (mvw)v,w∈V is a matrix and A, B ⊂ V , then MA×B denotes the matrix obtain
from M by replacing all entries mvw with (v, w) 6∈ A × B by 0. Moreover, if A = B,
then we briefly write MA instead of MA×B. Further, E signifies the identity matrix (in
any dimension). If x1, . . . , xk are numbers, then diag(x1, . . . , xk) denotes the k×k matrix
with x1, . . . , xk on the diagonal, and zeros everywhere else. For a set X we denote by
1X ∈ RX the vector with all entries equal to 1. In addition, if Y ⊂ X, then 1X,Y ∈ RX

denotes the vector whose entries are 1 on Y , and 0 on X − Y .
We frequently need to estimate the probability that a random variable deviates from

its mean significantly. Let φ denote the function

φ : (−1,∞) → R, x 7→ (1 + x) ln(1 + x) − x. (8)

Then it is easily verified via elementary calculus that φ(x) 6 φ(−x) for 0 6 x < 1, and
that

φ(x) >
x2

2(1 + x/3)
(x > 0), cf. [17, p. 27]. (9)

A proof of the following Chernoff bound can be found in [17, pages 26–29].
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Lemma 2.1 Let X =
∑N

i=1 Xi be a sum of mutually independent Bernoulli random vari-
ables with variance σ2 = Var(X). Then for any t > 0 we have

max{P(X 6 E(X) − t), P(X > E(X) + t)} 6 exp

(

−σ2φ

(

t

σ2

))

6 exp

(

− t2

2(σ2 + t/3)

)

. (10)

A further type of tail bound that we will use repeatedly concerns functions X from
graphs to reals that satisfy the following Lipschitz condition:

Let G = (V, E) be a graph. Let v, w ∈ V , v 6= w, and let G+ (resp. G−)
denote the graph obtained from G by adding (resp. deleting) the edge
{v, w}. Then |X(G±) − X(G)| 6 1.

(11)

Lemma 2.2 Let 0 < γ 6 0.01 be an arbitrarily small constant. If X satisfies (11), then

P
[

|X(G(n, d)) − E(X(G(n, d)))| > (d̄n)
1

2
+γ
]

6 exp(−(d̄n)γ/300).

Combining (10) and Lemma 2.2, we obtain the following bound on the “empirical
variance” of the degree distribution of G(n, d).

Corollary 2.3 W.h.p. G = G(n, d) satisfies
∑

v∈V (dG(v) − d̄(v))2/d̄(v) 6 106n.

A crucial property of G(n, d) is that w.h.p. for all subsets U, U ′ ⊂ V the number
e(U, U ′) of U -U ′-edges does not exceed its mean µ(U, U ′) to much. More precisely, we
have the following estimate.

Lemma 2.4 W.h.p. G = G(n, d) enjoys the following property.

Let U, U ′ ⊂ V be subsets of size u = #U 6 u′ = #U ′ 6
n
2
. Then at

least one of the following conditions holds.

1. eG(U, U ′) 6 300µ(U, U ′).

2. eG(U, U ′) ln(eG(U, U ′)/µ(U, U ′)) 6 300u′ ln(n/u′).

(12)

If Q ⊂ V has a “small” volume Vol(Q), we expect that most vertices in Q have most
of their neighbors outside of Q. The next corollary shows that this is in fact the case for
all Q simultaneously w.h.p.

Corollary 2.5 Let c′ > 0 be a constant. Suppose that d̄min > d0 for a sufficiently large
number d0 = d0(c

′). Then the random graph G = G(n, d) enjoys the following two
properties w.h.p.

Let 1 6 ζ 6 d̄
1

2 . If the volume of Q ⊂ V satisfies

exp(2c′d̄min)ζ#Q 6 Vol(Q) 6 exp(−3c′d̄min)n,

then eG(Q) 6 0.001ζ−1 exp(−c′d̄min)Vol(Q).

(13)

If Vol(Q) 6 d̄
1

2 #Q5/8n3/8 and #Q 6 n/2, then eG(Q) 6 3000#Q. (14)
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Finally, the following two lemmas relate to volume Vol(Q) =
∑

v∈Q d̄(v) of a set Q ⊂ V
to the actual sum

∑

v∈Q dG(v).

Lemma 2.6 The random graph G = G(n, d) enjoys the following property w.h.p.

Let Q ⊂ V , #Q 6 n/2. If Vol(Q) > 1000#Q5/8n3/8, then

∑

v∈Q

dG(v) >
1

4
Vol(Q). (15)

Lemma 2.7 Let C > 0 be a sufficiently large constant. Let G = G(n, d). Then w.h.p.
for any set X ⊂ V such that Vol(X) 6 n exp(−d̄min/C) we have

∑

v∈X

dG(v) 6 n exp(−d̄min/(4C)).

We defer the proofs of Lemmas/Corollaries 2.2–2.7 to Section 7.

3 The Core

In Section 3.1 we prove Proposition 1.1. Then, in Section 3.2 we present the construction
of the subgraph core(G(n, d)) and establish the first part of Theorem 1.2.

3.1 Why can the Spectral Gap be Small?

To motivate the definition of the core, we discuss the reasons that may cause the spectral
gap of L(G(n, d)) to be “small”, thereby proving Proposition 1.1. To keep matters simple,
we assume that d0 6 d̄(v) = d̄ = O(1) for all v ∈ V . Then G(n, d) is just an Erdős-Rényi
graph Gn,p with p = d̄/n. Therefore, the following result follows from the study of the
component structure of Gn,p (cf. [17]).

Lemma 3.1 Let K = O(1) as n → ∞, and let T be a tree on K vertices. Then w.h.p.
G(n, d) features Ω(n) connected components that are isomorphic to T . Moreover, the
largest component of G(n, d) contains Ω(n) induced vertex disjoint copies of T .

Lemma 3.1 readily yields the first part of Proposition 1.1.

Lemma 3.2 Let C be a tree component of G. Then C induces eigenvalues 0 and 2 in the
spectrum of L(G).

Proof. We recall the simple proof of this fact from [5]. Define a vector ξ = (ξv)v∈V by

letting ξv = dG(v)
1

2 for v ∈ C, and ξv = 0 for v ∈ V − C. Then L(G)ξ = 0. Furthermore,

let C = C1 ∪C2 be a bipartition of C. Let η = (ηv)v∈V have entries ηv = dG(v)
1

2 for v ∈ C1,

ηv = −dG(v)
1

2 for v ∈ C2, and ηv = 0 for v ∈ V − C. Then L(G)η = 2η. 2
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Hence, the fact that G(n, d) contains a large number of tree components w.h.p. yields
the “trivial” eigenvalues 0 and 2 (both with multiplicity Ω(n)). In addition, there is a “lo-
cal” structure that affects the spectral gap, namely the existence of vertices of “atypically
small” degree. More precisely, we call a vertex v of G a (d, d, ε)-star if

• v has degree d,

• its neighbors v1, . . . , vd have degree d as well and {v1, . . . , vd} is an independent set,

• all neighbors w 6= v of vi have degree 1/ε and have only one neighbor in {v1, . . . , vd}.

The following lemma shows that (d, d, ε)-stars with d < d̄min and ε > 0 small induce
eigenvalues “far apart” from 1.

Lemma 3.3 If G has a (d, d, ε)-star, then L(G) has eigenvalues λ, λ′ such that

|1 − d− 1

2 − λ|, |1 + d− 1

2 − λ′| 6
√

ε.

Proof. Let v be a (d, d, ε)-star and consider the vector ξ = (ξu)u∈V with entries ξv = d
1

2 ,
ξvi

= 1 for 1 6 i 6 d, and ξw = 0 for w ∈ V −{v, v1, . . . , vd}. Moreover, let η = ξ−L(G)ξ.

Then ηv = 1, ηvi
= d− 1

2 , ηw =
√

ε/d for all v 6= w ∈ N(vi) (1 6 i 6 d), and ηu = 0

for all other vertices u. Hence, ‖L(G)ξ − (1 − d− 1

2 )ξ‖2 · ‖ξ‖−2 = ‖η − d− 1

2 ξ‖2/(2d) 6 ε.

Consequently, ξ is “almost” an eigenvector with eigenvalue 1 − d− 1

2 , which implies that
L(G) has an eigenvalue λ such that |1− d− 1

2 − λ| 6
√

ε. Similarly, considering the vector
ξ′ = (ξ′u)u∈V with ξ′v = −

√
d, ξ′vi

= 1, and ξ′w = 0 for all other w, we see that there is an

eigenvalue λ′ such that |1 + d− 1

2 − λ′| 6
√

ε. 2

Lemma 3.1 implies that w.h.p. G = G(n, d) contains (d, d, ε)-stars for any fixed d and

ε. Therefore, Lemma 3.3 entails that L(G) has eigenvalues 1 ± d− 1

2 + o(1) w.h.p., and
thus yields the second and the third part of Proposition 1.1. Setting d < d̄min, we thus
see that w.h.p. “low degree vertices” (namely, v and v1, . . . , vd) cause eigenvalues rather
close to 0 and 2. In fact, in a sense such (d, d, ε)-stars are a “more serious” problem than
the existence of tree components (cf. Lemma 3.2), because by Lemma 3.1 an abundance
of such (d, d, ε)-stars also occur inside of the largest component. Hence, we cannot get rid

of the eigenvalues 1 ± d− 1

2 by just removing the “small” components of G(n, d).

3.2 The construction of core(G(n, d))

As we have seen in Section 3.1, to obtain a subgraph H of G = G(n, d) such that L(H)
has a large spectral gap, we need to get rid of the small degree vertices of G. More
precisely, we should ensure that for each vertex v ∈ H the degree dH(v) of v inside of H
is not “much smaller” than d̄min. To this end, we consider the following construction.

CR1. Initially, let H = G − {v : dG(v) 6 0.01d̄min}.
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Thus, CR1 just removes all vertices of degree much smaller than d̄min. However, it is
not true in general that dH(v) > 0.01d̄min for all v ∈ H ; for some vertices v ∈ H may have
plenty of neighbors outside of H . Therefore, in the second step CR2 of the construction
we keep removing such vertices as well.

CR2. While there is a vertex v ∈ H that has > max{c0, exp(−d̄min/c0)d̄
− 1

2 dG(v)} neigh-
bors in G − H , remove v from H .

The final outcome H of the process is core(G). Observe that by (6) for all v ∈ core(G)

dcore(G)(v) >
d̄min

200
, e(v, G − core(G)) < max{c0, exp(−d̄min/c0)d̄

− 1

2 dG(v)}. (16)

Additionally, in the analysis of the spectral gap of L(core(G)) in Section 4.1, we will
need to consider the following subgraph S, which is defined by a “more picky” version of
CR1–CR2.

S1. Initially, let S = core(G) − {v ∈ V : |dcore(G)(v) − d̄(v)| > 0.01d̄(v)}.

S2. While there is a vertex v ∈ S so that

eG(v, G − S) > max{c0, dG(v)d̄− 1

2 exp(−d̄min/c0)},

remove v from S.

Then by (5) after the process S1–S2 has terminated, every vertex v ∈ S satisfies

max{e(v, H − S), e(v, V − H)} 6 max{c0, exp(−d̄min/c0)d̄− 1

2 dG(v)}, and (17)
∣

∣dS(v) − d̄(v)
∣

∣ 6
1

50
d̄(v).

Moreover, we emphasize that S ⊂ core(G).
An important property of core(G) is that given just d̄min, G (and c0), we can compute

core(G) efficiently (without any further information about d). This fact is the basis of
the algorithmic applications (Corollaries 1.3 and 1.4). By contrast, while S will be useful
in the analysis of L(core(G)), it cannot be computed without explicit knowledge of d.

In Section 3.3 we shall analyze the processes CR1–CR2 and S1–S2 in detail in order
to show that w.h.p. both S and core(G) constitute a huge fraction of G.

Proposition 3.4 W.h.p. we have

Vol(V − core(G)) 6 Vol(V − S) 6 exp(−100d̄min/c0)n

and
∑

v∈V −core(G)

dG(v) 6
∑

v∈V −S

dG(v) 6 exp(−2d̄min/c0)n.
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In addition, the following bound will be of significance in Section 4.

Proposition 3.5 W.h.p. we have

∑

v∈S

e(v, G − core(G))2/d̄(v) 6
∑

v∈S

e(v, G − S)2/d̄(v) 6
n

2
.

Proof. Since core(G) ⊂ S, we have e(v, G − core(G)) 6 e(v, G − S) for all v ∈ S, so that
the left inequality in Proposition 3.5 is clear. To prove the right inequality, recall that
each v ∈ S satisfies e(v, G − S) 6 max{c0, 2d̄(v)d̄− 1

2 exp(−d̄min/c0)} by S2. Therefore,

∑

v∈S

e(v, G − S)2

d̄(v)
6

∑

v∈S

c2
0 + 4d̄(v)2d̄−1 exp(−2d̄min/c0)

d̄(v)

6
c2
0n

d̄min

+ 4d̄−1 exp(−2d̄min/c0)
∑

v∈S

d̄(v) 6
n

2
,

provided that the lower bound d0 on d̄min is large enough (say, d0 > 10c2
0). 2

Remark 3.6 Letting d = d̄min and assuming that d̄ = O(1) as n → ∞, one can derive
that w.h.p. core(Gn,p) contains a (d, d, ε)-star (ε > 0 arbitrarily small but fixed as n → ∞).

Hence, by Lemma 3.3 the spectral gap of L(core(G(n, d))) is at most 1 − d̄
−1/2
min + o(1).

Thus, Theorem 1.2 best possible up to the precise values of the constants c0, d0.

Remark 3.7 While the result (2) of Chung, Lu, and Vu [8] is void if d̄min 6 ln2 n, in the
case d̄min ≫ ln2 n its dependence on d is better than the estimate provided by Theorem 1.2.
In the light of Remark 3.6, this shows that in the dense case d̄min ≫ ln2 n “bad” local
structures such as (d̄min, d̄min, ε)-stars do not occur w.h.p.

3.3 Proof of Proposition 3.4

To establish Proposition 3.4, we consider the following additional process to generate a
subgraph K of G = G(n, d).

K1. Initially, let K = G − {v ∈ V : |dG(v) − d̄(v)| > 0.001d̄(v)}.

K2. While there is a v ∈ K such that e(v, V − K) >
1
2

max{c0, d̄(v)d̄− 1

2 exp(−d̄min/c0)},
remove v from K.

The main difference between K1–K2 and S1–S2 is that K2 refers to the expected degree
d̄(v), while S2 is phrased in terms of the empirical degree dG(v). In effect, K1–K2 will be
a little easier to analyze. The three processes are related as follows.

Lemma 3.8 We have K ⊂ S ⊂ H.
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Proof. The assumption (6) ensures that all v ∈ K satisfy dG(v) > 0.01d̄min, so that
K ⊂ H . Hence, if v ∈ K, then (6) and (16) entail that

∣

∣dH(v) − d̄(v)
∣

∣ 6
∣

∣dG(v) − d̄(v)
∣

∣+
e(v, G−H) 6

1
500

d̄(v). Consequently, K is contained in the subgraph of H defined in the
first step S1 of the construction of S (cf. Section 4.1). Thus, K2 ensures that K ⊂ S. 2

By Lemma 3.8, it suffices to prove that

Vol(G − K) 6 n exp(−100d̄min/c0) w.h.p. (18)

To establish (18), we first bound the volume of the set of vertices removed by K1.

Lemma 3.9 W.h.p. R = {v ∈ V : |dG(v) − d̄(v)| > 0.001d̄(v)} has volume

Vol(R) 6 n exp(−10−9d̄min).

We defer the proof of Lemma 3.9 to Section 3.4. Furthermore, to facilitate the analysis
of step K2, we show that w.h.p. there are only few vertices that have plenty of neighbors
inside of R.

Lemma 3.10 Let

κv = 0.01 max{c0, d̄(v)d̄− 1

2 exp(−d̄min/c0)} and Q = {v ∈ V : e(v, R) > κv}.

Then Vol(Q) 6 exp(−d̄min)d̄−2n w.h.p.

We prove Lemma 3.10 in Section 3.5. Finally, we are in a position to analyze the
volume of the set of vertices removed during the iterative procedure in step K2.

Lemma 3.11 Let T be the set of all vertices removed during the second step K2 of the
construction of K. Then Vol(T ) 6 n exp(−101d̄min/c0) w.h.p.

Proof. If d̄min > ln n, then Lemma 3.10 entails that Q = ∅ w.h.p., so that step K2 does not
remove any vertices at all, i.e., T = ∅. Thus, let us assume in the sequel that d̄min < ln n.
In addition, suppose that Vol(R) 6 n exp(−10−9d̄min), and that Vol(Q) obeys the bound
from Lemma 3.10.

Suppose that Vol(T ) > n exp(−101d̄min/c0). Let z1, . . . , zk be the vertices deleted from
K by K2 (in this order). The basic idea of the proof is to exhibit a set Z ⊂ T = {z1, . . . , zk}
that violates one of the two properties (13), (14). In other words, Z will be an “atypically
dense” set of “small volume”. As Corollary 2.5 implies that (13), (14) actually are true for
all subsets of V w.h.p., this implies that w.h.p. Vol(T ) < n exp(−101d̄min/c0), as desired.

To define the set Z, let j∗ be the maximum index such that Vol({z1, . . . , zj∗}) <
n exp(−103d̄min/c0), and set Z = {z1, . . . , zj∗+1}. Since we assume that d̄(w) 6 n0.99 for
all w ∈ V , that d̄min 6 ln n, and that c0 is a large enough constant, we obtain

n exp(−103d̄min/c0) 6 Vol(Z) < n exp(−103d̄min/c0) + d̄(zj∗+1)

6 n exp(−102d̄min/c0). (19)
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Further, as

e(zj , R ∪ {z1, . . . , zj−1}) > 0.5 max{c0, exp(−d̄min/c0)d̄
− 1

2 d̄(zj)}
for all j, we have

e(Z, R ∪ Z) > max{c0#Z, Vol(Z)d̄− 1

2 exp(−d̄min/c0)}. (20)

1st case: Vol(Z) > d̄
1

2 exp(2d̄min/c0)#Z. Consider

Z ′ = {v ∈ Z : e(v, R) > 0.1e(v, R ∪ Z)}.
Then Lemma 3.10 implies in combination with (19) that

Vol(Z ′) 6 0.1Vol(Z),

whence

2e(Z) > 2e(Z − Z ′, Z)
(20)

> 0.9d̄− 1

2 exp(−d̄min/c0)Vol(Z − Z ′)

> 0.5d̄− 1

2 exp(−d̄min/c0)Vol(Z). (21)

Hence, setting c′ = c−1
0 and ζ = d̄

1

2 , we conclude that

Vol(Z) 6 exp(−3c′d̄min)n [by (19)],

Vol(Z) > ζ exp(2c′d̄min)#Z [because the 1st case occurs],

e(Z) > 0.25 exp(−c′d̄min)ζ−1Vol(Z) [due to (21)].

Thus, Z violates (13).

2nd case: Vol(Z) < d̄
1

2 exp(2d̄min/c0)#Z. Let

Z ′ = {v ∈ Z : e(v, R) > 0.01c0 ∧ d̄(v) 6 100d̄
1

2 exp(d̄min/c0)}.
Then by Lemma 3.10 and because the 2nd case occurs,

#Z ′
6 Vol(Z ′) 6 exp(−d̄min)d̄−2n

(19)

6
Vol(Z)

d̄2 exp(2d̄min/c0)
6 0.1#Z.

Furthermore, letting Z ′′ = {v ∈ Z : d̄(v) 6 100d̄
1

2 exp(d̄min/c0)}, we have #Z ′′ >

0.99#Z, and thus #Z ′′ − Z ′ > 0.5#Z. Therefore, due to (20)

e(Z) > e(Z ′′ − Z ′, Z) >
1

2

∑

v∈Z′′−Z′

[e(v, R ∪ Z) − 0.01c0]

> 0.2c0#Z ′′ − Z ′ > 3000#Z. (22)

Moreover, (19) implies that #Z 6 Vol(Z) 6 exp(−16
3
d̄min/c0)n, whence

Vol(Z) 6 d̄
1

2 #Z5/8n3/8.

Consequently, (22) shows that Z violates (14).
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2

Corollary 3.12 W.h.p. we have Vol(G − K) 6 exp(−100d̄min/c0)n.

Proof. This is an immediate consequence of Lemmas 3.9 and 3.11. 2

Finally, Corollary 3.12 establishes (18), so that Proposition 3.4 follows from Lem-
mas 2.7 and 3.8.

3.4 Proof of Lemma 3.9

The Chernoff bound (10) implies that

P [v ∈ R] = P
[
∣

∣dG(v) − d̄(v)
∣

∣ > 0.001d̄(v)
]

6 exp
[

−10−7d̄(v)
]

for all v ∈ V. (23)

Therefore, assuming that minv∈V d̄(v) > d̄min > d0 for a large enough d0 (cf. (6)), we get

E(Vol(R)) 6
∑

v∈V

d̄(v)P [v ∈ R] 6 n exp(−10−8d̄min). (24)

Consequently, the remaining task is to show that Vol(R) does not exceed its expectation
by too much w.h.p.

If d̄min > ln ln n, then we just apply Markov’s inequality and obtain that

P
[

Vol(R) > n exp(−10−8d̄min/2)
]

6 exp(−10−8d̄min/2) = o(1),

as desired.
Now, let us assume that d̄min < ln ln n. Set

Vj =
{

v ∈ V : 2jd̄min 6 d̄(v) < 2j+1d̄min

}

for j > 0

and let L = 2 · 107d̄−1
min ln n. Setting

X1 =
∑

06j6log2 L

2j+1d̄min#Vj ∩ R, X2 =
∑

j>log2 L

2j+1d̄min#Vj ∩ R,

we have Vol(R) 6 X1 + X2. Moreover, by our choice of L

P [X2 > 0] 6
∑

j>log2 L

P [Vj 6= ∅]
(23)

6
∑

j>log2 L

#Vj exp
[

−10−72jd̄min

]

6 n exp(−2 ln n) 6 n−1. (25)

Furthermore, we claim that the random variable X = X1

108 ln n
satisfies the Lipschitz con-

dition (11). To see this, let G = G(n, d), let v, w ∈ V , and let G+ (resp. G−) denote the
graph obtained from G by adding (removing) the edge e = {v, w}. Of course, adding or
removing e only affects the degrees of v, w. Thus, if v ∈ Vj1 and w ∈ Vj2, then

|X1(G
±) − X1(G)| 6 2d̄min min{2j1, L} + 2d̄min min{2j2, L} 6 4d̄minL 6 108 ln n,
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whence |X(G±) − X(G)| 6 1. Therefore, as d̄min 6 ln ln n, Lemma 2.2 entails that

P
[

|X1 − E(X1)| > n exp(−d̄min)
]

6 P

[

|X − E(X)| >
n exp(−d̄min)

108 ln n
= n1−o(1)

]

6 P
[

|X − E(X)| > (d̄n)0.501
]

6 exp(−(d̄n)0.001/300) 6 n−1, (26)

where the second inequality sign is due to our assumption that d̄ 6 n0.99, and the last
one follows from (6). Finally, since E(X1) 6 2E(Vol(R)) 6 2n exp(−10−8d̄min) by (24),
combining (25) and (26), we conclude that Vol(R) 6 X1 + X2 6 3n exp(−10−8d̄min) 6

n exp(−10−8d̄min/2) w.h.p.

3.5 Proof of Lemma 3.10

Our goal is to estimate Vol(Q), where Q = {v ∈ V : e(v, R) > κv}. Since it is a bit
intricate to work with Q directly, we shall actually work with a different set Q′. Let us
call v ∈ V critical if there is a set T ′ ⊂ NG(v) of size #T ′ = κv/2 such that d̄(w) 6 ln2 n
and |e(w, V − T ′) − d̄(w)| > 10−4d̄(w) for all w ∈ T ′. Now Q′ is the set of all critical
vertices.

Lemma 3.13 We have Q ⊂ Q′ w.h.p.

To prove Lemma 3.13, we need the following observation.

Lemma 3.14 W.h.p. all sets T ⊂ V such that t = #T 6 n0.998 and d̄(w) 6 ln2 n for all
w ∈ T satisfy e(T ) 6 106t.

Proof. Since

µ(T ) 6
Vol(T )2

d̄n
6

t2 ln4 n

d̄n
6 tn−0.001,

in the case e(T ) > 106t we have

e(T ) ln
e(T )

µ(T )
> 1000t ln(n) > 300t ln(n/t).

Hence, if e(T ) > 106t, then T violates property (12), and thus Lemma 2.4 implies that
e(T ) 6 106t w.h.p. 2

Proof of Lemma 3.13. Consider a vertex w such that d̄(w) > ln2 n. Then by the Chernoff
bound (10) we have

P [w ∈ R] = P
[
∣

∣d̄(w) − dG(w)
∣

∣ > 0.001d̄(w)
]

6 2 exp(−φ(0.001) ln2 n) = o(n−1).

Thus, by the union bound all w ∈ R satisfy d̄(w) 6 ln2 n w.h.p.
Now, consider a vertex v ∈ Q and let T be a set of κv vertices in R that are adjacent

with v. Since we assume that d̄(v) 6 n0.99 and κv 6 d̄(v), we can apply Lemma 3.14 to
obtain that e(T ) 6 106κv w.h.p. Hence, there exists a subset T ′ ⊂ T of size κv/2 such
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that e(w, T ) 6 107 for all w ∈ T ′. Since all w ∈ T ′ satisfy d̄(w) > d0 for a large enough
d0, we conclude that

|e(w, V − T ′) − d̄(w)| > |dG(w) − d̄(w)| − e(w, T ) > 0.001d̄(w) − 107
> 10−4d̄(w),

where the second inequality follows from w ∈ R. Thus, we obtain v ∈ Q′, as desired. 2

Thus, in order to estimate Vol(Q) it suffices to bound Vol(Q′). As a first step, we
estimate E(Vol(Q′)).

Lemma 3.15 We have E(Vol(Q′)) 6 exp(−2d̄min)d̄−3n.

The proof of Lemma 3.15 relies on the following bound.

Lemma 3.16 Let T ′ ⊂ V be a set of volume Vol(T ′) 6 n ln−3 n such that d̄(w) 6 ln2 n
for all w ∈ T ′. Then

P
[

∀w ∈ T ′ : |e(w, V − T ′) − d̄(w)| > 10−4d̄(w)
]

6 exp(−2 · 10−9Vol(T ′)).

Proof. Since for w ∈ T ′ the random variables e(w, V −T ′) are mutually independent with

expectation d̄(w)Vol(V −T ′)

d̄n
∼ d̄(w), the assertion follows from the Chernoff bound (10). 2

Proof of Lemma 3.15. Lemma 3.16 entails that

P [v is critical] 6
∑

T ′

P [T ′ ⊂ NG(v)] exp(−2 · 10−9Vol(T ′))

for any v ∈ V , where the sum ranges over all sets T ′ ⊂ V of size κv/2 such that d̄(w) 6

ln2 n for all w ∈ T ′. Moreover, for any such set T ′ we have P [T ′ ⊂ NG(v)] 6
∏

w∈T ′

d̄(w)d̄(v)

d̄n
.

Hence,

P [v is critical] 6
∑

T ′

exp(−2 · 10−9Vol(T ′))
∏

w∈T ′

d̄(w)d̄(v)

d̄n

6

(

d̄(v)

d̄n

)κv/2
∑

T ′

exp(−10−9Vol(T ′))

6

(

n

κv/2

)(

d̄(v)

d̄n exp(10−9d̄min)

)

κv
2

. (27)

1st case: d̄(v) 6 c0d̄
1

2 exp(d̄min/c0). In this case we have κv = 0.01c0. Hence, (27) yields

P [v is critical] 6 exp(−10−12c0d̄min)d̄−4, (28)

provided that c0 is large enough.
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2nd case: d̄(v) > c0d̄
1

2 exp(d̄min/c0). Then

κv = 0.01d̄(v)d̄− 1

2 exp(−d̄min/c0) > 0.01c0,

and thus (27) implies

P [v is critical] 6

(

2ed̄(v)

κvd̄ exp(10−9d̄min)

)κv/2

6

[

exp(10−10d̄min)
√

d̄
]−κv/2

,(29)

where we once more assume that the constant c0 is sufficiently large.

Finally, letting
Ij = {v ∈ V : 2j−1 < 100c−1

0 κv 6 2j},
we conclude that

E(Vol(Q′)) =
∑

v∈V

P [v is critical] d̄(v)

=
∑

j>0

∑

v∈Ij

P [v is critical] d̄(v)

(28)

6
0.01c0d̄

1

2 exp(d̄min/c0)n

exp(10−12c0d̄min)d̄4
+
∑

j>1

∑

v∈Ij

P [v is critical] d̄(v)

(29)

6 n exp(−10−13c0d̄min)d̄−3

+
∑

j>1

#Ij · c0d̄
1

2 exp(d̄min/c0)2
j
[

exp(10−10d̄min)
√

d̄
]−0.01·2j−2c0

6 exp(−2d̄min)d̄−3n,

provided that the constant c0 is chosen large enough. 2

Proof of Lemma 3.10. Due to Lemma 3.13, it suffices to bound Vol(Q′). If d̄ > ln ln n
Lemma 3.15 implies in combination with Markov’s inequality that

Vol(Q′) 6 exp(−2c2
0d̄min)d̄−2n w.h.p.

Thus, let us assume in the sequel that d̄min 6 d̄ < ln ln n. We call v ∈ V bad if d̄(v) 6 ln2 n
and there is a set T ′′ ⊂ NG(v) of size κv/2 such that all w ∈ T ′ satisfy d̄(w) 6 ln2 n,
dG(w) 6 2 ln2 n, and |e(w, V − T ′)− d̄(w)| > 10−4d̄(w). Moreover, let Q′′ be the set of all
bad vertices. As every bad vertex is critical, we have Q′′ ⊂ Q′.

Furthermore, we claim that Q′′ = Q′ w.h.p. To see this, note that the Chernoff
bound (10) implies that w.h.p. dG(w) 6 2 ln2 n for all w ∈ V with d̄(w) 6 ln2 n (cf.
the proof of Lemma 3.13). Hence, the condition that dG(w) 6 2 ln2 n in the definition
of “bad” is void w.h.p. In addition, since d̄ 6 ln ln n, (29) implies that w.h.p. all v ∈ Q′

satisfy d̄(v) 6 ln2 n. Thus, w.h.p. the notions “bad” and “critical” coincide.
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Therefore, in order to establish the lemma it suffices to bound Vol(Q′′). To this end,
we basically just need to bound #Q′′, because d̄(v) is “small” for all v ∈ Q′′. In order to
estimate #Q′′, we observe that the random variable X = #Q′′ ln−3 n satisfies the Lipschitz
condition (11). For let us consider the graph Ĝ obtained from G = G(n, d) by adding or
removing a single edge e = {u, u′}, and let Q̂′′ be the set of all vertices v that are bad
in Ĝ. To bound |#Q′′ − #Q̂′′|, let Nu = NG(u) if dG(u) 6 1 + 2 ln2 n, and set Nu = ∅
otherwise; we define Nu′ analogously. Moreover, let U = {u, u′}∪Nu∪Nu′ . Since a vertex
v that is adjacent with neither u nor u′ is bad in G iff it is bad in Ĝ, and because the
definition of “bad” ignores vertices of degree > 2 ln2 n, we conclude that Q′′−U = Q̂′′−U .
Consequently, |#Q′′ − #Q̂′′| 6 #U 6 4 + 2 ln2 n 6 ln3 n, so that X satisfies (11).

In effect, as Vol(Q′′) 6 #Q′′ ln2 n = X ln5 n, we conclude that Vol(Q′′) ln−5 n sat-
isfies (11) as well. Therefore, Lemma 2.2 entails that w.h.p.|Vol(Q′′) − E(Vol(Q′′))| 6

n0.999 6 exp(−2d̄min)d̄−3n (recall that we are assuming d̄min 6 d̄ 6 ln ln n). Thus,
Lemma 3.15 implies that Vol(Q′) = Vol(Q′′) 6 exp(−d̄min)d̄−2n w.h.p. 2

4 The Spectral Gap of the Laplacian

4.1 Outline of the Proof

We let G = (V, E) = G(n, d), H = core(G), and we let S denote the outcome of the
process S1–S2 (cf. Section 3.3). Furthermore, consider the diagonal matrices

D = diag(dH(v)−
1

2 )v∈H , D̄ = diag(d̄(v)−
1

2 )v∈H , and define vectors

ω = D−11H = (dH(v)1/2)v∈H , ω̄ = D̄−11H = (d̄(v)1/2)v∈H ,

ωS = D−11H,S , ω̄S = D̄−11H,S .

Thus, the entries of ωS (resp. ω̄S) are dG(v)
1

2 (resp. d̄(v)
1

2 ) for v ∈ S, and 0 for v ∈ H−S.
In addition, we let

M = E − L(H) = D · A(H) · D.

Since L(H)ω = 0, our task is to estimate sup06=ξ⊥ω ‖Mξ‖ · ‖ξ‖−1. A crucial issue is
that the entries of M are not independent. For if two vertices v, w ∈ H are adjacent,
then the vw’th entry of M is (dH(v)dH(w))−1/2, and of course dH(v), dH(w) are neither
mutually independent nor independent of the presence of the edge {v, w}. To deal with
the dependence of the matrix entries, we consider the matrix M = D̄ · A(H) · D̄, whose

vw’th entry is (d̄(v)d̄(w))−
1

2 if v, w are adjacent in H , and 0 otherwise. Thus, in M
the ‘weights’ of the entries are in terms of expected degrees d̄(v), d̄(w) rather than the
actual degrees dH(v), dH(w). Furthermore, to relate M and M, we decompose M into
four blocks

M = MS + MH−S + M(H−S)×S + MS×(H−S). (30)

Then we expect that MS should be “similar” to MS , because by (17) for all v ∈ S the
degree dH(v) is close to its mean d̄(v). Thus, to analyze MS , we investigate MS on the
orthogonal complement of ω̄S .
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Proposition 4.1 There is a constant c1 > 0 such that

sup
06=ξ⊥ω̄S
06=χ⊥ω̄S

|〈MSξ, χ〉|
‖ξ‖ · ‖χ‖ 6 c1d̄

− 1

2

min w.h.p.

The proof of Proposition 4.1 can be found in Section 5. Further, in Section 4.2 we
combine Propositions 3.4 and 4.1 to bound ‖MSη‖ for η ⊥ ω.

Corollary 4.2 There is a constant c2 > 0 such that

sup
η⊥ω, ‖η‖=1

‖MSη‖ 6 c2d̄
−1/2
min w.h.p.

Corollary 4.2 bounds the first part of the decomposition (30). To bound ‖MH−S‖, we
show that H − S “is tree-like”: we can decompose the vertex set into classes Z1, . . . , ZK

such that every vertex v ∈ Zj has “only few” neighbors in the classes Zi with index i > j.

Lemma 4.3 W.h.p. H − S has a decomposition V (H − S) =
⋃K

j=1 Zj such that for all
j = 1, . . . , K and all v ∈ Zj we have

e

(

v,
K
⋃

i=j

Zi

)

6 max{c0, exp(−d̄min/c0)dH(v)}. (31)

We defer the proof of Lemma 4.3 to Section 4.3. Using Lemma 4.3, in Section 4.4 we
derive the following bound on ‖MH−S‖.

Proposition 4.4 W.h.p. ‖MH−S‖ 6 21c
1/2
0 d̄

−1/2
min .

Finally, using just the construction S1–S2 of S and some elementary estimates, in
Section 4.5 we shall bound the third and the fourth part of the decomposition (30) as
follows.

Proposition 4.5 We have ‖MS×(H−S)‖ = ‖M(H−S)×S‖ 6 2c
1/2
0 d̄

−1/2
min w.h.p.

Proof of Theorem 1.2. The first assertion follows directly from Proposition 3.4. Moreover,
due to the decomposition (30) of M , Corollary 4.2, Proposition 4.4, and Proposition 4.5

entail the bound supη⊥ω, ‖η‖=1 ‖Mη‖ 6 c0d̄
−1/2
min w.h.p. As L(H) = E −M , we thus obtain

the second part of the theorem. 2
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4.2 Proof of Corollary 4.2

Since M is obtained from M by replacing the actual degrees dH(v) by the expected
degrees d̄(v), to prove the proposition we basically need to investigate how much dH(v)
and d̄(v) differ (v ∈ S). More precisely, we need to investigate how the vectors ωS and
ω̄S relate to each other.

Lemma 4.6 There is a constant C > 0 such that w.h.p. the following bounds hold.

1. ‖ω − ωS‖2 6 Cn.

2. ‖ωS − DD̄−1ω̄S‖2 6 Cn.

3. ‖ω̄S‖2 > d̄n/2.

4. ‖MSω̄S − ω̄S‖2 6 Cn.

Proof. By Proposition 3.4 we have ‖ωS − ω‖2 =
∑

v∈H−S dH(v) 6
∑

v∈V −S dG(v) 6 n,
whence the first assertion follows. With respect to the second one, we have

∥

∥DD̄−1ω̄S − ωS

∥

∥

2
=

∑

v∈S

(

d̄(v) − dH(v)
√

dH(v)

)2
(17)

6 2
∑

v∈S

(d̄(v) − dH(v))2

d̄(v)

6 4
∑

v∈S

e(v, G − S)2

d̄(v)
+ 4

∑

v∈S

(d̄(v) − dG(v))2

d̄(v)
. (32)

Invoking Corollary 2.3 and Proposition 3.5, we conclude that the right hand side of (32) is
6 Cn w.h.p. Furthermore, the third part of the lemma follows simply from Proposition 3.4:
we have ‖ω̄S‖2 = Vol(S) > nd̄/2. Finally, as MS = D̄SA(G)SD̄S , the entries of ξ =

MSω̄S are ξv = dS(v)d̄(v)−
1

2 for v ∈ S, and ξv = 0 for v 6∈ S. Hence, Proposition 3.5
entails that

‖MSω̄S − ω̄S‖2 =
∑

v∈S

(dS(v) − d̄(v))2

d̄(v)
6 2

∑

v∈S

e(v, G − S)2

d̄(v)
+ 2

∑

v∈V

(d̄(v) − dG(v))2

d̄(v)
.

Applying Corollary 2.3 and Proposition 3.5 once more, we obtain the fourth assertion. 2

Proof of Corollary 4.2. Let η ⊥ ω be a unit vector. Since (17) implies that ‖DSD̄−1
S ‖ 6 2,

we have

‖MSη‖ = ‖DSD̄−1
S MSDSD̄−1

S η‖ 6 ‖DSD̄−1
S ‖ · ‖MSDSD̄−1

S η‖ 6 2‖MSDSD̄−1
S η‖. (33)

Let ζ = DSD̄−1
S η. Then we can decompose ζ = αξ + β‖ω̄S‖−1ω̄S such that α2 + β2 =

‖ζ‖ 6 2 and ξ ⊥ ω̄S is a unit vector. Hence,

‖MSDSD̄−1
S η‖ = ‖MSζ‖ 6 2‖MSξ‖ + |β| · ‖ω̄S‖−1 · ‖MSω̄S‖

6 2‖MSξ‖ + |β| · ‖MS‖. (34)

the electronic journal of combinatorics 16 (2009), #R138 21



Furthermore, ‖M‖ = ‖E−L(H)‖ 6 1. In addition, ‖DSD̄−1
S ‖ 6 2 by (17). Consequently,

‖MS‖ = ‖D̄SD−1
S MSD̄SD−1

S ‖ 6 ‖MS‖ · ‖D̄SD−1
S ‖2

6 4‖M‖ 6 4,

whence (33) and (34) yield

‖MSη‖ 6 2‖MSξ‖ + 4|β|. (35)

Thus, to bound ‖MSη‖, we need to estimate ‖MSξ‖. Since ξ ⊥ ω̄S , the third and the
fourth part of Lemma 4.6 imply that

∣

∣

∣

∣

〈

MSξ,
ω̄S

‖ω̄S‖

〉
∣

∣

∣

∣

= ‖ω̄S‖−1 · |〈ξ,MSω̄S〉| 6 ‖ω̄S‖−1‖MS ω̄S − ω̄S‖ 6 2Cd̄− 1

2 (36)

w.h.p. Furthermore, Proposition 4.1 entails that w.h.p.

∥

∥

∥

∥

MSξ −
〈

MSξ,
ω̄S

‖ω̄S‖

〉

ω̄S

‖ω̄S‖

∥

∥

∥

∥

6 sup
χ⊥ω̄S , ‖χ‖=1

|〈MSξ, χ〉| 6 c1d̄
−1/2
min . (37)

Combining (36) and (37), we conclude that

‖MSξ‖ 6 2(C + c1)d̄
−1/2
min w.h.p. (38)

To complete the proof, we show that |β| 6 4Cd̄− 1

2 . As η ⊥ ω by assumption, we
obtain

|β| · ‖ω̄S‖ = |〈ζ, ω̄S〉| =
∣

∣

〈

η, DD̄−1ω̄S

〉
∣

∣ =
∣

∣

〈

η, DD̄−1ω̄S − ω
〉
∣

∣

6
∥

∥DD̄−1ω̄S − ω
∥

∥ 6 ‖ω − ωS‖ +
∥

∥DD̄−1ω̄S − ωS

∥

∥

Lemma 4.6
6 2(Cn)1/2.(39)

Finally, because ‖ω̄S‖2 > nd̄/2 by the third part of Lemma 4.6, (39) implies that |β| 6

4Cd̄− 1

2 . Therefore, (35) and (38) yield ‖MSη‖ 6 100(c1 + C)d̄
−1/2
min , as desired. 2

4.3 Proof of Lemma 4.3

To prove Lemma 4.3, we consider the following process.

P0. Determine H = core.

P1. Let Q′
0 = {v ∈ H : |dH(v) − d̄(v)| > 0.01d̄(v)}.

P2. While there is a v ∈ H − Q′
0 such that

e(v, R) > max{c0, exp(−d̄min/c0)d̄
− 1

2 dG(v)},

add v to Q′
0.
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P3. Let j = 0.
While Q′

j 6= ∅, let

Z ′
j+1 = {v ∈ Q′

j : e(v, Q′
j) 6 max{c0, exp(−d̄min/c0)dH(v)}, Q′

j+1 = Q′
j − Z ′

j+1,

and increase j by 1.

Observe that the set Q′
0 obtained in P0–P2 is just V − S. Hence, if P3 terminates,

then it produces a decomposition Z ′
1, . . . , Z

′
k of H −S that enjoys the property stated in

Lemma 4.3. Thus, Lemma 4.3 is an immediate consequence of the following statement.

Lemma 4.7 The process P0–P3 terminates w.h.p.

To prove Lemma 4.7, we consider a further process that is a little easier to analyze
than P0–P3.

A1. Let Q0 = {v ∈ V : |dG(v) − d̄(v)| > 0.001d̄(v)}.

A2. While there is a v ∈ Q0 − R such that

e(v, Q0) >
1

2
max{c0, exp(−d̄min/c0)d̄

− 1

2 d̄(v)},

let Q0 = Q0 ∪ {v}.

A3. Set j = 0.
While Qj 6= ∅, let

Zj+1 = {v ∈ Qj : e(v, Qj) 6
1

2
max{c0, exp(−d̄min/c0)dG(v)},

Qj+1 = Qj − Zj+1, and increase j by 1.

Recalling the process K1–K2 from Section 3.3, we note that Q0 = G − K.

Lemma 4.8 If the process A1–A3 terminates, then so does P0–P3.

Proof. Lemma 3.8 implies that Q0 = G−K ⊃ H −S = Q′
0. Hence, by induction we have

Qj ⊃ Q′
j for all j > 1. 2

Due to Lemma 4.8, in order to prove Lemma 4.7 we just need to show the following.

Lemma 4.9 The process A1–A3 terminates w.h.p.

Proof. Let J be the total number of sets generated by A3 (possibly J = ∞), and let
Q =

⋂J
j=1 Qj ; our objective is to show that Q = ∅ w.h.p. Since Q0 = G−K, Corollary 3.12

yields

#Q
(7)

6Vol(Q) 6 Vol(Q0) 6 exp(−100d̄min/c0)n (40)

w.h.p. Furthermore, step A3 ensures that

4e(Q) > max

{

c0#Q, exp(−d̄min/c0)
∑

v∈Q

dG(v)

}

. (41)

Thus, if (40) is true and Q 6= ∅, then one of the following two conditions holds:
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• either
∑

v∈Q dG(v) is much smaller than Vol(Q) – say, smaller than 1
4
Vol(Q);

• or (41) implies that e(Q) is “large”, although Vol(Q) is “small”.

Loosely speaking, the first situation is unlikely due to Lemma 2.6, and the second one does
not occur w.h.p. by Corollary 2.5. More precisely, assuming that Q 6= ∅, and that (40)
holds, we shall prove that one of the properties (13), (14), (15) is violated.

1st case: Vol(Q) 6 1000#Q5/8n3/8. Then (41) shows that e(Q) > 104#Q, so that (14)
is false.

2nd case: Vol(Q) > 1000#Q5/8n3/8 and e(Q) < 1
20

exp(−d̄min/c0)Vol(Q). Then by (41)

1

4
exp(−d̄min/c0)

∑

v∈Q

dG(v) 6 e(Q) <
1

20
exp(−d̄min/c0)Vol(Q),

and thus (15) is violated.

3rd case: Vol(Q) > 1000#Q5/8n3/8 and e(Q) >
1
20

exp(−d̄min/c0)Vol(Q). Then we ob-
tain from (40) that

Vol(Q) > #Q5/8n3/8
> #Q exp(2d̄min/c0). (42)

As e(Q) >
1
20

exp(−d̄min/c0)Vol(Q), (40) and (42) imply that (13) is violated.

Thus, in all three cases either (13), (14), or (15) is false, whence Corollary 2.5 and
Lemma 2.6 imply that Q = ∅ w.h.p. 2

4.4 Proof of Proposition 4.4

By Lemma 4.3 H − S has a decomposition Z1, . . . , ZK that satisfies (31) w.h.p. We set
Z>j =

⋃K
i=j Zi and define Z<j, Z>j analogously. Let ξ = (ξv)v∈H be a unit vector, and set

η = (ηw)w∈H = MH−Sξ. Our objective is to bound ‖η‖.
The entries of η are

ηv =
∑

w∈NH(v)∩Z>j

ξw

(dH(v)dH(w))1/2
+

∑

w∈NH(v)∩Z<j

ξw

(dH(v)dH(w))1/2
(v ∈ Zj, j > 1),

and ηv = 0 for v ∈ S. Let

αj =
∑

v∈Zj





∑

w∈NH(v)∩Z>j

ξw

(dH(v)dH(w))1/2





2

,

βj =
∑

v∈Zj





∑

w∈NH(v)∩Z<j

ξw

(dH(v)dH(w))1/2





2

.
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Then

‖η‖2
6 2

K
∑

j=1

αj + βj. (43)

With respect to αj , the Cauchy-Schwarz inequality yields

αj =
∑

v∈Zj





∑

w∈NH(v)∩Z>j

ξw
√

dH(v)dH(w)





2

6
∑

v∈Zj

∑

w∈NH(v)∩Z>j

e(v, Z>j)ξ
2
w

dH(v)dH(w)
. (44)

Since by (31) for all v ∈ Zj we have e(v, Z>j) 6 max{c0, exp(−d̄min/c0)dH(v)}, (44) entails

αj 6
∑

v∈Zj

∑

w∈NH(v)∩Z>j

max{c0, exp(−d̄min/c0)dH(v)}ξ2
w

dH(v)dH(w)

6

(

c0

minv∈H dH(v)
+ exp(−d̄min/c0)

)

∑

v∈Zj

∑

w∈NH(v)∩Z>j

ξ2
w

dH(w)
(45)

As dH(v) >
1
2
dG(v) > d̄min/200 for all v ∈ H by (16), (45) implies

K
∑

j=1

αj 6
201c0

d̄min

K
∑

j=1

∑

w∈Zj

e(w, Z6j)ξ
2
w

dH(w)
6

201c0

d̄min

∑

w∈H−S

ξ2
w 6

201c0

d̄min

‖ξ‖2
6

201c0

d̄min

. (46)

Furthermore, once more due to the Cauchy-Schwarz inequality, we have

βj =
∑

v∈Zj





∑

w∈NH(v)∩Z<j

ξw
√

dH(v)dH(w)





2

6
∑

v∈Zj

∑

w∈NH(v)∩Z<j

e(v, Z<j)ξ
2
w

dH(v)dH(w)
. (47)

Hence, as
e(w, Z>j) 6 max{c0, exp(−d̄min/c0)dH(w)}

for all w ∈ Zj due to (31), (47) yields

K
∑

j=1

βj 6

K
∑

j=1

∑

v∈Zj

∑

w∈NH(v)∩Z<j

ξ2
w

dH(w)
=

K
∑

j=1

∑

w∈Zj

e(w, Z>j)
ξ2
w

dH(w)

6

K
∑

j=1

∑

w∈Zj

max{c0, exp(−d̄min/c0)dH(w)} ξ2
w

dH(w)

6

(

c0

minw∈H dH(w)
+ exp(−d̄min/c0)

)

∑

w∈H−S

ξ2
w

(16)

6
201c0

d̄min

‖ξ‖2
6

201c0

d̄min

. (48)

Combining (43), (46), and (48), we conclude that ‖MH−Sξ‖ = ‖η‖ 6 21c
1/2
0 d̄

−1/2
min .

Since this holds for all unit vectors ξ, we obtain ‖MH−S‖ 6 21c
1/2
0 d̄

−1/2
min , thereby complet-

ing the proof.
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4.5 Proof of Proposition 4.5

Let ξ = (ξw)w∈V (H) be a unit vector. Set η = (ηv)v∈V (H) = MS×(H−S)ξ. Then

ηv =
∑

w∈NH(v)−S

ξw
√

dH(v)dH(w)
for v ∈ S, and ηv = 0 for v ∈ V (H) − S.

Therefore, applying the Cauchy-Schwarz inequality, we get

‖η‖2 =
∑

v∈S





∑

w∈NH(v)−S

ξw
√

dH(v)dH(w)





2

6
∑

v∈S





∑

w∈NH(v)−S

ξ2
w

dH(w)









∑

w∈NH(v)−S

1

dH(v)



 . (49)

As for all v ∈ S we have e(v, H − S) 6 2 max{c0, exp(−d̄min/c0)dH(v)} and dH(v) >
d̄min

2

by (6) and (17), we conclude that

∑

w∈NH(v)−S

1

dH(v)
=

e(v, H − S)

dH(v)
6 2 max

{

2c0

d̄min

, exp(−d̄min/c0)

}

(6)

6
4c0

d̄min

. (50)

Plugging (50) into (49), we obtain

‖η‖2
6

4c0

d̄min

∑

v∈S

∑

w∈NH(v)−S

ξ2
w

dH(w)

=
4c0

d̄min

∑

w∈H−S

e(w,S)
ξ2
w

dH(w)
6

4c0

d̄min

∑

w∈H−S

ξ2
w 6

4c0

d̄min

,

because ‖ξ‖ 6 1. Thus, ‖MS×(H−S)‖2 = sup‖ξ‖=1 ‖MS×(H−S)ξ‖2 6 4c0d̄
−1
min, as desired.

5 Proof of Proposition 4.1

Throughout this section, we assume that (6) is satisfied. Moreover, we let G = G(n, d),
set H = core(G), and let S be the set constructed via the process S1–S2 from Section 3.2.
Further, by Proposition 3.4 we may assume that #S >

n
2
.

5.1 Outline of the Proof

Instead of the matrix M = (muv)u,v∈H we shall mostly study a slightly modified matrix
M′ = (m′

vw)v,w∈V , whose entries are defined as follows: let

m′
vw =

{

(d̄(v)d̄(w))−1/2 if {v, w} ∈ E(G)
0 otherwise

(v, w ∈ V, v 6= w).
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Furthermore, for all v ∈ V we let m′
vv = d̄(v)−1 with probability pvv = d̄(v)2(d̄n)−1, and

m′
vv = 0 with probability 1 − pvv, where the entries m′

vv are mutually independent and
independent of choice of G. Then

E(m′
vw) =

(

d̄(v)d̄(w)
)1/2

(d̄n)−1 for all v, w ∈ V. (51)

The difference between M and M′ is just that in M′ we add entries corresponding to
vertices v ∈ V −H , and we also add entries on the diagonal. Therefore, the matrix M is
a minor of M′ − diag(m′

vv)v∈V , where

‖diag(m′
vv)v∈V ‖

(6)

6 d̄
−1/2
min . (52)

Thus, setting ω̃ = (d̄(u)1/2)u∈V and

S =
{

x ∈ RV : ‖x‖ 6 1, x ⊥ ω̃
}

, S ′ = {x = (xv)v∈V ∈ S : xv = 0 for all v ∈ V − S} ,

our aim is to prove that there is a constant c1 > 0 such that w.h.p.

max {|〈M′x, y〉| : x, y ∈ S ′} 6 c1d̄
−1/2
min . (53)

Then Proposition 4.1 will follow from (52) and (53).
To establish (53), we shall replace the infinite set S ′ by a finite set T ′ such that

max
x,y∈S′

|〈M′x, y〉| 6 5 max
x,y∈T ′

|〈M′x, y〉| + 8. (54)

Then, we show that
max
x,y∈T ′

|〈M′x, y〉| 6 c2d̄
−1/2
min w.h.p., (55)

where c2 is a suitable constant, so that (53) will follow from (54) and (55).
To define T ′, set ε = 0.01, and let εn−1/2Z signify the set of all integer multiples of

εn−1/2. Let

T =
{

x ∈
[

εn−1/2Z
]n

: |〈ω̃, x〉| 6 d̄
1

2 n−1/2, ‖x‖ 6 1
}

,

T ′ =
{

x = (x1, . . . , xn)T ∈ T : xv = 0 for all v ∈ V − S
}

.

Lemma 5.1 The set T ′ satisfies (54) and there is a constant c3 > 0 such that #T 6 cn
3 .

We prove Lemma 5.1 in Section 5.2. Our next goal is to establish (55). Given vectors
x = (xu)u∈V , y = (yv)v∈V ∈ RV , we define

B(x, y) =
{

(u, v) ∈ V 2 : n2d̄min |xuyv|2 6 d̄(u)d̄(v)
}

, Xx,y =
∑

(u,v)∈B(x,y)

m′
uvxuyv.

We shall prove that there exist constants c4, c5 > 0 such that w.h.p.

max
x,y∈T

|Xx,y| 6 c4d̄
−1/2
min , (56)

max
x,y∈T ′

∑

(u,v)6∈B(x,y)

|m′
uvxuyv| 6 c5d̄

−1/2
min . (57)
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Then (55) will follow from (56) and (57) (with c2 = c4 + c5).
In order to show (56), we proceed in two steps. First, we bound the expectation of

Xx,y.

Lemma 5.2 There is a constant c6 > 0 such that |E(Xx,y)| 6 c6d̄
−1/2
min for all x, y ∈ T .

Secondly, we bound the probability that Xx,y deviates from its expectation signifi-
cantly.

Lemma 5.3 Let x, y ∈ Rn, ‖x‖, ‖y‖ 6 1. Then for any constant C > 0 there exists a

constant K > 0 such that P
[

|Xx,y − E(Xx,y)| > Kd̄
−1/2
min

]

6 C−n.

Combining Lemmas 5.2 and 5.3, we conclude that there is a constant c4 > 0 such that

P
[

|Xx,y| > c4d̄
−1/2
min

]

6 (2c2
3)

−n

for any two points x, y ∈ T . Therefore, invoking Lemma 5.1 and applying the union
bound, we conclude

P

[

max
x,y∈T

|Xx,y| > c5d̄
−1/2
min

]

6 #T · (2c3)−n
6 2−n,

thereby proving that (56) is true w.h.p. The proofs of Lemmas 5.2 and 5.3 can be found
in Sections 5.3 and 5.4.

The remaining task is to show that (57) holds w.h.p. To this end, in Section 5.5 we
show the following.

Lemma 5.4 If G enjoys the property (12), then

max
x,y∈RV −{0}

∑

(u,v)6∈B(x,y), u 6=v

|muvxuyv|
‖x‖ · ‖y‖ 6 c5d̄

−1/2
min for a certain constant c5 > 0.

Thus, Lemmas 2.4 and 5.4 imply that (57) holds w.h.p., and Proposition 4.1 follows.

5.2 Proof of Lemma 5.1

To prove Lemma 5.1, we observe that every vector x ∈ S ′ can be approximated by a point
in the slightly “stretched” grid (1 − 2ε)−1T ′.

Lemma 5.5 For each x ∈ S ′ there is y ∈ (1 − 2ε)−1T ′ such that ‖x − y‖ 6
1
2
.
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Proof. Relabeling the vertices as necessary, we may assume that S = {1, . . . , s}, s > n/2.
Let x′ = (x′

i)i=1,...,n = (1 − 2ε)x. We construct a vector y′′ = (y′′
i )i=1,...,n ∈

[

εn−1/2Z
]n

inductively as follows. Let 1 6 i 6 s, and assume that we have defined y′′
1 , . . . , y

′′
i−1

already. There are two points pi, qi ∈ εn−1/2Z such that |pi−x′
i|, |qi−x′

i| 6 εn−1/2; choose

y′′
i ∈ {pi, qi} so that

∣

∣

∣

∑i
j=1 ω̃j(x

′
j − y′′

j )
∣

∣

∣
is minimal. Further, set y′′

i = 0 for s < i 6 n. By

construction, we have

‖x′ − y′′‖ 6

[

n
∑

i=1

|x′
i − y′′

i |2
]1/2

6 ε, (58)

∣

∣

∣

∣

∣

i
∑

j=1

ω̃j(x
′
j − y′′

j )

∣

∣

∣

∣

∣

6 εn−1/2 · max
j

ω̃j = o(1) (1 6 i 6 n). (59)

Let I = {j ∈ S : d̄(j) 6 100d̄}. Since s >
n
2
, we have #I > n/10. Furthermore, as

ω̃ ⊥ x′, (59) implies |〈y′′, ω̃〉| = o(1). Therefore, there is a set J ⊂ I such that
∣

∣

∣

∣

∣

|〈y′′, ω̃〉| −
∑

j∈J

εω̃jn
−1/2

∣

∣

∣

∣

∣

6 d̄
1

2 n−1/2. (60)

Now, define y′
j = y′′

j for j ∈ V − J , and set

y′
j = y′′

j + εn−1/2 ×
{

1 if 〈y′′, ω̃〉 < 0
−1 otherwise

for j ∈ J.

Then (60) implies that |〈y′, ω̃〉| 6 d̄
1

2 n−1/2. Moreover, (58) yields ‖x′ − y′‖ 6 ‖x′ − y′′‖+
‖y′ − y′′‖ 6 2ε. Hence, ‖y′‖ 6 ‖x′‖ + ‖x′ − y′‖ 6 1, so that y′ ∈ T ′. Thus, setting
y = (1 − 2ε)−1y′ completes the proof. 2

Proof of Lemma 5.1. To prove (54), consider a vector x ∈ S ′. We want to approximate
x by a linear combination of vectors t0, t1, t2, . . . in (1 − 2ε)−1T ′. Let x0 = x. For each
i > 0, we define a vector xi+1 ⊥ ω̃ of norm 6 1 and a vector ti as follows. By Lemma 5.5,
there exists a vector ti ∈ (1 − 2ε)−1T ′ such that ‖xi − ti‖ 6

1
2
. If xi = ti, then we set

xi+1 = 0 and tj = zj−1 = 0 for all j > i. Otherwise, let x′
i+1 = ‖xi − ti‖−1(xi − ti), define

zi = −‖ω̃‖−2 〈ti, ω̃〉 ω̃, and set xi+1 = x′
i+1 − ‖xi − ti‖−1zi. Then ‖xi+1‖ 6 1, xi+1 ⊥ ω̃,

and ‖zi‖ 6 2n−1. Thus, we obtain a representation

x =
∞
∑

i=0

ai(ti + zi), where a0 = 1, and ai =
∏

06j<i

‖xi − ti‖ 6 2−i for i > 1.

Hence, ‖x −∑∞
i=0 aiti‖ 6

∑∞
i=0 ai‖zi‖ 6 4/n.

Now, let y ∈ S ′, and let si ∈ (1 − 2ε)−1T and 0 6 bi 6 2−i be such that
∥

∥

∥

∥

∥

y −
∞
∑

i=0

bisi

∥

∥

∥

∥

∥

6 2/n.
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Then we obtain

| 〈M′x, y〉 | =

∣

∣

∣

∣

∣

∞
∑

i,j=0

aibj 〈M′ti, si〉
∣

∣

∣

∣

∣

+ ‖M′‖
[
∥

∥

∥

∥

∥

x −
∞
∑

i=0

aiti

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

y −
∞
∑

i=0

bisi

∥

∥

∥

∥

∥

]

6

[

∞
∑

i,j=0

aibj

]

(1 − 2ε)−2 max {| 〈M′t, s〉 | : s, t ∈ T ′} +
8

n
‖M′‖

6
4

(1 − 2ε)2
max {| 〈M′t, s〉 | : s, t ∈ T ′} + 8,

thereby establishing (54).
In order to estimate #T , consider

T+ =
{

t = (ti)16i6n ∈
[

εn−1/2Z
]n

: ti > 0 for all i
}

.

Clearly, it suffices to exhibit a constant ĉ3 > 0 such that #T+ 6 ĉn
3 . To this end, let us as-

sign to each t ∈ T+ the cube Qt =
{

(x1, . . . , xn) ∈ [0, 1]n : ti − εn−1/2 < xi 6 ti for all i
}

.

Then Qt is contained in the unit ball in Rn, and the volume of Qt equals εnn−n/2. More-
over, if s, t ∈ T+ are distinct, then Qs and Qt are disjoint. Therefore, letting Vn signify the

volume of the unit ball in Rn, we conclude that #T+
(

ε
n

)n/2
6 Vn ∼ (πn)−1/2

(

2eπ
n

)n/2
. 2

5.3 Proof of Lemma 5.2

To prove Lemma 5.2, we employ the following bound.

Lemma 5.6 If x, y ∈ Rn have norm 6 1, then
∑

(u,v)∈V 2−B(x,y)

∣

∣(d̄(u)d̄(v))1/2xuyv

∣

∣ 6 d̄
1/2
minn.

Proof. The definition of B(x, y) implies that (d̄(u)d̄(v))1/2 6 d̄
1/2
minn · |xuyv| for all (u, v) 6∈

B(x, y). Therefore,
∑

(u,v)∈V 2−B(x,y)

∣

∣(d̄(u)d̄(v))1/2xuyv

∣

∣ 6 d̄
1/2
minn

∑

(u,v)6∈B(x,y)

x2
uy

2
v 6 d̄

1/2
minn · ‖x‖2‖y‖2

6 d̄
1/2
minn,

as claimed. 2

Proof of Lemma 5.2. Let x, y ∈ T . Then

|E(Xx,y)| (51)
=

∣

∣

∣

∣

∣

∣

∑

(u,v)∈B(x,y)

(d̄(u)d̄(v))1/2 · xuyv

d̄n

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∑

(u,v)∈V 2

(d̄(u)d̄(v))1/2 · xuyv

d̄n

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

(u,v)∈V 2−B(x,y)

(d̄(u)d̄(v))1/2 · xuyv

d̄n

∣

∣

∣

∣

∣

∣

Lemma 5.6
6

|〈x, ω̃〉 · 〈y, ω̃〉|
d̄n

+ d̄mind̄
− 3

2 6 n−2 + d̄mind̄
− 3

2 6 d̄
−1/2
min ,
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because |〈ω̃, x〉| , |〈ω̃, y〉| 6 (d̄/n)1/2 by the definition of T . 2

5.4 Proof of Lemma 5.3

We shall prove below that

E
[

exp(nd̄
1/2
min(Xx,y − E(Xx,y)))

]

6 exp(16n). (61)

Then Markov’s inequality implies that

P
[

Xx,y − E(Xx,y) > Kd̄
−1/2
min

]

6 P
[

exp
[

nd̄
1/2
minXx,y

]

> exp [Kn]
]

6 exp [(16 − K)n] .

Hence, choosing K large enough, we can ensure that the right hand side is 6
1
2

exp(−Cn).
As a similar estimate holds for −Xx,y = X−x,y, we obtain

P
[

|Xx,y| > Kd̄
−1/2
min

]

6 exp(−Cn),

as desired.
To prove (61), we set λ = nd̄

1/2
min and let

αuv = (d̄(u)d̄(v))−1/2 ×















0 if (u, v), (v, u) 6∈ B(x, y),
xuyv if (u, v) ∈ B(x, y) ∧ (v, u) 6∈ B(x, y),
xvyu if (u, v) 6∈ B(x, y) ∧ (v, u) ∈ B(x, y),

xuyv + xvyu if (u, v), (v, u) ∈ B(x, y)

signify the possible contribution of the edge {u, v} to Xx,y (u, v ∈ V ). Moreover, we define
a random variable Xx,y(u, v) by letting Xx,y(u, v) = αuv if m′

uv > 0, and Xx,y(u, v) = 0
otherwise. Finally, let E = {{u, v} : u, v ∈ V }. Then

Xx,y =
∑

{u,v}∈E

Xx,y(u, v).

Since (Xx,y(u, v)){u,v}∈E is a family of mutually independent random variables, we have

E(exp(λ(Xx,y − E(Xx,y))) =
∏

{u,v}∈E

E [exp(λ(Xx,y(u, v) − E(Xx,y(u, v))))] . (62)

Moreover, by the definition of B(x, y), for all (u, v) ∈ B(x, y) we have

λ(d̄(u)d̄(v))−1/2xuyv 6 1,

whence λαuv 6 2 for all u, v ∈ V . Therefore, as exp(t) − 1 6 t + 4t2 if |t| 6 4, (62) yields

E(exp(λXx,y)) 6
∏

{u,v}∈E

1 + λ [E(Xx,y(u, v) − E(Xx,y(u, v))] + 4λ2Var(Xx,y(u, v))

6
∏

{u,v}∈E

1 + 4puvλ
2α2

uv 6 exp



4λ2
∑

{u,v}∈E

puvα
2
uv



 . (63)
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Furthermore,

λ2
∑

{u,v}∈E

puvα
2
uv 6

∑

{u,v}∈E

λ2 · d̄(u)d̄(v)

d̄n
· 2 (x2

uy
2
v + x2

vy
2
u)

d̄(u)d̄(v)

6 2n
∑

{u,v}∈E

(

x2
uy

2
v + x2

vy
2
u

)

6 4n‖x‖2‖y‖2
6 4n. (64)

Plugging (64) into (63), we conclude that E(exp(λXx,y)) 6 exp(16n), thereby establish-
ing (61).

5.5 Proof of Lemma 5.4

Let x, y ∈ Rn be vectors of norm 6 1. After decomposing x, y into differences of vectors
with non-negative entries, we may assume that xu, yv > 0 for all u, v ∈ V . Moreover,
splitting x and y into sums of two vectors each, we may assume that at most n

2
coordinates

of each vector are non-zero. We partition the relevant coordinates S into a few pieces on
which the entries of x (resp. y) are roughly the same: for i, j ∈ Z we set

Ai =
{

u ∈ S : 2i−1n−1/2
6 (d̄min/d̄(u))1/2xu 6 2in−1/2

}

, ai = #Ai 6
n

2
, (65)

Bj =
{

v ∈ S : 2j−1n−1/2
6 (d̄min/d̄(v))1/2yv 6 2jn−1/2

}

, bj = #Bj 6
n

2
, (66)

eij = e(Ai,Bj), µij = µ(Ai,Bj). (67)

If u ∈ Ai, v ∈ Bj , then 2i+j−2n−1 6 d̄min(d̄(u)d̄(v))−1/2xuyv 6 2i+jn−1. Hence,

2i+j−2n−1eij 6
∑

(u,v)∈Ai×Bj , u 6=v

d̄minm
′
uvxuyv 6 2i+jn−1eij , (68)

so that basically
∑

(u,v)∈Ai×Bj , u 6=v m′
uvxuyv is determined by i, j, and eij .

Now, let us single out those indices i, j such that (Ai × Bj) − B(x, y) 6= ∅. If (u, v) 6∈
B(x, y) are such that u ∈ Ai and v ∈ Bj, then by the definition of B(x, y), (65), and (66)
we have

2i+j
>

nd̄minxuyv
√

d̄(u)d̄(v)
> d̄

1/2
min.

Therefore, setting

Q = {(i, j) : 2i+j > d̄
1/2
min, ai 6 bj}, Q′ = {(i, j) : 2i+j > d̄

1/2
min, ai > bj},

we obtain
∑

(u,v)6∈B(x,y), u 6=v

m′
uvxuyv 6

∑

(i,j)∈Q∪Q′

∑

(u,v)∈Ai×Bj , u 6=v

m′
uvxuyv.

Hence, by symmetry, it suffices to show that
∑

(i,j)∈Q

∑

(u,v)∈Ai×Bj , u 6=v

m′
uvxuyv 6 c5d̄

−1/2
min (69)
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for some constant c5 > 0.
To show (69), we split Q into two parts: let

Q1 = {(i, j) ∈ Q : eij 6 300 · µij}

and Q2 = Q−Q1.

Lemma 5.7 We have
∑

(i,j)∈Q1

∑

(u,v)∈Ai×Bj , u 6=v m′
uvxuyv 6 4800d̄

−1/2
min .

Proof. Let B̄ =
⋃

(i,j)∈Q1
Ai × Bj . If (i, j) ∈ B̄ and (u, v) ∈ Ai × Bj , then by (65), (66),

and the definition of Q1 we have

xuyv
(

d̄(u)d̄(v)
)1/2

>
2i+j

4d̄minn
>

1

4n
d̄
−1/2
min ,

and thus
∑

(u,v)∈B̄, u 6=v

(

d̄(u)d̄(v)
)1/2

xuyv 6 4d̄
1/2
minn‖x‖2‖y‖2

6 4d̄
1/2
minn. (70)

Therefore, we obtain

∑

(i,j)∈Q1

∑

(u,v)∈Ai×Bj , u 6=v

d̄minm
′
uvxuyv

(68)

6
∑

(i,j)∈Q1

eij2
i+jn−1

6 300
∑

(i,j)∈Q1

µij2
i+jn−1 [by the definition of Q1]

6 300
∑

(i,j)∈Q1

∑

(u,v)∈Ai×Bj , u 6=v

puv2i+jn−1

= 300
∑

(i,j)∈Q1

∑

(u,v)∈Ai×Bj , u 6=v

d̄(u)d̄(v)

d̄n
2i+jn−1

(65), (66)

6
1200d̄min

d̄n

∑

(i,j)∈Q1

∑

(u,v)∈Ai×Bj , u 6=v

(

d̄(u)d̄(v)
)1/2

xuyv

6
1200

n

∑

(u,v)∈B̄, u 6=v

(

d̄(u)d̄(v)
)1/2

xuyv

(70)

6 4800d̄
1/2
min,

thereby completing the proof. 2

Thus, the remaining task is to estimate the contribution of the pairs (i, j) ∈ Q2.

Lemma 5.8 There is a constant c8 > 0 such that
∑

(i,j)∈Q2

∑

(u,v)∈Ai×Bj , u 6=v m′
uvxuyv 6

c8d̄
−1/2
min .
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Proof. We decompose Q2 into several sets: let

D1 = {(i, j) ∈ Q2 : d̄
1/2
mineij < µij2

i+j},
D2 =

{

(i, j) ∈ Q2 : d̄
1/2
min2j < 2i

}

− D1,

D3 = {(i, j) ∈ Q2 : ln(n/bj) 6 4 ln(eij/µij)} − (D1 ∪ D2),

D4 = {(i, j) ∈ Q2 : n/bj 6 24j} − (D1 ∪ D2 ∪ D3),

D5 = {(i, j) ∈ Q2 : n/bj > 24j} − (D1 ∪ D2 ∪ D3);

then Q2 =
⋃5

k=1 Dk. We shall bound
∑

(i,j)∈Dk
eij2

i+jn−1 separately for k = 1, . . . , 5. To

this end, we stress that for all (i, j) ∈ Q2

eij > 300µij and (71)

eij ln(eij/µij) 6 cbj ln(n/bj), (72)

for a certain constant c > 0, because we are assuming that (12) holds.
With respect to D1, we observe that µij 6

∑

v∈Ai, w∈Bj
d̄(v)d̄(w)(d̄n)−1. Hence, the

definitions (65), (66) of Ai, Bj imply that

µij2
2(i+j)n−1

6 16d̄2
min

∑

v∈Ai, w∈Bj

d̄(v)d̄(w)

d̄

[

(d̄(v)d̄(w))−1/2xvyw

]2

6 16d̄2
mind̄

−1
∑

v∈Ai, w∈Bj

x2
vy

2
w

Consequently,

∑

(i,j)∈D1

eij2
i+jn−1

6 d̄
−1/2
min

∑

(i,j)∈D1

µij2
2(i+j)n−1

6 16(d̄min/d̄)3/2d̄
1

2

∑

(i,j)∈D1

∑

(v,w)∈Ai×Bj

x2
vy

2
w

6 16(d̄min/d̄)3/2d̄
1

2‖x‖2‖y‖2
6 16(d̄min/d̄)3/2d̄

1

2 . (73)

Regarding D2, we recall that
∑

j∈Z
e(v,Bj) 6 e(v,S) 6 2d̄(v) for all v ∈ S by (17).

Therefore, for all i ∈ Z we have

∑

j∈Z

eij2
2in−1

(65)

6 4
∑

v∈Ai

d̄minx
2
v

d̄(v)

∑

j∈Z

e(v,Bj) 6 8d̄min

∑

v∈Ai

x2
v. (74)

Thus, by the definition of D2

∑

(i,j)∈D2

eij2
i+jn−1

6 d̄
−1/2
min

∑

(i,j)∈D2

eij2
2in−1

(74)

6 8d̄
1/2
min‖x‖2

6 8d̄
1/2
min. (75)
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Concerning D3, we have

∑

(i,j)∈D3

eij2
i+jn−1

(72)

6 c
∑

(i,j)∈D3

bj ln(n/bj)

ln(eij/µij)
2i+jn−1

6 4c
∑

(i,j)∈D3

2i+jbjn
−1. (76)

Furthermore, if (i, j) ∈ D3, then (i, j) 6∈ D2, so that 2i 6 2jd̄
1/2
min. In addition, we generally

assume that d̄(v) > d̄min for all v. In effect,

∑

(i,j)∈D3

eij2
i+j/n

(76)

6 4c
∑

j∈Z

∑

i : 2i62j d̄
1/2

min

bj2
i+jn−1

6 8cd̄
1/2
min

∑

j∈Z

bj2
2jn−1

(66)

6 32cd̄
1/2
min

∑

j∈Z

∑

v∈Bj

d̄min

d̄(v)
y2

v 6 32cd̄
1/2
min‖y‖2

6 32cd̄
1/2
min. (77)

Moreover,

∑

(i,j)∈D4

eij2
i+j/n

(72)

6 c
∑

(i,j)∈D4

bj ln(n/bj)

ln(eij/µij)
2i+j/n

(71)

6 4c
∑

(i,j)∈D4

jbj2
i+j/n. (78)

If (i, j) ∈ D4, then

2i
6

eijd̄
1/2
min

µij2j
[because (i, j) 6∈ D1]

6 d̄
1/2
min

(

n

bj

)1/4

2−j [because (i, j) 6∈ D3]

6 d̄
1/2
min [because (i, j) ∈ D4]. (79)

Combining (78) and (79) and observing that j > 0 for all (i, j) ∈ D4, we obtain
∑

(i,j)∈D4

eij2
i+j/n 6 8c

∑

j>0

d̄
1/2
minjbj2

j/n = 8cd̄
1/2
min

∑

j>0

2−jj(bj2
2jn−1). (80)

Furthermore, as d̄(v) > d̄min for all v,

bj2
2jn−1

(66)

6 4
∑

v∈Bj

d̄min

d̄(v)
y2

v 6 4‖y‖2
6 4. (81)

Thus, plugging (81) into (80), we conclude that
∑

(i,j)∈D4

eij2
i+j/n 6 32cd̄

1/2
min

∑

j>1

j2−j = 64cd̄
1/2
min. (82)

Let (i, j) ∈ D5. Then ln(n/bj) 6 2 ln(nb−1
j 2−2j), so that

eij2
j

(72)

6
cbj ln(n/bj)

ln(eij/µij)
· 2j

(71)

6 cbj2
2j · ln(n/bj) · 2−j

6 cbj2
2j · 2 ln

(

nb−1
j 2−2j

)

· 2−j .
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Moreover, since (i, j) 6∈ D2, we have 2i 6 d̄
1/2
min2j. Hence, for any fixed j ∈ Z we have

c−1
∑

i:(i,j)∈D5

eij2
i+j/n 6

2bj2
2j

n
ln

(

n

bj22j

)

∑

i:2i62j d̄
1/2

min

2i−j

6 4d̄
1/2
min ·

bj2
2j

n
ln

(

n

bj22j

)

. (83)

Further, if (i, j) ∈ D5, then
√

bj/n 6 2−2j , whence for j > 0 we have

bj2
2j

n
ln

(

n

bj22j

)

=

√

bj22j

n

(

−2

√

bj22j

n
ln

√

bj22j

n

)

6 2−j

(

−2

√

bj22j

n
ln

√

bj22j

n

)

. (84)

As the function t 7→ −t ln t is 6 1 for t > 0, we have

−2

√

bj22j

n
ln

√

bj22j

n
6 2

for j > 0, and thus (84) yields

bj2
2j

n
ln

(

n

bj22j

)

6 21−j (j > 0). (85)

Similarly, if (i, j) ∈ D5 and j < 0, then

bj2
2j

n
ln

(

n

bj22j

)

6 −2

√

bj22j

n
ln

√

bj22j

n
. (86)

Since bj 6 n/2, we have

∑

j<0

−2

√

bj22j

n
ln

√

bj22j

n
6 −(2 ln 2)

∑

j<0

j2j = 4 ln 2. (87)

Combining (83), (85), (86), and (87), we conclude

∑

(i,j)∈D5

eij2
i+j/n 6 4cd̄

1/2
min

(

4 ln 2 +
∑

j>0

21−j

)

6 32cd̄
1/2
min. (88)

Finally, due to (73), (75), (77), (82), and (88), the assertion follows from (68). 2
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Algorithm 6.1 LowDisc(G)
Input: A graph G = (V, E).
Output: (α, β) such that G has (α, β)-low discrepancy.

1. Let n = #V and d̃ = 2#E/n.
For d = 1, . . . , n do

2. Construct a subgraph H(d) of G as follows.

• Initially let H(d) = G − {v : dG(v) 6 0.01d}.

• While there is a vertex v ∈ H that has at least

max{c0, exp(−d/c0)d̃− 1

2 dG(v)}

neighbors in G − H(d), remove v from H(d).

Here c0 denotes a large enough constant. Then, compute the spectral
gap α(d) of L(H(d)), and set β(d) = 2

∑

v∈G−H(d) dG(v).

3. If there is some 1 6 d 6 n such that α(d) > 1 − c0d
−1/2 and

β(d) 6 2 exp(−d/c0)n, then let d∗ be the maximum such d and return
(α(d∗), β(d∗)). Otherwise just return α = 0 and β = 2#E.

Figure 1: the procedure LowDisc.

6 Algorithmic Results

In this section we present the algorithms for Corollaries 1.3 and 1.4. Let us start with the
algorithm LowDisc for Corollary 1.3 (see Figure 1). If we assume that in addition to the
input graph G = G(n, d) we are given the minimum expected degree d̄min, then we could
just compute H = core(G) (cf. Section 3.2), determine the spectral gap α of L(H), and set
β = 2

∑

v∈V −H dG(v). Then G has (α, β)-low discrepancy, and Theorem 1.2 ensures that
w.h.p. α and β obey the bounds stated in the completeness condition of Corollary 1.3.

However, we of course desire an algorithm that just requires the graph G at the input.
Therefore, the following procedure LowDisc basically tries all possible values for d̄min and
outputs the best bound on the discrepancy discovered in the course of this process.

It is easily seen that the output (α, β) of LowDisc satisfies the correctness condi-
tion in Corollary 1.3. Further, the Chernoff bound (10) entails that w.h.p. d̃ ∼ d̄, and

Theorem 1.2 yields that w.h.p. d∗ > d̄min. Thus, w.h.p. we have α > 1 − c0d̄
−1/2
min and

β 6 2 exp(−d̄min/c0)n, so that the completeness condition is satisfied as well.
The algorithm for Corollary 1.4 is as follows. At first the algorithm bounds the discrep-

ancy of G = G(n, d) using LowDisc. Let x be the number of vertices in G− core(G), and
let (α, β) be the result of LowDisc. Then BoundAlpha outputs 400 · (1−α) ·#Ed̄−1

min + x.
We claim that this is indeed an upper bound on α(G). To see this, let X be some

independent set in core(G). By Step 2 of LowDisc, the core of G has (α, 0) discrepancy.
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Using (4), we get
∑

v∈X dcore(G)(v) 6 2(1−α) ·#E. Since all vertices v in the core satisfy
dcore(G)(v) > d̄min/200, we conclude that #X 6 400 · (1 − α) · #E/d̄min. Therefore, the
maximum independent set in G has at most 400 · (1 − α) · #Ed̄−1

min + x vertices. Hence,
BoundAlpha satisfies the correctness statement in Corollary 1.4. Further, the completeness
follows directly from Corollary 1.3.

7 Proofs of Auxiliary Lemmas

7.1 Proof of Lemma 2.2

The proof of Lemma 2.2 relies on the following general tail bound, which is a consequence
of Azuma’s inequality (cf. [17, p. 38] for a proof).

Lemma 7.1 Let Ω =
∏N

i=1 Ωi be a product of finite probability spaces Ω1, . . . , ΩN . Let
Y : Ω → R be a random variable that satisfies the following condition for all 1 6 j 6 N .

If ω = (ωi)16i6N , ω′ = (ω′
i)16i6N ∈ Ω differ only in the j’th component (i.e.,

ωi = ω′
i if i 6= j), then |Y (ω) − Y (ω′)| 6 τ .

Then P [|Y − E(Y )| > λ] 6 2 exp (−λ2/(2τ 2N)) for all λ > 0.

To derive Lemma 2.2 from Lemma 7.1, we let E = {{v, w} : v, w ∈ V, v 6= w} be the
set of all

(

n
2

)

possible edges. Further, for each e = {u, v} ∈ E we let Ωe be a Bernoulli
experiment with success probability puv = d̄(u)d̄(v)(d̄n)−1. Then the probability space
G(n, d) decomposes into a product G(n, d) =

∏

e∈E Ωe, because each edge e = {u, v} ∈
E is present in G(n, d) with probability puv independently. However, we cannot apply
Lemma 7.1 directly to this product decomposition, because the number

(

n
2

)

of factors is

too large. Therefore, we construct a different decomposition G(n, d) =
∏K

i=1 Ωi, where
each factor Ωi is a combination of several factors Ωe.

To this end, we partition E into K 6 2(d̄n)1−γ sets E1, . . . , EK such that 1
2
(d̄n)γ 6

∑

e∈Ei
P [e ∈ G(n, d)] 6 (d̄n)γ for i = 1, . . . , K. Then we can represent G(n, d) as a

product space

G(n, d) =
K
∏

i=1

Ωi, where Ωi =
∏

e∈Ei

Ωe. (89)

We call Ei critical in G = G(n, d) if #Ei ∩E(G) > 2(d̄n)γ. Then the generalized Chernoff
bound (10) entails that P [Ei is critical] 6 exp(−(d̄n)γ/3) for all i. Hence,

P [∃i : Ei is critical] 6 K exp(−(d̄n)γ/3) 6 exp(−(d̄n)γ/4). (90)

For G = G(n, d) we define G̃ = G − ⋃i:Eiis critical Ei and set Y (G) = X(G̃); we are
going to apply Lemma 7.1 to the decomposition (89) and the random variable Y (G(n, d)).
To this end, we observe that (90) entails

P [Y (G(n, d)) = X(G(n, d))] > 1 − exp(−(d̄n)γ/4). (91)
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Moreover, since X satisfies the Lipschitz condition (11), we have |X(G)−Y (G)| 6 n2 for
all possible outcomes G = G(n, d). In effect, our assumption d̄ > 1 yields

|E(X) − E(Y )|
(91)

6 n2 exp(−(d̄n)γ/4) < (d̄n)
1

2
+γ/2. (92)

Furthermore, we claim that

if G, G′ are such that G − Ej = G′ − Ej, i.e., G, G′ differ only on edges
corresponding to the factor Ωj , then |Y (G) − Y (G′)| 6 4(d̄n)γ (93)

for all 1 6 j 6 K. To prove (93), we consider four cases.

1st case: Ej is not critical in G and G′. Then G̃′ can be obtained from G̃ by remov-
ing all edges in Ej ∩ E(G) and then adding all edges in Ej ∩ E(G′). Since in this
process we delete/insert at most 4(d̄n)γ edges in total, (93) follows from the fact
that X satisfies the Lipschitz condition (11).

2nd case: Ej is critical in both G and G′. Then G̃′ = G̃, so that Y (G) = Y (G′).

3rd case: Ej is critical in G but not in G′. Then G̃′ is obtained from G̃ by adding
the edges Ej ∩ E(G′); since #Ej ∩ E(G′) 6 2(d̄n)γ , the Lipschitz condition (11)
implies (93).

4th case: Ej is critical in G′ but not in G. Analogous to the 3rd case.

Due to (93), we can apply Lemma 7.1 to Y (G(n, d)) and obtain

P

[

|Y (G(n, d)) − E(Y (G(n, d)))| >
(d̄n)

1

2
+γ

2

]

6 2 exp

[

− (d̄n)1+2γ

8(4(d̄n)γ)2K

]

6 2 exp

[

−(d̄n)γ

256

]

. (94)

Finally, we obtain

P
[

|X(G(n, d)) − E(X(G(n, d)))| > (d̄n)
1

2
+γ
]

6 P [X(G(n, d)) 6= Y (G(n, d))] +

P
[

|Y (G(n, d)) − E(X(G(n, d)))| > (d̄n)
1

2
+γ
]

(91), (92)

6 exp(−(d̄n)γ/4) + P

[

|Y (G(n, d)) − E(Y (G(n, d)))| >
(d̄n)

1

2
+γ

2

]

(94)

6 exp

[

−(d̄n)γ

4

]

+ 2 exp

[

−(d̄n)γ

256

]

6 exp

[

−(d̄n)γ

300

]

,

as desired.
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7.2 Proof of Corollary 2.3

Let φ denote the function (8). We assume throughout that 1 6 d̄ 6 n0.99, and we let
G = G(n, d). Moreover, for each t > 0 we set St = {v ∈ V : 2t 6 |dG(v)−d̄(v)|·d̄(v)−1/2 <
2t+1} and φt = d̄min · φ(2t(d̄min)−1/2). The following lemma is the main ingredient to the
proof.

Lemma 7.2 We have P [#St 6 4 exp(−φt/4)n] > 1 − n−Ω(1).

Further, to establish Lemma 7.2, we need the following estimate.

Lemma 7.3 We have d̄(v)φ(2td̄(v)−1/2) > φt = d̄min · φ(2td̄
−1/2
min ) for all v ∈ V.

Proof. We will show that for all τ > 1 the function

f(d, τ) = dφ(τd−1/2) is monotonically increasing in d. (95)

Since f(d̄(v), 2t) = d̄(v)φ(2td̄(v)−1/2), d̄(v) > d̄min, and f(d̄min, 2t) = φt, (95) implies the
assertion.

In order to establish (95), we consider the function ϕ(s) =
(

1 + s
2

)

ln(1+s)−s (s > 0).

Then an easy computation shows that ∂
∂d

f(d, τ) = ϕ(τd−1/2). Thus, we just need to show
that ϕ(s) > 0 for all s > 0. To this end, we observe that lims→0 ϕ(s) = 0. Furthermore,
the derivative of ϕ is d

ds
ϕ(s) = 1

2(1+s)
[(1 + s) ln(1 + s) − s] . Finally, as (1+s) ln(1+s) > s

for all s > 0, we conclude that ϕ(s) > 0 for all s > 0, thereby completing the proof. 2

Proof of Lemma 7.2. Since φ(−x) > φ(x) for all 0 < x < 1, (1− o(1))d̄(v) 6 Var(d(v)) 6

d̄(v), and because φ(y) is increasing for y > 0, the Chernoff bound (10) entails that

P
[
∣

∣dG(n,d)(v) − d̄(v)
∣

∣ ∈
[

2t, 2t+1
]

d̄(v)1/2
]

6 2 exp
[

−Var(d(v))φ(2td̄(v)1/2/Var(d(v)))
]

6 2 exp

[

− d̄(v)

2
φ(2td̄(v)−1/2)

]

Lemma 7.3
6 2 exp(−φt/2).

Hence, E(#St) 6 2 exp(−φt/2)n. We consider two cases.

1st case: φt > 0.001 ln n. Then Markov’s inequality implies that

P [#St > 2 exp(−φt/4)n] 6 exp(−φt/4) 6 n−Ω(1).

2nd case: φt < 0.001 ln n. Since adding or removing a single edge can change #St by at
most 2, the random variable #St/2 satisfies the Lipschitz condition (11). Therefore,
Lemma 2.2 entails in combination with our assumption 1 6 d̄ 6 n0.99 that

P [#St > 4 exp(−φt/2)n] 6 P
[

#St > E(#St) + (d̄n)0.501
]

6 exp(−(d̄n)0.001/300) 6 n−Ω(1).
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Thus, P [#St > 4 exp(−φt/4)n] 6 n−Ω(1) in both cases. 2

Proof of Corollary 2.3. Let S−1 = V −⋃j>0 Sj . Then Lemma 7.2 entails that w.h.p.

∑

v∈V

(dG(v) − d̄(v))2

d̄(v)
6 4#S−1 +

∑

j>0

22j+2#Sj 6 4n + 16n
∑

j>0

22j exp(−φj/4)

(9)

6 4n + 16n
∑

j>0

22j exp(−2j−4) 6 106n,

as desired. 2

7.3 Proof of Lemma 2.4

Let 0 < u 6 u′ 6
n
2
. We first prove that for any two sets U, U ′ ⊂ V of cardinality

1 6 u = #U 6 u′ = #U ′ 6
n
2

we have

P[e(U, U ′) > 300µ(U, U ′) ∧

e(U, U ′) ln(e(U, U ′)/µ(U, U ′)) > 300u′ ln(n/u′)] 6

(

n

u′

)−5

. (96)

To show (96), let

x = inf {z > 0 : z > 100µ(U, U ′) and z ln(z/µ(U, U ′)) > 100u′ ln(n/u′)} . (97)

Since (1− o(1))µ(U, U ′) 6 Var(e(U, U ′)) 6 µ(U, U ′) and because the function z 7→ φ(z) is
increasing for z > 0, the Chernoff bound (10) entails that

P [e(U, U ′) > µ(U, U ′) + x] 6 exp

[

−Var(e(U, U ′))φ

(

x

Var(e(U, U ′))

)]

6 exp

[

−1

2
µ(U, U ′)φ

(

x

µ(U, U ′)

)]

6 exp

[

−x + µ(U, U ′)

2
ln

(

x

µ(U, U ′)

)

+
x

2

]

. (98)

Further, our choice (97) of x ensures that ln(x/µ(U, U ′)) > 4 and that x ln(x/µ(U, U ′)) >

100u′ ln(n/u′), whence (98) yields

P [e(U, U ′) > µ(U, U ′) + x] 6 exp

[

−x

4
ln

(

x

µ(U, U ′)

)]

6 exp [−25u′ ln(n/u′)] 6

(

n

u′

)−5

, (99)

where the last step is due to our assumption u′ 6 n/2. To complete the proof of (96), we
claim that

µ(U, U ′) + x 6 300µ(U, U ′) or

(µ(U, U ′) + x) ln((µ(U, U ′) + x)/µ(U, U ′)) 6 300u′ ln(n/u′). (100)

In order to establish (100), we consider two cases.
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1st case: x 6 100µ(U, U ′). Then µ(U, U ′) + x 6 101µ(U, U ′).

2nd case: x > 100µ(U, U ′). Then µ(U, U ′) + x 6 2x, whence (97) yields

(µ(U, U ′) + x) ln

(

µ(U, U ′) + x

µ(U, U ′)

)

6 2x ln

(

2x

µ(U, U ′)

)

6 3x ln

(

x

µ(U, U ′)

)

= 300u′ ln(n/u′).

Hence, combining (99) and (100), we obtain (96).
Let 1 6 u 6 u′ 6 n/2. Due to (96) and the union bound, the probability that there

exist sets U, U ′, #U = u, #U ′ = u′ such that e(U, U ′) > 300µ(U, U ′) and

e(U, U ′) ln(e(U, U ′)/µ(U, U ′)) > 300u′ ln(n/u′)

is at most
(

n

u

)(

n

u′

)(

n

u′

)−5

6

(

n

u′

)−3

6 n−3, (101)

where we used our assumption u′ 6 n/2. Finally, since there are at most n2 ways to
choose the numbers u, u′, (101) implies the lemma.

7.4 Proof of Corollary 2.5

Since µ(U) 6 Vol(U)2/(d̄n) for all U ⊂ V , Lemma 2.4 entails that w.h.p. for all U ⊂ V
of size 1 6 #U 6

n
2

we have

e(U) 6
300Vol(U)2

d̄n
∨ e(U) ln

(

e(U) · d̄n

Vol(U)2

)

6 300#U ln

(

n

#U

)

. (102)

We shall prove that if (102) is true, then both properties stated in the corollary hold.
With respect to the first property, let us assume for contradiction that (102) is satisfied

and that there is a set Q such that

exp(2c′d̄min)ζ#Q 6 Vol(Q) 6 exp(−3c′d̄min)n, (103)

e(Q) >
1

1000ζ
exp(−c′d̄min)Vol(Q), (104)

where 1 6 ζ 6 d̄
1

2 . Observe that (103) implies that #Q 6 n/2; for our assumption that
minv∈V d̄(v) > d̄min > d0 for a large enough d0 entails that Vol(Q) > 2#Q. Moreover,
(103) and (104) yield

300Vol(Q)

d̄n
6 300 exp(−3c′d̄min)d̄−1

6 0.001ζ−1 exp(−c′d̄min) <
e(Q)

Vol(Q)
,
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whence e(Q) > 300Vol(Q)2/(d̄n) (provided that d̄min > d0 for a sufficiently large d0).
Hence, if (102) holds, then

300#Q ln

(

n

#Q

)

> e(Q) ln

(

e(Q) · d̄n

Vol(Q)2

)

>
Vol(Q)

1000ζ exp(c′d̄min)
ln

(

exp(−c′d̄min)d̄n

1000ζVol(Q)

)

. (105)

Furthermore, (103) yields

exp(−c′d̄min)d̄n

1000ζVol(Q)
>

(

exp(−c′d̄min)d̄n

1000ζVol(Q)

)

1

2
(

exp(−c′d̄min)d̄n

1000ζn exp(−3c′d̄min)

)

1

2

>

(

106ζ exp(c′d̄min)n

Vol(Q)

)

1

2

. (106)

Let t = Vol(Q)

106ζ exp(c′d̄min)n
and t′ = #Q

n
. Combining (105) and (106), we conclude that

−t ln t 6 −t′ ln t′. (107)

Invoking (103) once more and recalling that d̄min > d0 for a large d0, we obtain

t′ =
#Q

n
<

exp(c′d̄min)#Q

106n
6 t 6

1

100
. (108)

However, the function x 7→ −x ln x is strictly increasing for 0 < x < 1/100, so that (107)
contradicts (108). Consequently, if (102) is satisfied, then (104) will be false.

In order to show that (102) implies the second part of the corollary, we assume for
contradiction that (102) holds and that there is a set Q ⊂ V such that

Vol(Q) 6 d̄
1

2 #Q5/8n3/8 and e(Q) > 3000#Q. (109)

Remember that we are assuming #Q 6 n/2. Moreover, (102) and (109) entail that

300#Q ln(n/#Q) > e(Q) ln

(

e(Q)d̄n

Vol(Q)2

)

> 3000#Q ln

(

#Qd̄n

Vol(Q)2

)

> 750#Q ln(n/#Q),

which is a contradiction. Thus, if (102) holds, then e(Q) 6 3000#Q.
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7.5 Proof of Lemma 2.6

Let 1 6 q 6 n/2, and let Q ⊂ V , #Q = q be such that Vol(Q) > 1000#Q5/8n3/8. We are
going to prove

P

[

∑

v∈Q

d(v) <
1

4
Vol(Q)

]

6

(

n

q

)−2

. (110)

Then the union bound implies that the property stated in Lemma 2.6 holds w.h.p.
To establish (110), we consider the random variable e(Q, V ), whose expectation satis-

fies E(e(Q, V )) > (1
2
−o(1))Vol(Q). As e(Q, V ) is a sum of mutually independent Bernoulli

variables, the Chernoff bound (10) yields

P [e(Q, V ) 6 0.51E(e(Q, V ))] 6 exp [−E(e(Q, V ))/10] 6 exp [−Vol(Q)/24] . (111)

Furthermore, if Vol(Q) > 1000#Q5/8n3/8, then

q ln(n/q)

Vol(Q)/24
6

3

125
· q3/8

n3/8
ln(n/q) = − 8

125
·
( q

n

)3/8

ln

[

( q

n

)3/8
]

6
8

125
,

because the function x 7→ −x ln x is 6 1. Consequently, Vol(Q)/24 > 10q ln(n/q), so
that (111) gives

P [e(Q, V ) 6 0.51E(e(Q, V ))] 6 exp [−10q ln(n/q)] 6

(

n

q

)−2

, (112)

because q 6 n/2. Finally, since

1

2

∑

v∈Q

dG(v) 6 e(Q, V ) 6
∑

v∈Q

dG(v),

(112) entails (110).

7.6 Proof of Lemma 2.7

We shall prove that w.h.p. for all sets X ⊂ V such that Vol(X) 6 n exp(−d̄min/C) the
bounds

e(X) 6 exp(−d̄min/(2C))n, (113)

e(X, V − X) 6 exp(−d̄min/(2C))n (114)

hold. Since
∑

v∈X dG(v) 6 2e(X) + e(V − X), (113) and (114) imply the assertion.
To establish (113), we prove that if

Vol(X) 6 n exp(−d̄min/C) but e(X) > n exp(−d̄min/(2C)),
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then the condition (12) is violated. As Lemma 2.4 shows that (12) is true w.h.p., this
implies e(X) 6 n exp(−d̄min/(2C)) w.h.p. Thus, assume that e(X) > n exp(−d̄min/(2C)).
Then

e(X) ln

(

e(X)

µ(X)

)

> n exp
(

−d̄min/(2C)
)

ln

(

d̄n2 exp(−d̄min/(2C))

Vol(X)2

)

> n exp
(

−d̄min/(2C)
)

. (115)

Moreover, as #X 6 Vol(X) by (7), our assumption Vol(X) 6 n exp(−d̄min/C) entails

#X ln(n/#X) 6 nd̄min exp(−d̄min/C)/C 6 n exp(−2d̄min/(3C)), (116)

prodived that d̄min > d0 for a large enough d0 > 0. Combining (115) and (116), we
conclude that

e(X) ln

(

e(X)

µ(X)

)

> exp(d̄min/(6C))#X ln(n/#X) > 300#X ln(n/#X),

and thus indeed (12) is violated.
In order to prove (114), we set Z = e(X, V − X). Clearly, E(Z) 6 Vol(X), and

Z is a sum of mutually independent Bernoulli random variables. Therefore, letting t =
exp

(

−d̄min/(4C)
)

n > E(Z) and applying the Chernoff bound (10), we obtain

P [Z > 2t] 6 P [Z > E(Z) + t] 6 exp

(

− t2

2(E(Z) + t/3)

)

6 exp (−t/6) . (117)

Thus,

P
[

∃X ⊂ V : Vol(X) 6 exp(−d̄min/C)n ∧ e(X, V − X) > 2t
]

6
∑

x6exp(−d̄min/C)n

P
[

∃X ⊂ V : #X = x ∧ Vol(X) 6 exp(−d̄min/C)n ∧ e(X, V − X) > 2t
]

(117)

6
∑

x6exp(−d̄min/C)n

(

n

x

)

exp (−t/6) 6
∑

x6exp(−d̄min/C)n

exp (2x ln(n/x) − t/6)

6 n exp

(

2n exp(−d̄min/C) ln

(

n

exp(−d̄min/C)n

)

− t/6

)

6 n exp
(

2d̄min exp(−d̄min/C)n/C − t/6
)

. (118)

Now, if d̄min > d0 for a large enough d0 > 0, then the last term in (118) is 6 n exp(−t/12).
Hence, if t >

√
n, then (118) yields

P
[

∃X ⊂ V : Vol(X) 6 exp(−d̄min/C)n ∧ e(X, V − X) > 2t
]

6 n exp(−
√

n/12)

= o(1). (119)

If, on the other hand, t = exp
(

−d̄min/(4C)
)

n <
√

n, then d̄min/C > 2 ln n, so that

#X 6 Vol(X) 6 exp(−d̄min/C)n < n−1 < 1,

whence X = ∅; thus, in the case t >
√

n we simply know e(X, V − X) = 0. Therefore,
(119) implies that (114) holds for all X w.h.p.
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