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Abstract

The purpose of this paper is to complete the study, begun in the first author’s

PhD thesis, of the topology of the poset of generalized noncrossing partitions associ-

ated to real reflection groups. In particular, we calculate the Euler characteristic of

this poset with the maximal and minimal elements deleted. As we show, the result

on the Euler characteristic extends to generalized noncrossing partitions associated

to well-generated complex reflection groups.

1 Introduction

We say that a partition of the set [n] := {1, 2, . . . , n} is noncrossing if, whenever we have
{a, c} in block A and {b, d} in block B of the partition with a < b < c < d, it follows that
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A = B. For an introduction to the rich history of this subject, see [1, Chapter 4.1]. We
say that a noncrossing partition of [mn] is m-divisible if each of its blocks has cardinality
divisible by m. The collection of m-divisible noncrossing partitions of [mn] — which we
will denote by NC(m)(n) — forms a join-semilattice under the refinement partial order.
This structure was first studied by Edelman in his PhD thesis; see [7].

Twenty-six years later, in his own PhD thesis [1], the first author defined a general-
ization of Edelman’s poset to all finite real reflection groups. (We refer the reader to [8]
for all terminology related to real reflection groups.) Let W be a finite group generated
by reflections in Euclidean space, and let T ⊆ W denote the set of all reflections in the
group. Let ℓT : W → Z denote the word length in terms of the generators T . Now
fix a Coxeter element c ∈ W and a positive integer m. We define the set of m-divisible

noncrossing partitions as follows:

NC(m)(W ) =

{

(w0; w1, . . . , wm) ∈ W m+1 : w0w1 · · ·wm = c and

m
∑

i=0

ℓT (wi) = ℓT (c)

}

. (1.1)

That is, NC(m)(W ) consists of the minimal factorizations of c into m + 1 group elements.
We define a partial order on NC(m)(W ) by setting

(w0; w1, . . . , wm) 6 (u0; u1, . . . , um) if and only if ℓT (ui) + ℓT (u−1
i wi) = ℓT (wi)

for 1 6 i 6 m. (1.2)

In other words, we set (w0; w1, . . . , wm) 6 (u0; u1, . . . , um) if for each 1 6 i 6 m the
element ui lies on a geodesic from the identity to wi in the Cayley graph (W, T ). We place
no a priori restriction on the elements w0, u0, however it follows from the other conditions
that ℓT (w0) + ℓT (w−1

0 u0) = ℓT (u0). We note that the poset is graded with rank function

rk(w0; w1, . . . , wm) = ℓT (w0), (1.3)

hence the element (c; ε, . . . , ε) ∈ W m+1 — where ε ∈ W is the identity — is the unique
maximum element. When m = 1 there is a unique minimum element (ε; c) but for m > 1
there are many minimal elements. It turns out that the isomorphism class of the poset
NC(m)(W ) is independent of the choice of Coxeter element c. Furthermore, when W is
the symmetric group Sn we recover Edelman’s poset NC(m)(n).

In this note we are concerned with the topology of the order complex ∆(NC(m)(W )),
which is the abstract simplicial complex whose d-dimensional faces are the chains π0 <

π1 < · · · < πd in the poset NC(m)(W ). In particular, we would like to compute the
homotopy type of this and some related complexes. The answers involve the following
quantity, called the positive Fuß–Catalan number:

Cat
(m)
+ (W ) :=

n
∏

i=1

mh + di − 2

di
. (1.4)
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Here n is the rank of the group W (the number of simple reflections generating W ), h is
the Coxeter number (the order of a Coxeter element), and the integers d1, d2, . . . , dn are the
degrees of W (the degrees of the fundamental W -invariant polynomials). The prototypical
theorem we wish to generalize is the following result Athanasiadis, Brady and Watt.

Theorem 1 ([2]). The order complex of NC(1)(W ) with its unique maximum and mini-

mum elements deleted has reduced Euler characteristic (−1)n Cat
(1)
+ (W ), and it is homo-

topy equivalent to a wedge of Cat
(1)
+ (W ) many (n − 2)-dimensional spheres.

The first author was able to prove the following theorem for general m.

Theorem 2 ([1], Theorem 3.7.7). The order complex of NC(m)(W ) with its unique max-

imum element deleted has reduced Euler characteristic (−1)n−1 Cat
(m−1)
+ (W ), and it is

homotopy equivalent to a wedge of Cat
(m−1)
+ (W ) many (n − 1)-dimensional spheres.

However, if we set m = 1 in Theorem 2, we find that the reduced Euler characteristic
of NC(1)(W ) with its maximum element deleted is (−1)n−1 Cat

(0)
+ (W ) = 0, which is

not surprising because NC(1)(W ) has a unique minimum element, which is a cone point
for the order complex, and hence this complex is contractible. Thus, Theorem 2 is not a
generalization of Theorem 1. To truly generalize Theorem 1, we must delete the maximum
element and all minimal elements of NC(m)(W ). The first author made a conjecture in
this case [1, Conjecture 3.7.9], and our main result settles this conjecture.

Theorem 3. Let W be a finite real reflection group of rank n and let m be a positive
integer. The order complex of the poset NC(m)(W ) with maximal and minimal elements
deleted has reduced Euler characteristic

(−1)n
(

Cat
(m)
+ (W ) − Cat

(m−1)
+ (W )

)

, (1.5)

and it is homotopy equivalent to a wedge of this many (n − 2)-dimensional spheres.

A different, independent proof of this theorem was found simultaneously by Tomie in
[13]. While our proof proceeds by explicitly enumerating the faces of the order complex
involved in the above theorem, Tomie’s proof is based on the EL-shellability of this order
complex, a result due to Thomas and the first author [1, Cor. 3.7.3], which makes it
possible to compute the Euler characteristic by enumerating certain chains in this order
complex.

In Section 2 we will collect some auxiliary results and in Section 3 we will prove the
main theorem.

In [3, 4], Bessis and Corran have shown that the notion of noncrossing partitions
extends rather straightforwardly to well-generated complex reflection groups. It is not
done explicitly in [1], but from [3, 4] it is obvious that the definition of generalized non-
crossing partitions in [1] can be extended without any effort to well-generated complex
reflection groups, the same being true for many (most?) of the results from [1] (cf. [1,
Disclaimer 1.3.1]). In Section 4, we show that the assertion in Theorem 3 on the Euler
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characteristic of the truncated order complex of generalized noncrossing partitions con-
tinues to hold for well-generated complex reflection groups. We suspect that this is also
true for the topology part of Theorem 3, but what is missing here is the extension to
well-generated complex reflection groups of the result of Hugh Thomas and the first au-
thor [1, Cor. 3.7.3] that the poset of generalized noncrossing partitions associated to real
reflection groups is shellable. This extension has so far not even been done for [2], the
special case of the poset of noncrossing partitions.

2 Auxiliary results

In this section we record some results that are needed in the proof of the main theorem.
The first result is Theorem 3.5.3 from [1].

Theorem 4. The cardinality of NC(m)(W ) is given by the Fuß–Catalan number for reflec-

tion groups

Cat(m)(W ) :=

n
∏

i=1

mh + di

di
, (2.1)

where, as before, n is the rank, h is the Coxeter number and the di are the degrees of W .
Equivalently, given a Coxeter element c, the number of minimal decompositions

w0w1 · · ·wm = c with ℓT (w0) + ℓT (w1) + · · ·+ ℓT (wm) = ℓT (c)

is given by Cat(m)(W ).

Since the numbers h − di + 2 are a permutation of the degrees [8, Lemma 3.16], we
have an alternate formula for the positive Fuß–Catalan number:

Cat
(m)
+ (W ) =

n
∏

i=1

mh + di − 2

di
= (−1)n Cat(−m−1)(W ).

Our next result is Theorem 3.6.9(1) from [1].

Theorem 5. The total number of (multi-)chains

π1 6 π2 6 . . . 6 πl

in NC(m)(W ) is equal to Cat(ml)(W ).

And, moreover, we have the following.

Lemma 6. The number of (multi-)chains π1 6 π2 6 . . . 6 πl in NC(m)(W ) with rk(π1) =
0 is equal to Cat(ml−1)(W ).
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Proof. If π1 = (w
(1)
0 ; w

(1)
1 , . . . , w

(1)
m ) then the condition rk(π1) = 0 is equivalent to w

(1)
0 = ε.

We note that Theorem 3.6.7 of [1], together with the fundamental map between multi-
chains and minimal factorizations [1, Definition 3.2.3], establishes a bijection between
multichains π1 6 · · · 6 πl in NC(m)(W ) and elements (u0; u1, . . . , uml) of NC(ml)(W ) for

which u0 = w
(1)
0 . Since ℓT (ε) = 0, we wish to count factorizations u1u2 · · ·uml = c in

which ℓT (u1) + · · · + ℓT (uml) = ℓT (c). By the second part of Theorem 4, this number is
equal to Cat(ml−1)(W ), as desired.

A stronger version of rank-selected chain enumeration will be important in the proof
of our main theorem in Section 3. Given a finite reflection group W of rank n, let
RW (s1, s2, . . . , sl) denote the number of (multi-)chains

π1 6 π2 6 . . . 6 πl−1

in NC(m)(W ), such that rk(πi) = s1+s2+· · ·+si, i = 1, 2, . . . , l−1, and s1+s2+· · ·+sl = n.
The following lemma says that zeroes in the argument of RW ( · ) can be suppressed except
for a zero in the first argument.

Lemma 7. Let W be a finite real reflection group of rank n and let s1, s2, . . . , sl be non-
negative integers with s1 + s2 + · · · + sl = n. Then

RW (s1, . . . , si, 0, si+1, . . . , sl) = RW (s1, . . . , si, si+1, . . . , sl) (2.2)

for i = 1, 2, . . . , l. If i = l, equation (2.2) must be interpreted as

RW (s1, . . . , sl, 0) = RW (s1, . . . , sl).

Proof. This is obvious as long as i < l. If i = l, then, by definition, RW (s1, . . . , sl, 0)
counts all multi-chains π1 6 π2 6 . . . 6 πl with rk(πi) = s1 + s2 + · · ·+ si, i = 1, 2, . . . , l.
In particular, rk(πl) = s1+s2+· · ·+sl = n, so that πl must be the unique maximal element
(c; ε, . . . , ε) of NC(m)(W ). Thus we are counting multi-chains π1 6 π2 6 . . . 6 πl−1 with
rk(πi) = s1 +s2 + · · ·+si, i = 1, 2, . . . , l−1, and, again by definition, this number is given
by RW (s1, . . . , sl).

Finally we quote the version of inclusion-exclusion given in [12, Sec. 2.1, Eq. (4)] that
will be relevant to us.

Proposition 8. Let A be a finite set and w : A → C a weight function on A. Furthermore,
let S be a set of properties an element of A may or may not have. Given a subset Y of
S, we define the functions f=(Y ) and f>(Y ) by

f=(Y ) :=
∑

a

′
w(a),

where
∑ ′ is taken over all a ∈ A which have exactly the properties Y , and by

f>(Y ) =
∑

X⊇Y

f=(X).
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Then

f=(∅) =
∑

Y ⊆S

(−1)|Y |f>(Y ). (2.3)

3 Proof of Main Theorem

Let c denote the unique maximum element (c; ε, . . . , ε) of NC(m)(W ) and let mins denote
its set of minimal elements, the cardinality of which is Cat(m−1)(W ). The truncated poset

NC(m)(W )\
(

{c} ∪ mins
)

is a rank-selected subposet of NC(m)(W ), the latter being shellable due to [1, Cor. 3.7.3].
If we combine this observation with the fact (see [5, Theorem 4.1]) that rank-selected
subposets of shellable posets are also shellable, we conclude that NC(m)(W )\

(

{c}∪mins
)

is shellable. Since it is known that a pure d-dimensional shellable simplicial complex
∆ is homotopy equivalent to a wedge of χ̃(∆) d-dimensional spheres (this follows from
Fact 9.19 in [6] and the fact that shellability implies the property of being homotopy-
Cohen-Macaulay [6, Sections 11.2, 11.5]), it remains only to compute the reduced Euler
characteristic χ̃( · ) of (the order complex of) NC(m)(W )\

(

{c} ∪ mins
)

.
For a finite real reflection group W of rank n, let us again write RW (s1, s2, . . . , sl) for

the number of (multi-)chains
π1 6 π2 6 . . . 6 πl−1

in NC(m)(W ) with rk(πi) = s1 + s2 + · · ·+ si, i = 1, 2, . . . , l−1, and s1 + s2 + · · ·+ sl = n.
By definition, the reduced Euler characteristic is

−1 +

n
∑

l=2

(−1)l
∑

s1+···+sl=n
s1,...,sl>0

RW (s1, s2, . . . , sl). (3.1)

The sum over s1, s2, . . . , sl in (3.1) could be easily calculated from Theorem 5, if there
were not the restriction s1, s2, . . . , sl > 0. In order to overcome this difficulty, we appeal to
the principle of inclusion-exclusion. More precisely, for a fixed l, in Proposition 8 choose
A = {(s1, s2, . . . , sl) : s1 + s2 + · · · + sl = n}, w

(

(s1, s2, . . . , sl)
)

= RW (s1, s2, . . . , sl), and
S = {Si : i = 1, 2, . . . , l}, where Si is the property of an element (s1, s2, . . . , sl) ∈ A to
satisfy si = 0. Then (2.3) becomes

∑

s1+···+sl=n
s1,...,sl>0

RW (s1, s2, . . . , sl) =
∑

I⊆{1,...,l}

(−1)|I|
∑

s1+···+sl=n
s1,...,sl>0

si=0 for i∈I

RW (s1, s2, . . . , sl).
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In view of Lemma 7, the right-hand side may be simplified, so that we obtain the equation

∑

s1+···+sl=n
s1,...,sl>0

RW (s1, s2, . . . , sl) =
∑

I⊆{1,...,l}

1∈I

(−1)|I|
∑

s2+···+sl−|I|+1=n

s2,...,sl−|I|+1>0

RW (0, s2, . . . , sl−|I|+1)

+
∑

I⊆{1,...,l}

1/∈I

(−1)|I|
∑

s1+···+sl−|I|=n

s1,...,sl−|I|>0

RW (s1, s2, . . . , sl−|I|)

=

l
∑

j=1

(−1)j

(

l − 1

j − 1

)

∑

s2+···+sl−j+1=n

s2,...,sl−j+1>0

RW (0, s2, . . . , sl−j+1)

+

l
∑

j=0

(−1)j

(

l − 1

j

)

∑

s1+···+sl−j=n

s1,...,sl−j>0

RW (s1, s2, . . . , sl−j).

By Lemma 6, the sum over s2, . . . , sl−j+1 on the right-hand side is equal to
Cat((l−j)m−1)(W ), while by Theorem 5 the sum over s1, . . . , sl−j is equal to
Cat((l−j−1)m)(W ). If we substitute all this in (3.1), we arrive at the expression

− 1 +

n
∑

l=2

(−1)l

(

l
∑

j=1

(−1)j

(

l − 1

j − 1

)

Cat((l−j)m−1)(W )

+

l−1
∑

j=0

(−1)j

(

l − 1

j

)

Cat((l−j−1)m)(W )

)

(3.2)

for the reduced Euler characteristic that we want to compute. We now perform the
replacement l = j + k in both sums. Thereby we obtain the expression

− 1 − Cat(−1)(W ) − Cat(−m)(W ) + Cat(0)(W )

+
n
∑

k=0

(−1)k

(

n−k
∑

j=1

(

j + k − 1

j − 1

)

Cat(km−1)(W ) +
n−k
∑

j=0

(

j + k − 1

j

)

Cat((k−1)m)(W )

)

, (3.3)

the various terms in the first line being correction terms that cancel terms in the sums
in the second line violating the condition l = j + k > 2, which is present in (3.2). Since
we shall make use of it below, the reader should observe that, by the definition (2.1) of
Fuß–Catalan numbers, both Cat(km−1)(W ) and Cat((k−1)m)(W ) are polynomials in k of
degree n with leading coefficient (mh)n.

Again by (2.1), we have Cat(−1)(W ) = 0 and Cat(0)(W ) = 1. Therefore, if we evaluate
the sums over j in (3.3) (this is a special instance of the Chu–Vandermonde summation),

the electronic journal of combinatorics 16 (2009), #R143 7



then we obtain the expression

−Cat(−m)(W ) +
n
∑

k=0

(−1)k

(

(

n

k + 1

)

Cat(km−1)(W ) +

(

n

k

)

Cat((k−1)m)(W )

)

= −Cat(−m)(W ) + Cat(−m−1)(W )

−
n
∑

k=0

(−1)k

(

n

k

)

Cat((k−1)m−1)(W ) +

n
∑

k=0

(−1)k

(

n

k

)

Cat((k−1)m)(W )

= −Cat(−m)(W ) + Cat(−m−1)(W ) − (−1)nn!(mh)n + (−1)nn!(mh)n

= −Cat(−m)(W ) + Cat(−m−1)(W )

= −(−1)n Cat
(m−1)
+ (W ) + (−1)n Cat

(m)
+ (W ),

where, to go from the second to the third line, we used the well-known fact from finite
difference calculus (cf. [12, Sec. 1.4, Eq. (26) and Prop. 1.4.2]), that, for any polynomial
p(k) in k of degree n and leading coefficient pn, we have

n
∑

k=0

(−1)k

(

n

k

)

p(k) = (−1)nn!pn.

4 The case of well-generated complex reflection

groups

We conclude the paper by pointing out that our result in Theorem 3 on the Euler charac-
teristic of the truncated poset of generalized noncrossing partitions extends naturally to
well-generated complex reflection groups. We refer the reader to [10, 11] for all terminology
related to complex reflection groups.

Let W be a finite group generated by (complex) reflections in Cn, and let T ⊆ W

denote the set of all reflections in the group. (Here, a reflection is a non-trivial element of
GL(Cn) which fixes a hyperplane pointwise and which has finite order.) As in Section 1,
let ℓT : W → Z denote the word length in terms of the generators T . Now fix a regular
element c ∈ W in the sense of Springer [11] and a positive integer m. (If W is a real

reflection group, that is, if all generators in T have order 2, then the notion of “regular
element” reduces to that of a “Coxeter element.”) As in the case of Coxeter elements,
it can be shown that any two regular elements are conjugate to each other. A further
assumption that we need is that W is well-generated, that is, that it is generated by n

reflections given that n is minimal such that W can be realized as reflection group on Cn.
A complex reflection group has two sets of distinguished integers d1 6 d2 6 · · · 6 dn and
d∗

1 > d∗
2 > · · · > d∗

n, called its degrees and codegrees, respectively. If V is the geometric
representation of W , the degrees arise from the W -invariant polynomials on V , and the
codegrees arise from the W -invariant polynomials in the dual representation V ∗. Orlik
and Solomon [9] observed, using case-by-case checking, that W is well-generated if and
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only if its degrees and codegrees satisfy

di + d∗
i = dn

for all 1 6 i 6 n. Together with the classification of Shephard and Todd [10], this
constitutes a classification of well-generated complex reflection groups.

Given these extended definitions of ℓT and c, we define the set of m-divisible noncrossing

partitions by (1.1), and its partial order by (1.2), as before. In the extension of Theorem 3
to well-generated complex reflection groups, we need the Fuß–Catalan number for W ,
which is again defined by (2.1), where the di’s are the degrees of (homogeneous polynomial
generators of the invariants of) W , and where h is the largest of the degrees.

Theorem 9. Let W be a finite well-generated (complex) reflection group of rank n and
let m be a positive integer. The order complex of the poset NC(m)(W ) with maximal and
minimal elements deleted has reduced Euler characteristic

Cat(−m−1)(W ) − Cat(−m)(W ). (4.1)

In order to prove this theorem, we may use the proof of Theorem 3 given in Sections 2
and 3 essentially verbatim. The only difference is that all notions (such as the reflections
T or the order ℓT , for example), have to be interpreted in the extended sense explained
above, and that “Coxeter element” has to be replaced by “regular element” everywhere.
In particular, the extension of Theorem 4 to well-generated complex reflection groups
is Proposition 13.1 in [3], and the proofs of Theorems 3.6.7 and Theorems 3.6.9(1) in
[1] (which we used in order to establish Lemma 6 respectively Theorem 5) carry over
essentially verbatim to the case of well-generated complex reflection groups.
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