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Abstract

We discuss a problem posed by Ronald Graham about the minimum number,
over all 2-colorings of [1, n], of monochromatic {x, y, x + ay} triples for a ≥ 1. We
give a new proof of the original case of a = 1. We show that the minimum number
of such triples is at most n2

2a(a2+2a+3) + O(n) when a ≥ 2. We also find a new upper

bound for the minimum number, over all r-colorings of [1, n], of monochromatic
Schur triples, for r ≥ 3.

1 Introduction

The Schur numbers, s(r), denote the maximal integer n such that there exists an r-coloring
of [1, n − 1] that avoids a monochromatic solution to x + y = z. For example s(2) = 5
and s(3) = 14. s(5) is unknown but is conjectured to be 161.

The original question about the minimum number, over all 2-colorings of [1, n], of
monochromatic Schur triples was asked by Ronald Graham in 1997. It can be thought of
as a bigger scale version of Schur numbers. It was solved in 1998. The answer is n2

22
+O(n)

that is realized by coloring the first 4n
11

integers red, the next 6n
11

integers blue, and the
final n

11
integers red. The first two solutions were given by Robertson and Zeilberger [4]

and Schoen [5]. Later Datskovsky [1] found another proof.
Ronald Graham asked another question generalizing the original one. The question

was about the minimum number of monochromatic (x, y, x + ay) triples, a ≥ 2 on [1, n].
We discuss this problem in this paper.

In Section 2, we give a new simple proof of the original problem of finding the minimum
number, over all 2-colorings of [1, n], of monochromatic Schur triples. In Section 3, we talk
about the generalized problem asked by Graham. For this problem, we wrote a computer
program to find an optimal coloring for small n to see some patterns. Then we used a
newly found “greedy calculus” to obtain a “good” upper bound. The final step was to try
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to match the lower bound and upper bound of the problem. In Section 4, we also apply
the greedy calculus to the original question on Schur triples with r ≥ 3, to obtain a new
upper bound.

2 The minimum number, over all 2-colorings of [1, n],

of monochromatic Schur triples

2.1 A Greedy Algorithm for The Upper bound

It is natural to find examples of good colorings first. This example will give us an
upper bound. Then we try to show that this upper bound is also a lower bound.

We will show how to find an upper bound for the minimum number, over all 2-colorings
of [1, n], of monochromatic triples that are solutions of x + y = z. We will obtain this
upper bound by using the Greedy Algorithm. We denote the colors red and blue.

The general idea is to keep adding more new intervals with different colors so that,
each time, the overall coloring has the least number of monochromatic triples. For other
proofs of this original problem see [4], [1], [5].

First

We paint the first interval of length k red. We will have k2

4
monochromatic triple solutions

of x + y = z (we are assuming x ≤ y).

Note: O(k) terms are suppressed in this exposition.

Second

We paint the second interval blue. We want to find the length of the interval (with this
color) so that the overall number of the monochromatic triples is minimized.

Let the length of this interval be (1 + j)k (here j is the number we want to find).

The total number of monochromatic triples on the whole interval is now k2

4
+ j2k2

4
=

(1+j2)k2

4
. The total length is n = k + (1 + j)k = (2 + j)k.

So the total number of monochromatic triples in terms of n is
(1+j2)( n

2+j
)2

4
= (1+j2)

(2+j)2
n2

4
.

To find the minimum, we use calculus to get j = 1
2
. The total number of monochromatic

Schur triples is then n2

20
+ O(n).

So far so good. We have a coloring that paints the first k integers red, followed by painting
the next (1 + 1

2
)k integers blue.
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Third

Now we try to stick red at the end of the interval, and try to lower the overall number of
triples. Say the length of this interval is jk, where j is the number we want to find.The
total length is n = k + (1 + 1

2
)k + jk = ( 5

2
+ j)k.

Case 1: j ≤ 1
The total number of monochromatic Schur triples on the whole interval is k2

4
+ k2

16
+ j2k2

2
=

( 5
16

+ j2

2
)k2.

So the total number of monochromatic Schur triples in terms of n is
( 5

16
+ j2

2
) n2

( 5

2
+j)2

= 5+8j2

(5+2j)2
n2

4
.

To find the minimum, we again use calculus and get j = 1
4
. The total number of monochro-

matic triples in this case is n2

22
+ O(n).

Case 2: 1 ≤ j ≤ 5
2

The total number of monochromatic Schur triples on the whole interval is k2

4
+ k2

16
+ (j −

1
2
)k2 = (j − 3

16
)k2.

So the total number of monochromatic Schur triples in terms of n is (j − 3
16

) n2

( 5

2
+j)2

.

We again use calculus to find the minimum. We get j = 1. The total number of monochro-
matic triples in this case is 13

196
n2 + O(n).

Case 3: 5
2
≤ j

The total number of monochromatic Schur triples on the whole interval is k2

4
+ k2

16
+ (j −

1
2
)k2 +

(j− 5

2
)2k2

4
.

The total number of monochromatic Schur triples in terms of n is (2j2 − 2j + 11) n2

8( 5

2
+j)2

.

We again use calculus to find the minimum. We get j = 5
2
. The total number of monochro-

matic triples in this case is 37
400

n2 + O(n).

In conclusion, the total minimum is n2

22
+ O(n). The coloring for the whole interval is a

red interval of length equal to k, a blue interval of length equal to (1 + 1
2
)k and another

red interval of length equal to 1
4
k. k is such that the sum of these intervals is n, i.e.

k = n

( 5

2
+ 1

4
)

= 4n
11

.

Fourth

We try to lower the bound further by having a blue interval of length, say, jk at the end
of the previous interval. But now we get that the minimizing j is negative. So we stop.

As a conclusion, the optimal coloring with respect to the greedy algorithm is proportional
to [1, 3

2
, 1

4
], with colors [R, B, R] yielding that indeed the minimal number is n2

22
+ O(n).
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2.2 The Lower Bound

Finding a lower bound is, in general, the difficult part. However, in this case, it is
possible since we can turn the problem into a calculus problem. A similar technique was
used in [3].

Definition
Let Mχ(n) be the number of monochromatic Schur triples for a 2-coloring χ of [1, n].
Let Q be twice the number of non-monochromatic Schur triples for a 2-coloring of [1, n].

Divide the interval [1, n] into k consecutive intervals.
Let ri be the number of red points in the interval Ii.
Let bi be the number of blue points in the interval Ii.
Let Si,j be the number of non-monochromatic pairs in the square of Ii × Ij.

Let Ti,j be the number of non-monochromatic pairs in the triangle of Ii × Ij.

Note: ri + bi = n
k
.

Lemma 1) Mχ(n) = n2

4
− Q

2
+ O(n).

Proof: The total number of triples is

|monochromatic triples| + |non-monochromatic triples| = Mχ(n) + 1
2
Q.

Since the total number of triples is n2

4
+ O(n), we have Mχ(n) = n2

4
− Q

2
+ O(n). �

The plan is to find an upper bound of Q that will give a lower bound for Mχ(n).

Lemma 2) Q = |R| |B|+
1

2
(

∑

i+j<k

Si,j +

k
∑

i=1

Ti,k−i+1), where |R| =

k
∑

i=1

ri and |B| =

k
∑

i=1

bi.

Proof:

Q = |{(R, B), (B, R)| y − x ≥ 0}| + |{(R, B), (B, R)| x + y ≤ n, x ≥ y}|
= |{(R, B), (B, R)| y − x ≥ 0}| + 1

2
|{(R, B), (B, R)| x + y ≤ n}| .

Note that each non-monochromatic triple contributes two non-monochromatic pairs: for
example, (x, y, z) = (R, B, R) gives (x, y) = (R, B) and (y, z) = (B, R). The statement
of the lemma follows. �

Now we find an upper bound for Q. For each Ti,j we have two ways to bound it:
1) Ti,j ≤ area of the triangle = 1

2
(n

k
)2.

2) Ti,j ≤ Si,j.
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Example 1: k = 2, with the upper bound of T1,2, T2,1 using the areas of the triangles.
We have

Q = |R| |B| + 1
2
(S1,1 + T1,2 + T2,1).

≤ (r1 + r2)(b1 + b2) + r1b1 + n2

8
.

= (r1 + r2)(n − r1 − r2) + r1(
n
2
− r1) + n2

8
.

We use calculus to find a maximum of Q where 0 ≤ r1, r2 ≤ n
2
. The optimal solutions is

r1 = n
4

and r2 = n
4
.

We then get the maximum Q as 7n2

16
. This yields Mχ(n) ≥ n2

32
+ O(n). �

Example 2: k = 3, with the upper bound of T1,3, T3,1 using the areas of the triangles
and the upper bound of T2,2 using S2,2. We have

Q = |R| |B| + 1
2
(S1,1 + S1,2 + S2,1 + T1,3 + T2,2 + T3,1).

≤ (r1 + r2 + r3)(b1 + b2 + b3) + r1b1 + r1b2 + r2b1 + r2b2 + n2

18
.

We use calculus to find a maximum of Q where 0 ≤ r1, r2, r3 ≤ n
3
. One of the optimal

solution is r1 = 0, r2 = n
3

and r3 = n
6
.

This yields the maximum Q is 5n2

12
which leads to Mχ(n) ≥ n2

24
+ O(n). �

This is pretty nice. We can use calculus to get a decent lower bound of the problem. The
calculation can even be done by hand. The hope to match the upper bound and lower
bound is to try 11 intervals. This time we need a computer to help doing the calculation.

Example 3: k = 11,
We bound T2,10, T3,9, T4,8, T8,4, T9,3 and T10,2 by the area of each triangle which is n2

242
.

We bound Ti,12−i by Si,12−i, where i = 1, 5, 6, 7, 11.

We get eight optimal solutions to the maximum of Q. One of them is
[r1, r2, · · · , r11] = [ n

11
, n

11
, n

11
, n

11
, 0, 0, 0, 0, 0, 0, n

11
].

This yields the maximum of Q as 9n2

22
which gives Mχ(n) ≥ n2

22
+ O(n). �

Since the lower bound matches the upper bound, the problem is solved.

3 Generalized problem, x + ay = z, a ≥ 2

3.1 A Greedy Algorithm for Upper bounds

We will show how to find an upper bound for the minimum number, over all 2-colorings
of [1, n], of monochromatic triples that are solutions of x + ay = z, for a fixed integer
a ≥ 2 (we are no longer stipulate x ≤ y). We will obtain this upper bound by using the
Greedy Algorithm. The general idea is the same as in the previous section. We again call
the colors red and blue.
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First

We paint the first interval of length k red. We will have k2

2a
monochromatic triples as

solutions of x + ay = z.

Second

We paint the second interval blue. We want to find the length of the interval (with this
color) so that the overall number of monochromatic triples is minimum.

Let the length of this interval be (a + j)k (here j is the number we want to find).

The total number of monochromatic triples on the whole interval is now k2

2a
+ j2k2

2a
=

(1+j2)k2

2a
.

The total length n is k + (a + j)k = (1 + a + j)k.

So the total number of monochromatic triples in terms of n is
(1+j2)( n

1+a+j
)2

2a
= (1+j2)

(1+a+j)2
n2

2a
.

To find the minimum, we use calculus to get j = 1
a+1

. The total number of monochromatic

triples is then n2

2a(a2+2a+2)
.

So far so good. We have a coloring that paints the first k integers red, followed by painting
the next (a + 1

a+1
)k integers blue.

Third

Now we try to stick red at the end of the interval, and try to lower the overall number of
triples. Say the length of this interval is jk, where j is the number we want to find. The
total length n is k + (a + 1

a+1
)k + jk = (1 + a + 1

a+1
+ j)k.

Case 1: j ≤ a

The total number of monochromatic Schur triples on the whole interval is k2

2a
+ k2

2a(a+1)2
+

j2k2

2a
.

So the total number of monochromatic Schur triples in terms of n is
( 1

2a
+ 1

2a(a+1)2
+ j2

2a
)( n

(1+a+ 1

a+1
+j)

)2.

To find the minimum, we again use calculus to get j = 1
a+1

. The total number of

monochromatic triples is n2

2a(a2+2a+3)
.

Case 2: j ≥ a

The total number of monochromatic Schur triples on the whole interval is at least k2

2a
+

k2

2a(a+1)2
+ k2

2a
+ (j − a)k2.

The total number of monochromatic Schur triples in terms of n is
( 1

2a
+ 1

2a(a+1)2
+ 1

2a
+ (j − a))( n

1+a+ 1

a+1
+j

)2.
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To find the minimum, we again use calculus to get j = 3a4+7a3+4a2−2a−3
a(a+1)2

. The total number

of monochromatic triples is a(a+1)2n2

2(4a4+10a3+8a2−3)
.

The total number of triples in case 2 is always bigger than the one in case 1 for a ≥ 2. In
conclusion, the minimum total number of monochromatic triples relative to this method
is n2

2a(a2+2a+3)
. The coloring for the whole interval is a red interval of length equal to k,

a blue interval of length equal to (a + 1
a+1

)k and another red interval of length equal to
1

a+1
k. k is such that the sum of these intervals is n, i.e. k = n

(1+a+ 2

a+1
)
.

Fourth

We try to lower the bound even further by having a blue interval of length, say, jk at the
end of the previous interval. But now we get that the minimizing j is negative. So we stop.

As a conclusion, the optimal coloring is proportional to [1, a + 1
a+1

, 1
a+1

], with colors

[R, B, R] yielding that indeed the minimal number is n2

2a(a2+2a+3)
+ O(n).

3.2 Lower bounds

We will use a similar technique for the lower bound of the original problem. We find an
upper bound for non-monochromatic triples in [1, n]. This gives a lower bound for the
number of monochromatic triples.

We use the notation (R, B) and (B, R) for the non-monochromatic pair (x, y).

Definition:
Let |R| be the number of red points in [1, n].
Let |B| be the number of blue points in [1, n].

Lemma 3) |{(R, B), (B, R)| y > x, y − x is divisible by a}| ≤ |R||B|
a

.

Proof: Let |ri| = number of red points in the congruence class i (mod a).
Let |bi| = number of blue points in the congruence class i (mod a).
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We remark that ri + bi = n
a
, 1 ≤ i ≤ a and

∑a

i=1 ri = |R|.

∣

∣{(R, B), (B, R)| y > x, y − x is divisible by a}
∣

∣ −
|R| |B|

a

=
a

∑

i=1

ribi −
|R| |B|

a

=

a
∑

i=1

ri(
n

a
− ri) −

1

a

(

a
∑

i=1

ri

)(

n −

a
∑

i=1

ri

)

= −
a

∑

i=1

r2
i +

1

a
(

a
∑

i=1

ri)
2

≤ 0, by the Cauchy-Schwarz inequality.

Moreover, equality holds when r1 = r2 = · · · = ra. �

Let Qa be two times the number of non-monochromatic triples of solutions of x + ay = z

in a 2-coloring of [1, n].

Lemma 4) Qa ≤ |R||B|
a

+
∣

∣{(R, B), (B, R)| y−ax ≥ 0}
∣

∣+
∣

∣{(R, B), (B, R)| y+ax ≤ n}
∣

∣.

Proof:

Qa =
∣

∣{the non-monochromatic pair (x, y)| y > x and y − x is divisible by a}
∣

∣

+
∣

∣{the non-monochromatic pair (x, y)| y − ax ≥ 0}
∣

∣

+
∣

∣{the non-monochromatic pair (x, y)| y + ax ≤ n}
∣

∣

≤ |R||B|
a

+ |{(R, B), (B, R)| y − ax ≥ 0}| +
∣

∣{(R, B), (B, R)| y + ax ≤ n}
∣

∣

by Lemma 3. �

When the points on the x-axis and the y-axis are painted with either color red or blue,
|{(R, B), (B, R)| y + ax ≤ n}| is the number of non-monochromatic coordinate pairs in-
side the triangle 1 below.
Similarly |{(R, B), (B, R)| y − ax ≥ 0}| is the number of non-monochromatic coordinate
pairs inside the triangle 2.

Divide the interval [1, n] into k consecutive intervals.
Let ri be the number of red points in the interval Ii.
Let bi be the number of blue points in the interval Ii.
Let Si,j be the number of non-monochromatic pairs in the square Ii × Ij.

Let Ti,j be the number of non-monochromatic pairs in the intersection of each of the tri-
angle we consider and the square Ii × Ij.

Note: ri + bi = n
k
.
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y = ax

Triangle 1 Triangle 2

x x

y y

y = n − ax

Theorem 1) Q2 ≤
57n2

121
+ O(n).

We find an upper bound on Q2 by using calculus on the equation from the previous lemma.

The main part of calculating Q2 is to compute the maximum number of non-mono-
chromatic pairs in triangle 1 and triangle 2 in the pictures above. However there are
Ii × Ij for some i, j that intersect the triangle only partly. We denote them Ti,j.

For each Ti,j, in the triangle we consider, we have two ways to bound it,
1) Ti,j ≤ area of the intersection of triangle and the square Ii × Ij.
2) Ti,j ≤ Si,j = ribj + rjbi.

In this case, we use 11 intervals, k = 11.

In triangle 1, we bound T1,10, T2,9, T2,8, T3,7, T3,6, T5,3, T5,2 and T6,1 by the area of each
intersecting triangle. We bound T1,11, T4,5 and T4,4 by Si,j.
In triangle 2, we bound T2,4, T3,5, T3,6 and T6,11 by the area of each intersecting triangle.
We bound T1,1, T1,2, T2,3, T4,7, T4,8, T5,9 and T5,10 by Si,j.
We then run the Maple program. We get four optimal solutions to the maximum of Q2.
Two of them are [r1, r2, . . . , r11] = [ n

11
, n

11
, 0, n

11
, 0, 0, 0, 0, 0, n

11
, 0] and

[ n
11

, n
11

, 0, 0, 0, 0, 0, 0, n
11

, n
11

, n
11

]. The other two are the switching colors of the first two.

This yields an upper bound on Q2 of 57n2

121
+ O(n). �

Definition:

Let Mχ,a(n) be the number of monochromatic triples of solutions of x + ay = z for a
2-coloring χ of [1, n].

Corollary Mχ,2(n) ≥ 7n2

484
+ O(n).
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Proof: The total number of triples is

|monochromatic triples| + |non-monochromatic triples| = Mχ,a(n) +
Qa

2
.

Since the total number of triples is n2

2a
+ O(n), we have Mχ,a(n) ≥ n2

2a
− Qa

2
+ O(n). The

lower bound on Mχ,2(n) follows from the upper bound on Q2 from Theorem 1. �

Note:

1) For a = 3, we found, Mχ,3(n) ≥ n2

2268
+O(n). We ran the calculus program on 9 intervals

with a particular upper bound of Ti,j.

2) For case a ≥ 4, we could not find a positive lower bound for Mχ,a(n) yet. One of the
reasons is that the upper bound of Mχ,a(n) is very small.

4 The minimum number, over all r-coloring of [1, n],

of monochromatic Schur triples

4.1 A Greedy Algorithm for The Upper bounds

The method to obtain the upper bounds in this section is similar to the one used in
sections 2 and 3. In general we start with the first interval having color 1. Then we add
interval 2 with color 2 in the optimal way. Then we add the third interval starting with
color 1. If we get a positive solution, we move to the fourth interval. Otherwise we try
with color 3. We keep going on in this fashion until there is no color that gives a positive
solution.

Since there are many intervals involved in the computation, it is too much computa-
tion to do by hand. We wrote a computer program to help us compute the solutions for
each r-coloring. We list the colorings up to r = 5, as examples, below. The program is
available for download from the author’s web site.

Definitions:
C = list of the coloring in order.
L = length of each interval (proportional to each other) corresponding to each color in C.
N = number of monochromatic Schur triple according to C and L.

r = 1, C = [1], L = [1], N = n2

4
+ O(n).

r = 2, C = [1, 2, 1], L = [1, 3
2
, 1

4
], N = n2

22
+ O(n).

r = 3, C = [1, 2, 1, 3, 1, 2, 1], L = [1, 3
2
, 1

4
, 3, 1

8
, 487

440
, 47

440
], N = 47n2

6238
+ O(n)

∼ n2

132.7234
+ O(n).
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For r ≥ 4, the lengths of the intervals are fractions with huge numerators and denomina-
tors. So we omit C and L here.

r = 4, N = 69631222699293042329481527n2

67076984091396704809405315398
+ O(n) ∼ n2

963.3176
+ O(n).

r = 5, N ∼ n2

7610.0730
+ O(n).

For r = 6, the lengths of the intervals are even larger fractions. This caused Maple to slow
down. We waited for about 8 hours and we stopped. We did not get an answer. However
we were not really disappointed about this failure. The algorithm is more important.

4.2 Lower bounds

The method used to find a lower bound in the previous two sections could not be
adapted for r-colorings, r ≥ 3. We did not make any progress for a lower bound of
r-coloring cases.

5 Conclusion

We have new upper bounds for triples x + ay = z, a ≥ 2, in the 2-coloring case. We also
have new upper bounds for Schur triples x+y = z, for r-colorings, r ≥ 3 that considerably
improve those of [2]. But we failed to match the lower and upper bounds for these two
problems. There is a possibility that other arguments in other papers [1], [4] and [5] for
the lower bound used in the original problem can be adapted for the r-coloring problem.
But the details of such an argument seem complicated. We believe these upper bounds
are actually optimal. There might even be a beautiful simple way to solve it, but we failed
to find one (if it exists). We leave them as conjectures.

Conjectures:

1) The (asymptotic) number of minimum monochromatic triples of the form {x, y, x +
ay}, a ≥ 2 of 2-colorings of [1, n], are n2

2a(a2+2a+3)
+ O(n).

2) The (asymptotic) number of minimum Schur triples of r-colorings of [1, n], r ≥ 3, are
the same as the upper bounds obtained from the Greedy Algorithm.
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Appendix

A About the program

LowerBound(k, C)
input: the number of intervals k, list of types of upper bound C of Ti,k−i+1.
output: lower bound of Mχ(n), the upper bound of Q and the optimal solution of Q.

LowerBound2(k, C1, C2, a)
input: the number of intervals k, list of types of upper bound C1 and C2 of Ti,k−i+1

and number a in equation x + ay = z.
output: lower bound of Mχ,a(n), the upper bound of Qa and the optimal solution of Qa.

minAllST (n, r)
input: length of intervals n, number of colors r.
output: the r-coloring of all the interval of length n that has the least number of monochro-
matic Schur triples.

Ord(C, L, n)
input: the list of coloring, the list of length corresponding to each color in C, symbol n.
output: the number of the monochromatic Schur triples of order n2.

Zeil(r)
input: number of color r.
output: the coloring with length of each coloring and also the total number of triples of
order n2 obtained from the Greedy Algorithm.
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