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Abstract

Gelfand–Graev characters and their degenerate counterparts have an important

role in the representation theory of finite groups of Lie type. Using a characteristic

map to translate the character theory of the finite unitary groups into the language

of symmetric functions, we study degenerate Gelfand–Graev characters of the finite

unitary group from a combinatorial point of view. In particular, we give the values

of Gelfand–Graev characters at arbitrary elements, recover the decomposition multi-

plicities of degenerate Gelfand–Graev characters in terms of tableau combinatorics,

and conclude with some multiplicity consequences.

1 Introduction

Gelfand–Graev modules have played an important role in the representation theory of
finite groups of Lie type [4, 7, 22]. In particular, if G is a finite group of Lie type, then
Gelfand–Graev modules of G both contain cuspidal representations of G as submodules,
and have a multiplicity free decomposition into irreducible G-modules. Thus, Gelfand–
Graev modules can give constructions for some cuspidal G-modules. This paper uses a
combinatorial correspondence between characters and symmetric functions (as described
in [23]) to examine the Gelfand–Graev character and its degenerate relatives for the finite
unitary group.

Let B< be a maximal unipotent subgroup of a finite group of Lie type G. Then the
Gelfand–Graev character Γ of G is the character obtained by inducing a generic linear
character from B< to G. The degenerate Gelfand–Graev characters of G are obtained by
inducing arbitrary linear characters. In the case GL(n,Fq), Zelevinsky [27] described the
multiplicities of irreducible characters in degenerate Gelfand–Graev characters by count-
ing multi-tableaux of specified shape and weight. It is the goal of this paper to describe
the degenerate Gelfand–Graev characters of the finite unitary groups in a similar manner
using tableau combinatorics. In [27], Zelevinsky obtained the result that every irreducible
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character of GL(n,Fq) appears with multiplicity one in some degenerate Gelfand–Graev
character. It is known that this multiplicity one result is not true in a general finite
group of Lie type, and in fact there are characters which do not appear in any degenerate
Gelfand–Graev character in the general case. This result was illustrated by Srinivasan [20]
in the case of the symplectic group Sp(4,Fq), and the work of Kotlar [11] gives a geometric
description of the irreducible characters which appear in some degenerate Gelfand–Graev
character in general type. In the finite unitary case, we give a combinatorial descrip-
tion of which irreducible characters appear in some degenerate Gelfand–Graev character,
as well as a combinatorial description of a large family of characters which appear with
multiplicity one.

In Section 2, we describe the main combinatorial tool which we use for calculations,
which is the characteristic map of the finite unitary group, and we follow the development
given in [23]. This map translates the Deligne-Lusztig theory of the finite unitary group
into symmetric functions, which thus translates calculations in representation theory into
algebraic combinatorics. Some of the results in this paper could be obtained, albeit in
a different formulation, by applying Harish-Chandra induction and the representation
theory of Weyl groups. However, this approach would not lead us to some of the com-
binatorics which we study here. For example, we naturally arrive at battery tableaux,
which are interesting combinatorial objects in their own right. Also, our more classical
approach gives rise to useful identities in symmetric function theory, such as our Lemma
4.2.

Section 3 examines the (non-degenerate) Gelfand–Graev character. We use a remark-
able formula for the character values of the Gelfand–Graev character of GL(n,Fq), given
in Theorem 3.2 (for an elementary proof see [9]), to obtain the corresponding formula
for U(n,Fq2) in Corollary 3.1, which states that if Γ(n) is the Gelfand–Graev character of
U(n,Fq2), and g ∈ U(n,Fq2), then

Γ(n)(g) =







(−1)⌊n/2⌋+(ℓ
2)(qℓ − (−1)ℓ) · · · (q + 1)

if g is unipotent,
block type (µ1, µ2, . . . , µℓ),

0 otherwise.

When compared to the original GL(n,Fq) version of this formula given in Theorem 3.2,
Corollary 3.1 could be seen as another occurrence of “Ennola duality.” Although the proof
of Corollary 3.1 is a fairly straightforward application of the characteristic map, we have
not found it stated in any of the literature. We also note that we have applied Corollary
3.1 in another paper, to obtain [24, Theorem 4.4].

Section 4 computes the decomposition of degenerate Gelfand–Graev characters in a
fashion analogous to [27], using tableau combinatorics. The main result is Theorem 4.4,
which may be summarized as saying that the degenerate Gelfand–Graev character Γ(k,ν)

of U(n,Fq2) decomposes as

Γ(k,ν) =
∑

λ

mλχ
λ,

where λ is a multipartition and mλ is a nonnegative integer obtained by counting ‘battery
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tableaux’ of a given weight and shape. In the process of proving Theorem 4.4, we obtain
some combinatorial Pieri-type formulas (Lemma 4.2), decompositions of induced charac-
ters from GL(n,Fq2) to U(2n,Fq2) (Theorem 4.1 and Theorem 4.2), and a description of
all of the cuspidal characters of the finite unitary groups (Theorem 4.3).

Section 5 concludes with a discussion of the multiplicity implications of Section 4. In
particular, in Theorem 5.2 we give combinatorial conditions on multipartitions λ which
guarantee that the irreducible character χλ appears with multiplicity one in some degen-
erate Gelfand–Graev character. Our Theorem 5.2 improves a multiplicity one result of
Ohmori [18].

Another question one might ask is how the generalized Gelfand–Graev representations
of the finite unitary group decompose. Generalized Gelfand–Graev representations, which
were defined by Kawanaka in [10], are obtained by inducing certain irreducible represen-
tations (not necessarily one dimensional) from a unipotent subgroup. Rainbolt studies
the generalized Gelfand–Graev representations of U(3,Fq2) in [19], but in the general
case they seem to be significantly more complicated than the degenerate Gelfand–Graev
representations.

Acknowledgements. We would like to thank G. Malle for suggesting the questions that
led to the results in Section 5, S. Assaf for a helpful discussion regarding Section 5.1,
T. Lam for helping us connect Lemma 4.2 to the literature, and anonymous referees for
helpful comments.

2 Preliminaries

2.1 Partitions

Let
P =

⋃

n>0

Pn, where Pn = {partitions of n}.

For ν = (ν1, ν2, . . . , νl) ∈ Pn, where ν1 > ν2 > · · · > νℓ > 0, the length ℓ(ν) of ν is the
number of parts l, and the size |ν| of ν is the sum of the parts n. Let ν ′ denote the
conjugate of the partition ν. We also write

ν = (1m1(ν)2m2(ν) · · · ), where mi(ν) = |{j ∈ Z>1 | νj = i}|.

We will denote the unique element of P0 by ∅ or (0), which is the empty partition, or the
unique partition of 0. For any ν ∈ P, define n(ν) to be

n(ν) =
∑

i

(i− 1)νi.

If µ, ν ∈ P, we define µ ∪ ν ∈ P to be the partition of size |µ| + |ν| whose set of parts
is the union of the parts of µ and ν. For k ∈ Z>1, let kν = (kν1, kν2, . . .), and if every
part of ν is divisible by k, then we let ν/k = (ν1/k, ν2/k, . . .). A partition ν is even if νi

is even for 1 6 i 6 ℓ(ν).
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2.2 The ring of symmetric functions

Let X = {X1, X2, . . .} be an infinite set of variables and let

Λ(X) = C[p1(X), p2(X), . . .], where pk(X) = Xk
1 +Xk

2 + · · · ,

be the graded C-algebra of symmetric functions in the variables {X1, X2, . . .}. For a
partition ν = (ν1, ν2, . . . , νℓ) ∈ P, the power-sum symmetric function pν(X) is

pν(X) = pν1(X)pν2(X) · · ·pνℓ
(X).

The irreducible characters ωλ of Sn are indexed by λ ∈ Pn. Let ωλ(ν) be the value of
ωλ on a permutation with cycle type ν.

The Schur function sλ(X) is given by

sλ(X) =
∑

ν∈P|λ|

ωλ(ν)z−1
ν pν(X), where zν =

∏

i>1

imimi! (2.1)

is the order of the centralizer in Sn of the conjugacy class corresponding to the partition
ν = (1m12m2 · · · ) ∈ Pn.

Fix t ∈ C
×. For µ ∈ P, the Hall-Littlewood symmetric function Pµ(X; t) is given by

sλ(X) =
∑

µ∈P|λ|

Kλµ(t)Pµ(X; t), (2.2)

where Kλµ(t) is the Kostka-Foulkes polynomial (as in [17, III.6]). For ν, µ ∈ Pn, the
classical Green function Qµ

ν (t) is given by

pν(X) =
∑

µ∈P|ν|

Qµ
ν (t−1)tn(µ)Pµ(X; t). (2.3)

As a graded ring,

Λ(X) = C-span{pν(X) | ν ∈ P}

= C-span{sλ(X) | λ ∈ P}

= C-span{Pµ(X; t) | µ ∈ P},

with change of bases given in (2.1), (2.2), and (2.3).
We will also use several product formulas in the ring of symmetric functions. The

usual product on Schur functions

sνsµ =
∑

λ∈P

cλνµsλ (2.4)

gives us the Littlewood-Richardson coefficients cλνµ. The plethysm of pν with pk is

pν ◦ pk = pkν.
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Thus, we can consider the nonnegative integers cγλ given by

sλ ◦ pk =
∑

ν∈P|λ|

ωλ(ν)

zν
pkν =

∑

γ∈Pk|λ|

cγλsγ . (2.5)

Chen, Garsia, and Remmel [2] give a combinatorial algorithm for computing the coeffi-
cients cγλ. We will use the case k = 2 in Section 4.4.

Remark. The unipotent characters χλ̃ of GL(n,Fq2) are indexed by partitions λ̃ of n
and the unipotent characters χγ of U(2n,Fq2) are indexed by partitions γ of 2n. It will
follow from Theorem 4.2 that

R
U(2n,Fq2)

GL(n,Fq2 )(χ
λ̃) =

∑

|γ|=2|λ̃|

cγ
λ̃
χγ,

where RG
H is Harish-Chandra induction.

2.3 The finite unitary groups

Let Ḡn = GL(n, F̄q) be the general linear group with entries in the algebraic closure of
the finite field Fq with q elements.

For the Frobenius automorphisms F̃ , F, F ′ : Ḡn → Ḡn given by

F̃ ((aij)) = (aq
ij),

F ((aij)) = (aq
ji)

−1, (2.6)

F ′((aij)) = (aq
n−j,n−i)

−1, where (aij) ∈ Ḡn,

let

Gn = ḠF̃
n = {a ∈ Ḡn | F̃ (a) = a},

Un = ḠF
n = {a ∈ Ḡn | F (a) = a},

U ′
n = ḠF ′

n = {a ∈ Ḡn | F
′(a) = a}.

(2.7)

Then Gn = GL(n,Fq) and U ′
n
∼= Un are isomorphic to the finite unitary group U(n,Fq2). In

fact, it follows from the Lang-Steinberg theorem that U ′
n and Un are conjugate subgroups

of Ḡn.
For k ∈ Z>0, let

T̃(k) = ḠF̃ k

1
∼= F

×
qk and T(k) = ḠF k

1
∼=

{
F
×
qk if k is even,

{t ∈ F̄q | t
qk+1 = 1} if k is odd.

For every partition η = (η1, η2, . . . , ηℓ) ∈ Pn let

Tη = T(η1) × T(η2) × · · · × T(ηℓ)

T̃η = T̃(η1) × T̃(η2) × · · · × T̃(ηℓ).

Every maximal torus of Gn is isomorphic to T̃η for some η ∈ Pn, and every maximal torus
of Un is isomorphic to Tη for some η ∈ Pn.
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2.4 Multipartitions

Let F : Ḡn → Ḡn be as in (2.6), and let T ∗
(k) = {ξ : T(k) → C×} be the group of

multiplicative complex-valued characters of T(k) = ḠF k

1 . We identify F̄×
q with Ḡ1 =

GL(1, F̄q). Consider

Φ = {F -orbits of F̄
×
q },

and note that Ḡ1 =
⋃

f∈Φ f =
⋃

k T(k). In particular, we may view Ḡ1 as a direct limit of
the T(k) with respect to inclusion. We also have norm maps, Nm,k, whenever k|m,

Nm,k : T(m) −→ T(k)

α 7→
∏(m/k)−1

i=0 α(−q)ki , where m, k ∈ Z>1, k|m. (2.8)

When k|m, denote by N∗
m,k the transpose of the map Nm,k, which embeds T ∗

(k) into T ∗
(m)

as follows:
N∗

m,k : T ∗
(k) −→ T ∗

(m)

ξ 7→ ξ ◦Nm,k
(2.9)

Now, define L to be the direct limit of the groups T ∗
(k) with respect to the maps N∗

m,k:

L = lim
−→

T ∗
(m).

Since the map F acts naturally on each T ∗
(m), it acts on their direct limit L. Note that we

may identify the fixed points LF m
with the character group T ∗

(m). Let Θ be the collection
of F -orbits on L:

Θ = {F -orbits of L}.

For X ∈ {Φ,Θ}, an X -partition λ = (λ(x1),λ(x2), . . .) is a sequence of partitions
indexed by X . The size of λ is

|λ| =
∑

x∈X

|x||λ(x)|,

where |x| is the size of the orbit x. Note that in order for |λ| to be finite, we need to
assume that λ(x) = ∅ for all but finitely many x ∈ X .

Let
PX =

⋃

n>0

PX
n , where PX

n = {X -partitions of size n}.

For λ ∈ PX , let

ℓ(λ) =
∑

x∈X

ℓ(λ(x)) and n(λ) =
∑

x∈X

|x|n(λ(x)).

The conjugate of λ ∈ PX is the X -partition λ′ defined by λ′(x) = (λ(x))′, and if µ,λ ∈ PX ,
then µ ∪ λ ∈ PX is defined by (µ ∪ λ)(x) = µ(x) ∪ λ(x).
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The semisimple part λs of an X -partition λ is the X -partition given by

λ(x)
s = (1|λ(x)|), for x ∈ X . (2.10)

For λ ∈ PX , define the set Pλ
s by

Pλ
s = {µ ∈ PX | µs = λs}.

The unipotent part λu of λ is the X -partition given by

λ({1})
u has parts {|x|λ

(x)
i | x ∈ X , i = 1, . . . , ℓ(λ(x))}, (2.11)

where {1} is the orbit containing 1 in Φ or the trivial character in Θ, and λ(x)
u = ∅ when

x 6= {1}.
Note that we can think of “normal” partitions as X -partitions λ that satisfy λu = λ.

By a slight abuse of notation, we will sometimes interchange the multipartition λu and
the partition λ({1})

u . For example, Tλu will denote the torus corresponding to the partition
λ({1})

u .
Given the torus Tη, η = (η1, η2, . . . , ηℓ) ∈ Pn, there is a natural surjection

τΘ : {θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θℓ ∈ Hom(Tη,C
×)} −→ {ν ∈ PΘ | ν

({1})
u = η}

θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θℓ 7→ τΘ(θ),
(2.12)

where

τΘ(θ)(ϕ) = (ηi1/|ϕ|, ηi2/|ϕ|, . . . , ηir/|ϕ|), with θi1 , θi2 , . . . , θir ∈ ϕ.

It follows from a short calculation that if ν ∈ PΘ has support {ϕ1, ϕ2, . . . , ϕr}, then the
preimage τ−1

Θ (ν) has size

r∏

j=1

|ϕj|
ℓ(ν(ϕj ))

∏

i>1

(
mi(ν

({1})
u )

mi/|ϕ1|(ν
(ϕ1)), mi/|ϕ2|(ν

(ϕ2)), · · · , mi/|ϕr |(ν
(ϕr))

)

=
∏

ϕ∈Θ

|ϕ|ℓ(ν
(ϕ))
∏

i>1

(
mi(ν

({1})
u )

)
!

∏

ϕ∈Θ(mi/|ϕ|(ν(ϕ)))!
. (2.13)

The conjugacy classes Kµ of Un are parametrized by µ ∈ PΦ
n , a fact on which we

elaborate in Section 2.5. We have another natural surjection,

τΦ : Tη → {ν ∈ PΦ | ν
({1})
u = η}

t = (t1, t2, . . . , tℓ) 7→ τΦ(t1) ∪ τΦ(t2) ∪ · · · ∪ τΦ(tℓ),
(2.14)

where
τΦ(ti) = µ′, if ti ∈ K

µ in Uηi
.
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2.5 The characteristic map

For every f ∈ Φ, let X(f) = {X
(f)
1 , X

(f)
2 , . . .} be an infinite set of variables, and for every

ϕ ∈ Θ, let Y (ϕ) = {Y
(ϕ)
1 , Y

(ϕ)
2 , . . .} be an infinite set of variables. We relate symmetric

functions in the variables X(f) to those in the variables Y (ϕ) through the transform

pk(Y
(ϕ)) = (−1)k|φ|−1

∑

x∈Tk|ϕ|

ξ(x)pk|ϕ|/|fx|(X
(fx)), where ξ ∈ ϕ, x ∈ fx.

The ring of symmetric functions Λ is

Λ =
⊗

f∈Φ

Λ(X(f)) =
⊗

ϕ∈Θ

Λ(Y (ϕ)).

For µ ∈ PΦ, the Hall-Littlewood polynomial Pµ is

Pµ = (−q)−n(µ)
∏

f∈Φ

Pµ(f)(X(f); (−q)−|f |),

and for λ ∈ PΘ, the power-sum symmetric function pλ and the Schur function sλ are

pλ =
∏

ϕ∈Θ

pλ(ϕ)(Y (ϕ)) and sλ =
∏

ϕ∈Θ

sλ(ϕ)(Y (ϕ)).

For µ,ν ∈ PΦ, the Green function is

Qµ
ν(−q) =

∏

f∈Φµ

Qµ(f)

ν(f)

(
(−q)|f |

)
,

where Φµ = {f ∈ Φ | µ(f) 6= ∅}. As a graded rings,

Λ = C-span{pν | ν ∈ PΘ}

= C-span{sλ | λ ∈ PΘ}

= C-span{Pµ | µ ∈ PΦ}.

The conjugacy classes Kµ of Un are indexed by µ ∈ PΦ
n and the irreducible characters

χλ of Un are indexed by λ ∈ PΘ
n [5, 6]. Thus, the ring of class functions Cn of Un is given

by

Cn = C-span{χλ | λ ∈ PΘ
n }

= C-span{κµ | µ ∈ PΦ
n },

where κµ : Un → C is given by

κµ(g) =

{
1 if g ∈ Kµ

0 otherwise.
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We let χλ(µ) denote the value of the character χλ on any element in the conjugacy Kµ.
For ν ∈ PΘ

n , let the Deligne-Lusztig character Rν = RUn
ν be given by

Rν = RUn
Tνu

(θ)

where θ ∈ Hom(Tνu ,C
×) is any homomorphism such that τΘ(θ) = ν (see (2.12)).

Let C =
⊕

n>1Cn so that

C = C-span{χλ | λ ∈ PΘ}

= C-span{κµ | µ ∈ PΦ}

= C-span{Rν | ν ∈ PΘ}

is a ring with multiplication given by

RλRη = Rλ∪η.

The next theorem follows from the results of [4, 6, 8, 10, 16, 23]. A summary of the
relevant results in these papers and how they imply the following theorem is given in [23].

Theorem 2.1 (Characteristic Map). The map

ch : C → Λ
χλ 7→ (−1)⌊|λ|/2⌋+n(λ)sλ

κµ 7→ Pµ

Rν 7→ (−1)|ν|−ℓ(ν)pν

is an isometric ring isomorphism with respect to the natural inner products

〈χλ, χη〉 = δλη and 〈sλ, sη〉 = δλη.

In the following change of basis equations, (2.15) follows from Theorem 2.1, (2.16)
follows from (2.1), and (2.17) follows from [23, Theorem 4.2].

(−1)⌊k/2⌋+n(λ)sλ =
∑

µ∈PΦ
k

χλ(µ)Pµ for λ ∈ PΘ
k , (2.15)

sλ =
∑

ν∈PΘ
k

λs=νs

(
∏

ϕ∈Θ

ωλ(ϕ)
(ν(ϕ))

zν(ϕ)

)

pν for λ ∈ PΘ
k , (2.16)

(−1)k−ℓ(ν)pν =
∑

µ∈PΦ
k

(
∑

t∈Tνu
τΦ(t)s=µs

θ(t)Qµ

τΦ(t)(−q)

)

Pµ for ν ∈ PΘ
k , τΘ(θ) = ν. (2.17)
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3 Gelfand–Graev characters on arbitrary elements

3.1 Gn = GL(n,Fq) notation

In this Section 3, let
Φ̃ = {F̃ -orbits in F̄

×
q }.

Define norm maps Ñm,k : T̃(m) → T̃(k), whenever k|m, the same as in (2.8), except by

replacing −q by q, and define the corresponding transpose maps Ñ∗
m,k : T̃ ∗

(m) → T̃ ∗
(k) as in

(2.9), where T̃ ∗
(m) is the character group of T̃(m). We now let L̃ be the direct limit of the

groups T̃(m) with respect to the maps Ñ∗
m,k:

L̃ = lim
−→

T̃(m),

and since F̃ acts on L̃, we may consider the corresponding orbits, and we define

Θ̃ = {F̃ -orbits in L̃}.

The same set-up of Sections 2.4 and 2.5 gives a characteristic map for Gn = GL(n,Fq)
by replacing Φ by Φ̃, Θ by Θ̃, −q by q, T(k) by T̃(k), and (−1)⌊n/2⌋+n(λ)sλ by sλ. With the
exception of the Deligne-Lusztig characters (which follows from the parallel argument of
[23, Theorem 4.2]), this can be found in [17, Chapter IV].

3.2 The Gelfand–Graev character

We will use U ′
n = GL(n, F̄q)

F ′
(see (2.7)) to give an explicit description of the Gelfand–

Graev character. For a more general description see [4], for example.
For 1 6 i < j 6 n and t ∈ Fq, let xij(t) denote the matrix with ones on the diagonal,

t in the ith row and jth column, and zeroes elsewhere. Let

uij(t) = xij(t)xn+1−j,n+1−i(−t
q) for 1 6 i < j 6 ⌊n/2⌋, t ∈ Fq2,

ui,n+1−j(t) = xi,n+1−j(t)xj,n+1−i(−t
q) for 1 6 i < j 6 ⌊n/2⌋, t ∈ Fq2,

and for 1 6 k 6 ⌊n/2⌋, and t, a, b ∈ Fq2, let

uk(a) = xk,n+1−k(a) for n even, and aq + a = 0,

uk(a, b) = x⌈n/2⌉,n+1−k(−a
q)xk,n+1−k(b)xk,⌈n/2⌉(a) for n odd, and aq+1 + b+ bq = 0.

Examples. In U ′
4, we have

u12(t) =

(
1 t 0 0
0 1 0 0
0 0 1 −tq

0 0 0 1

)

, u13(t) =

(
1 0 t 0
0 1 0 −tq

0 0 1 0
0 0 0 1

)

, u1(a) =

(
1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1

)

, u2(a) =

(
1 0 0 0
0 1 a 0
0 0 1 0
0 0 0 1

)

,

where aq + a = 0. In U ′
5, we have

u12(t) =

(
1 t 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −tq

0 0 0 0 1

)

, u14(t) =

(
1 0 0 t 0
0 1 0 0 −tq

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)

,
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u1(a, b) =

(
1 0 a 0 b
0 1 0 0 0
0 0 1 0 −aq

0 0 0 1 0
0 0 0 0 1

)

, u2(a, b) =

(
1 0 0 0 0
0 1 a b 0
0 0 1 −aq 0
0 0 0 1 0
0 0 0 0 1

)

,

where aq+1 + b+ bq = 0.
For 1 6 i < j 6 ⌊n/2⌋ and 1 6 k 6 ⌊n/2⌋, define the one-parameter subgroups

Xij = {uij(t) | t ∈ Fq2} ∼= F
+
q2,

Xi,n+1−j = {ui,n+1−j(t) | t ∈ Fq2} ∼= F
+
q2 ,

Xk =

{
{uk(t) | t ∈ Fq2, tq + t = 0} if n is even,
{uk(a, b) | a, b ∈ Fq2 , aq+1 + b+ bq = 0} if n is odd.

so that
B<

n = 〈Xij,Xi,n−j,Xk | 1 6 i < j 6 ⌊n/2⌋, 1 6 k 6 ⌊n/2⌋〉 ⊆ U ′
n

is the subgroup of U ′
n of upper-triangular matrices with ones on the diagonal. Noting that

Xk/[Xk,Xk] ∼=

{
F+

q if n is even,
F

+
q2 if n is odd,

a direct calculation gives

B<
n /[B

<
n , B

<
n ] ∼= X12 ×X23 × . . .× X⌊n/2⌋−1,⌊n/2⌋ × X⌊n/2⌋

∼=

{
(F+

q2)
(n/2)−1 × F+

q if n is even,

(F+
q2)

⌊n/2⌋ if n is odd.

Similarly, let
B̃<

n = 〈xij(t) | 1 6 i < j 6 n, t ∈ Fq〉 ⊆ Gn

be the subgroup of unipotent upper-triangular matrices in Gn.
Fix a homomorphism ψ : F

+
q2 → C× of the additive group of the field such that for all

1 6 k 6 ⌊n/2⌋, ψ is nontrivial on Xk/[Xk,Xk]. Define the homomorphism ψ(n) : B<
n → C

by

ψ(n)

∣
∣
∣
∣
Xα/[Xα,Xα]

=

{
ψ if α = (i, i+ 1), 1 6 i < ⌊n/2⌋, or if α = ⌊n/2⌋,
1 otherwise.

The Gelfand–Graev character of U ′
n is

Γ′
n = Ind

U ′
n

B<
n
(ψ(n)).

Recall that U ′
n is conjugate to Un in Ḡn. If U ′

n = yUny
−1, then let

Γn = IndUn

y−1B<
n y

(y−1ψ(n)y).

Similarly, the Gelfand–Graev character Γ̃(n) of Gn is

Γ̃(n) = IndGn

B̃<
n
(ψ̃(n)).
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where ψ̃(n) : B̃<
n → C is given by

ψ̃(n)(xij(t)) =

{
ψ(t) if j = i+ 1,
1 otherwise.

It is well-known that the Gelfand–Graev character has a multiplicity free decom-
position into irreducible characters [22, 25, 26]. The following explicit decompositions
essentially follow from [3]. Specific proofs are given in [27] in the Gn case and in [18] in
the Un case.

Theorem 3.1. Let ht(λ) = max{ℓ(λ(ϕ))}. Then

Γ(n) =
∑

λ∈PΘ
n

ht(λ)=1

χλ and Γ̃(n) =
∑

λ∈PΘ̃
n

ht(λ)=1

χλ.

3.3 The character values of the Gelfand–Graev character

A unipotent conjugacy class Kµ of Un or Gn is a conjugacy class that satisfies

µu = µ.

The unipotent conjugacy classes of Un and Gn are thus parametrized by partitions µ of
n.

Lemma 3.1.

(a) Let µ ∈ PΘ
n , µ

({1})
u = µ. Then

Γ(n)(µ) =

{
∑

ν∈Pn

(−1)n+⌊n/2⌋−ℓ(ν)

zν
|Tν |Q

µ
ν (−q) if µ is unipotent,

0 otherwise.

(b) Let µ ∈ PΘ̃
n , µ

({1})
u = µ. Then

Γ̃(n)(µ) =

{
∑

ν∈Pn

(−1)n−ℓ(ν)

zν
|T̃ν |Q

µ
ν(q) if µ is unipotent,

0 otherwise.

Proof. Note that if ht(λ) 6 1, then n(λ) = 0. Thus, by applying the characteristic map
and (2.16) to Theorem 3.1,

ch(Γ(n)) = (−1)⌊n/2⌋
∑

λ∈PΘ
n

ht(λ)61

∑

ν∈PΘ
n

νs=λs

(
∏

ϕ∈Θ

ωλ(ϕ)
(ν(ϕ))

zν(ϕ)

)

pν.

the electronic journal of combinatorics 16 (2009), #R146 12



Since ht(λ) 6 1, ωλ(ϕ)
is the trivial character for all ϕ ∈ Θ. Thus, the summand is

independent of λ, and

ch(Γ(n)) = (−1)⌊n/2⌋
∑

ν∈PΘ
n

(
∏

ϕ∈Θ

z−1
ν(ϕ)

)

pν. (3.1)

By (2.13),

ch(Γ(n))

= (−1)⌊n/2⌋
∑

ν∈PΘ
n

(
∏

ϕ∈Θ

|ϕ|ℓ(ν
(ϕ))
∏

i>1

(
mi(ν

({1})
u )

)
!

∏

ϕ∈Θ(mi/|ϕ|(ν(ϕ)))!

)−1
∑

θ∈Hom(Tνu ,C×)
τΘ(θ)=ν

(
∏

ϕ∈Θ

z−1
ν(ϕ)

)

pν

= (−1)⌊n/2⌋
∑

ν∈PΘ
n

∑

θ∈Hom(Tνu ,C×)
τΘ(θ)=ν

z−1
νu
pν

= (−1)⌊n/2⌋
∑

ν∈Pn

∑

θ∈Hom(Tν ,C×)

z−1
ν pτΘ(θ).

The change of basis (2.17) gives

ch(Γ(n)) = (−1)⌊n/2⌋
∑

ν∈Pn

∑

θ∈Hom(Tν ,C×)

(−1)n−ℓ(ν)

zν

∑

µ∈PΦ
n

∑

t∈Tν
τΦ(t)s=µs

θ(t)Qµ

τΦ(t)(−q)Pµ

= (−1)⌊n/2⌋
∑

µ∈PΦ
n

∑

ν∈Pn

(−1)n−ℓ(ν)

zν

∑

t∈Tν
τΦ(t)s=µs

∑

θ∈Hom(Tν ,C×)

θ(t)Qµ

τΦ(t)(−q)Pµ.

By the orthogonality of characters of Tν , the inner-most sum is equal to zero for all t 6= 1.
If t = 1, then τΦ(1, 1, . . . , 1)(f) = ∅ for f 6= {1} and τΦ(1, 1, . . . , 1)({1}) = ν. Thus,

ch(Γ(n)) = (−1)⌊n/2⌋
∑

µ∈PΦ
n

µu=µ

∑

ν∈Pn

(−1)n−ℓ(ν)

zν
|Tν |Q

µu
ν (−q)Pµ,

and in particular, if µ
({1})
u = µ,

Γ(n)(µ) =

{
∑

ν∈Pn

(−1)n+⌊n/2⌋−ℓ(ν)

zν
|Tν |Q

µ
ν (−q) if µ is unipotent,

0 otherwise.

(b) The proof is similar to (a), just using the Gn characteristic map.

Remark. In the proof of Lemma 3.1, one may skip to (3.1) by using 10.7.3 in [3].

The values of the Gelfand–Graev character of the finite general linear group are well-
known. An elementary proof of the following theorem is given in [9].
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Theorem 3.2. Let µ ∈ P Φ̃
n with µ = µ

({1})
u . Then

Γ̃(n)(µ) =

{

(−1)n−ℓ(µ)
∏ℓ(µ)

i=1

(
qi − 1

)
if µ is unipotent,

0 otherwise.

We may now apply Theorem 3.2 and Lemma 3.1 to give the values of the Gelfand–
Graev character of Un.

Corollary 3.1. Let µ ∈ PΦ
n with µ = µ

({1})
u . Then

Γ(n)(µ) =

{

(−1)⌊n/2⌋−ℓ(µ)
∏ℓ(µ)

i=1

(
(−q)i − 1

)
if µ is unipotent,

0 otherwise.

Proof. Combine Lemma 3.1 (b) with Theorem 3.2 to get

(−1)ℓ(µ)

ℓ(µ)
∏

i=1

(
qi − 1

)
=
∑

ν∈Pn

(−1)ℓ(ν)

zν
|T̃ν |Q

µ
ν (q),

which implies
ℓ(µ)
∏

i=1

(
1− qi

)
=
∑

ν∈Pn

1

zν

ℓ(ν)
∏

i=1

(1− qνi)Qµ
ν(q).

Make the substitution q 7→ −q to get

ℓ(µ)
∏

i=1

(
1− (−q)i

)
=
∑

ν∈Pn

1

zν

ℓ(ν)
∏

i=1

(1− (−q)νi)Qµ
ν (−q),

which implies

(−1)⌊n/2⌋+ℓ(µ)

ℓ(µ)
∏

i=1

(
(−q)i − 1

)
=
∑

ν∈Pn

(−1)⌊n/2⌋+|ν|−ℓ(ν)

zν
|Tν |Q

µ
ν(−q).

Apply this last identity to Lemma 3.1 (a) to obtain the desired result.

4 Degenerate Gelfand–Graev characters

4.1 Gn = GL(n,Fq2) notation (different from Section 3)

In this Section 4, let Gn = GL(n,Fq2), and define

Φ̃ = {F 2-orbits of F̄
×
q }.

Note that now GF
n = Un and GF ′

n = U ′
n, and also that T̃2m = T2m. Through the norm maps

Ñ2m,2k : T(2m) → T(2k) (where k|m), defined in (2.8), and the corresponding transpose
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maps Ñ∗
2m,2k : T ∗

(2m) → T ∗
(2k) defined in (2.9), we let L̃ be the direct limit of the groups

T ∗
(2m) with respect to the maps N∗

2m,2k:

L̃ = lim
−→

T ∗
(2m).

Since F 2 = F̃ 2 acts on L̃, we may consider the corresponding orbits, and define

Θ̃ = {F 2-orbits in L̃}.

The same set-up of Sections 2.4 and 2.5 gives a characteristic map for Gn by replacing
Φ by Φ̃, Θ by Θ̃, −q by q, T(k) by T(2k), and (−1)⌊n/2⌋+n(λ)sλ by sλ.

4.2 The definition of degenerate Gelfand–Graev characters

Let (k, ν) be a pair such that ν ⊢ n−k
2
∈ Z>0, and let

ν6 = (ν61, ν62, . . . , ν6ℓ), where ν6j = ν1 + ν2 + · · ·+ νj .

Then the map ψ(k,ν) : B<
n → C×, given by

ψ(k,ν)

∣
∣
∣
∣
Xα/[Xα,Xα]

=







ψ if α = (i, i+ 1), 1 6 i < ⌊n/2⌋, and i /∈ ν6,
ψ if α = ⌊n/2⌋ and ⌊n/2⌋ /∈ ν6,
1 otherwise,

is a linear character of U ′
n. Note that ψ(⌈n/2⌉−⌊n/2⌋,(1⌊n/2⌋ )) is the trivial character and

ψ(n,∅) = ψ(n) of Section 3.
The degenerate Gelfand–Graev character Γ(k,ν) is

Γ(k,ν) = Ind
U ′

n

B<
n
(ψ(k,ν)) ∼= IndUn

yB<
n y−1(yψ(k,ν)y

−1),

where y is an element of Ḡn such that yU ′
ny

−1 = Un. In particular, the Gelfand–Graev
character is Γ(n,∅).

Let
L′

(k,ν) = 〈Lk, L
(1)
ν , L(2)

ν , · · · , L(ℓ)
ν 〉,

where

Lk = 〈Xij,Xi,n+1−j,Xr | |ν| < i < j 6 |ν|+ k, |ν| 6 r 6 |ν|+ k〉 ∼= U(k,Fq2)

L(r)
ν = 〈Xij | ν6r−1 6 i < j 6 ν6r〉 ∼= GL(νr,Fq2).

Then
L′

(k,ν)
∼= U(k,Fq2)⊕GL(ν1,Fq2)⊕ · · · ⊕GL(νℓ,Fq2)

is a maximally split Levi subgroup of U ′
n. For example, if n = 9, k = 3, and ν = (2, 1),

then

L′
(k,ν) =















A 0 0 0 0
0 B 0 0 0
0 0 C 0 0
0 0 0 F ′(B) 0
0 0 0 0 F ′(A)









∣
∣
∣
∣

A ∈ GL(2,Fq2), B ∈ GL(1,Fq2),
C ∈ U(3,Fq2)







.
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Note that since L
(i)
ν ⊆ U ′

2νi
∼= U2νi

, the Levi subgroup

U(k,ν) = Uk ⊕ U2ν1 ⊕ U2ν2 ⊕ · · · ⊕ U2νℓ
⊆ Un

contains a Levi subgroup L = Uk ⊕ L1 ⊕ · · · ⊕ Lℓ with Li ⊆ U2νi
such that L ∼= L′

(k,ν).

Proposition 4.1. Let (k, ν) be such that ν ⊢ n−k
2
∈ Z>0. Then

ch(Γ(k,ν)) = ch
(
Γ(k)

)
ch

(

R
U2ν1
Gν1

(Γ̃(ν1))

)

ch

(

R
U2ν2
Gν2

(Γ̃(ν2))

)

· · · ch

(

R
U2νℓ
Gνℓ

(Γ̃(νℓ))

)

,

where Γ̃(m) is the Gelfand–Graev character of Gm = GL(m,Fq2).

This proposition is a consequence of Theorem 2.1 and the following lemma.

Lemma 4.1. Let (k, ν) be such that ν ⊢ n−k
2
∈ Z>0. Then

Γ(k,ν)
∼= RUn

U(k,ν)

(
Γ(k) ⊗ R

U2ν1
L1

(Γ̃(ν1))⊗ · · · ⊗ R
U2νℓ
Lℓ

(Γ̃(νℓ))
)
.

Proof. Since L′
(k,ν) is maximally split,

IndUn

yB<
n y−1(yψ(k,ν)y

−1) ∼= Ind
U ′

n

B<
n
(ψ(k,ν)) ∼= Indf

U ′
n

L′
(k,ν)

(Γ(k) ⊗ Γ̃(ν1) ⊗ · · · ⊗ Γ̃(νℓ)).

where IndfG
L is Harish-Chandra induction. However,

Indf
U ′

n

L′
(k,ν)

(Γ(k) ⊗ Γ̃(ν1) ⊗ · · · ⊗ Γ̃(νℓ)) = R
U ′

n

L′
(k,ν)

(Γ(k) ⊗ Γ̃(ν1) ⊗ · · · ⊗ Γ̃(νℓ)),

∼= RUn
L (Γ(k) ⊗ Γ̃(ν1) ⊗ · · · ⊗ Γ̃(νℓ)).

By transitivity of Deligne-Lusztig induction, we now have

IndUn

yB<
n y−1(yψ(k,ν)y

−1) ∼= RUn
U(k,ν)

(
Γ(k) ⊗R

U2ν1
L1

(Γ̃(ν1))⊗ · · · ⊗R
U2νℓ
Lℓ

(Γ̃(νℓ))
)
.

4.3 Symplectic tableaux and domino tableaux combinatorics

Augment the nonnegative integers by symbols {̄i | i ∈ Z>0}, so that we have

{0, 1̄, 1, 2̄, 2, 3̄, 3, . . .},

and order this set by i−1 < ī < i < i+ 1. Alternatively, one could identify this augmented
set with 1

2
Z>0 by ī = i− 1

2
.

Let λ = (λ1, λ2, . . . , λr) be a partition of n and (m0, m1, m2, . . . , mℓ) be a sequence
of nonnegative integers that sum to n with m0 6 λ1. A symplectic tableau Q of shape
λ/(m0) and weight (m0, m1, . . . , mℓ) is a column strict filling of the boxes of λ by symbols

{0, 1̄, 1, 2̄, 2, . . . , ℓ̄, ℓ},
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such that

mi =

{
number of 0’s in Q if i = 0,
number of ī’s + number of i’s in Q if i > 0.

We write sh(Q) = λ/(m0) and wt(Q) = (m0, m1, . . . , mℓ). For example, if

Q =
0 0 1̄ 1 4̄
1 2̄ 2̄
3̄
3

, then sh(Q) = and wt(Q) = (2, 3, 2, 2, 1).

Let

T λ
(m0,m1,...,mℓ)

=

{
symplectic tableaux of shape λ/(m0)

and weight (m0, m1, . . . , mℓ)

}

. (4.1)

A tiling of λ by dominoes is a partition of the boxes of λ into pairs of adjacent boxes.
For example, if

λ = , then

is a tiling of λ by dominoes.
Let (m0, m1, . . . , mℓ) be a sequence of nonnegative integers such that m0 6 λ1 and

|λ| = m0 + 2(m1 + · · ·+mℓ). A domino tableau Q of shape λ/(m0) = sh(Q) and weight
(m0, m1, . . . , mℓ) = wt(Q) is a column strict filling of a tiling of the shape λ/(m0) by
dominoes, where if a domino is filled with a number, then that number occupies both
boxes covered by that domino. We put 0’s in the non-tiled boxes of λ, and mi is the
number of i’s which appear. For example, if

Q =
0 0 3
1

3

2

, then sh(Q) = and wt(Q) = (2, 1, 1, 2).

Let

Dλ
(m0,m1,...,mℓ)

=

{
domino tableaux of shape λ/(m0)

and weight (m0, m1, . . . , mℓ)

}

. (4.2)

In the following Lemma, (a) is a straightforward use of the usual Pieri rule, and (b) is
both similar to (and perhaps a special case of) [14, Theorem 6.3], and also related to a
Pieri formula in [12].

Lemma 4.2. Let (m0, m1, . . . , mℓ) be an ℓ + 1-tuple of nonnegative integers which sum
to n. Then

(a) s(m0)

ℓ∏

r=1

mr∑

i=0

s(i)s(mr−i) =
∑

λ∈Pn

|T λ
(m0,m1,...,mℓ)

|sλ,

(b) s(m0)

ℓ∏

r=1

2mr∑

i=0

(−1)is(i)s(2mr−i) =
∑

λ∈P2n−m0

(−1)n(λ)|Dλ
(m0,m1,...,mℓ)

|sλ.
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Proof. (a) Note that

s(m0)

ℓ∏

r=1

mr∑

i=0

s(i)s(mr−i) =
∑

06ir6mr
16r6ℓ

s(m0)

ℓ∏

r=1

s(ir)s(mr−ir).

Now repeated applications of Pieri’s rule implies the result.
(b) Note that

s(m0)

ℓ∏

r=1

2mr∑

i=0

(−1)is(i)s(2mr−i) =
∑

06ir62mr
16r6ℓ

(−1)i1+···+iℓs(m0)

ℓ∏

r=1

s(ir)s(2mr−ir).

By Pieri’s rule,

∑

06ir62mr
16r6ℓ

s(m0)

ℓ∏

r=1

s(ir)s(2mr−ir) =
∑

λ∈P2n−m0





Number of column strict fillings of λ
using m0 0’s, and for r = 1, 2, . . . , ℓ,

using ir r̄’s and (2mr − ir) r’s.



 sλ.

By observing that the sign counts the number of barred entries,

s(m0)

ℓ∏

r=1

2mr∑

i=0

(−1)is(i)s(2mr−i) =
∑

λ∈P2n−m0

(
∑

Q∈T λ
(m0,2m1,...,2mℓ)

(−1)Number of barred entries in Q

)

sλ.

(4.3)
We therefore need to determine the cancellations for a given shape λ.

Fix r ∈ {1, 2, . . . , ℓ} and λ ∈ P such that T λ
(m0,2m1,...,2mℓ)

6= ∅. For a tableau Q ∈

T λ
(m0,2m1,...,2mℓ)

, let

Qr = skew tableaux consisting of the boxes in Q containing r̄ or r,

S
(r)
Q = {column strict fillings of sh(Qr) by elements in {r̄, r}}.

For example, if

Q =
0 0 1̄ 1 1
1 2̄ 2̄
3̄
3

then Q1 =
1̄ 1 1

1 and
1̄ 1̄ 1

1̄ ,
1 1 1

1̄ ∈ S
(1)
Q .

(In fact, |S
(1)
Q | = 8).

In light of (4.3), (b) is equivalent to

∑

Q′∈S
(r)
Q

(−1)Number of r̄’s in Q′

=

{
(−1)n(sh(Qr)) if sh(Qr) has a domino tiling,
0 otherwise.
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Note that in row j, Q′ ∈ S
(r)
Q is of the form

dj−1
︷ ︸︸ ︷dj

︷ ︸︸ ︷ r̄ ··· r̄ ? ··· ?dj+1
︷ ︸︸ ︷ r̄ ··· r̄ ? ··· ? r ··· r

? ··· ? r ··· r

←− row j − 1

←− row j

←− row j + 1

Thus, we have dj + 1 choices for the values in row j. If the total number of choices is
even, then exactly half of these choices give a positive sign and half give a negative sign.
So we have ∑

Q′∈S
(r)
Q

(−1)Number of r̄’s in Q′

= 0,

unless dj is even for all rows j. In this case, the signs of all but one of the possible tableaux
will cancel each other out, so the only tableau that we have to count has row j of the
form

dj−1
︷ ︸︸ ︷dj

︷ ︸︸ ︷ r̄ ··· r̄ r ··· rdj+1
︷ ︸︸ ︷ r̄ ··· r̄ r ··· r r ··· r
r ··· r r ··· r

←− row j − 1

←− row j

←− row j + 1

which can clearly be tiled by dominoes of the form r and r . For this tableau, we have

(−1)Number of r̄’s = (−1)n(sh(Qr)).

Thus,

s(m0)

ℓ∏

r=1

2mr∑

i=0

(−1)is(i)s(2mr−i) =
∑

λ∈P2n−m0

(−1)n(λ)|Dλ
(m0,m1,...,mℓ)

|sλ,

as desired.

Let λ ∈ PΘ and γ ∈ PΘ be such that ht(γ) 6 1 and |γ(ϕ)| 6 λ
(ϕ)
1 for all ϕ ∈ Θ. A

battery Θ-tableau Q of shape λ/γ is a sequence of tableaux indexed by Θ such that

Q(ϕ) =

{
a domino tableau of shape λ(ϕ)/γ(ϕ) if |ϕ| is odd,

a symplectic tableau of shape λ(ϕ)/γ(ϕ) if |ϕ| is even.

The weight of Q is wt(Q) = (wt(Q)1,wt(Q)2, . . .), where

wt(Q)i =
∑

ϕ∈Θ
|ϕ| odd

|ϕ|wt(Q(ϕ))i +
∑

ϕ∈Θ
|ϕ| even

|ϕ|

2
wt(Q(ϕ))i.

Let

Bλ
(k,ν) = {Q battery tableaux | sh(Q) = λ/γ,γ ∈ PΘ

k , ht(γ) 6 1,wt(Q) = ν}. (4.4)

Example. If

λ =
(

(ϕ1)
,

(ϕ2)
,

(ϕ3)
)

where |ϕi| = i,
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then Bλ
(2,(5,4)) contains

(

0 0
1

(ϕ1)

, 1 2
(ϕ2)

, 1
2

(ϕ3)
)

,

(

0 0
1

(ϕ1)

, 1̄ 2̄
(ϕ2)

, 1
2

(ϕ3)
)

,

(

0 0
1

(ϕ1)

, 1̄ 2
(ϕ2)

, 1
2

(ϕ3)
)

,

(

0 0
1

(ϕ1)

, 1 2̄
(ϕ2)

, 1
2

(ϕ3)
)

,

(

0 0
2

(ϕ1)

, 1̄ 1̄
(ϕ2)

, 1
2

(ϕ3)
)

,

(

0 0
2

(ϕ1)

, 1̄ 1
(ϕ2)

, 1
2

(ϕ3)
)

,

(
0 0
2

(ϕ1)

, 1 1
(ϕ2)

, 1
2

(ϕ3)
)

.

Some intuition. If λ ∈ PΘ, we can think of the boxes in λ(ϕ) as being |ϕ| deep, so in
the above example,

λ =





�� �� ��

��

��

(ϕ1)

,
���

���
���
���

(ϕ2)
,

����
����

����
���� ��������

(ϕ3)


 .

A battery Θ-tableau is a way of stuffing the slots by numbered “batteries” where front
and back are distinguished by i and ī, but the sides look generically like i, so

���

ī

i ���
���
i

�� ��
??

?

i
i ??
?

??
?

i

.

Then a battery Θ-tableau might look like:





��
0

��
0

��

��
1 ��

(ϕ1)

,
���
1

���

2̄

���
���

(ϕ2)
,

1 2 2���
����

����
2

����

1

����

1

``@@����

(ϕ3)


 ,

so the weight of the tableau counts the number of batteries of a given type get used,
regardless of the cardinality of ϕ.

4.4 Inducing from Gn to U2n

Note that any maximal torus T̃ν of Gn ⊆ U2n becomes the maximal torus T2ν of U2n,
which gives rise to the map

i :







Pairs (T̃ν , θ̃ν) with T̃ν a
maximal torus of Gn,

θ̃ν ∈ Hom(T̃ν ,C
×)






−→







Pairs (T2ν , θν) with T2ν a
maximal torus of U2n,
θν ∈ Hom(T2ν ,C

×)







(T̃ν , θ̃ν) 7→ (T2ν , θ̃ν).

the electronic journal of combinatorics 16 (2009), #R146 20



To translate the combinatorics between Gn and U2n, we define the map

ι : PΘ̃
n −→ PΘ

2n

λ̃ 7→ ιλ̃
where for ϕ ∈ Θ, ιλ̃

(ϕ)
=

{

2λ̃
(ϕ̃)

if ϕ = ϕ̃,

λ̃
(ϕ̃)
∪ λ̃

(F (ϕ̃))
if ϕ = ϕ̃ ∪ Fϕ̃,

which has the property that τΘ ◦ i = ι◦τΘ̃ (see (2.12)). The map ι is neither surjective nor
injective. We note that Fϕ̃ = ϕ̃ implies that |ϕ̃| is odd, and if Fϕ̃ 6= ϕ̃, then ϕ = ϕ̃∪Fϕ̃
implies |ϕ| is even (see [5]). Thus, the image of ι is the set of even Θ-partitions,

Image(ι) = {λ ∈ PΘ
n | |ϕ|λ

(ϕ) is even for ϕ ∈ Θ}.

Theorem 4.1.
RU2n

Gn
(Γ̃(n)) =

∑

λ∈PΘ
2n

ht(λ)62

|Bλ
(0,(n))|χ

λ.

Proof. Note that by Theorem 3.1, (2.16), and the characteristic map for Gn,

Γ̃(n) =
∑

λ̃∈PΘ̃
n

ht(λ̃)=1

χλ̃ =
∑

λ̃∈PΘ̃
n

ht(λ)=1

∑

ν̃∈Pλ̃
s

(−1)n−ℓ(ν̃)

zν̃

RGn
ν̃ .

By transitivity of induction, and the fact that τΘ ◦ i = ι ◦ τΘ̃, we have RU2n
Gn

(RGn
ν̃ ) = RU2n

ιν̃ ,
and so

RU2n
Gn

(Γ̃(n)) =
∑

λ̃∈PΘ̃
n

ht(λ̃)=1

∑

ν̃∈Pλ̃
s

(−1)n−ℓ(ν̃)

zν̃

RU2n
ιν̃ .

We now change the second sum to a sum over ν = ιν̃ ∈ P ιλ̃
s , and we obtain

RU2n
Gn

(Γ̃(n)) =
∑

λ̃∈PΘ̃
n

ht(λ̃)=1

∑

ν∈Pιλ̃
s

(
∑

ν̃∈Pλ̃
s

ιν̃=ν

1

zν̃

)

(−1)n−ℓ(ν)RU2n
ν

=
∑

ν∈PΘ
2n

ν even

(
∑

ν̃∈PΘ̃
n

ιν̃=ν

1

zν̃

)

(−1)n−ℓ(ν)RU2n
ν .

Recall that Fϕ̃ = ϕ̃ implies that |ϕ̃| is odd, and Fϕ̃ 6= ϕ̃ implies that ϕ = ϕ̃ ∪ Fϕ̃ where
|ϕ| is even. Apply the characteristic map, factor, and then reindex to obtain

ch(RU2n
Gn

(Γ̃(n))) = (−1)n
∑

ν∈PΘ
2n

ν even

(
∑

ν̃∈PΘ̃

ιν̃=ν

1

zν̃

)

pν

= (−1)n
∑

ν∈PΘ
2n

ν even

∏

ϕ∈Θ
|ϕ| odd

1

zν(ϕ)/2

pν(ϕ)(Y (ϕ))
∏

ϕ∈Θ
|ϕ| even

(
∑

ν,µ∈P
η∪µ=ν(ϕ)

1

zηzµ

)

pν(ϕ)(Y (ϕ))
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= (−1)n
∑

γ∈PΘ
2n

ht(γ)=1
γ even

∏

ϕ∈Θ
|ϕ| odd

(
∑

ν∈P
|ν|=|γ(ϕ)|

ν even

1

zν/2

pν(Y
(ϕ))

)
∏

ϕ∈Θ
|ϕ| even

(
∑

η,µ∈P
|η|+|µ|=|γ(ϕ)|

1

zηzµ

pη∪µ(Y (ϕ))

)

.

Note that by (2.1),

∑

η,µ∈P
|η|+|µ|=|γ|

1

zηzµ
pη∪µ =

|γ|
∑

i=0

(
∑

|η|=i

z−1
η pη

)(
∑

|µ|=|γ|−i

z−1
µ pµ

)

=

|γ|
∑

i=0

s(i)s(|γ|−i).

A computation similar to [17, I.2.14] shows that

∑

|ν|=|γ|
ν even

1

zν/2

pν =

|γ|
∑

i=0

(−1)is(i)s(|γ|−i).

Thus,

ch(RU2n
Gn

(Γ̃(n))) = (−1)n
∑

γ∈PΘ
n

ht(γ)=1
γ even

∏

ϕ∈Θ

|γ(ϕ)|
∑

i=0

(−1)|ϕ|is(i)(Y
(ϕ))s(|γ(ϕ)|−i)(Y

(ϕ)). (4.5)

Lemma 4.2 (a) and (b), respectively, imply that

k∑

i=0

s(i)s(k−i) =
∑

λ∈Pk

|T λ
(0,k)|sλ, and

k∑

i=0

(−1)is(i)s(k−i) =
∑

λ∈Pk

(−1)n(λ)|Dλ
(0,k/2)|sλ.

Since |Dλ
(0,k/2)| = |T

λ
(0,k)| = 0 unless ht(λ) 6 2,

ch(RU2n
Gn

(Γ̃(n)))

= (−1)n
∑

γ∈PΘ
2n

ht(γ)=1
γ even

∏

ϕ∈Θ
|ϕ| odd

∑

|λ(ϕ)|=|γ(ϕ)|

(−1)n(λ(ϕ))
∣
∣Dλ(ϕ)

(0,|γ(ϕ)|/2)

∣
∣sλ(ϕ)(Y (ϕ))

·
∏

ϕ∈Θ
|ϕ| even

∑

|λ(ϕ)|=|γ(ϕ)|

∣
∣T λ(ϕ)

(0,|γ(ϕ)|)

∣
∣sλ(ϕ)(Y (ϕ))

=
∑

λ∈PΘ
2n

ht(λ)62

(−1)n+n(λ)|Bλ
(0,(n))|sλ.

Apply ch−1 to get the result.

the electronic journal of combinatorics 16 (2009), #R146 22



Corollary 4.1. For n ∈ Z>1,

ch(RU2n
Gn

(Γ̃(n))) = (−1)n
∑

ν∈PΘ
2n

ht(ν)=1
ν even

∏

ϕ∈Θ

|ν(ϕ)|
∑

i=0

(−1)i|ϕ|s(i)(Y
(ϕ))s(|ν(ϕ)|−i)(Y

(ϕ)).

Proof. This is (4.5) in the proof of Theorem 4.1.

Using similar techniques, we can prove a result for arbitrary irreducible characters of
Gn. For λ ∈ PΘ̃ and γ ∈ P ιλ̃

s , let

cγ
λ̃

=
∏

ϕ∈Θ

cγ
λ̃
(ϕ), where cγ

λ̃
(ϕ) =







cγ
(ϕ)

λ(ϕ̃) if ϕ = ϕ̃ ∈ Θ̃,

cγ
(ϕ)

λ̃
(ϕ̃)

λ̃
(F ϕ̃) if ϕ = ϕ̃ ∪ Fϕ̃ and Fϕ̃ 6= ϕ̃ ∈ Θ̃,

where cλνµ is as in (2.4), and cγλ is as in (2.5).

Theorem 4.2. Let λ̃ ∈ PΘ̃
n . Then

RU2n
Gn

(χλ̃) =
∑

γ∈Pιλ̃
s

(−1)n(γ)cγ
λ̃
χγ.

Proof. By (2.16) and the characteristic map for Gn,

χλ̃ =
∑

ν̃∈Pλ̃
s

(∏

ϕ̃∈Θ̃

ωλ̃
(ϕ̃)

(ν̃(ϕ̃))

zν̃(ϕ̃)

)

(−1)n−ℓ(ν̃)RGn
ν̃ .

By transitivity of induction, and the fact that τΘ ◦ i = ι ◦ τΘ̃, we have RU2n
Gn

(RGn
ν̃ ) = RU2n

ιν̃ ,
and so

RU2n
Gn

(χλ̃) =
∑

ν̃∈Pλ̃
s

(∏

ϕ̃∈Θ̃

ωλ̃
(ϕ̃)

(ν̃(ϕ̃))

zν̃(ϕ̃)

)

(−1)n−ℓ(ν̃)RU2n
ιν̃ .

We now change the sum to a sum over ν = ιν̃ ∈ P ιλ̃
s , and using the image of the map ι,

we obtain

RU2n
Gn

(χλ̃) =
∑

ν∈Pιλ̃
s

ν even

(
∑

ν̃∈Pλ̃
s

ιν̃=ν

(∏

ϕ∈Θ

ωλ̃
(ϕ)

(ν̃(ϕ))

zν̃(ϕ)

))

(−1)n−ℓ(ν)RU2n
ν .

Apply the characteristic map, and rewrite the inner sum and product, to get

ch
(
RU2n

Gn
(χλ̃)

)
= (−1)n

∑

ν∈Pιλ̃
s

ν even

(
∑

ν̃∈Pλ̃
s

ιν̃=ν

(∏

ϕ̃∈Θ̃

ωλ̃
(ϕ̃)

(ν̃(ϕ̃))

zν̃(ϕ̃)

))

pν
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= (−1)n
∑

ν∈Pιλ̃
s

ν even

∏

ϕ̃∈Θ̃
F ϕ̃=ϕ̃

ωλ̃
(ϕ̃)

(ν(ϕ̃)/2)

zν(ϕ̃)/2

∏

ϕ̃∈Θ̃
F ϕ̃ 6=ϕ̃

(
∑

|γ|=|λ̃
(ϕ̃)

|

|µ|=|λ̃
(F ϕ̃)

|

γ∪µ=ν(ϕ̃∪F ϕ̃)

ωλ̃
(ϕ̃)

(γ)ωλ̃
(F ϕ̃)

(µ)

zγzµ

)

pν.

Recall that Fϕ̃ = ϕ̃ implies that |ϕ̃| is odd, and Fϕ̃ 6= ϕ̃ implies that ϕ = ϕ̃ ∪ Fϕ̃ where
|ϕ| is even. Thus, for every ϕ ∈ Θ such that ν(ϕ) 6= ∅, if |ϕ| is odd then ϕ = ϕ̃ for
some ϕ̃ ∈ Θ̃, and if |ϕ| is even then ϕ = ϕ̃ ∪ Fϕ̃ for some ϕ̃ ∈ Θ̃. Factor our expression
accordingly as

ch
(
RU2n

Gn
(χλ̃)

)
= (−1)n

∑

ν∈Pιλ̃
s

ν even

∏

ϕ∈Θ
ϕ=ϕ̃

ωλ̃
(ϕ̃)

(ν(ϕ)/2)

zν(ϕ)/2

pν(ϕ)

∏

ϕ∈Θ
ϕ=ϕ̃∪F ϕ̃

(
∑

|γ|=|λ̃
(ϕ̃)

|

|µ|=|λ̃
(F ϕ̃)

|

γ∪µ=ν(ϕ)

ωλ̃
(ϕ̃)

(γ)ωλ̃
(F ϕ̃)

(µ)

zγzµ

)

pν(ϕ)

= (−1)n
∏

ϕ∈Θ
ϕ=ϕ̃

∑

|ν|=|λ̃
(ϕ̃)

|

ωλ̃
(ϕ̃)

(ν)

zν
p2ν(Y

(ϕ))

·
∏

ϕ∈Θ
ϕ=ϕ̃∪F ϕ̃

∑

|ν|=|λ̃
(ϕ̃)

|+|λ̃
(F ϕ̃)

|

(
∑

|γ|=|λ̃
(ϕ̃)

|

|µ|=|λ̃
(F ϕ̃)

|
γ∪µ=ν

ωλ̃
(ϕ̃)

(γ)ωλ̃
(F ϕ̃)

(µ)

zγzµ

)

pν(Y
(ϕ)).

The first product is the case that |ϕ| is odd, and the second product is the case that |ϕ|
is even. For the sum in the first product, note that

∑

|ν|=|λ|+|η|

(
∑

|γ|=|λ|
|µ|=|η|
γ∪µ=ν

ωλ(γ)ωη(µ)

zγzµ

)

pν =

(
∑

|γ|=|λ|

ωλ(γ)

zγ

pγ

)(
∑

|µ|=|η|

ωη(µ)

zµ

pµ

)

= sλsη.

For the sum in the product for |ϕ| even, we have

∑

|ν|=|λ|

ωλ(ν)

zν
p2ν =

∑

|ν|=|λ|

ωλ(ν)

zν
pν ◦ p(2)

= sλ ◦ p(2)

where ◦ is the plethysm product (2.5). Thus, from the definition of the coefficients cγ
λ̃
, we

have
ch
(
RU2n

Gn
(χλ̃)

)
= (−1)n

∑

γ∈Pιλ̃
s

cγ
λ̃
sγ,

as desired.

It is perhaps worth noting that since we know Harish-Chandra induction RU2n
Gn

(χλ̃)

gives a character, then the sign of the coefficient cγ
λ̃

must be (−1)n(γ).
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4.5 Cuspidal characters

A cuspidal character of Un is an irreducible character χλ such that, for any Levi subgroup
L contained in a proper parabolic subgroup P ⊂ Un, and any character χ of L, χλ satisfies
〈RUn

L (χ), χλ〉 = 0 (see [4, Proposition 6.3]). Note that because of the existence of P , the
functor RUn

L will always be Harish–Chandra induction.
It follows from the description of Levi subgroups in Section 4.2 that every Levi of Un

contained in a parabolic is isomorphic to

L ∼= Gk1 ×Gk2 × · · · ×Gkℓ
× Um,

where 2(k1 + · · ·+ kℓ) +m = n. Thus, the irreducible character of L are indexed by

{(λ1,λ2, . . . ,λℓ,µ) | λj ∈ P
Θ̃
kj
,µ ∈ PΘ

m}.

The characteristic of the corresponding induced character is given by

ch
(
R

U2k1
Gk1

(χλ1)
)
· · · ch

(
R

U2kℓ
Gkℓ

(χλℓ)
)
ch(χµ).

Suppose λ ∈ PΘ̃
k . Define a subgroup Gλ ⊆ Gk by

Gλ =
∏

ϕ̃∈Θ̃

G
(ϕ̃)
λ , where G

(ϕ̃)
λ = G

|λ(ϕ̃)|
|ϕ̃| .

Note that Gλ is a Levi of U2k contained in a parabolic. This parabolic has a distinguished
irreducible character χ[λ] given by

χ[λ]

∣
∣
∣
∣
G

(ϕ̃)
λ

= χ�(ϕ̃)

⊗ · · · ⊗ χ�(ϕ̃)

︸ ︷︷ ︸

|λ(ϕ̃)| terms

.

For example, if k = 17, and

λ =
(

(ϕ̃1)
,

(ϕ̃2)
,

(ϕ̃3)
)

,

where |ϕ̃1| = 2, |ϕ̃2| = |ϕ̃3| = 3. Then Gλ = G2 ×G3 ×G3 ×G3 ×G3 ×G3, and

[λ] =
(
(�(ϕ̃1)), (�(ϕ̃2)), (�(ϕ̃2)), (�(ϕ̃2)), (�(ϕ̃3)), (�(ϕ̃3))

)
.

The characteristic map for Gk sends the Harish–Chandra induced character RGk
Gλ

(χ[λ])

to
∏

ϕ̃∈Θ̃(s(1)(Y
(ϕ̃)))|λ

(ϕ̃)|. It follows from Pieri’s rules that the inner product

〈RGk
Gλ

(χ[λ]), χλ〉 =
∏

ϕ̃∈Θ̃

K
λ(ϕ̃),(1|λ

(ϕ̃)|)
6= 0,

where K
λ(ϕ̃),(1|λ

(ϕ̃)|)
is a Kostka number given by the number of standard tableaux of shape

λ(ϕ̃) (see [17, Section I.5, Example 2(a)]). Thus, to understand which characters are in
the decomposition of characters induced from the split Levis, it suffices to consider the
case where L = Gk1 ×Gk2 × · · · ×Gkℓ

× Um and χ(λ1,λ2,...,λℓ,µ) satisfies

λj = (�(ϕ̃j)), for some ϕ̃j ∈ Θ̃ with |ϕ̃j| = kj.
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Lemma 4.3. For ϕ̃ ∈ Θ̃ with |ϕ̃| = k,

ch
(
R

U2k+m

Gk×Um
(χ((�(ϕ̃)),µ))

)
=







∑

ν(τ̃)=µ(τ̃),τ̃ 6=ϕ̃,
ν(ϕ̃) a horizontal

domino added to µ(ϕ̃)

sν −
∑

γ(τ̃)=µ(τ̃),τ̃ 6=ϕ̃,
γ(ϕ̃) a vertical

domino added to µ(ϕ̃)

sγ if Fϕ̃ = ϕ̃,

∑

ν(τ̃)=µ(τ̃),τ 6=ϕ̃∪F ϕ̃,
ν(ϕ̃∪F ϕ̃)

a box

added to µ(ϕ̃∪F ϕ̃)

sν if Fϕ̃ 6= ϕ̃.

Proof. For ϕ̃ ∈ Θ̃ with |ϕ̃| = k, by Theorem 4.2 and the characteristic map for U2k,

ch
(
RU2k

Gk
(χ�(ϕ̃)

)
)

=

{
p(2)(Y

(ϕ̃)) if ϕ̃ = Fϕ̃,
s(1)(Y

(ϕ̃∪F ϕ̃)) if ϕ̃ 6= Fϕ̃,

=

{
s(2)(Y

(ϕ̃))− s(12)(Y
(ϕ̃)) if ϕ̃ = Fϕ̃,

s(1)(Y
(ϕ̃∪F ϕ̃)) if ϕ̃ 6= Fϕ̃.

Thus,

ch
(
R

U2k+m

Gk×Um
(χ((�(ϕ̃)),µ))

)
=

{
(s(2)(Y

(ϕ̃))− s(12)(Y
(ϕ̃)))sµ if ϕ̃ = Fϕ̃,

s(1)(Y
(ϕ̃∪F ϕ̃))sµ if ϕ̃ 6= Fϕ̃.

The second case follows from usual Pieri rules. The first part follows from the Pieri rules
and observing that the common terms in s(2)sµ and s(12)sµ are exactly those terms that
do not come from adding a complete domino (horizontal or vertical).

Let C2 denote the following set of partitions:

C2 = {(s, s− 1, . . . , 2, 1) ∈ P | s > 1}.

That is, C2 is the set of “stairstep” partitions, or the 2-cores. These are exactly the
partitions from which we may not remove a domino and still have a partition (see Section
5.1). Lusztig proved that the only unipotent characters of any Un which are cuspidal are
those which correspond to the partitions λ ∈ C2, and so only occur when n = s(s+1)/2 =
|λ| for some s [15, Propositions 9.2 and 9.4]. We now characterize the set of all cuspidal
characters of the finite unitary groups.

Theorem 4.3. The set of all λ ∈ PΘ
n such that the character χλ of Un is cuspidal is

{λ ∈ PΘ
n | λ = (�(ϕ)), |ϕ| = n} ∪ {λ ∈ PΘ

n | λ
(ϕ) 6= ∅ implies |ϕ| is odd and λ(ϕ) ∈ C2}.

Proof. Note that by transitivity of Harish–Chandra induction,

RUn
Gk1

×···×Gkℓ
×Um

(χ((�(ϕ1)),...,(�(ϕℓ)),µ))

= RUn
Gk1

×···×Gkℓ−1
×U2kℓ+m

(

χ((�(ϕ1)),...,(�(ϕℓ−1))) ⊗R
U2kℓ+m

Gkℓ
×Um

(χ((�(ϕℓ)),µ))
)

.
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We may now iteratively apply Lemma 4.3 to see which χλ of Un can possibly appear
through Harish–Chandra induction. In particular, it follows from Lemma 4.3 that the
characters χλ which cannot appear are exactly those for which λ = (�(ϕ)) for some
|ϕ| = n (so λ has only one box); or those for which λ(ϕ) = ∅ when ϕ = ϕ̃ ∪ Fϕ̃ for some
ϕ̃ ∈ Θ̃ and Fϕ̃ 6= ϕ̃ (so ϕ 6∈ Θ̃), and λ(ϕ) has no removable domino (so λ(ϕ) ∈ C2 or
λ(ϕ) = ∅) when ϕ ∈ Θ̃. Recalling that ϕ ∈ Θ satisfies ϕ ∈ Θ̃ if and only if |ϕ| is odd, the
result follows.

4.6 Decomposing degenerate Gelfand–Graev characters

The following theorem is our main theorem of Section 4.

Theorem 4.4. Let n ∈ Z>1 and let (k, ν) satisfy ν ⊢ n−k
2
∈ Z>0. Then

Γ(k,ν) =
∑

λ∈PΘ
n

|Bλ
(k,ν)|χ

λ.

Proof. Recall that by Proposition 4.1,

ch(Γ(k,ν)) = ch
(
Γ(k)

)
ch

(

R
U2ν1
Gν1

(Γ̃(ν1))

)

ch

(

R
U2ν2
Gν2

(Γ̃(ν2))

)

· · · ch

(

R
U2νℓ
Gνℓ

(Γ̃(νℓ))

)

.

By Theorem 3.1 and Corollary 4.1,

ch(Γ(k)) = (−1)⌊k/2⌋
∑

γ∈PΘ
k

ht(γ)=1

∏

ϕ∈Θ

sγ(ϕ)(Y (ϕ)), and

ch(RU2r
Gr

(Γ̃(r))) = (−1)r
∑

γ∈PΘ
2r

ht(γ)=1
γ even

∏

ϕ∈Θ

|γ(ϕ)|
∑

i=0

(−1)i|ϕ|s(i)(Y
(ϕ))s(|γ(ϕ)|−i)(Y

(ϕ)).

Thus,

ch(Γ(k,ν)) = (−1)⌊n/2⌋
∑

γ0∈P
Θ
k

ht(γ0)=1

∑

16r6ℓ(ν)
γr∈P

Θ
2νr

ht(γr)=1
γr even

∏

ϕ∈Θ

s
γ

(ϕ)
0

(Y (ϕ))

ℓ(ν)
∏

r=1

|γ
(ϕ)
r |
∑

i=0

(−1)i|ϕ|s(i)(Y
(ϕ))s

(|γ
(ϕ)
r |−i)

(Y (ϕ)).

Fix ϕ ∈ Θ, and let mr = |γ
(ϕ)
r |. If |ϕ| is even, then Lemma 4.2 (a) implies

s(m0)

ℓ(ν)
∏

r=1

mr∑

i=0

s(i)s(mr−i) =
∑

|λ|=m0+···+mℓ(ν)

∣
∣T λ

(m0,...,mℓ(ν))

∣
∣sλ.
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If |ϕ| is odd, then Lemma 4.2 (b) implies

s(m0)

ℓ(ν)
∏

r=1

mr∑

i=0

(−1)is(i)s(mr−i) =
∑

|λ|=m0+···+mℓ(ν)

(−1)n(λ)
∣
∣Dλ

(m0,m1/2,...,mℓ(ν)/2)

∣
∣sλ.

Therefore,

ch(Γ(k,ν))

= (−1)⌊n/2⌋
∑

γ0∈P
Θ
k

ht(γ0)=1

∑

16r6ℓ(ν)
γr∈P

Θ
2νr

ht(γr)=1
γr even

∏

ϕ∈Θ
|ϕ| odd

∑

λ(ϕ)

(−1)n(λ(ϕ))
∣
∣Dλ(ϕ)

(|γ
(ϕ)
0 |,|γ

(ϕ)
1 |/2,...)

∣
∣sλ(ϕ)(Y (ϕ))

·
∏

ϕ∈Θ
|ϕ| even

∑

λ(ϕ)

∣
∣T λ(ϕ)

(|γ
(ϕ)
0 |,|γ

(ϕ)
1 |...)

∣
∣sλ(ϕ)(Y (ϕ))

= (−1)⌊n/2⌋
∑

λ∈PΘ
n

(
∑

γ0∈P
Θ
k

ht(γ0)=1

∑

16r6ℓ(ν)
γr∈P

Θ
2νr

ht(γr)=1
γr even

∏

ϕ∈Θ
|ϕ| odd

(−1)n(λ(ϕ))
∣
∣Dλ(ϕ)

(|γ
(ϕ)
0 |,|γ

(ϕ)
1 |/2,...)

∣
∣
∏

ϕ∈Θ
|ϕ| even

∣
∣T λ(ϕ)

(|γ
(ϕ)
0 |,|γ

(ϕ)
1 |...)

∣
∣

)

sλ

=
∑

λ∈PΘ
n

(−1)⌊n/2⌋+n(λ)|Bλ
(k,ν)|sλ.

The result follows by applying ch−1.

5 Some multiplicity consequences

In this section we explore some of the multiplicity implications of Theorem 4.4.

5.1 A bijection between domino tableaux and pairs of column

strict tableaux

The 2-core of a partition λ ∈ P, which we denote core2(λ), is the partition of minimal
size such that the skew partition λ/core2(λ) may be tiled by dominoes. It is not difficult
to see that the 2-core of any partition is always of the form (m,m− 1, . . . , 2, 1) for some
nonnegative integer m (where (0) is the empty partition).

The 2-quotient quot2(λ) of a partition λ is a pair of partitions (quot2(λ)(0), quot2(λ)(1))
(defined in [17, I.1, Example 8]). We define

quot2(λ)i = quot2(λ)
(0)
i + quot2(λ)

(1)
i .

Also define the content of a box 2 in the ith row and jth column of a partition λ to be
j − i.
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Let λ ∈ Pn with core2(λ) ∈ {(0), (1)}. Consider the bijection

Dλ
(|core2(λ)|,m1,...,mℓ)

←→







Pairs of column strict
tableaux of shape quot2(λ)
and weight (m1, m2, . . . , mℓ)







Q ↔ (Q(0), Q(1)),

(5.1)

given by the following algorithm, which originally appeared in [21], and is in a more
general form in [13].

(1) Each domino in Q covers two boxes of λ/core2(λ). Move the entries in Q to the box
that has content 0 modulo 2.

Q =
1

1
2

1
2

3 3

4
6

5

7−→

1 2

1 2

1 3 3

4

5 6

(2) Let S(0) denote the set of all dominoes that have the entry in the lower or leftmost
box, and S(1) be the set of dominoes that have the entry in the upper or rightmost
box.

S(0) =







1

1

1

5 6






and S(1) =







2

2

3 3

4







(3) For even −ℓ(λ) < i < λ1 and j ∈ {0, 1}, let

D
(j)
i =

The increasing sequence of entries whose
content is i and whose domino is in S(j),

(
D

(0)
−4, D

(0)
−2, D

(0)
0 , D

(0)
2 , D

(0)
4

)
=
(
(5), (1, 6), (1), (1), ()

)

(
D

(1)
−4, D

(1)
−2, D

(1)
0 , D

(1)
2 , D

(1)
4

)
=
(
(), (4), (3), (2, 3), (2)

)
.

(4) Let Q(j) be the unique tableau that has increasing diagonal sequences given by the

D
(j)
i for all even −ℓ(λ) < i < λ1.

Q(0) = 1 1 1

5 6
and Q(1) =

2 2

3 3

4

Remarks.

1. If the shape of the domino tableau Q is λ/core2(λ), then the shape of (Q(0), Q(1)) is
quot2(λ).
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2. We may apply this algorithm to a domino tableau of shape λ/(m) with m ≡
|core2(λ)| mod 2, by requiring that the tableau of shape λ/core2(λ) has ⌊m/2⌋
horizontal dominoes filled with zeroes. For example,

Q =
1 2

1 3 3

4

5 6

has shape λ/(5), so apply the algorithm to

0 0

1 2

1 3 3

4

5 6

.

Note that all of the zero dominoes are in the same set S(|core2(λ)|), so changing
m corresponds to adding or subtracting the number of zeroes in the first row of
Q(|core2(λ)|).

We will use the lexicographic total ordering on partitions given by

λ 6 µ if there exists k ∈ Z>1 such that λk < µk and λi = µi for 1 6 i < k. (5.2)

Lemma 5.1. Let λ ∈ Pn be such that core2(λ) ∈ {(0), (1)}, and let 0 6 m 6 λ1 be
such that m ≡ |core2(λ)| mod 2. Then there exists a lexicographically maximal weight
µ = (µ1, µ2, . . . , µℓ) such that there exists exactly one domino tableau of shape λ/(m) and
weight (m,µ1, . . . , µℓ).

Proof. First suppose (λ(0)/γ(0), λ(1)/γ(1)) is a pair of skew partitions. Let µ1 be the maxi-
mal number of 1’s we can put in a tableau of shape (λ(0)/γ(0), λ(1)/γ(1)), µ2 be the maximal
number of 2’s we can thereafter fill into (λ(0)/γ(0), λ(1)/γ(1)), and µj be the maximal num-
ber of j’s we can fill given that we have filled in a maximum number at each step up to j.
Then there is exactly one tableau (Q(0), Q(1)) of shape (λ(0)/γ(0), λ(1)/γ(1)) and weight µ,
and this weight is lexicographically maximal. The result now follows from pulling back
(Q(0), Q(1)) through the bijection (5.1) to get a domino tableau of the same weight, along
with the second remark preceding this Lemma.

Remark. If m = |core2(λ)|, then µ is given by µ0 = |core2(λ)| and µi = quot2(λ)i for
i > 1.

5.2 Multiplicity results

As a first consequence of Theorem 4.4, Corollary 5.1, below, characterizes which ir-
reducible characters of U(n,Fq2) appear with nonzero multiplicity in some degenerate
Gelfand–Graev character. We note that the following could also be obtained by the de-
scription of such characters given by Kotlar in [11, Corollary 2.6] based on Harish-Chandra
series.

Corollary 5.1. The set of all λ ∈ PΘ
n such that the character χλ of U(n,Fq2) satisfies

〈χλ,Γ(k,ν)〉 6= 0 for some degenerate Gelfand–Graev character Γ(k,ν) is

{λ ∈ PΘ
n

∣
∣ core2(λ

(ϕ)) ∈ {(0), (1)} whenever |ϕ| is odd }.
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Proof. By Theorem 4.4, the irreducible character χλ appears with nonzero multiplicity
in some degenerate Gelfand–Graev character if and only if there is a battery tableau of
shape λ/γ for some γ ∈ PΘ with ht(γ) 6 1.

If for some odd ϕ ∈ Θ, we have core2(λ
(ϕ)) /∈ {(0), (1)}, then the 2-core of λ(ϕ) has

at least two parts. But then there is no choice of γ(ϕ) that allows us to tile λ(ϕ)/γ(ϕ)

by dominoes. On the other hand, if core2(λ
(ϕ)) = (0), we can choose γ(ϕ) = (0), and if

core2(λ
(ϕ)) = (1), we can let γ(ϕ) = (1), and λ(ϕ)/γ(ϕ) can be tiled by dominoes.

We now specify multiplicities of certain characters χλ in degenerate Gelfand–Graev
characters.

Theorem 5.1. Let λ ∈ PΘ
n be such that core2(λ

(ϕ)) ∈ {(0), (1)} whenever |ϕ| is odd.
Then there exists ν ⊢ n−k

2
such that

〈Γ(k,ν), χ
λ〉 =

∏

ϕ∈Θ
|ϕ| even

∏

i odd

(
λ

(ϕ)
i − λ

(ϕ)
i+1 + 1

)
.

Proof. Let k =
∑

|ϕ| odd |ϕ||core2(λ
(ϕ))| and define γ by

γ(ϕ) =

{

core2(λ
(ϕ)) if |ϕ| is odd,

∅ otherwise.

Since |γ| = k, by Theorem 4.4 and Corollary 5.1, it suffices to find ν ⊢ n−k
2

such that
there exist ∏

ϕ∈Θ
|ϕ| even

∏

i odd

(
λ

(ϕ)
i − λ

(ϕ)
i+1 + 1

)

battery tableaux with shape λ/γ and weight (k, ν).
We construct the battery tableau Q as follows. For odd ϕ ∈ Θ, let Q(ϕ) be the unique

domino tableau of shape λ(ϕ)/(core2(λ
(ϕ))) and weight

(|core2(λ
(ϕ))|, quot2(λ

(ϕ))1, quot2(λ
(ϕ))2, . . .),

obtained from Lemma 5.1 (see, in particular, the remark after the lemma).
For even ϕ ∈ Θ and for each i > 1, we fill the (2i−1)st row of λ(ϕ) with ī’s, and the 2ith

row with i’s. The resulting symplectic tableau Q(ϕ) has weight (λ
(ϕ)
1 +λ

(ϕ)
2 ,λ

(ϕ)
3 +λ

(ϕ)
4 , . . .).

Note that we may change up to λ
(ϕ)
2i−1 − λ

(ϕ)
2i of the ī’s to i’s in row 2i − 1 while leaving

the weight unchanged. We therefore have exactly

∏

i odd

(λ
(ϕ)
i − λ

(ϕ)
i−1 + 1)

symplectic tableaux of shape λ(ϕ) and weight (λ
(ϕ)
1 + λ

(ϕ)
2 ,λ

(ϕ)
3 + λ

(ϕ)
4 , . . .).
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We combine these to create a battery tableau of shape λ/γ and weight ν, where

νi =
∑

ϕ∈Θ
|ϕ| odd

|ϕ|quot2(λ
(ϕ))i +

∑

ϕ∈Θ
|ϕ| even

|ϕ|

2

(
λ

(ϕ)
2i + λ

(ϕ)
2i−1

)
.

Note that from this construction, ν is the maximal weight under the lexicographical
ordering (5.2) of a battery tableau of shape λ/γ, while each γ(ϕ) is chosen minimally. It
follows that the weight ν will change if we change the weight of any Q(ϕ).

For example, if

λ =

(
(ϕ1)

,
(ϕ2)

,
(ϕ3)

)

where |ϕi| = i,

then k = 1, ν = (2 + 4 + 3, 0 + 1 + 3) = (9, 4), and every battery tableau of shape λ and
weight (k, ν) must be of the form

(

0
1

1

(ϕ1)

,
1̄ 1̈ 1̈
1
2̈

(ϕ2)

,
1

2

(ϕ3)
)

, where ï ∈ {̄i, i}.

There are 3 · 2 = 6 such tableaux.
Theorem 5.1 and its proof give the following multiplicity one result.

Corollary 5.2. Let λ ∈ PΘ
n . Suppose core2(λ

(ϕ)) ∈ {(0), (1)} whenever |ϕ| is odd, and
for all i > 0, the multiplicities mi(λ

(ϕ)) are even for all even ϕ ∈ Θ. Then 〈Γ(k,ν), χ
λ〉 = 1,

where

k =
∑

ϕ∈Θ
|ϕ| odd

|ϕ||core2(λ
(ϕ))| and νi =

∑

ϕ∈Θ
|ϕ| odd

|ϕ|quot2(λ
(ϕ))i +

∑

ϕ∈Θ
|ϕ| even

|ϕ|

2

(
λ

(ϕ)
2i + λ

(ϕ)
2i−1

)
.

The next theorem generalizes Corollary 5.2.

Theorem 5.2. Suppose λ ∈ PΘ
n satisfies the following:

(a) Whenever |ϕ| is odd, core2(λ
(ϕ)) ∈ {(0), (1)},

(b) Whenever |ϕ| is even, the partition λ(ϕ) has at most one nonzero part with odd
multiplicity,

(c) There exists an r > 0 such that for every ϕ ∈ Θ with |ϕ| even, either ℓ(λ(ϕ)) < r
and λ(ϕ) has no nonzero part of odd multiplicity, or λ(ϕ)

r has odd multiplicity and

λ(ϕ)
r < λ

(ϕ)
r−1.

Then the irreducible character χλ of Un appears with multiplicity one in some degenerate
Gelfand–Graev character of Un.
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Proof. Suppose λ ∈ PΘ
n satisfies (a), (b), and (c). Let γ ∈ PΘ be given by

γ(ϕ) =

{

(i) if |ϕ| is even and mi(λ
(ϕ)) is odd,

(

|core2(λ)|+ 2quot2(λ)
(|core2(λ)|)
⌈r/2⌉

)

if |ϕ| is odd and λ = λ(ϕ).

For example, the Θ-partition

λ =






(ϕ1)

,

(ϕ2)

,
(ϕ4)




 , with |ϕi| = i,

satisfies (a), (b), and (c) with r = 5. Since

quot2(λ
(ϕ1)) =

(
(0)
,

(1)
)

and core2(λ
(ϕ1)) = (1)

(as in the example for (5.1)), we have that

|core2(λ
(ϕ1))|+ 2quot2(λ

(ϕ1))
(1)
⌈r/2⌉ = 3 and γ =

(
(ϕ1), (ϕ2)

)
.

Consider the following battery tableau Q of shape λ/γ.

1. For ϕ ∈ Θ such that |ϕ| is even, fill λ(ϕ)/γ(ϕ) with λ
(ϕ)
2j−1 j’s and λ

(ϕ)
2j j̄’s for

2j 6 ℓ(λ(ϕ)) such that 2j < r, and λ
(ϕ)
2j j’s and λ

(ϕ)
2j+1 j̄’s for 2j + 1 6 ℓ(λ(ϕ)) such

that 2j > r. Then all of the nonzero entries come in pairs j̄

j and the resulting
weight is lexicographically maximal.

2. For ϕ ∈ Θ such that |ϕ| is odd, use Lemma 5.1 to fill λ(ϕ)/γ(ϕ) in a lexicographically
maximal way.

In our running example, we have

Q =






0 0 0
1 1

1 1 1
2

2 2 2

(ϕ1)

,

0 1̄

1̄ 1

1 2̄

2̄ 2

2

(ϕ2)

, 1̄

1

(ϕ4)




 .

Note that by Lemma 5.1, Q is the only battery tableau of shape λ/γ and weight
wt(Q). Thus, it suffices to show that there is no ν ⊆ λ with |ν| = |γ| and ht(ν) 6 1
such that there exists a battery tableau P of shape λ/ν and weight wt(Q).

Since |ν| = |γ|, we may think of moving from Q to P by shifting zero entries between
ϕ ∈ Θ in Q. If |ϕ| is even, it is clear from the construction of Q(ϕ) that if we add a
zero, an entry < r/2 is lost, while if we remove a zero, an entry > r/2 is gained. Now
consider when |ϕ| is odd, with Q = Q(ϕ) and λ = λ(ϕ). Apply the bijection (5.1) to the
domino tableau Q, and notice that from Remark 2 preceding Lemma 5.1, our choice of
γ(ϕ) forces Q(|core2(λ)|) to have exactly quot2(λ)

(core2(λ))
⌈r/2⌉ 0’s. Now, adding a pair of zero
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entries to or removing a pair of zero entries from Q is the same as adding a zero to or
removing a zero from Q(|core2(λ)|). It is clear that adding a zero to Q(|core2(λ)|) results in
losing an entry < r/2, which removes a domino with entry < r/2 in Q, and removing a
zero from Q(|core2(λ)|) results in gaining an entry > r/2, which adds a domino with entry
> r/2 in Q. Thus, no matter how we change γ to ν, we are forced to change the weight
of the full battery tableau to a lexicographically smaller weight. So, there is no such ν

which leaves the weight unchanged, and uniqueness follows.

Remarks. Corollary 5.2 follows from Theorem 5.2, since (a) and (b) are easily satisfied,
and

r = max{ℓ(λ(ϕ)) | ϕ ∈ Θ, |ϕ| even}+ 1.

Another consequence of Theorem 5.2 is a result by Ohmori [18].

Corollary 5.3 (Ohmori). Let λ ∈ PΘ
n , and define the partition µ to have parts

µj =
∑

ϕ∈Θ

|ϕ|λ
(ϕ)
j .

Suppose that µ = (1m12m2 . . .) is such that mi is even for all i except for the one value
i = k, or that mi is always even, in which case we let k = 0. Define the partition ν
to be ν = (1m1/22m2/2 · · · k(mk−1)/2 · · · ). Then the irreducible character χλ appears with
multiplicity one in the degenerate Gelfand–Graev character Γ(k,ν).

Proof. Note that if λ ∈ PΘ
n satisfies the hypotheses of the corollary, then for any ϕ ∈ Θ

the partition λ(ϕ) has at most one nonzero part size with odd multiplicity, otherwise µ
would have more parts with odd multiplicity. Thus, λ satisfies condition (b) of Theorem
5.2. Moreover, the fact that µ has at most one part with odd multiplicity implies that
there must be an r > 0 such that for every ϕ ∈ Θ, either ℓ(λ(ϕ)) < r or λ(ϕ)

r has odd

multiplicity in λ(ϕ) and λ(ϕ)
r < λ

(ϕ)
r−1. In particular, this holds when |ϕ| is even, and so λ

satisfies condition (c) of Theorem 5.2. If ϕ ∈ Θ is odd, and λ(ϕ) has a part size i with
odd multiplicity, where i = 0 if ℓ(λ(ϕ)) < r, then

core2(λ
(ϕ)) =

{
(1) if i is odd,
(0) if i is even.

Thus, λ satisfies (a) of Theorem 5.2.
Now define γ by γ(ϕ) = i if mi(λ

(ϕ)) is odd, where i = 0 if ℓ(λ(ϕ)) < r. Then |γ| = k.
When |ϕ| is even, fill λ(ϕ)/γ(ϕ) just as in the proof of Theorem 5.2. When |ϕ| is odd,

fill λ(ϕ)/γ(ϕ) with all vertical dominoes such that there are λ
(ϕ)
2j−1 j’s for 2j − 1 6 ℓ(λ(ϕ))

such that 2j − 1 < r, and λ
(ϕ)
2j j’s for 2j 6 ℓ(λ(ϕ)) such that 2j > r. This gives a battery

tableau of shape λ/γ, where |γ| = k, and weight ν as defined above.
Fix a ϕ such that |ϕ| is odd, let λ = λ(ϕ), and let Q(ϕ) = Q be the domino tableau

just defined, and apply the bijection (5.1) to Q. Since Q has been filled with all vertical
dominoes, the resulting weight is lexicographically maximal, and so by Lemma 5.1, the
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tableaux Q(0) and Q(1) obtained from the bijection (5.1) also have lexicographically max-
imal weights. Let j = |core2(λ)|, and consider Q(j). From our choice of γ(ϕ), the tableau
Q(j) has exactly ⌊λr/2⌋ 0’s. By the bijection (5.1), we also have row ⌈r/2⌉ of Q(j), which

is quot2(λ
(ϕ))

(j)
⌈r/2⌉, is exactly ⌊λr/2⌋. This means the domino tableau Q(ϕ) is exactly what

is constructed in the proof of Theorem 5.2. Therefore, Q is exactly the battery tableau
obtained in the proof of Theorem 5.2, and so we have 〈χλ,Γ(k,ν)〉 = 1.

Note that by Corollary 5.1, condition (a) of Theorem 5.2 is a necessary condition. The
following proposition shows that condition (b) is also necessary.

Proposition 5.1. Let λ ∈ PΘ. If there exists a ϕ ∈ Θ such that |ϕ| is even and λ(ϕ) has
at least two distinct part sizes with odd multiplicity, then

〈χλ,Γ(k,ν)〉 6= 1

for all degenerate Gelfand–Graev characters Γ(k,ν).

Proof. Suppose λ ∈ PΘ and |ϕ| is even, such that λ = λ(ϕ) has part sizes x < y with
odd multiplicity. Let Q be a symplectic tableau of shape λ/(m) for some m 6 λ1, and
suppose wt(Q) = µ. If there exists an ī such that there is no i directly south of ī in Q,
then, taking the ī furthest to the right in this row, there is a second symplectic tableau
P of shape λ/(m) and weight µ obtained by changing this ī to an i in Q. Similarly, if
there is an i with no ī directly north of it, then there is a second tableau P with the same
weight and shape as Q. Thus, the only way Q is the only tableau of shape λ/(m) and
weight µ, is if λ/(m) can be tiled by vertical dominoes.

If m < y, then the yth column of λ/(m) has an odd number of boxes, and therefore
cannot be tiled by vertical dominoes. If m > y, then the mth column of λ/(m) has an
odd number of boxes. If m = y, then the xth column of λ/(m) has an odd number of
boxes. In all cases, λ/(m) cannot be tiled by dominoes, and the result follows.

Remarks.

1. While conditions (a) and (b) of Theorem 5.2 are necessary, condition (c) is not. For
example, the only battery tableau of weight (2, (8)) for the Θ-partition

λ =
(

(α)
, (β)

)

with |α| = 4, |β| = 2, is Q =
(

1̄

1

(α)
, 0

(β)
)

.

2. At the same time, conditions (a) and (b) of Theorem 5.2 are not alone sufficient.
For example,

λ =
(

(α)
,

(β)
)

, with |α| = |β| = 2,

satisfies (a) and (b). The possible weights and two of their battery tableaux are

(0, (6)) :
(

1̄

1

(α)
, 1̄

(β)
)

,
(

1̄

1

(α)
, 1

(β)
)

(2 total),
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(0, (4, 2)) :
(

1̄

1

(α)
, 2̄

(β)
)

,
(

1̄

1

(α)
, 2

(β)
)

(10 total),

(0, (23)) :
(

1̄

2̄

(α)
, 3̄

(β)
)

,
(

1

2

(α)
, 3

(β)
)

(24 total),

(2, (4)) :
(

0

1̄

(α)
, 1̄

(β)
)

,
(

0

1

(α)
, 1

(β)
)

(5 total),

(2, (22)) :
(

0

1̄

(α)
, 2̄

(β)
)

,
(

0

1

(α)
, 2

(β)
)

(12 total),

(4, (2)) :
(

0

1̄

(α)
, 0

(β)
)

,
(

0

1

(α)
, 0

(β)
)

(2 total).
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