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Abstract

The results of this paper are concerned with the multi-covering radius, a gen-
eralization of covering radius, of Rank Distance (RD) codes. This leads to greater
understanding of RD codes and their distance properties. Results on multi-covering
radii of RD codes under various constructions are given by varying the parameters.
Some bounds are established. A relationship between multi-covering radii of an RD
code and that of its ambient space is also found. The classical sphere bound is
generalized.

1 Introduction

The concept of covering radius has been the subject of hundreds of papers. [2, 3] can
be referred for a comprehensive survey and thorough bibliography on the subject. In
this paper, simultaneous coverings of m-tuples of vectors, rather than single vector, are
investigated for codes over the Galois field F2N defined with rank metric. The notion of
multi-covering radius, a generalization of the covering radius, was introduced by Andrew
Klapper [8] for binary codes with Hamming metric to study the existence of stream ciphers
secured against a large class of attacks.

Here, for the first time study of multi-covering radius for codes with a non-Hamming
metric, namely rank metric is carried out. Recall that an RD code [5] of length n is
a subset of F

n
qN (where n 6 N and N > 1, q being a power of a prime) wherein the

weight(rank norm) of each vector is defined to be the maximum number of its coordinates
that are linearly independent, and the corresponding metric induced by this norm is called
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the rank metric. If m is a positive integer, then the multi-covering radius or m-covering
radius tm(C) of a block code C of length n is the smallest integer t such that every set
of m vectors in the ambient space is contained in, at least one ball of radius t around
a codeword in C. Thus multi-covering radius is a natural generalization of the classical
notion of covering radius, which is exactly the case when m = 1. The notion of multi-
covering radius makes sense over any alphabet; however, here attention is restricted to
codes over F2N .

The notion of multi-covering radius arose from investigations concerning the crypt-
analysis of stream ciphers [6]. This paper is in search of RD codes with least cardinality
for a given length n and multi-covering radius t. Beyond that, multi-covering radii are
interesting in their own right as natural generalizations of the covering radius. Under-
standing it is likely to lead to a greater understanding of codes in general.

In this section, some basic notations and terminology needed for further discussions are
given. In the next section, some basic properties and relations are discussed by varying the
parameters for multi-covering radii. Section III establishes various bounds for m-covering
radius including a relationship between m-covering radius of an RD code and that of its
ambient space. The generalization of classical sphere bound is given in section IV. Final
section gives the conclusions and future directions.

Let F2N denote a finite field of 2N elements, N > 1 and V n be an n-dimensional
vector space over F2N , n 6 N . That is, V n = F

n
2N . Rank weight of any vector x =

(x1, x2, . . . , xn) ∈ V n is defined as the maximum number of its coordinates that are
linearly independent, and is denoted as r(x). For x, y ∈ V n, dR(x, y) = r(x− y), the rank
distance between x and y. This is the maximum number of coordinates of x− y that are
linearly independent over F2. Any subset C of F

n
2N equipped with the above rank metric

is called as a Rank Distance (RD) code.

The weight of a set S ⊆ V n, is defined as max{r(x) : x ∈ S} and is denoted by
wt(S). If S ⊆ V n, then dR(x, S) = min {dR(x, y) : y ∈ S}. The covering radius
of x for S is cov(x, S) = max{dR(x, y) : y ∈ S}. The covering radius of a code C
for S is cov(C, S) = min{cov(c, S) : c ∈ C}. Thus, the m-covering radius of C is
max{cov(C, S) : S ⊆ V n, |S| = m}.

As an example, consider a linear RD code C =
{

(0, 0), (1, α2), (α, 1), (α2, α)
}

over
F22 = {0, 1, α, α2}, where α2 = α + 1. Clearly, covering radius of C is 1 i.e., t1(C) = 1
as each vector in the ambient space V 2 can be covered within radius 1 by at least one
codeword in C. But 2-covering radius of C is not equal to 1; for, if S = {(α2, 0), (1, α2)},
there does not exist a c ∈ C such that cov(c, S) = 1; hence cov(C, S) = 2 implying
t2(C) = 2.

Here is an alternate definition of m-covering radius: let S = {v1, v2, . . . , vm} be a set
of m-vectors. Then, for a c ∈ C, cov(C, S) = cov(C, S + c) where S + c = {x+ c : x ∈ S}.
Consider

S +m C = {S + c : c ∈ C},

the collection of all translates of S by elements of C. A translate leader is an m-tuple
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T ∈ S +m C such that wt(T ) is minimal. The m-covering radius of C is the weight of the
maximal weight translate leader.

Gaussian coefficient (also known as q-binomial coefficient, here q being 2) is given by
[

n
m

]

=
(2n − 1)(2n − 2) · · · (2n − 2m−1)

(2m − 1)(2m − 2) · · · (2m − 2m−1)
,

which gives the number of m-dimensional subspaces of an n-dimensional vector space over
the field F2. The number of vectors of length n whose rank norm is i is given by

Li(n) =

[

n
i

]

(2N − 1)(2N − 2) · · · (2N − 2i−1).

For any x ∈ V n, Bt(x) = {y ∈ V n : dR(x, y) 6 t} is said to be the rank sphere of
radius t with center x, and Si(x) = {y ∈ V n : dR(x, y) = i} is called as the ith surface of
the rank sphere with center at x. Let V (n, t) = |Bt(x)|. Clearly, |Si(x)| = Li(n) so that

V (n, t) =

t
∑

i=0

Li(n).

Let [n, k, d] stand for a linear RD code of length n, dimension k and minimum distance
d. Let [n, k] stand for a linear RD code of length n and dimension k, and (n, K) for an RD
code of length n and cardinality K. Let tm(C) denote m-covering radius of an RD code
C, tm[n, k], the smallest m-covering radius among all [n, k] codes, tm(n, K), the smallest
m-covering radius among all (n, K) codes, km[n, t], the smallest dimension of linear RD
codes of length n and m-covering radius t and Km(n, t), the least cardinality of RD codes
of length n and m-covering radius t.

2 Basic Properties of m-Covering Radius

Certain basic relations (as in [8]) hold with varying the parameters for m-covering radii.
The proofs are straightforward.

Proposition 2.1. If C1 and C2 are RD codes with C1 ⊆ C2, then tm(C1) > tm(C2).

Proof: Let S ⊆ V n with |S| = m.

cov(C2, S) = min{cov(x, S) : x ∈ C2}

6 min{cov(x, S) : x ∈ C1}

= cov(C1, S)

Thus, tm(C2) 6 tm(C1). �

Proposition 2.2. For any RD code C and a positive integer m, tm(C) 6 tm+1(C).

Proof: tm(C) = max{cov(C, S) : S ⊆ V n, |S| = m}

6 max{cov(C, S) : S ⊆ V n, |S| = m + 1}

= tm+1(C).
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Proposition 2.3. For any set of positive integers n, m, k and K, tm[n, k] 6 tm+1[n, k]
and tm(n, K) 6 tm+1(n, K).

Proof: tm[n, k] = min{tm(C) : C ⊆ V n, dim C = k}

6 min{tm+1(C) : C ⊆ V n, dim C = k}

= tm+1[n, k].

Similarly, tm(n, K) 6 tm+1(n, K).
That is,

tm(n, K) = min{tm(C) : C ⊆ V n, |C| = K}

6 min{tm+1(C) : C ⊆ V n, |C| = K}

= tm+1(n, K). �

Proposition 2.4. For any set of positive integers n, m, k and K, tm[n, k] > tm[n, k +1]
and tm(n, K) > tm(n, K + 1).

Proof: tm[n, k + 1] = min{tm(C) : C ⊆ V n, dim C = k + 1}

6 min{tm(C) : C ⊆ V n, dim C = k}

(∵ for each C1 ⊆ C2, tm(C2) 6 tm(C1))

= tm[n, k].

Similarly, tm(n, K + 1) 6 tm(n, K). �

Using these results and the definition of km[n, t] and Km(n, t), the following results
are immediate.

Proposition 2.5. For any set of positive integers n, m and t, km[n, t] 6 km+1[n, t] and
Km(n, t) 6 Km+1(n, t). �

Proposition 2.6. For any set of positive integers n, m and t, km[n, t] > km[n, t + 1]
and Km(n, t) > Km(n, t + 1). �

Thus, the m-covering radius of a fixed RD code C, tm[n, k], tm(n, K), km[n, t] and
Km(n, t) are non-decreasing functions of m, and hold for any arbitrary metric as evident
from the proofs.

The relationship between the multi-covering radii of two RD codes and codes that are
built from them are given. For i = 1, 2, let Ci be an [ni, ki, di] RD code over F2N with
n1, n2, n1 + n2 6 N .

Proposition 2.7. Let C = C1 × C2 = {(x|y) : x ∈ C1, y ∈ C2}. Then C is a
[n1 +n2, k1 +k2, min{d1, d2}] Rank Distance code over F2N and tm(C) 6 tm(C1)+ tm(C2).

the electronic journal of combinatorics 16 (2009), #R147 4



Proof: Let S ⊆ V n1+n2 and S = {s1, s2, . . . , sm} with si = (xi|yi), xi ∈ V n1 , yi ∈ V n2 .
Let S1 = {x1, x2, . . . , xm} and S2 = {y1, y2, . . . , ym}. Now, tm(C1) being the m-covering
radius of C1, there exists a c1 ∈ C1 such that S1 ⊆ Btm(C1)(c1). This implies r(xi + c1) 6

tm(C1), ∀ xi ∈ S1. Similarly, there exists a c2 ∈ C2 such that S2 ⊆ Btm(C2)(c2). This
implies r(yi + c2) 6 tm(C2), ∀ yi ∈ S2. Now, c = (c1|c2) ∈ C. Hence,

r(si + c) = r((xi|yi) + (c1|c2))

= r(xi + c1 | yi + c2)

6 r(xi + c1) + r(yi + c2)

6 tm(C1) + tm(C2), for all si ∈ S.

Thus, tm(C) 6 tm(C1) + tm(C2). �

When m = 1, this inequality becomes an equality in the case of Hamming metric
(see [2, 3, 8]). As rank distance between any two n-tuples is less than or equal to their
Hamming distance, the above inequality does not need to be an equality when m = 1,
in the case of rank metric codes. For, if (x|y) ∈ V n1+n2 such that x ∈ V n1 and y ∈ V n2 ,
then there exists c1 ∈ C1 and c2 ∈ C2 such that d(x, c1) = t1(C1) and d(y, c2) = t1(C2).
So, in line with the above proof, Hamming weight of (x + c1|y + c2) equals the sum of the
Hamming weights of x + c1 and y + c2. But the rank weight of (x + c1|y + c2) is less than
or equal to the sum of the rank weights of x + c1 and y + c2.

For any positive integer r, the r-fold repetition of a [n, k, d] RD code C is the code
C(r) = {(c | c | . . . | c) : c ∈ C}, where the codeword c is concatenated r times. This is
a [rn, k, d] Rank Distance code. Note that, here n 6 N is chosen so that rn 6 N . The
following proposition establishes the m-covering radius of this r-fold repetition code.

Proposition 2.8. For an r-fold repetition RD code C(r), tm(C(r)) > tm(C).

Proof: Let S = {v1, v2, . . . , vm} ⊆ V n such that cov(C, S) = tm(C). Now, let v′

i =
(vi|vi| . . . |vi). Let S ′ = {v′

1, v
′

2, . . . , v
′

m} be a set of m vectors of length rn each. An
r-fold repetition of any RD codeword retains the same rank weight. Hence, cov(C(r), S

′)
= tm(C). Since tm(C(r)) > cov(C(r), S

′), the result follows. �

This result is different from that for codes with Hamming metric [8] due to the fact
that r-fold repetition of any RD codeword retains the same rank weight and hence the
distance.

3 Multi-covering Bounds

The m-covering radius tm(C) is a non-decreasing function of m due to Proposition 2.2.
Thus, a lower bound for tm(C) implies a bound for tm+1(C). The first bound in this
section shows that for m > 2, the situation for m-covering radii is quite different from
that for ordinary covering radii [14].
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Proposition 3.1. If m > 2, then the m-covering radius of an RD code of length n is at

least
⌈n

2

⌉

.

Proof: Let m = 2. Let t be the 2-covering radius of an RD code C. Let x ∈ V n. Choose
y ∈ V n such that all the n coordinates of x−y are linearly independent, i.e., dR(x, y) = n.
Then, for any c ∈ C, dR(x, c) + dR(c, y) > dR(x, y) = n. This implies that one of dR(x, c)

and dR(c, y) is at least n/2 and hence, t >

⌈n

2

⌉

. Since t is nondecreasing function of m,

it follows that tm(C) >

⌈n

2

⌉

for m > 2. �

The above result is true for any metric d with respect to which the maximum distance

(diameter) of the code equals n. If the diameter of a code is, say ∆, then t2(C) >

⌈∆

2

⌉

; for,

if x, y ∈ V n be such that d(x, y) = ∆, then for any c ∈ C, d(x, c) + d(c, y) > d(x, y) = ∆

which implies that one of d(x, c) and d(c, y) is at least
∆

2
. Thus, tm(C) >

⌈∆

2

⌉

for m > 2,

where ∆ is the maximum distance of the code C.

Bounds on the multi-covering radius of V n can be used to obtain bounds on the multi-
covering radii of arbitrary codes. Thus, a relationship between m-covering radius of an
RD code and that of its ambient space V n is established.

Theorem 3.2. Let C be any RD code of length n over F2N . Then for any positive
integer m, tm(C) 6 t1(C) + tm(V n).

Proof: Let S ⊆ V n with |S| = m. Then, there exists u ∈ V n such that cov(u, S) 6

tm(V n). Also, there is a c ∈ C such that dR(c, u) 6 t1(C). Now,

cov(c, S) = max{dR(c, y) : y ∈ S}

6 max{dR(c, u) + dR(u, y) : y ∈ S}

= dR(c, u) + cov(u, S)

6 t1(C) + tm(V n).

Thus, for every S ⊆ V n with |S| = m, one can find a c ∈ C such that cov(c, S) 6 t1(C)+
tm(V n). Since cov(C, S) = min{cov(a, S) : a ∈ C} 6 t1(C)+tm(V n) for any S ⊆ V n with
|S| = m, it follows that, tm(C) = max{cov(C, S) : S ⊆ V n, |S| = m} 6 t1(C) + tm(V n).
�

Proposition 3.3. For any integer n > 2, t2(V
n) 6 n − 1, where V n = F

n
2N , n 6 N .

Proof: Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ V n. Let u ∈ V n be such that
u = (x1, u2, u3, . . . , un−1, yn). This u covers x and y within radius n−1 as dR(u, x) 6 n−1
and dR(u, y) 6 n−1. Thus, for any pair of vectors x, y ∈ V n, there always exists a vector
namely u, which covers x and y within radius n − 1. Hence, t2(V

n) 6 n − 1. �

The above proposition can be improved to t2(V
n) 6 ⌈n

2
⌉, by taking for u the vector
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that agrees with x in the ⌈n
2
⌉ leftmost positions, and with y in the ⌊n

2
⌋ rightmost positions.

In the same way, it can be shown that tm(V n) 6 n − ⌊ n
m
⌋ for any m 6 n. Hence,

Proposition 3.4.

(1) t2(V
n) 6 ⌈n

2
⌉ for n > 2.

(2) tm(V n) 6 n − ⌊ n
m
⌋ for any m 6 n. �

The following example illustrates m-covering radius of RD codes.

Example 3.5. Consider the Galois field F22 = {0, 1, α, α2}, where α2 = α + 1. Then,

V 2 = F
2
22

=
{

(0, 0), (0, 1), (0, α), (0, α2), (1, 0), (1, 1), (1, α), (1, α2), (α, 0), (α, 1), (α, α),

(α, α2), (α2, 0), (α2, 1), (α2, α), (α2, α2)
}

.

(a) Clearly, t2(V
2) = 1.

(b) Consider a non-linear RD code (2, 3) of length 2 and cardinality 3:
{

(0, 0), (1, α), (α, 1)
}

. It has 1-covering radius 1.

(c) Consider a non-linear RD code (2, 7) of cardinality 7:
{

(0, 0), (0, 1), (1, 0), (0, α), (α, 0), (α,α), (α2, α2)
}

. It has 2-covering radius 1.

(d) Consider a [2, 1] repetition RD code Cr =
{

(0, 0), (1, 1), (α, α), (α2, α2)
}

over F22 ,
whose generator matrix is G =

[

1 1
]

. Clearly, t1(Cr) = 1. But t2(Cr) = 2; for, if
S = {(0, 1), (α, α2)}, cov(Cr, S) = 2.

(e) All [2, 1, 1] RD codes and [2, 1, 2] RD codes have ordinary covering radius as 1 and
2-covering radius as 2. For C2 = [2, 2, 1] RD code, i.e., for the ambient space
V 2, t1(V

2) = 0, t2(V
2) = 1, t3(V

2) = 1; but t4(V
2) = 2, as cov(V 2, S) = 2 if

S = {(0, 1), (α, α2), (1, α2), (α2, 1)}. Hence, k1[2, 1] = 1, k2[2, 1] = 2, k3[2, 1] = 2,
and k4[2, 1] is undefined. Moreover, note that k1[2, 2] = 0 and k2[2, 2] = 0, by
considering the code C =

{

(0, 0)
}

.

(f) Consider F23 =
{

0, 1, β, β2, . . . , β6
}

, where β3 = β+1. Now V 3 = F
3
23. Consider the

C4 = [3, 1, 3] RD code over F23, whose parity check matrix is H =

[

1 β β2

1 β2 β4

]

.

Thus, C4 = {(0, 0, 0), (1, β, β4), (β, β2, β5), (β2, β3, β6), (β3, β4, 1), (β4, β5, β), (β5, β6,
β2), (β6, 1, β3)}. C4 is a maximum Rank Distance code (as d = n − k + 1 = 3),
and hence t1(C4) = n − k = 2 (see [14]). Moreover, t2(C4) = 3; for, if S =
{(1, β, β2), (β3, β4, 1)}, then cov(C4, S) = 3. Thus, tm(C4) = 3 for all m > 2.

(g) Consider the C5 = [3, 2, 2] RD code over F23 , whose parity check matrix is H =
[

1 β β2
]

. As C5 is a maximum Rank Distance code, t1(C5) = 1. Moreover, one can
see that t2(C5) = 2, t3(C5) = 2, and t4(C5) = 3. �
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4 Generalized Sphere Covering Bound

A natural question is, for a given t, m and n, what is the smallest RD code whose m-
covering radius is at most t? As it turns out, even for m > 2, it is necessary that t be

at least
n

2
. In fact, the minimal t for which such a code exists is the m-covering radius

of V n. Various extremal values associated with this notion are tm(V n), the smallest
m-covering radius among length n RD codes; tm(n, K), the smallest m-covering radius
among all (n, K) RD codes; Km(n, t), the smallest cardinality of a length n RD code with
m-covering radius t, and so on. It is the latter quantity that is studied in this section.

Now, from Proposition 3.1, Km(n, t) is undefined if t < n
2
. When this is the case,

it is accepted to say Km(n, t) = ∞. There are other circumstances when Km(n, t) is
undefined. For example, K2Nn(n, n − 1) = ∞. Also, Km(n, t) = ∞, if m > V (n, t), since
in this case no ball of radius t covers any set of m distinct vectors. More generally, one
has the fundamental issue of whether Km(n, t) is finite for given n, m and t. This is the
case if and only if tm(V n) 6 t, since tm(V n) lower bounds the m-covering radii of all other
codes of dimension n. When t = n, every codeword covers every vector, so a code of size
1 will m-cover V n for every m. Thus Km(n, n) = 1, for every m.

What happens for Km(n, t), when t is n− 1? When m = 1, K1(n, n− 1) 6 1 + Ln(n);
For, 0 = (0, 0, . . . , 0) will cover all vectors of rank norm less than or equal to n− 1 within
radius n − 1. That is, 0 will cover all norm-(n − 1) vectors within radius n − 1. Hence,
remaining vectors are rank-n vectors. Thus, 0 and these rank-n vectors can cover the
ambient space within radius n − 1. Therefore, K1(n, n − 1) 6 1 + Ln(n).

Proposition 4.1. For any RD code of length n over F2N ,

Km(n, n − 1) 6 mLn(n) + 1,

provided m is such that mLn(n) + 1 6 |V n|.

Proof: Consider an RD code C such that |C| = mLn(n) + 1. Each vector in V n has
Ln(n) rank complements, that is, from each vector v ∈ V n, there are Ln(n) vectors at
rank distance n. This means, for any set S ⊆ V n of m vectors, there always exists a
c ∈ C, which covers S within rank distance n−1. Thus, cov(c, S) 6 n−1, which implies,
cov(C, S) 6 n − 1. Hence, Km(n, n − 1) 6 mLn(n) + 1. �

By bounding the number of m-sets that can be covered by a given codeword, one
obtains a straight forward generalization of the classical sphere bound.

Theorem 4.2. (Generalized Sphere Bound for RD Codes)
For any (n, K) RD code C,

K

(

V (n, tm(C))
m

)

>

(

2Nn

m

)

.

Hence, for any n, t and m,
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Km(n, t) >

0

@

2Nn

m

1

A

0

@

V (n, t)
m

1

A

where V (n, t) =
t

∑

i=0

Li(n), number of vectors in a sphere of radius t and Li(n) is the

number of vectors in V n whose rank norm is i.

Proof: Each set of m-vectors in V n must occur in a sphere of radius tm(C) around at
least one codeword. Total number of such sets is |V n| choose m, where |V n| = 2Nn. The
number of sets of m-vectors in a neighborhood of radius tm(C) is V (n, tm(C)) choose m.
There are K codewords. Hence

K

(

V (n, tm(C))
m

)

>

(

2Nn

m

)

.

Thus, for any n, t and m

Km(n, t) >

0

@

2Nn

m

1

A

0

@

V (n, t)
m

1

A

. �

Corollary 4.3. If

(

2Nn

m

)

> 2Nn

(

V (n, t)
m

)

, then Km(n, t) = ∞.

But, converse of Corollary 4.3 is not true. That is, if Km(n, t) = ∞, one cannot say
(

2Nn

m

)

> 2Nn

(

V (n, t)
m

)

.

For example, take N = 2, n = 2, m = 4, t = 1. Clearly, K4(2, 1) = ∞ as it is not
possible to get a least set in V 2 such that 4-covering radius is 1 (which is clear from

Example 3.5(e)). But

(

2Nn

m

)

=

(

24

4

)

= 1820 and 24

(

V (2, 1)
4

)

= 16 ×

(

10
4

)

=

16 × 210 = 3360. Hence, the converse of Corollary 4.3 is not true.

The generalized sphere bound is true for any alphabet. For an (n, K) RD code C over
FqN where q is any prime power,

K

(

V (n, tm(C))
m

)

>

(

qNn

m

)

.
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For a linear [n, k] RD code C over FqN , the generalized sphere bound becomes

qNk

(

V (n, tm(C))
m

)

>

(

qNn

m

)

i.e., k >
1

N
logq

(

qNn

m

)

(

V (n, tm(C))
m

) .

i.e., km[n, t] >
1

N
logq

(

qNn

m

)

(

V (n, t)
m

) .

Now, how the generalized sphere bound works is given. It says

Km(n, t) >

0

@

2Nn

m

1

A

0

@

V (n, t)
m

1

A

, where V (n, t) =

n
∑

i=0

Li(n).

For N = n = 2, one has K1(2, 1) = 3, K2(2, 1) = 6, K3(2, 1) = 13, and K4(2, 1) as
undefined. By using generalized sphere bound, one can get K1(2, 1) > 1.6, K2(2, 1) > 2.67,
K3(2, 1) > 4.67, and K4(2, 1) > 8.67. This clearly shows that the generalized sphere
bound is not sharp. By taking into account some of the overlap between spheres of radius
t, the improvement over the generalized sphere bound for RD codes can be achieved.

5 Conclusion

A generalization to the covering radius problem, namely, multi-covering radius is defined
for RD codes to get greater understanding of RD codes and its distance properties. Results
on multi-covering radii of RD codes under various constructions are given by varying the
parameters. Various multi-covering bounds are established including the generalization
of classical sphere bound for RD codes. The problem of improving the lower bound for
Km(n, t) is open.
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