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Abstract

In 1946, Paul Erdős posed a problem of determining the largest possible cardi-
nality of an isosceles set, i.e., a set of points in plane or in space, any three of which
form an isosceles triangle. Such a question can be asked for any metric space, and
an upper bound

(

n+2
2

)

for the Euclidean space E
n was found by Blokhuis [3]. This

upper bound is known to be sharp for n = 1, 2, 6, and 8. We will consider Erdős’
question for the binary Hamming space Hn and obtain the following upper bounds
on the cardinality of an isosceles subset S of Hn: if there are at most two distinct
nonzero distances between points of S, then |S| 6

(

n+1
2

)

+ 1; if, furthermore, n > 4,
n 6= 6, and, as a set of vertices of the n-cube, S is contained in a hyperplane, then
|S| 6

(

n
2

)

; if there are more than two distinct nonzero distances between points of
S, then |S| 6

(

n
2

)

+ 1. The first bound is sharp if and only if n = 2 or n = 5;
the other two bounds are sharp for all relevant values of n, except the third bound
for n = 6, when the sharp upper bound is 12. We also give the exact answer to
the Erdős problem for E

n with n 6 7 and describe all isosceles sets of the largest
cardinality in these dimensions.

1 Introduction

In 1946, Paul Erdős [9] asked the following question in the problem section of The Amer-
ican Mathematical Monthly:

Six points can be arranged in the plane so that all triangles formed by triples of these
points are isosceles. Show that seven points in the plane cannot be so arranged. What is
the least number of points in the space which cannot be so arranged?

Erdős’ question can be generalized to any metric space.

Definition 1.1. A nonempty subset S of a metric space M is called isosceles if, for all
x, y, z ∈ S, at least two of the distances between x and y, y and z, z and x are equal.
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In 1947, Kelly [11] showed that there is no isosceles set of cardinality 7 in E
2, and the

only (up to similarity) isosceles set of cardinality 6 is the set consisting of the vertices and
center of a regular pentagon. He also gave an example of an isosceles set of cardinality 8
in E

3. In 1962, Croft [6] showed that there is no isosceles set of cardinality 9 in E
3. In

2006, Kido [14] showed that Kelly’s example presents a unique (up to similarity) isosceles
set of cardinality 8 in E

3. A short proof of this result is given in Section 5.
The best known upper bound for the cardinality of an isosceles set S in E

n is due to
Blokhuis [3]: |S| 6

(

n+2
2

)

. He also showed that the problem of finding the biggest isosceles
sets can be in large part reduced to determining the biggest 2-distance sets. (See Theorem
2.15 below.)

Definition 1.2. A nonempty subset S of a metric space M is called an s-distance set if
there are at most s nonzero distances between points of S.

Bannai, Bannai and Stanton [2] and Blokhuis [3] showed independently that the car-
dinality of a s-distance set in E

n does not exceed
(

n+s

s

)

, so we have the same upper bound
for the cardinalities of both isosceles sets and 2-distance sets.

In 1997, Lisǒnek [15] determined the actual maximum size of 2-distance sets in E
n

for n 6 8 and found all maximum size 2-distance sets for n 6 7. Lisǒnek’s results
and Blokhuis’ Theorem (Theorem 2.15) give a good tool for determining maximum size
isosceles sets. In the table below, the second and third row give the maximum size and
the number of nonsimilar 2-distance sets of the maximum size in E

n, and the last two
rows give the same information for isosceles sets. Since the latter information does not
seem to be known for n > 3, we will justify it in Section 5.

Maximum size of 2-distance and isosceles sets in E
n

n 1 2 3 4 5 6 7 8

Max cardinality of 2-distance sets 3 5 6 10 16 27 29 45
Number of sets of max cardinality 1 1 6 1 1 1 1 > 1

Max cardinality of isosceles sets 3 6 8 11 17 28 30 45
Number of sets of max cardinality 1 1 1 2 1 1 1 > 1

As this table shows, Blokhuis’ upper bound is attained in dimensions 1 and 8 for 2-
distance sets and in dimensions 1, 2, 6, and 8 for isosceles sets.

The binary Hamming space Hn is the set of all binary words (a1, a2, . . . , an) of length
n with the distance between two words being the number of positions in which they differ.
The words can be interpreted as vertices of the n-dimensional unit cube (the Hamming
distance between two vertices is just the square of the Euclidean distance) or as subsets
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of the set [n] = {1, 2, . . . , n} (and then the Hamming distance between two sets is the
cardinality of their symmetric difference).

It follows from Delsarte [7, 8] and Noda [17] that the cardinality of a 2-distance subset

of Hn does not exceed 1 + n(n+1)
2

, and the only 2-distance subsets attaining this bound
are the entire H2, the set of all words of even weight in H5, and the set of all words of
odd weight in H5.

This result is somewhat disappointing because it shows that we in fact do not know
the maximum size of a 2-distance subset of Hn for n > 5. And it is not surprising. For
a seemingly easier case of 1-distance sets, while the upper bound n + 1 in E

n is attained
for every n, a 1-distance set of cardinality n + 1 in Hn exists if and only if there exists a
Hadamard matrix of order n + 1 (see, for instance, [13], Theorem 1.4.6). Thus, there are
infinitely many values of n for which the maximum size of a 1-distance set in Hn is not
known.

However, the maximum size of a 1-distance subset S of Hn with dim S = n − 1
is n, and it is attained for every n. (Take the intersection of Hn and the hyperplane
x1 + x2 + · · · + xn = 1.) In Section 3 we obtain an upper bound, similar to Delsarte’s,
for the cardinality of an s-distance set of dimension m < n in Hn and then determine,
for every n, the maximum size of a 2-distance subset S of Hn with dim S = n − 1. (Here
dim S is the dimension of the affine subspace of E

n generated by S.)
In Section 4 we will show that the cardinality of an isosceles subset S of Hn with more

than two distances between points of S does not exceed
(

n

2

)

+ 1. This bound is sharp for
n = 5 and for every n > 7. For n = 6, the maximum size of S is 12, and there is no such
a subset S for n 6 4.

2 Preliminaries

Throughout the paper, for any positive integer n, [n] denotes the set {1, 2, . . . , n} and Hn

denotes the set of all points (a1, a2, . . . , an) in the Euclidean space E
n with each coordinate

ai equal 0 or 1. We will reserve letter O for the point with all coordinates equal 0. For A =
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) in Hn, the Hamming distance d(A, B) between A
and B is defined as the number of indices i ∈ [n] such that ai 6= bi. Then AB =

√

d(A, B)
is the Euclidean distance between A and B. With each A ∈ Hn, we associate the subset
A = {i ∈ [n] : ai = 1} of [n] (denoted by the same letter A). If A, B ∈ Hn are regarded
as subsets of [n], then d(A, B) = |A△B| and |A| = d(A, ∅) =

∑n

i=1 ai. This immediately
implies that

|A| + |B| ≡ d(A, B) (mod 2). (1)

Since Hn is a finite set, every function f : Hn → R can be represented by a polynomial
in variables x1, x2, . . . , xn. We will denote as Pol(n, s) the set of all functions f : Hn → R

that can be represented by polynomials of degree at most s. We will regard Pol(n, s) as
a linear space over R. For any I ⊆ [n], let xI =

∏

i∈I xi (so x∅ = 1). Since polynomials
xi and xk

i , where k is a positive integer, represent the same function on Hn, the set
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{xI : I ⊆ [n], 0 6 |I| 6 s} is a basis of Pol(n, s) and therefore

dim Pol(n, s) =

s
∑

i=0

(

n

i

)

.

For s > 1, with each A = (a1, a2, . . . , an) ∈ Hn we associate the following function
fA ∈ Pol(n, s):

fA(x1, x2, .., xn) =
n
∑

i=1

(1 − 2ai)xi +
n
∑

i=1

ai.

If A is regarded as a subset of [n], then

fA(x1, x2, .., xn) =
∑

i6∈A

xi −
∑

i∈A

xi + |A|.

Observe that for A, B ∈ Hn

d(A, B) = fA(B). (2)

The next definition will be often applied to subsets of Hn regarded as subsets of E
n.

Definition 2.1. For any nonempty set X in E
n, dim X is the dimension of the smallest

affine subspace of E
n containing X. If X = ∅, then dim X = −1.

Thus, dim X = 0 if and only if |X| = 1. If S ⊆ Hn, then dim S = 1 if and only if
|S| = 2.

If a hyperplane π in E
n is given by an equation α0 +

∑n

i=1 αixi = 0, we will write
π = {α0 +

∑n

i=1 αixi = 0}. The next two lemmas are straightforward.

Lemma 2.2. If π is an m-dimensional affine subspace of E
n, then |Hn ∩ π| 6 2m.

Lemma 2.3. Let nonzero functions ϕ1, ϕ2 ∈ Pol(n, 1) be such that ϕ1ϕ2 = 0. Then there
exist c1, c2 6= 0 such that ϕ1 and ϕ2 are either c1xi and c2(xi − 1) for some i ∈ [n] or
c1(xi − xj) and c2(xi + xj − 1) for some distinct i, j ∈ [n]. Equivalently, if π1 and π2

are hyperplanes in E
n such that Hn ⊂ π1 ∪ π2, then π1 and π2 are either {xi = 0} and

{xi = 1} or {xi − xj = 0} and {xi + xj = 1}.

The next two lemmas provide useful restrictions on distances in 2-distance and isosceles
subsets of Hn.

Lemma 2.4. Let S be a 2-distance subset of Hn. If |S| > 2n + 3, then all distances
between points of S are even.

Proof. We obtain from (1) that, since |S| > 3, at least one nonzero distance in S is even.
Suppose the other nonzero distance is odd. For i = 0, 1, let Si = {A ∈ S : |A| ≡ i
(mod 2)}. Then (1) implies that S0 and S1 are 1-distance sets. The largest 1-distance set
in E

n is the set of n+1 vertices of a regular n-simplex. Therefore, |S| = |S0|+|S1| 6 2n+2,
a contradiction.
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Lemma 2.5. Let S be an isosceles subset of Hn. Then at most one distance between
points of S is odd.

Proof. Suppose S has two distinct odd distances, d1 and d2, and let d(A, B) = d1 and
d(C, D) = d2. We apply (1) and assume, without loss of generality, that |A| and |C| are
even, while |B| and |D| are odd. Then d(A, C) is even and therefore, d(B, C) = d(A, B) =
d1. Now △BCD is not isosceles, because it has an even side d(B, D) and two distinct
odd sides, a contradiction.

Proposition 2.6. For n 6 4, every isosceles subset of Hn is a 2-distance set.

Proof. If n = 1 or 2, then there are at most two nonzero distances in Hn. Lemma
2.5 implies that there is no isosceles set in H3 with distances 1, 2, and 3. Suppose S
is an isosceles set in H4 with more than two nonzero distances. Then, by Lemma 2.5,
the distances are 1, 2, and 4 or 2, 3, and 4. Let d(A, B) = 4 for A, B ∈ S. Without
loss of generality, we assume that A = (0, 0, 0, 0) and B = (1, 1, 1, 1). Then |C| = 2
for every other C ∈ S, and therefore there is no odd distance between points of S, a
contradiction.

Theorem 2.15 below indicates that spheres may play an important role in investigating
isosceles sets.

Definition 2.7. Let C ∈ Hn and let r be a positive integer. The sphere with center C
and radius r in Hn is the set Sp(C, r) = {X ∈ Hn : d(C, X) = r}.

Lemma 2.8. Let C = (c1, c2, . . . , cn) ∈ Hn and let r be a positive integer. Then

Sp(C, r) = Hn ∩ {(1 − 2c1)x1 + (1 − 2c2)x2 + · · ·+ (1 − 2cn)xn = r − |C|}.

Furthermore, spheres Sp(C1, r1) and Sp(C2, r2) of dimension n−1 with distinct centers
C1 and C2 are equal (as sets) if and only if d(C1, C2) = r1 + r2 = n.

Proof. The first statement of the lemma follows immediately from (2).
Let Ci = (ci1, ci2, . . . , cin) ∈ Hn, i = 1, 2, and let r1 and r2 be positive integers.

Suppose dim Sp(C1, r1) = dim Sp(C2, r2) = n − 1. Then Sp(C1, r1) = Sp(C2, r2) if and
only if

{

n
∑

j=1

(1 − 2c1j)xj = ri − |C1|
}

=

{

n
∑

j=1

(1 − 2c2j)xj = r2 − |C2|
}

.

Since each coordinate of normal vectors (1−2ci1, 1−2ci2, . . . , 1−2cin), i = 1, 2, equals ±1
and since C1 6= C2, we obtain that Sp(C1, r1) = Sp(C2, r2) if and only if 1−2c1j = 2c2j −1
for j = 1, 2, . . . , n and r1 −|C1| = |C2|− r2, i.e., d(C1, C2) = |C1|+ |C2| = r1 + r2 = n.

Corollary 2.9. If a subset S of Hn is contained in two distinct spheres, then dim S 6

n − 2.

Lemma 2.10. If a subset S of Hn is contained in three distinct spheres, then dim S 6

n − 3.
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Proof. If three distinct spheres have a nonempty intersection, they have distinct centers
C1, C2, and C3. Let Ci = (ci1, ci2, . . . , cin), i = 1, 2, 3, and let nij = 1 − 2cij. It suffices to
show that the rank of 3 × n matrix N = [nij ] equals 3.

Suppose that there are α, β 6= 0 such that n3j = αn1j + βn2j for j = 1, 2, . . . , n. Since
the spheres are distinct and have distinct centers, normal vectors of the corresponding
hyperplanes are neither equal, nor opposite. Since each nij is equal to 1 or −1, we can
find indices j and h such that n1j = n2j and n1h = −n2h. This implies that both α + β
and α − β must be equal to 1 or −1, which is not possible for nonzero α and β. Thus,
rank(N) = 3.

We will now state four powerful theorems that will be used in subsequent sections.
For the first two theorems we need the notion of an orthogonal array.

Definition 2.11. An N×n array M with entries from {0, 1} is called a binary orthogonal
array of strength t (for some t in the range 1 6 t 6 n) if every N×t subarray of M contains
each binary t-tuple the same number of times.

Theorem 2.12 (Delsarte [7, 8, 10]). If S is an s-distance subset of Hn, then |S| 6 N =
∑s

i=0

(

n

i

)

. Furthermore, if n > 2s and |S| = N , then the words of S form an N ×n binary
orthogonal array of strength 2s.

Theorem 2.13 (Rao, Noda [18, 17, 12]). If M is an N × n binary orthogonal array of

even strength 2s, then N >
∑s

i=0

(

n

i

)

. Furthermore, if s = 2 and N = 1 + n(n+1)
2

, then
either n = 2 and the rows of M are all words of H2 or n = 5 and the rows of M are all
words of even weight in H5 or all words of odd weight in H5.

The next theorem combines results of several important papers. For references see
Cameron and van Lint [4], Theorems 1.52 and 1.54. Note that these theorems provide a
much stronger result than the one below.

Theorem 2.14. Let S be a set of subsets of [n] such that |A| = |B| for all A, B ∈ S,
|S| =

(

n

2

)

, and |{|A ∩ B| : A, B ∈ S, A 6= B}| = 2 .Then at least one of the following is
true:

(i) S is the set of all 2-subsets of [n];
(ii) S is the set of all (n − 2)-subsets of [n];
(iii) n = 23.

The next theorem was originally stated for the Euclidean space but its proof in [3]
works in any metric space.

Theorem 2.15 (Blokhuis [3]). Let S be a finite isosceles set in a metric space M . If
there are more than two distinct nonzero distances between points of S, then there exist
subsets X and Y of S such that the following conditions are satisfied:

(i) S = X ∪ Y and X ∩ Y = ∅;
(ii) |X| > 2 and |Y | > 1;
(iii) every y ∈ Y is the center of a sphere containing the entire set X.
Furthermore, if M is the Euclidean space E

n, then the affine subspaces generated by
X and Y are orthogonal, and therefore, dim S > dim X + dim Y .
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3 s-distance sets in Hn

Throughout this section, S is a subset of Hn, |S| > 2, and d1, d2, . . . , ds are all distinct
nonzero distances between points of S.

For each A ∈ S, consider the following function FA ∈ Pol(n, s):

FA(x1, x2, . . . , xn) =
s
∏

i=1

(fA(x1, x2, . . . , xn) − di).

From (2),

FA(B) =

{

0 if A 6= B,

(−1)sd1d2 · · · ds if A = B,

for all A, B ∈ S.
This implies that the subset {FA : A ∈ S} of Pol(n, s) is linearly independent. (If

∑

A∈S αAFA = 0 for some real numbers αA, then, for any B ∈ S,
∑

A∈S αAFA(B) = 0,
so αBd1d2 · · · ds = 0, and then αB = 0.) Therefore, the cardinality of S does not exceed
the dimension of Pol(n, s). This proof of Delsarte’s Inequality for binary codes [7, 8] is
similar to the one given in [1].

Theorem 3.1. If S is an s-distance subset of Hn, then

|S| 6

s
∑

i=0

(

n

i

)

.

Example 3.2. Let n = 2s + 1 and let S be a set of 22s vertices of the n-dimensional unit
cube, no two of which are adjacent. (There are two such sets of vertices: one consists
of all vertices with even sum of coordinates, the other consists of all vertices with odd
sum of coordinates.) Then the nonzero distances in S are 2, 4, . . . , 2s and S attains the
Delsarte bound.

For s = 3 and n = 23, there is another subset of Hn attaining the Delsarte bound.

Example 3.3. Consider the binary Golay code G23. The words of the dual code form a
3-distance subset of H23 of cardinality 211 =

(

23
0

)

+
(

23
1

)

+
(

23
2

)

+
(

23
3

)

. [16]

If an s-distance subset of Hn has dimension less than n, a stronger inequality can be
obtained.

Theorem 3.4. Let S be an s-distance subset of Hn. If dim S = m, then

|S| 6

s
∑

i=0

(

m

i

)

.

Proof. We may assume that m < n and that S has exactly s nonzero distances and let
them be d1, d2, . . . , ds. The affine subspace U of E

n generated by S can be regarded as the
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solution set of a system of linear equations of rank n−m in variables x1, x2, . . . , xn. With-
out loss of generality, we assume that there exist linear polynomials ϕm+1, ϕm+2, . . . , ϕn

in variables x1, x2, . . . , xm such that

U = {(α1, . . . , αm, ϕm+1(α1, . . . , αm), . . . , ϕn(α1, . . . , αm)) : α1, . . . , αm ∈ R}.

For each A = (a1, a2, . . . , an) ∈ S, let A = (a1, a2, . . . , am) and

F A(x1, x2, . . . , xm) = FA(x1, . . . , xm, ϕm+1(x1, . . . , xm), . . . , ϕn(x1, . . . , xm)).

If A, B ∈ S, then A, B ∈ U and therefore

F A(B) = FA(B) =

{

0 if B 6= A,

(−1)sd1d2 · · · ds if B = A.

Hence, {F A : A ∈ S} is a linearly independent subset of Pol(m, s). Therefore,

|S| 6 dim Pol(m, s) =
s
∑

i=0

(

m

i

)

.

For s = 2 and m = n − 1, Theorem 3.4 gives |S| 6
(

n

2

)

+ 1. The next theorem
strengthens this result. First we need a lemma.

Lemma 3.5. Let S be a 2-distance set of cardinality
(

n

2

)

+ 1 in Hn with n > 3. Then S
is not contained in a hyperplane {xi − xj = 0}.

Proof. Suppose, without loss of generality, that S ⊂ {xn−1 − xn = 0}. Consider the
following subset B of Pol(n, 2):

B = {FA : A ∈ S} ∪ {xn−1 − xn} ∪ {xj(xn−1 − xn) : 1 6 j 6 n − 1}.

Claim. B is linearly independent.

Suppose
∑

A∈S

αAFA + β0(xn−1 − xn) +
n−1
∑

j=1

βjxj(xn−1 − xn) = 0.

Applying both sides to B ∈ S yields αB = 0, so

(β0 + β1x1 + · · ·+ βn−1xn−1)(xn−1 − xn) = 0.

Now Lemma 2.3 implies that βj = 0 for 0 6 j 6 n − 1.
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Since B is linearly independent and |B| = |S| + n = dim Pol(n, s), B is a basis of
Pol(n, s). We will expand in this basis monomials d1d2 and d1d2xj , 1 6 j 6 n − 1.
Applying both sides of each expansion to B ∈ S will yield the following equations:

∑

A∈S

FA(x1, x2, . . . , xn) + ϕ0(x1, x2, . . . , xn−1)(xn−1 − xn) = d1d2; (3)

∑

A∈S,A∋j

FA(x1, x2, . . . , xn) + ϕj(x1, x2, . . . , xn−1)(xn−1 − xn) = d1d2xj . (4)

In these equations, ϕ0, ϕ1, . . . , ϕn−1 are linear polynomials in x1, x2, . . . , xn−1.
Since S ⊂ {xn−1 − xn = 0}, each A ∈ S either contains {n − 1, n} or is disjoint from

this 2-set. Therefore, FA has the same coefficient of xixn−1 as of xixn, 1 6 i 6 n − 2,
FA has the same coefficient of xn−1 as of xn, and the coefficient of xn−1xn in FA equals 2.
Since each product ϕj · (xn−1 −xn), 0 6 j 6 n− 1, has opposite coefficients of xixn−1 and
xixn, 1 6 i 6 n − 2, we conclude that the functions ϕj can be written as follows:

ϕj(x1, x2, . . . , xn−1) = εj + ζjxn−1, 0 6 j 6 n − 1.

For any K ⊆ [n], let λ(K) denote the number of A ∈ S such that K ⊆ A. Comparing
the coefficients of xn−1xn in both sides of equations (3) and (4) implies that ζ0 = −2|S| and
ζj = −2λ(j) for j = 1, 2, . . . , n− 1. Comparing the coefficient of xn−1 to the coefficient of
xn in these equations implies that εj +ζj = −εj for 0 6 j 6 n−2 and εn−1+ζn−1−d1d2 =
−εn−1, so equations (3) and (4) can be rewritten as

∑

A∈S

FA = |S|(2xn−1xn − xn−1 − xn) + d1d2; (5)

∑

A∈S,A∋j

FA = λ(j)(2xn−1xn − xn−1 − xn) + d1d2xj , 1 6 j 6 n − 2; (6)

∑

A∈S,A∋n−1

FA = 2λ(n − 1)xn−1xn + (d1d2/2 + λ(n − 1))(xn−1 + xn). (7)

For distinct j, k ∈ [n−2], comparing the coefficients of xjxk in both sides of (6) yields
λ(j) = 2λ(j, k). Therefore, λ(k) = 2λ(k, j) = λ(j). Thus, |S ∩{xj = 1}| = |S ∩{xk = 1}|
for any distinct j, k ∈ [n − 2]. Fix j and k and consider the isometry Φ of E

n given by
Φ(x1, x2, . . . , xn) = (y1, y2, . . . , yn) where

yi =

{

xi if i 6= j,

1 − xj if i = j.

Then Φ is also an isometry of Hn, and therefore Φ(S) is a 2-distance subset of Hn∩{xn−1−
xn = 0} of cardinality

(

n

2

)

+1. This implies that |Φ(S)∩{xj = 1}| = |Φ(S)∩{xk = 1}| and
therefore |S ∩ {xj = 0}| = |S ∩ {xk = 1}|. Then |S ∩ {xj = 0}| = |S ∩ {xj = 1}| = |S|/2.
Thus, for 1 6 j < k 6 n − 2, λ(j) = |S|/2 and λ(j, k) = |S|/4.
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For 1 6 j 6 n − 2, comparing the coefficients of xjxn−1 in (6) yields λ(n − 1, j) =
1
2
λ(j) = |S|/4 and then comparing the coefficients of xjxn−1 in (7) yields λ(n − 1) =

2λ(j, n − 1) = |S|/2. Thus, λ(j) = |S|/2 for all j ∈ [n]. This implies

∑

A∈S

|A| =
n
∑

j=1

λ(j) =
n|S|

2
. (8)

Compare the coefficients of xn−1 in (5):

∑

A∈S,A∋n−1

(1 + d1 + d2 − 2|A|) +
∑

A∈S,A 6∋n−1

(1 − d1 − d2 + 2|A|) = −|S|;

∑

A∈S,A∋n−1

|A| −
∑

A∈S,A 6∋n−1

|A| = |S|.

The last equation and (8) imply that

∑

A∈S,A∋n−1

|A| =
(n + 2)|S|

4
. (9)

Compare now the coefficients of xn−1 in (7):

∑

A∈S,A∋n−1

(1 + d1 + d2 − 2|A|) =
d1d2

2
− |S|

2
;

∑

A∈S,A∋n−1

|A| =
(d1 + d2)|S|

4
− d1d2

4
.

The last equation and (9) imply that

(n2 − n + 2)(d1 + d2 − n − 2) = 2d1d2.

Therefore, d1 + d2 − n − 2 > 0. Besides, since d1 and d2 are distinct distances in Hn, we
may assume that d2 6 n and d1 6 n − 1, and then

d1 + d2 − n − 2 6
2n(n − 1)

n2 − n + 2
< 2.

Thus, d1+d2−n−2 = 1, so d1 and d2 satisfy equations d1+d2 = n+3 and 2d1d2 = n2−n+2.
However, this system of equations has no solution in integers, a contradiction.

Theorem 3.6. Let n > 3 and let S be a 2-distance subset of Hn∩π where π is a hyperplane
in E

n. Then |S| 6
(

n

2

)

, unless the following conditions are satisfied: (i) n = 3 or 6 and
(ii) π is {xi = 0} or {xi = 1}.
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Proof. Let d1 and d2 be distinct distances in S. We first assume that O ∈ π. Then we can
write π = {ϕ0(x1, x2, . . . , xn) = 0} where ϕ0(x1, x2, . . . , xn) = α1x1 + α2x2 + · · · + αnxn.
For j = 1, 2, . . . , n, let ϕj(x1, x2, . . . , xn) = xjϕ0(x1, x2, . . . , xn). Then, for 0 6 j 6 n and
for all A ∈ S, ϕj(A) = 0.

By Theorem 3.4, |S| 6
(

n

2

)

+ 1. Suppose |S| =
(

n

2

)

+ 1. Then

{FA : A ∈ S} ∪ {ϕj : 0 6 j 6 n}
is a linearly dependent subset of Pol(n, s). Let

∑

A∈S

γAFA +
n
∑

j=0

βjϕj = 0

where not all the coefficients γA, βj equal 0. Applying both sides of this equation to B ∈ S
yields γB = 0, and we obtain that

(β0 + β1x1 + · · ·+ βnxn)(α1x1 + · · · + αnxn) = 0. (10)

Lemmas 2.3 and 3.5 now imply that π = {xi = 0}.
Suppose now that O 6∈ π. Choose A = (a1, a2, . . . , an) ∈ S and consider the following

isometry Φ of E
n: Φ(x1, x2, . . . , xn) = (y1, y2, . . . , yn) where

yi =

{

1 − xi if ai = 1,

xi if ai = 0.

Then Φ(S) is a 2-distance subset of Hn ∩ Φ(π) and Φ(A) = O, so O ∈ Φ(π). Therefore,
Φ(π) = {xi = 0} for some i ∈ [n], and then π is {xi = 1} or {xi = 0}.

In either case, the set S can be regarded as a 2-distance subset of an (n−1)-dimensional
cube. By Theorem 3.1, |S| =

(

n

2

)

+1 only if n = 3 or n = 6. The proof is now complete.

Example 3.7. Let S be the set of all 2-subsets of [n]. Then S is a 2-distance set of
cardinality

(

n

2

)

in the intersection of Hn and {x1 + x2 + · · · + xn = 2}. Thus, the bound
obtained in Theorem 3.6 is sharp for every n > 2.

Example 3.8. Let S be the set of blocks of the unique 4-(23, 7, 1) design. Then S is a
2-distance set of cardinality

(

23
2

)

in the intersection of H23 and {x1 + x2 + · · ·+ xn = 7}.
Example 3.9. The following 10 points in H5∩{x1+x2+x3 = x4+x5} form a 2-distance set:
(00000), (10010), (10001), (01010), (01001), (00110), (00101), (11011), (10111), (01111).

The following generalization of Theorem 3.6 can be obtained in a similar manner.

Theorem 3.10. Let n > s and let S be an s-distance subset of Hn ∩ π where π is a
hyperplane of E

n. If there exists A ∈ Hn such that d(A, X) > s for all X ∈ Hn ∩ π, then
|S| 6

(

n

s

)

.

The following corollary is well known [19].

Corollary 3.11. For k > s, if S is a set of k-subsets of [n], and |{|A∩B| : A, B ∈ S, A 6=
B}| = s, then |S| 6

(

n

s

)

.

Proof. The set S is an s-distance subset of Hn lying in the hyperplane π = {x1 + x2 +
· · ·+ xn = k} and d(O, X) = k for all X ∈ Hn ∩ π.
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4 Isosceles sets in Hn with more than two distances

The main tool in this section is the following extension of Theorem 2.15.

Definition 4.1. Let S be a nonempty subset of a metric space. A partition (S1, S2, . . . ,
Sk) of S is said to be a complete decomposition of S if it satisfies the following conditions:

(i) for 1 6 i 6 k, Si is a 2-distance set;
(ii) for 1 6 i 6 k − 1, |Si| > 2; |Sk| > 1;
(iii) for 1 6 i < j 6 k, each A ∈ Sj is the center of a sphere containing Si.

Proposition 4.2. Any finite isosceles set S in a metric space M admits a complete
decomposition. Furthermore, if M = E

n and (S1, S2, . . . , Sk) is a complete decomposition
of S, then dim S > dim S1 + dim S2 + · · · + dim Sk.

Proof. Let S be a finite isosceles set of cardinality N . We will prove the theorem by
induction on N . The statement is trivial if N = 1 and also if S is a 2-distance set.
Suppose S is an isosceles set of cardinality N with more than two distances and assume
that both statements of the proposition are true for isosceles sets of cardinality less than
N .

Let X and Y be subsets of S provided by Theorem 2.15 with the least possible cardi-
nality of X. Then X is a 2-distance set. Indeed, if X has more than two nonzero distances,
then Theorem 2.15 can be applied to X: X = X1 ∪ Y1, and then S = X1 ∪ (Y1 ∪ Y ) with
sets X1 and Y1 ∪ Y satisfying Theorem 2.15 and with |X1| < |X|.

If M = E
n, then dim S > dim X + dim Y .

Since |Y | < N , we apply the induction hypothesis to Y . If (S2, . . . , Sk) is a complete
decomposition of Y , we put S1 = X and obtain a complete decomposition (S1, S2, . . . , Sk)
of S.

If M = E
n, then dim S > dim S1 + dim Y >

∑k

i=1 dim Si.

By Lemma 2.6, for n 6 4, there is no isosceles set in Hn with more than two distances.
For every n > 5, the set S consisting of [n] and all 2-subsets of [n] is an isosceles subset
of Hn of cardinality

(

n

2

)

+ 1. If n 6= 6, this subset has three distinct nonzero distances: 2,
4, and n−2. For n = 6, the set S consisting of the empty set, the set {1, 2, 3, 4, 5, 6}, and
of all 3-subsets of {1, 2, 3, 4, 5, 6}, containing 1, is an isosceles set of cardinality 12 with
three distinct nonzero distances: 2, 3, and 4. As the next two theorems show, these are
examples of isosceles sets of maximum size with more than two distances. But first we
need the following lemma.

Lemma 4.3. Let S be a 2-distance set of cardinality
(

n

2

)

+ 1 in Hn, n > 3. Let O ∈ S,
and let S∗ = S \ {O}. Then S∗ is not contained in a hyperplane {xi + xj = 1}.

Proof. The statement is true for n = 3. If n > 4, then |S| > n+1, so S is not a 1-distance
set. Let d1 and d2 be the nonzero distances in S, d1 < d2.

Suppose, without loss of generality, that S∗ ⊂ {xn−1+xn = 1}. Then |A∩{n−1, n}| =
1 and |A∩[n−2]| ∈ {d1−1, d2−1} for all A ∈ S∗. Consider polynomials ϕ0 = xn−1+xn−1,
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ϕj = xjϕ0 (1 6 j 6 n − 2), ϕn−1 = xn−1xn, and

ϕn =

(

n−2
∑

i=0

xi − d1 + 1

)(

n−2
∑

i=0

xi − d2 + 1

)

.

Then ϕj(A) = 0 for 0 6 j 6 n and for all A ∈ S∗.
Consider the following subset B of Pol(n, 2):

B = {FA : A ∈ S∗} ∪ {ϕj : 0 6 j 6 n}.

Claim. B is linearly independent.

Suppose
∑

A∈S∗

αAFA +

n
∑

j=0

βjϕj = 0.

Applying both sides to B ∈ S∗ yields αB = 0, so
∑n

j=0 βjϕj = 0. For 1 6 i 6 n − 1,
comparing the coefficients of xixn in both sides of this equation implies that βi = 0.
Therefore, β0ϕ0 + βnϕn = 0. Comparing the coefficients of xn in this equation yields
β0 = 0 and then βn = 0, so B is linearly independent.

Since |B| = |S∗| + n + 1 = dim Pol(n, 2), B is a basis of Pol(n, 2). For 1 6 i 6 n, we
will expand d1d2xi in this basis. Applying both sides of this expansion to B ∈ S∗ would
show that the coefficient of FB in this expansion equals 1 if i ∈ B and it equals 0 if i 6∈ B.
Therefore,

d1d2xi =
∑

A∈S∗,A∋i

FA +
n
∑

j=0

γijϕj .

Let 1 6 k 6 n − 2. Since each A ∈ S∗ contains exactly one element of {n − 1, n}, the
coefficients of xkxn−1 and xkxn in each FA add up to 0. However, these monomials occur
neither in d1d2xi, nor in ϕj with j 6= k, and they occur in ϕk with the same coefficient
γik. Therefore, γik = 0 for 1 6 i 6 n and 1 6 k 6 n − 2, and we have

d1d2xi =
∑

A∈S∗,A∋i

FA + ρiϕ0 + σiϕn−1 + τiϕn. (11)

For any K ⊆ [n], let λ(K) denotes the number of sets A ∈ S containing K.
For i = 1, 2, . . . , n − 2, we compare the coefficients of xixn−1 in both sides of (11):

0 = 2λ(i, n − 1) − 2(λ(i) − λ(i, n − 1)), so

λ(i) = 2λ(i, n − 1) and, similarly, λ(i) = 2λ(i, n). (12)

For i = n−1 and for i = n, we compare the coefficients of x1xn−1 and x1xn, respectively,
in both sides of (11) to obtain

λ(n − 1) = 2λ(1, n − 1) = λ(1), λ(n) = 2λ(1, n) = λ(1). (13)
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For i = 1, 2, . . . , n− 2, we expand d1d2xixn in the basis B. Applying both sides of this
expansion to B ∈ S∗ would show that the coefficient of FB equals 0 or 1, and it equals 1
if and only if {i, n} ⊆ B. Therefore,

d1d2xixn =
∑

A∈S∗,A∋i,n

FA +
n
∑

j=0

εijϕj. (14)

If i, n ∈ A, then xixn occurs in FA with coefficient 2 and, since n − 1 6∈ A, xixn−1 occurs
in FA with coefficient −2. Comparing the coefficients of xixn−1 and also the coefficients
of xixn in both sides of (14) yields

0 = −2λ(i, n) + εii, d1d2 = 2λ(i, n) + εii.

Therefore, λ(i, n) = d1d2/4, and then (12) and (13) imply that λ(i) = d1d2/2 for i =
1, 2, . . . , n.

For i = 1, 2, let Ni = |{A ∈ S∗ : |A| = di}|. Then N1 + N2 =
(

n

2

)

, and counting in two
ways pairs (A, j) with A ∈ S∗ and j ∈ A yields another equation: N1d1+N2d2 = nd1d2/2.
From these equations, we find

N1 =
nd2(n − d1 − 1)

2(d2 − d1)
, N2 =

nd1(d2 + 1 − n)

2(d2 − d1)
.

Therefore, d2 > n − 1. Since no set A ∈ S∗ contains {n − 1, n}, we have d2 6= n, so d2 =
n−1. Then N2 = 0 and therefore S∗ lies in the hyperplane π = {x1 +x2 + · · ·+xn = d1}.
Since n > 3, we have π 6= {xn−1 + xn = 1}. This implies that dim S∗ 6 n − 2. Then, by
Theorem 3.4,

(

n

2

)

= |S∗| 6
(

n−1
2

)

+ 1, a contradiction.

Theorem 4.4. Let S be an isosceles subset of Hn with more than two nonzero distances.
Then |S| 6

(

n

2

)

+ 1.

Proof. Due to Lemma 2.6, we have n > 5. Let (S1, S2, . . . , Sk) be a complete decomposi-
tion of S. Since S has more than two distances, k > 2. For i = 1, 2, . . . , k, let mi = dim Si

and let m =
∑k

i=1 mi. Then m 6 dim S 6 n. Let m = (m1, m2, . . . , mk).
Note that m1, m2, . . . , mk−1 are positive while mk is nonnegative. Since each Si is a

2-distance set, Theorem 3.4 implies that

|S| 6 k +
k
∑

i=1

(

mi + 1

2

)

.

Thus, it suffices to prove that

k +

k
∑

i=1

(

mi + 1

2

)

6

(

n

2

)

. (15)

In each of the following six cases, we either prove (15) or prove directly that |S| 6
(

n

2

)

.
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Case 1. k > 5 and mk > 1.

Let X1, X2, . . . , Xk be pairwise disjoint sets with |Xi| = mi and let X be the union of
these sets. Let X0 = Xk. For i = 1, 2, . . . , k, choose ai ∈ Xi and let Ei be the set of all
2-subsets of Xi−1 ∪ {ai}. Let

F = {{ai, aj} : 1 6 i < j 6 k, j − i 6≡ ±1 (mod k)}.

The sets E1, E2, . . . , Ek, F are pairwise disjoint subsets of the set of all 2-subsets of X.
Since |Ei| =

(

mi+1
2

)

and |F | = k(k − 3)/2 > k, (15) follows.

Case 2. k = 4 and mk > 1.

Let Xi, ai, Ei, and X be the same as in Case 1. Let F1 = {{x, y} : x ∈ X1, y ∈ X3}
and F2 = {{x, y} : x ∈ X2, y ∈ X4}. Since E1, E2, . . . , Ek, F1, F2 are pairwise disjoint,

m1m3 + m2m4 +

k
∑

i=1

(

mi + 1

2

)

6

(

m

2

)

.

If m 6 n − 1, then 2 +
(

m

2

)

6 (n2 − 3n + 6)/2 6
(

n

2

)

. Since m1m3 + m2m4 > 2, (15)
follows. If m = n > 6, then m1m3 + m2m4 > 4 and (15) follows. If m = n = 5, then
either side of (15) equals 10.

Case 3. k = 3 and mk > 1.

Let Xi, ai, Ei, and X be the same as in Case 1 and let a0 = a3. For i = 1, 2, 3, let
Fi = {{x, ai−1} : x ∈ Xi, x 6= ai}, so |Fi| = mi − 1. We obtain

m − 3 +

3
∑

i=1

(

mi + 1

2

)

6

(

m

2

)

.

If m > 6, then (15) follows. If m 6 n − 1, then
(

m

2

)

− m + 6 6
(

n−1
2

)

+ 3 6
(

n

2

)

, so again
(15) follows.

Suppose m = n = 5. If m1, m2, and m3 are 1, 2, and 2 (in any order), then (15)
holds. Suppose m1, m2, and m3 are 1, 1, and 3. Since the maximum size of a 2-distance
set in E

3 is 6 (see [6]) and no line meets Hn in more than two points, we obtain that
|S| 6 2 + 2 + 6 =

(

5
2

)

.

Case 4. k = 2, mk > 1, and m 6 n − 1.

We have
(

m1 + 1

2

)

+

(

m2 + 1

2

)

=

(

m + 1

2

)

− m1m2.
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If m 6 n − 2, then 2 +
(

m+1
2

)

− m1m2 6
(

n−1
2

)

+ 1 6
(

n

2

)

. If m = n − 1, then

2 +
(

m+1
2

)

− m1m2 6
(

m+1
2

)

=
(

n

2

)

. In either case, (15) follows.

Case 5. k = 2, m = n, m1 > 2, and m2 > 2.

We have

2 +

(

m1 + 1

2

)

+

(

m2 + 1

2

)

= 2 +

(

n + 1

2

)

− m1m2 6 2 +

(

n + 1

2

)

− 2(n − 2).

If n > 6, then 2 +
(

n+1
2

)

− 2(n − 2) 6
(

n

2

)

. If n = 5, then m1 and m2 are 2 and 3. The
maximum size of a 2-distance set in E

3 is 6. Since the maximum size of a 2-dimensional
subset of Hn is 4 (Lemma 2.2), we have |S| 6 10 =

(

5
2

)

.

Case 6. k = 2, m1 6 n − 1, and m2 = 0.

Then the left hand side of (15) does not exceed 2 +
(

n−1
2

)

<
(

n

2

)

.

If k > 3 and mk = 0, we let S ′ = S1∪S2∪. . .∪Sk−1. Since |S| = |S ′|+1, the inequality
|S| 6

(

n

2

)

+1 will follow, whenever one of Cases 1–5 applies to S or to S ′. This leaves the
following five cases open: m = (n− 1, 1, 0), m = (1, n− 1, 0), m = (n, 0), m = (n− 1, 1),
and m = (1, n − 1).

Case 7. m = (n − 1, 1, 0).

Let S2 = {C1, C2} and S3 = {C3}. Then S1 is contained in spheres with centers C1,
C2, and C3. Lemma 2.8 implies that at least two of these spheres are not equal and then
Corollary 2.9 implies that m1 6 n − 2, a contradiction.

Case 8. m = (1, n − 1, 0).

Let S1 = {C1, C2} and S3 = {C3}. For 1 6 j 6 3, let Cj = (cj1, . . . , cjn). Since every
point of S2 is equidistant from C1 and C2, S2 is contained in the perpendicular bisector π1

of segment C1C2 in E
n. On the other hand, S2 is contained in a sphere of Hn with center

C3. Since dim S2 = n−1, this sphere is contained in a unique hyperplane π2. Hyperplanes
π1 and π2 have normal vectors with coordinates c1i − c2i and 1− 2c3i, respectively. Since
c1i, c2i, c3i ∈ {0, 1}, these normal vectors are collinear if and only if C3 = C1 or C3 = C2.
Thus π1 and π2 are distinct hyperplanes, and then m2 6 n − 2, a contradiction.

Case 9. m = (n, 0).

Then S1 lies in a hyperplane (other that xi = 0 or xi = 1), and Theorem 3.6 implies
that |S1| 6

(

n

2

)

, so |S| 6
(

n

2

)

+ 1.
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Case 10. m = (n − 1, 1).

Let S2 = {C1, C2}. Then S1 is contained in spheres with distinct centers C1 and
C2. Since dim S1 = n − 1, these spheres lie in the same hyperplane and then Lemma
2.8 implies that d(C1, C2) = n. Without loss of generality, we assume that C1 = O
and C2 is the point with all coordinates equal 1. If A ∈ S1, then d(A, C1) < n and
d(A, C2) < n. Since △C1AC2 is isosceles, we have d(A, C1) = d(A, C2) = n/2. Therefore,
n is even and |A| = n

2
for all A ∈ S1. If d1 and d2 are distinct nonzero distances in S1,

then |A ∩ B| ∈ {(n − d1)/2, (n − d2)/2} for all distinct A, B ∈ S1. By Corollary 3.11,
|S1| 6

(

n

2

)

. If |S1| =
(

n

2

)

, then S1 has to satisfy (i), (ii), or (iii) of Theorem 2.14. However,
S1 does not satisfy (i) or (ii), because n > 5, and S1 does not satisfy (iii), because n is
even. Therefore, |S1| 6

(

n

2

)

− 1, and then |S| 6
(

n

2

)

+ 1.

Case 11. m = (1, n − 1).

Without loss of generality, we assume that S1 = {O, C} where C is a point with the
first k coordinates equal 1 and the remaining coordinates equal 0. Then S2 lies in the
perpendicular bisector π of segment OC of E

n and π = {x1 + x2 + · · · + xk = k/2}.
Therefore, k is even.

If k = n, then |A| = n/2 for all A ∈ S2 and, as in the previous case, we apply Corollary
3.11 and Theorem 2.14 to obtain that |S2| 6

(

n

2

)

− 1. Thus, if k = n, then |S| 6
(

n

2

)

+ 1.
Since k is even, we now assume that 2 6 k 6 n−1. Since S2 ⊂ π, Theorem 3.6 implies

that |S2| 6
(

n

2

)

. If |S2| 6
(

n

2

)

− 1, then |S| 6
(

n

2

)

+ 1, so we assume that |S2| =
(

n

2

)

.
Let d1 and d2 be distinct nonzero distances in S2 and let

T1 = {A ∈ S2 : |A| 6∈ {d1, d2}}, T2 = {B ∈ S2 : |B| ∈ {d1, d2}}.

If A ∈ T1 and B ∈ T2, then d(O, A) 6= d(O, B) and d(O, A) 6= d(A, B). Therefore,
d(A, B) = d(O, B) = |B|. Thus, each B ∈ T2 is the center of a sphere containing S1 ∪ T1.

If A1, A2 ∈ T1, then d(O, A1) 6= d(A1, A2) and d(O, A2) 6= d(A1, A2). Therefore,
d(O, A1) = d(O, A2). Then d(C, A1) = d(C, A2), so each point of S1 is the center of a
sphere containing T1. If |T1| > 2 and |T2| > 1, then (T1, S1, T2) is a complete decomposi-
tion of S. Since it consists of three sets, we apply one of the previous cases to obtain that
|S| 6

(

n

2

)

+ 1. If T2 = ∅, then (T1, S1) is a complete decomposition of S, and we refer to
Case 10.

If |T1| = 1, then S1 ∪ T1 is a 2-distance set and therefore, (S1 ∪ T1, T2) is a complete
decomposition of S. Since dim(S1 ∪ T1) = 2, we again refer to previous cases.

Suppose now that T1 = ∅, i.e., |A| ∈ {d1, d2} for all A ∈ S2. For A ∈ S, we
consider, as before, polynomials FA = (fA − d1)(fA − d2). Note that fO =

∑n

i=1 xi. Let

ϕ0 =
∑k

i=1 xi − k/2 and, for j = 1, 2, . . . , n, let ϕj(x1, x2, . . . , xn) = xjϕ0(x1, x2, .., xn).
Then ϕj(A) = 0 for 0 6 j 6 n and for all A ∈ S2. Let

B = {FA : A ∈ S2 ∪ {O}} ∪ {ϕj : 0 6 j 6 n}.
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Since |B| > dim Pol(n, 2), the set B is linearly dependent. Let

∑

A∈S2∪{O}

αAFA +
n
∑

j=0

βjϕj = 0

with not all αA, βj equal 0. Applying both sides of this equality to B ∈ S2 yields αB = 0,
so we have

αO

(

n
∑

i=0

xi − d1

)(

n
∑

i=0

xi − d2

)

+

(

β0 +

n
∑

j=1

βjxj

)(

k
∑

i=1

xi −
k

2

)

= 0. (16)

Suppose k < n − 1. Then comparing the coefficients of xn−1xn in both sides of (16)
yields αO = 0. Therefore, Hn is contained in the union of hyperplanes {β0 +

∑n

j=1 βjxj =

0} and {
∑k

i=1 xi = k/2}. Lemma 2.3 implies that k = 2, i.e., π = {x1 + x2 = 1}. Since
S2 ∪ {O} is a 2-distance set of cardinality

(

n

2

)

+ 1, this contradicts Lemma 4.3.
Thus, k = n − 1. Then n is odd. Comparing the coefficients of xn in (16) yields

αO(1−d1−d2)−βnk/2 = 0 and comparing the coefficients of xn−1xn yields 2αO +βn = 0.
From these two equations, αO(n − d1 − d2) = 0.

Suppose d1 + d2 6= n. Then αO = 0, so

(

β0 +
n
∑

j=1

βjxj

)(

n−1
∑

i=1

xi −
n − 1

2

)

= 0,

and then Lemma 2.3 implies that all βj equal 0.
Thus, d1+d2 = n. Since n is odd, Lemma 2.4 implies that |S2| 6 2n+2, so

(

n

2

)

6 2n+2,
n = 5. Since d(O, C) = 4, we have d(O, A) > 2 for all A ∈ S2. Therefore, d1 and d2 are
2 and 3. Since the distance between two sets of the same cardinality is even, S2 contains
at most four 2-subsets of {1, 2, 3, 4, 5} and at most four 3-subsets. Then |S| <

(

5
2

)

, a
contradiction.

For every n > 2, the set S = {A ∈ Hn : |A| = 2 or 0} is a 2-distance set of cardinality
(

n

2

)

+ 1. This implies the following result.

Corollary 4.5. For any isosceles subset S of Hn there exists a 2-distance subset T of Hn

such that |S| 6 |T |.

As the table in Section 1 shows, a similar result for E
n is not true.

Theorem 4.6. Let S be an isosceles subset of H6 and let there be at least three distinct
nonzero distances between points of S. Then |S| 6 12.

Proof. Suppose there are points in S at distance 6. Without loss of generality, let O
and Z = (1, 1, 1, 1, 1, 1) be in S. Then |A| = 3 for every A ∈ S \ {O, Z}. The set
{X ∈ H6 : |X| = 3} of cardinality 20 consists of 10 pairs with distance 6 in each pair. If A
and B from the same pair are in S, then every other C ∈ S \{O, Z} has to be at distance
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3 from A and B. However, (1) would imply that d(A, C) is even. Therefore, S \ {O, Z}
contains at most one element from each pair and |S| 6 12.

Suppose the maximum distance between points of S is 5. Without loss of generality,
let O and Y = (1, 1, 1, 1, 1, 0) be in S. Since no point of Hn is equidistant from O and Y ,
every point of S has to be at distance 5 from O or from Y . This implies that |S| 6 12.

Suppose there are points in S at distance 1. Without loss of generality, let O ∈ S and
X = (1, 0, 0, 0, 0, 0) ∈ S. Then every point of S has to be at distance 1 from O or from
X. This implies that |S| 6 12.

Suppose now that the nonzero distances between points of S are 2, 3, and 4. For
i = 0, 1, let Si = {A ∈ S : |A| ≡ i (mod 2)}. Then (1) implies that S0 and S1 are
2-distance sets and d(A, B) = 3 whenever A ∈ S0 and B ∈ S1.

Since |A| + |B| 6= 6 for any A, B ∈ S, Lemma 2.8 implies that spheres Sp(A, 3) and
Sp(B, 3) (with distinct A and B) are not equal. Therefore, if |Si| > 3 for i = 0 and for
i = 1, then each Si is contained in the intersection of three distinct spheres. Now Lemma
2.10 implies that dim Si 6 3. Since the cardinality of a 2-distance set in E

3 does not
exceed 6 (see [6]), we obtain that |S| 6 12.

If |Si| = 1 for i = 0 or for i = 1, then S1−i is contained in a sphere of radius 3. Such a
sphere is isometric to Sp(O, 3) and therefore consists of 10 pairs of points with distance
6 between the points of each pair. Therefore, S1−i contains at most one point from each
pair and we obtain that |S| 6 11.

Suppose |S0| = 2. Since S1 consists of 3-subsets of {1, 2, 3, 4, 5, 6} no two of which are
complementary, we have |S1| 6 10 and therefore |S| 6 12.

Suppose |S1| = 2. If we replace each element of cardinality 4 in S0 by its complement,
we obtain a set S ′

0 of 2-subsets of {1, 2, 3, 4, 5, 6}, each at distance 3 from both elements
of S1. Without loss of generality, we assume that the elements of S1 are (i) {1, 2, 3}
and {1, 2, 4} or (ii) {1, 2, 3} and {1, 4, 5}. In either case, there are only five 2-subsets of
{1, 2, 3, 4, 5, 6} at distance 3 from both elements of S1, so |S| 6 7.

Thus, in all cases, |S| 6 12.

5 Isosceles sets in E
n for n 6 8

In this section we determine the maximum size of an isosceles subset of E
n for n 6 8 and

describe all isosceles sets of the maximum size for n 6 7. Throughout the section, we will
use the maximum size of 2-distance sets given in the second row of the table in Section
1. For A, B ∈ E

n, AB denotes the distance between A and B.

Obviously, any maximum size isosceles set in E
1 consists of the endpoints and the

midpoint of a segment.
For n = 2, we refer to Kelly [11] who proved that there is no isosceles set of cardinality

7 in E
2 and that any isosceles set of cardinality 6 consists of the vertices and center of a

regular pentagon.

In cases n = 3, 4, and 7 we will use the following lemma.
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Lemma 5.1. Let S be a 2-distance subset of E
n and let d be a nonzero distance between

points of S. Let Γ be the graph whose vertex set is S and two vertices form an edge if and
only if the distance between the vertices equals d. Suppose Γ is a strongly regular graph
with parameters (v, k, λ, µ) such that v > 2k + 1. Suppose further that dim S = n − 1,
dim(S \ {A}) = n − 1 for all A ∈ S, and at least one of the following three conditions is
satisfied:

(i) v 6 3k − 2λ and v 6 3k − 2µ + 2;
(ii) v 6 3k − 2λ and 2k > 2µ + n − 1;
(iii) v 6 3k − 2µ + 2 and 2k > 2λ + n + 1.
Let P ∈ E

n be such that S ∪ {P} is an isosceles set of dimension n. Then either
S ∪ {P} is a 2-distance set or S lies on a sphere centered at P .

Proof. Suppose S ∪ {P} is not a 2-distance set and let S ∪ {P} = X ∪ Y with X and Y
satisfying Theorem 2.15. If Y = {P}, then S lies on a sphere centered at P . Suppose
Y 6= {P}.

Since v > 2k + 1, any sphere, whose center is in S, contains at most v − k − 1 points
of S, so |S ∩ X| 6 v − k − 1. Let A, B ∈ S ∩ X, A 6= B. If {A, B} is an edge of
Γ, then |S ∩ Y | 6 λ + (v − 2k + λ) and we have v = |S| 6 2v − 3k + 2λ − 1. Thus,
v > 3k− 2λ + 1. If {A, B} is not an edge, then |S ∩ Y | 6 µ + (v − 2k + µ− 2). Therefore
v = |S| 6 2v − 3k + 2µ − 3, and we have v > 3k − 2µ + 3.

If (ii) is satisfied, then {A, B} is not an edge of Γ for all A, B ∈ S ∩ X, so S ∩ X is a
1-distance set. Therefore, |S ∩X| 6 dim(S ∩X) + 1 6 n, |S ∩ Y | > v − n, and we obtain
that v − 2k + 2µ − 2 > v − n, a contradiction.

If (iii) is satisfied, then {A, B} is an edge of Γ for all distinct A, B ∈ S ∩X, so S ∩X
is again a 1-distance set, and we obtain that v − 2k + 2λ > v − n, a contradiction.

If (i) is satisfied, then |S ∩ X| = 1, i.e., X = {A, P} with A ∈ S. Let π be the
hyperplane containing S. Since S \ {A} generates π and since each point of S \ {A} has
to be equidistant from A and P , the hyperplane π passes through the midpoint of the
segment PA. However, this is impossible because P 6∈ π and A ∈ π.

Corollary 5.2. Let S be the set of vertices of a regular pentagon in a plane π and let a
point P 6∈ π be such that S ∪ {P} is an isosceles set. Then the orthogonal projection of
P onto π is the center of the pentagon.

Proof. Let d being the smaller of the two distances in S. Then the graph Γ is strongly
regular with parameters (5, 2, 0, 1). Therefore, P is equidistant from at least three points
of T , so the orthogonal projection of P onto π is the center of T .

For n > 3, let S be an isosceles set in E
n. If there are more than two nonzero distances

between points of S, we have S = X ∪ Y with X and Y satisfying Theorem 2.15. We
will always choose |X| as small as possible, and then X is a 2-distance set (see the proof
of Proposition 4.2). If dim X = 1, then X lies on a line and on a sphere, and therefore
|X| = 2.
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Let n = 3 and let |S| > 8. Then S is not a 2-distance set. Since X is 2-distance set,
we have |X| 6 6, and therefore dim Y 6= 0.

Suppose dim Y = 1. Then dim X 6 2, so |Y | 6 3 and |X| 6 5. Therefore, |S| = 8,
|X| = 5, and |Y | = 3. Thus, X is the set of vertices of a regular pentagon in a plane
π and Y consists of the endpoints P and Q and the midpoint M of a segment of a line
l ⊥ π. Let O be the center of X. Since P and Q are equidistant from the vertices of the
pentagon, l ∩ π = {O}. Let OP > OQ. Then, for A ∈ X, we derive from an isosceles
△PAQ that AM < AP and MP < AP . Therefore, AM = MP . This implies M = O,
and then the remaining 7 points of S lie on a sphere with center O.

Let dim Y = 2 and let π be the plane containing Y . Then |Y | 6 6, dim X = 1, and
therefore |X| = 2. Thus, |Y | = 6 and Y consists of the vertices of a regular pentagon
and its center O. Corollary 5.2 implies that the orthogonal projection of either point of
X onto π is O, so we have the same configuration of 8 points as in the previous paragraph.

Let n = 4. The cardinality of a 2-distance set in E
4 does not exceed 10, and it equals

10 only for the set of the midpoints of the edges of a regular 4-dimensional simplex [15].
Adjoining the center of the simplex, we obtain an isosceles set of cardinality 11.

Let S be an isosceles set in E
4 with more than two distances and let |S| > 11. If

dim Y = 0, then Y consists of the center of a sphere containing X and, since X is a
2-distance set of cardinality 10, the set S of cardinality 11 has just been described.

If dim Y = 1, then dim X 6 3, so |X| 6 6, |Y | 6 3, and |S| < 11.
If dim Y = 3, then |Y | 6 8. Since dim X = 1, we have |X| = 2, so |S| < 11.
Let dim Y = 2. Then dim X 6 2, so |X| 6 5, |Y | 6 6. Therefore, |S| = 11, X is the

set of vertices of a regular pentagon and Y consists of the vertices and center of a regular
pentagon. Let O be the intersection point of orthogonal planes π1 and π2 generated by X
and Y , respectively. Corollary 5.2 implies that O is the center of both pentagons. There-
fore, △AOB with A ∈ X and B ∈ Y \ {O} is isosceles, and then OA = OB. Thus, S
consists of the vertices of two congruent regular pentagons, lying in orthogonal planes, and
their common center. This is the second example of an isosceles set of cardinality 11 in E

4.

Let n = 5. If S is a 2-distance set, then |S| 6 16; furthermore, if |S| = 16, then S
is a set of vertices of a 5-dimensional cube, no two of which are adjacent [15]. There are
two such set for the given 5-cube, but they are symmetric with respect to the center of
the cube. (See Example 3.2.) Let S have more than two distances. If dim Y = 4, then
|S| 6 2+11 = 13; if dimY = 3, then |S| 6 5+8 = 13; if dim Y = 2, then |S| 6 6+6 = 12;
if dim Y = 1, then |S| 6 10 + 3 = 13. If Y is a singleton, then it is the center of a cube
and X consists of 16 vertices of that cube, no two of which are adjacent, so |S| = 17, and
this is the only (up to similarity) isosceles set of this size in E

5.

Let n = 6 and let S have more than two distances. If dim Y = 0, 1, 2, 3, 4, 5, then |S| is
bounded by 27+1 = 28, 16+3 = 19, 10+6 = 16, 6+8 = 14, 5+11 = 16, or 2+17 = 19,
respectively. Since a unique 2-distance set of 27 points lies on a sphere ([15]), adjoining
the center of this sphere yields a unique isosceles set of cardinality 28. Due to Coxeter
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[5], this set can be described as the 2-distance subset T of E
8 below adjoined by a point

Q = (1
3
, 1

3
, 1

3
, 1

3
, 1

3
, 1

3
, 1, 1), the center of a sphere, containing T .

T = {Ai, Bi : 1 6 i 6 6} ∪ {Cij : 1 6 i < j 6 6},
where Ai has ith and 7th coordinate equal 2 and the other six coordinates equal 0, Bi

has ith and 8th coordinate equal 2 and the other six coordinates equal 0, and Cij has ith

and jth coordinate equal −1 and the other six coordinates equal 1. Thus, |T | = 27 and
the distance between any two distinct points of T is 4 or

√
8. Since all 28 points lie in

hyperplanes
∑6

i=1 xi = 2 and x7 + x8 = 2, we have dim(T ∪ {Q}) = 6.

Let n = 7. The only 2-distance set of cardinality 29 in E
7 consists of 28 points lying

on a sphere and one point off this sphere [15]. Let S have more than two distances. If
dim Y = 0, then, since X is a 2-distance set in E

7, lying on a sphere, we have |X| 6 28,
so |S| 6 29. For dim Y = 1, 2, 3, 4, 5, 6, the cardinality of S is bounded by 27 + 3 = 30,
16 + 6 = 22, 10 + 8 = 18, 6 + 11 = 17, 5 + 17 = 22, or 2 + 28 = 30, respectively. Thus,
the cardinality of an isosceles set in E

7 does not exceed 30.
Suppose |X| = 27 and |Y | = 3. Then X is a unique 2-distance set lying in a hyperplane

π and Y consists of the endpoints P and P ′ and the midpoint of a segment of a line l ⊥ π.
As in the case n = 3, one can show that l intersects π at the center Q of the sphere (in
π) containing X and that PQ = P ′Q is the radius of the sphere.

Suppose now that |X| = 2 and |Y | = 28. Let X = {P, P ′}. We assume that S
is embedded in E

8 and that Y = T ∪ {Q} with the 2-distance set T and its center Q
described in the case n = 6. We apply Lemma 5.1 to T and P with d being the larger of
the two distances in T . The graph Γ is strongly regular with parameters (27, 10, 1, 5), so
the conditions of the lemma are satisfied.

If P is the center of a sphere containing T , then the orthogonal projection of P onto
the 6-flat containing T is Q. Since all triangles PQR with R ∈ T are isosceles, we derive
that PQ = QR, so we have obtained the same configuration of 30 points as above.

Suppose T ∪{P} is a 2-distance set. It suffices to show that P is equidistant from a set
of points of T which generates the 6-flat π containing T . Note that since the cardinality
of a 2-subset of E

5 does not exceed 16, any 17 points of T generate π. (However, the 16
points at distance

√
8 from a point of T generate a 5-flat.)

Let P = (p1, p2, ..., p8) and p = {p1, p2, ..., p8}. For distinct i, j, k, l ∈ {1, 2, 3, 4, 5, 6},
PAi = PAj ⇔ PBi = PBj ⇔ pi = pj , (17)

PAi < PAj ⇔ PBi < PBj ⇔ pi = pj + 2;

PAi = PBi ⇔ p7 = p8, (18)

PAi < PBi ⇔ p7 = p8 + 2,

PAi > PBi ⇔ p7 = p8 − 2;

PCij = PCik ⇔ pj = pk, (19)

PCij > PCik ⇔ pj = pk + 2;
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PCij = PCkl ⇔ pi + pj = pk + pl, (20)

PCij > PCkl ⇔ pi + pj = pk + pl + 2.

From (17), |p| = 1 or 2. If |p| = 1, then (17) and (19) imply that T contains at least
21 points at the same distance from P . These 21 points generate the 6-flat π.

Suppose |p| = 2. Then (18) implies that p7 = p8. Now (20) implies that one of the
elements of p occurs only once among the coordinates pi, 1 6 i 6 6, so let it be p1. Then
P is equidistant from the 10 points Ai, Bi, 2 6 i 6 6, and P is equidistant from the 10
points Cij, 2 6 i < j 6 6. Observe that points A2, A3, A4, A5, A6, and B6 generate a
5-flat, and this 5-flat is the intersection of hyperplanes {x1 + x2 + x3 + x4 + x5 + x6 = 2},
{x7 + x8 = 2}, and {x1 = 0}. Since none of the points Cij lies in {x1 = 0}, the 10 points
Ai, Bi, 2 6 i 6 6, and any one point Cjk generate the 6-flat π.

Thus, E
7 contains a unique (up to similarity) isosceles set of cardinality 30.

If n = 8, then there exists a 2-distance set of cardinality
(

10
2

)

= 45 (see [15]). It is
an isosceles set meeting Blokhuis’ bound. Theorem 2.15 implies that any isosceles set of
cardinality 45 in E

8 has to be a 2-distance set.
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