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Abstract

In this paper, we characterize symmetric transversal designs STDλ[k, u]’s which
have a semiregular automorphism group G on both points and blocks containing
an elation group of order u using the group ring Z[G]. Let nλ be the number of
nonisomorphic STDλ[3λ, 3]’s. It is known that n1 = 1, n2 = 1, n3 = 4, n4 = 1,
and n5 = 0. We classify STD6[18, 3]’s and STD7[21, 3]’s which have a semiregular
noncyclic automorphism group of order 9 on both points and blocks containing an
elation of order 3 using this characterization. The former case yields exactly twenty
nonisomorphic STD6[18, 3]’s and the latter case yields exactly three nonisomorphic
STD7[21, 3]’s. These yield n6 > 20 and n7 > 5, because B. Brock and A. Murray
constructed two other STD7[21, 3]’s in 1991. We used a computer for our research.

∗This research was partially supported by Grant-in-Aid for Scientific Research(No. 21540139), Min-
istry of Education, Culture, Sports, Science and Technology, Japan.
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1 Introduction

A symmetric transversal design STDλ[k, u] (STD) is an incidence structure D = (P,B, I)
satisfying the following three conditions, where k > 2, u > 2, and λ > 1:

(i) Each block contains exactly k points.
(ii) The point set P is partitioned into k point sets P0,P1, · · · ,Pk−1 of equal size u such
that any two distinct points are incident with exactly λ blocks or no block according
as they are contained in different Pi’s or not. P0,P1, · · · ,Pk−1 are said to be the point

classes of D.
(iii) The dual structure of D also satisfies the above conditions (i) and (ii). The point
classes of the dual structure of D are said to be the block classes of D.

We use the notation STDλ[k, u] in the paper instead of STDλ(u)used by Beth, Jung-
nickel and Lenz [2], because we want to exhibit the block size k of the design.

Let D = (P,B, I) be an STD with the set of point classes Ω and the set of block
classes ∆. Let G be an automorphism group. Then, by definition of STD, G induces a
permutation group on Ω ∪ ∆. If G fixes any element of Ω ∪ ∆, then G is said to be an
elation group and any element of G is said to be an elation. In this case, it is known that
G acts semiregularly on each point class and on each block class.

Enumerating symmetric transversal designs STDλ[k, u]’s is of interest by itself as well
as estimating non equivalent Hadamard matrices of a fixed order and also produces many
2-designs, because STDλ[k, u]’s are powerful tool for constructing 2-designs (for example,
see [16] ).

In [1], two of the authors classified STD k
3

[k, 3]’s for k 6 18 which have an automor-

phism group acting regularly on both the set of the point classes and the set of the block
classes. They said such automorphism group a GL-regular automorphism group. Es-
pecially it was showed that there does not exist an STD6[18, 3] admitting a GL-regular
automorphism group and an STD7[21, 3] with a relative difference set was constructed.

In this paper, we consider an STDλ[k, u] D = (P,B, I) satisfying the following con-
dition: D has a semiregular automorphism group of order su on both points and blocks
containing an elation group of order u.

In the first half of the paper, we characterize an STDλ[k, u] with such automorphism
group G using the group ring Z[G]. We remark that a generalized Hadamard matrix over
the group U of degree k GH(k, U) corresponds to D, because D has an elation group of
order u.

In the second half of the paper, we classify STD6[18, 3]’s and STD7[21, 3]’s which
have a semiregular noncyclic automorphism group of order 9 on both points and blocks
containing an elation of order 3 using this characterization. We show that there are
exactly twenty nonisomorphic STD6[18, 3]’s and three nonisomorphic STD7[21, 3]’s with
this automorphism group. Two of these STD7[21, 3]’s are new and the remaining one
is an STD constructed in [14]. We also investigate the order of the full automorphism
group, the action on the point classes, and the block classes for each STD6[18, 3] or each
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STD7[21, 3] of those.
We remark that the existence of a STD6[18, 3] is well known, as it can be obtained from

a generalized Hadamard matrix of order 18 being the Kronecker product of generalized
Hadamard matrices of order 3 and 6 over a group of order 3.

The existence of STD2[2λ, 2]’s is equivalent to the existence of Hadamard matrices
of order 2λ. The study of Hadamard matrices is one of the major studies in combi-
natrices. The authors think that STDλ[3λ, 3]’s, which have the next class size, also is
worth studying. Let nλ be the number of nonisomorphic STDλ[3λ, 3]’s. It is known that
n1 = 1, n2 = 1, n3 = 4([12]), n4 = 1([13]), and n5 = 0 ([5]). We can easily check that
n1 = 1. We also checked that n2 = 1 by a similar manner as in [13] without a com-
puter, but we do not give the proof in this paper. The above results on STD6[18, 3]’s and
STD7[21, 3]’s yield λ6 > 20 and λ7 > 5, because B. Brock and A. Murray constructed
other two STD7[21, 3]’s in 1991([3]). The authors think that eighteen of these twenty
STD6[18, 3]’s are new (see Remark 7.4). We used a computer for our research.

If an STDλ[k, u] has a relative difference set, since the STD satisfies our assumption,
we can expect that the assumption help to look for relative difference sets of STD’s. Also,
if we assume an appropriate integer s, we can expect that our assumption help to look for
new STDλ[k, u]’s or new GH(k, U)’s. Acutually, Y. Hiramine [7] recently generalized our
result and constructed STDq[q

2, q]’s for all prime power q using spreads of V (2q, GF (q)).
His construction yields class regular STDq[q

2, q]’s and non class regular STDq[q
2, q]’s. For

example, at least two of four STD3[9, 3]’s found by Mavron and Tonchev [12] have this
form.

For general notation and concepts in design theory, we refer the reader to basic text-
books in the subject such as [2], [4], [10], or [15].

2 Definitions of TD, RTD, and STD

DEFINITION 2.1 A transversal design TDλ[k, u] (TD) is an incidence structure D =
(P,B, I) satisfying the following two conditions:

(i) Each block contains exactly k points.
(ii) The point set P is partitioned into k point sets P0,P1, · · · ,Pk−1 of equal size u such
that any two distinct points are incident with exactly λ blocks or no block according
as they are contained in different Pi’s or not. P0,P1, · · · ,Pk−1 are said to be the point

classes of D.

REMARK 2.2 In Definition 2.1, we have the following equalities:
(i) |P| = uk.
(ii) |B| = u2λ.

DEFINITION 2.3 A resolvable transversal design RTDλ[k, u] (RTD) is an incidence
structure D = (P,B, I) satisfying the following conditions, where k > 2, u > 2, and λ > 1:
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(i) D is a TDλ[k, u].
(ii) The block set B is partitioned into r block sets B0,B1, · · · ,Br−1 such that if B, B′

( 6=) ∈ Bi, (B) ∩ (B′) = ∅ and
⋃

B∈Bi

(B) = P for 0 6 i 6 r − 1.

REMARK 2.4 In Definition 2.3, we have r = uλ.

DEFINITION 2.5 Let D = (P,B, I) be a TDλ[k, u]. If the dual structure Dd of D also is
a TDλ[k, u], D is said to be a symmetric transversal design STDλ[k, u] (STD). The point
classes of Dd are said to be the block classes of D.

THEOREM 2.6 ([11]) Let D = (P,B, I) be a TDλ[k, u] and k = λu. Then, D is a

RTDλ[k, u] if and only if D is an STDλ[k, u].

REMARK 2.7 If D = (P,B, I) is a RTDλ[k, u] and k = λu, then
B0, B1, · · · , Br−1 (r = k) of Definition 2.3(iii) are block classes of D.

3 Isomorphisms and automorphisms of STD’S

Let D = (P,B, I) be an STDλ[k, u]. Then k = λu. Let Ω = {P0,P1, · · · ,Pk−1} be the
set of point classes of D and ∆ = {B0,B1, · · · ,Bk−1} the set of block classes of D. Let P0 =
{p0, p1, · · · , pu−1}, P1 = {pu, pu+1, · · · , p2u−1}, · · · , Pk−1 = {p(k−1)u, p(k−1)u+1,· · · , pku−1}
and B0 = {B0, B1, · · · , Bu−1}, B1 = {Bu, Bu+1, · · · , B2u−1}, · · · , Bk−1 =
{B(k−1)u, B(k−1)u+1,· · · , Bku−1}.

On the other hand, Let D′ = (P ′,B′, I ′) be an STDλ[k; u]. Let Ω′ =
{P0

′,P1
′, · · · ,Pk−1

′} be the set of point classes of D′ and ∆′ = {B0
′,B1

′, · · · ,Bk−1
′} the

set of block classes of D′. Let P0
′ = {p0

′, p1
′, · · · , pu−1

′},
P1

′ = {pu
′, pu+1

′,· · · , p2u−1
′}, · · · , Pk−1

′ = {p(k−1)u
′, p(k−1)u+1

′, · · · , pku−1
′} and B0

′ =
{B0

′, B1
′,· · · , Bu−1

′}, B1
′ = {Bu

′, Bu+1
′,· · · , B2u−1

′}, · · · , Bk−1
′ =

{B(k−1)u
′, B(k−1)u+1

′, · · · , Bku−1
′}.

Let Λ be the set of permutation matrices of degree u. Let

L =







L0 0 · · · L0 k−1
...

...
Lk−1 0 · · · Lk−1 k−1






and L′ =







L0 0
′ · · · L0 k−1

′

...
...

Lk−1 0
′ · · · Lk−1 k−1

′







be the incidence matrices of D and D′ corresponding to these numberings of the point
sets and the block sets, where Lij , Lij

′ ∈ Λ (0 6 i, j 6 k−1), respectively. Let E be the
identity matrix of degree u. Then we may assume that Li 0 = Li 0

′ = E (0 6 i 6 k− 1)
and L0 j = L0 j

′ = E (0 6 j 6 k − 1) after interchanging some rows of (ru)th row,
(ru + 1)th row, · · · , ((r + 1)u − 1)th row and interchanging some columns of (su)th
column, (su + 1)th column, · · · , ((s + 1)u− 1)th column of L and L′ for 0 6 r, s 6 k − 1.
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DEFINITION 3.1 Let S = {0, 1, · · · , k − 1}. We denote the symmetric group on S by

Sym S. Let f =

(

0 1 · · · k − 1
f(0) f(1) · · · f(k − 1)

)

∈ Sym S and X0, X1, · · · , Xk−1 ∈ Λ.

(i) We define (f, (X0, X1, · · · , Xk−1)) =







X0 0 · · · X0 k−1
... · · ·

...
Xk−1 0 · · · Xk−1 k−1







by Xij =

{

Xi if j = f(i),
O otherwise

, where O is the u × u zero matrix.

(ii) We define (f,











X0

X1
...

Xk−1











) =







X0 0 · · · X0 k−1
... · · ·

...
Xk−1 0 · · · Xk−1 k−1







by Xij =

{

Xj if i = f(j),
O otherwise

, where O is the u × u zero matrix.

From Lemma 3.2 of [1], it follows that an isomorphism from D to D′ is given by
f, g ∈ Sym S and X0, X1, · · ·Xk−1, Y0, Y1, · · · , Yk−1 ∈ Λ satisfying

(f, (X0, X1, · · · , Xk−1))L(g,











Y0

Y1
...

Yk−1











) = L′.

Assume that this equation is satisfied. Then XiLf(i) g(j)Yj = Lij
′ for 0 6 i, j 6 k − 1.

Since XiLf(i) g(0)Y0 = E, Xi = Y0
−1Lf(i) g(0)

−1 for 0 6 i 6 k − 1. On the other hand,
since X0Lf(0) g(j)Yj = E, Yj = Lf(0) g(j)

−1X0
−1 = Lf(0) g(j)

−1Lf(0) g(0)Y0 for 1 6 j 6 k− 1.
Therefore, since XiLf(i) g(j)Yj = Lij

′, Y0
−1Lf(i) g(0)

−1Lf(i) g(j)Lf(0) g(j)
−1Lf(0) g(0)Y0 = Lij

′

for 0 6 i 6 k − 1, 1 6 j 6 k − 1.

LEMMA 3.2 Two STDλ[k, u]’s D and D′ are isomorphic if and only if there exists

(f, g, Y0) ∈ Sym S × Sym S × Λ such that

Y0
−1Lf(i) g(0)

−1Lf(i) g(j)Lf(0) g(j)
−1Lf(0) g(0)Y0 = Lij

′

for 0 6 i 6 k − 1, 1 6 j 6 k − 1.

Proof. “only if” part was proved above. “if” part holds, if we follow the converse of
the above argument.

COROLLARY 3.3 Any automorphism of an STDλ[k, u] D is given by (f, g, Y0) ∈
Sym S × Sym S × Λ such that

Y0
−1Lf(i) g(0)

−1Lf(i) g(j)Lf(0) g(j)
−1Lf(0) g(0)Y0 = Lij
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for 0 6 i 6 k − 1 and 1 6 j 6 k − 1. Actually,

(f, g, Y0)(f
′, g′, Y0

′) = (ff ′, gg′, Yg′(0)Y0
′),

where Yg′(0) = Lf(0) g(g′(0))
−1Lf(0) g(0)Y0, if g′(0) 6= 0.

Set Γ = {

0

@

1 0 0
0 1 0
0 0 1

1

A ,

0

@

0 1 0
0 0 1
1 0 0

1

A ,

0

@

0 0 1
1 0 0
0 1 0

1

A }.

COROLLARY 3.4 Let u = 3 and Lij , Lij
′ ∈ Γ for 0 6 i, j 6 k − 1. Then, two

STDλ[3λ, 3]’s D and D′ are isomorphic if and only if there exists (f, g) ∈ Sym S×Sym S
such that

Lf(i) g(0)
−1Lf(i) g(j)Lf(0) g(j)

−1Lf(0) g(0) = Lij
′

for 0 6 i 6 k − 1 and 1 6 j 6 k − 1 or there exists (f, g) ∈ Sym S × Sym S such that

Lf(i) g(0)
−1Lf(i) g(j)Lf(0) g(j)

−1Lf(0) g(0) = Lij
′−1

for 0 6 i 6 k − 1 and 1 6 j 6 k − 1.

Proof. If A ∈ Γ and B ∈ Λ − Γ, then B−1AB = A−1. From this and Corrolary 3.3 the
corollary holds.

COROLLARY 3.5 Let u = 3 and Lij ∈ Γ for 0 6 i, j 6 k − 1. Then any automorphism

of D is given (f, g, Y ) ∈ Sym S × Sym S × Γ such that

Lf(i) g(0)
−1Lf(i) g(j)Lf(0) g(j)

−1Lf(0) g(0) = Lij

for 0 6 i 6 k − 1 and 1 6 j 6 k − 1 or (f, g, Y ) ∈ Sym S × Sym S × (Λ − Γ) such that

Lf(i) g(0)
−1Lf(i) g(j)Lf(0) g(j)

−1Lf(0) g(0) = Lij
−1

for 0 6 i 6 k − 1 and 1 6 j 6 k − 1.

4 A semiregular automorphism group of order su of

an STDλ[k, u]

Let D = (P,B, I) be an STDλ[k, u] and s ∈ N such that s divides k. Set t =
k

s
. Then

k = uλ = ts. Let Ω = {P0,P1, · · · ,Pk−1} be the set of point classes of D and ∆ =
{B0,B1, · · · ,Bk−1} the set of block classes of D. Let P0 = {p0, p1, · · · , pu−1}, P1 =
{pu, pu+1, · · · , p2u−1}, P2 = {p2u, p2u+1, · · · , p3u−1}, · · · , Pk−1 =
{p(k−1)u, p(k−1)u+1, · · · , pku−1} and B0 = {B0, B1, · · · , Bu−1}, B1 = {Bu, Bu+1, · · · , B2u−1},
B2 = {B2u, B2u+1, · · · , B3u−1}, · · · , Bk−1 = {B(k−1)u, B(k−1)u+1, · · · , Bku−1}.

Throughout this section we assume the following.
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HYPOTHESIS 4.1 Let G be an automorphism group of order su of D and we assume
that G acts semiregularly on P and B. Moreover we assume that the order of the kernel
U of

G ∋ ϕ 7−→

(

Pi

Pi
ϕ

)

∈ SymΩ

is u and U coincides with the kernel of

G ∋ ϕ 7−→

(

Bj

Bj
ϕ

)

∈ Sym∆.

REMARK 4.2 (Hine and Mavron [8]) The kernel U of the two homomorphisms of Hy-
pothesis 4.1 acts regularly on each Pi and on each Bj . Therefore a generalized Hadamard
matrix GH(k, U) of degree k over U corresponds to D.

The terminology elation will be used in §6, §7 and §8.

DEFINITION 4.3 Let D = (P,B, I) be an STD with the set of point classes Ω and the
set of block classes ∆. Let G be an automorphism group. If G fixes any element of Ω∪∆,
then G is said to be an elation group and any element of G is said to be an elation.

From now, we describe D satisfying Hypothesis 4.1 by elements of the group ring Z[G].
Let {P0,P1, · · · ,Ps−1}, {Ps,Ps+1, · · · ,P2s−1},
{P2s,P2s+1, · · · ,P3s−1}, · · · , {P(t−1)s,P(t−1)s+1, · · · ,Pts−1} be the orbits of (G/U, Ω) and
{B0,B1, · · · ,Bs−1}, {Bs,Bs+1, · · · ,B2s−1}, {B2s,B2s+1, · · · ,B3s−1}, · · · ,
{B(t−1)s,B(t−1)s+1, · · · ,Bts−1} the orbits of (G/U, ∆).

Set G-orbits on P and B as follows: Qi = Pis ∪Pis+1 ∪ · · · ∪P(i+1)s−1 for 0 6 i 6 t− 1
and Cj = Bjs ∪ Bjs+1 ∪ · · · ∪ B(j+1)s−1 for 0 6 j 6 t − 1. Set qi = pisu for 0 6 i 6 t − 1,
Cj = Bjsu for 0 6 j 6 t − 1 and Dij = {α ∈ G|qi

α ∈ (Cj)} for 0 6 i, j 6 t − 1. Then
|Dij| = |Qi ∩ (Cj)| = s.

For a subset H of G, we denote
∑

h∈H

h ∈ Z[G] by H for simplicity and
∑

h∈H

h−1 ∈ Z[G]

by H(−1).

LEMMA 4.4 For 0 6 i, i′ 6 t − 1 set A(i, i′) =
∑

06j6t−1

DijDi′j
(−1). Then

A(i, i′) =

{

λG if i 6= i′,
k + λ(G − U) if i = i′

.

Proof. Let 0 6 i, i′ 6 t− 1. For a fixed element α ∈ G, we want to know the number of
(β, γ)’s in Dij ×Di′j satisfying α = βγ−1. Since αγ = β ∈ Dij and γ ∈ Di′j, qi

α ∈ (Cj
γ−1

)

and qi′ ∈ (Cj
γ−1

).
(i) Assume that i 6= i′.

Since qi
α and qi′ are distinct points, there exist λ these blocks Cj

γ−1

’s and therefore
A(i, i′) = λG.
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(ii) Assume that i = i′.

If α = 1, then there exist k these blocks Cj
γ−1

’s. If α 6∈ U , then since qi
α and qi are

contained in distinct point classes respectively, there exist λ these blocks Cj
γ−1

’s. If
α ∈ U − {1}, then since qi

α and qi are contained in a same point class, there is no such

Cj
γ−1

’s. Therefore A(i, i) = k + λ(G − U).

LEMMA 4.5 For 0 6 j, j′ 6 t − 1 set B(j, j′) =
∑

06i6t−1

Dij′
(−1)Dij. Then

B(j, j′) =

{

λG if j 6= j′,
k + λ(G − U) if j = j′

.

Proof. Let 0 6 j, j′ 6 t−1. For a fixed element α ∈ G, we want to know the number of
(γ, β)’s in Dij′ ×Dij satisfying α = γ−1β. Since γα = β ∈ Dij and γ ∈ Dij′, qi

γ ∈ (Cj
α−1

)
and qi

γ ∈ (Cj′).
(i) Assume that j 6= j′.

Since Cj
α−1

and Cj′ are contained in distinct block classes respectively, there exist λ these
points qi

γ’s and therefore B(j, j′) = λG.
(ii) Assume that j = j′.

If α = 1, then there exist k these points qi
γ’s. If α 6∈ U , then since Cj

α−1

and Cj

are contained in distinct block classes respectively, there exist λ these points qi
γ’s. If

α ∈ U − {1}, then since Cj
α−1

and Cj are contained in a same block class, there is no
such point qi

γ . Therefore B(j, j) = k + λ(G − U).

5 An STDλ[k, u] constructed from a group of order su

In this section we show that the converse of Lemma 4.4 holds.

THEOREM 5.1 Let λ and u be positive integers with u > 2 and set k = λu. Let s be a

positive integer such that s divides k and set t =
k

s
. Let G be a group of order su and U

a normal subgroup of G of order u. For 0 6 i, j 6 t − 1 let Dij be a subset of G with

|Dij| = s. For 0 6 i, i′ 6 t − 1 let

∑

06j6t−1

DijDi′j
(−1) =

{

λG if i 6= i′,
k + λ(G − U) if i = i′

.

Let G/U = {Uτ0, Uτ1, · · · , Uτs−1}. Set Pis+r = {(i, ϕτr)| ϕ ∈ U}, Bis+r = {[i, ϕτr]| ϕ ∈
U} for 0 6 i 6 t−1, 0 6 r 6 s−1 and P = P0∪P1∪· · ·∪Pk−1, B = B0∪B1∪· · ·∪Bk−1.

We define an incidence structure D = (P,B, I) by

(i, α)I[j, β] ⇐⇒ αβ−1 ∈ Dij for 0 6 i, j 6 t − 1 and α, β ∈ G.
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Then D is an STDλ[k, u] with point classes P0,P1, · · · ,Pk−1, block classes B0,B1, · · · ,Bk−1

and the group G acts semiregularly on P and on B. Also, if we set Ω = {P0,P1, · · · ,Pk−1},
∆ = {B0,B1, · · · ,Bk−1}, these kernels coincide with U , and G/U acts semiregularly on Ω
and ∆.

Proof. (i) Let 0 6 j 6 t− 1 and β ∈ G. First we show that the number of (i, α)’s with
(i, α)I[j, β] is k. By definition, (i, α)I[j, β] if and only if αβ−1 ∈ Dij. Since |Dij| = s,
there are s α’s satisfying αβ−1 ∈ Dij for each 0 6 i 6 t − 1. Thus the number of (i, α)’s
with (i, α)I[j, β] is exactly ts = k. Therefore the block size of B is constant and it is k.
(ii) For 0 6 i 6 k − 1, |Pi| = u and P0,P1, · · · ,Pk−1 give a partition of P.
(iii) Let 0 6 i 6 t − 1 and α, α′ be distinct elements of U . Suppose that (i, ατr)I[j, β],
(i, α′τr)I[j, β]. Then ατrβ

−1 ∈ Dij, α′τrβ
−1 ∈ Dij and therefore 1 6= αα′−1 =

(ατrβ
−1)(α′τrβ

−1)−1 ∈ DijDij
(−1). But αα′−1 ∈ U . This is contradict to the assumption.

Hence there is no block through the distinct points (i, ατr), (i, α′τr) ∈ Pis+r for 0 6 r 6

s − 1.
Let 0 6 i 6 t − 1, α, α′ ∈ U , and 0 6 r1 6= r2 6 s − 1. Suppose that (i, ατr1

)I[j, β],
(i, α′τr2

)I[j, β]. Since ατr1
β−1 ∈ Dij, α′τr2

β−1 ∈ Dij , we have (ατr1
β−1)(α′τr2

β−1)−1 =
ατr1

τr2

−1α′−1 ∈ DijDij
(−1). If ατr1

τr2

−1α′−1∈ U , τr1
τr2

−1 ∈ U . But this is contradict to
r1 6= r2. Therefore ατr1

τr2

−1α′−1 6∈ U and hence there are exactly λ these [j, β]’s by the
assumption.

Let 0 6 i 6= i′ 6 t−1 and α, α′ ∈ G. Suppose that (i, α)I[j, β] and (i′, α′)I[j, β]. Then
since αβ−1 ∈ Dij and α′β−1 ∈ Di′j , we have (αβ−1)(α′β−1)−1 = αα′−1 ∈ DijDi′j

(−1).
There are λ these [j, β]’s by the assumption.
(i)′ By a similar argument as in stated in the proof of (i), we can show that the number
of blocks through a point is constant and it is k.
(ii)′ For 0 6 j 6 k−1 |Bj| = u and B0,B1, · · · ,Bk−1 give a partition of B. Therefore D is a
TDλ[k, u] with point classes P0,P1, · · · ,Pk−1. By definition of Bj ’s B = B0∪B1∪· · ·∪Bk−1

and Bi ∩Bj = ∅ for 0 6 i 6= j 6 k−1. Let 0 6 j 6 t−1, 0 6 r 6 s−1, and ϕ, ϕ′( 6=) ∈ U .
Suppose that (i, α)I[j, ϕτr] and (i, α)I[j, ϕ′τr]. Then ατr

−1ϕ−1 ∈ Dij and ατr
−1ϕ′−1 ∈ Dij .

But 1 6= (ατr
−1ϕ−1)(ατr

−1ϕ′−1)−1 = ατr
−1(ϕ−1ϕ′)(ατr

−1)−1 ∈ DijDij
(−1) ∩ U . This is

contradict to the assumption. Therefore [j, ϕτr] and [j, ϕ′τr] do not intersect. This yields
that for distinct blocks B, B′ ∈ Bi (0 6 i 6 k − 1) (B) ∩ (B′) = ∅ and

⋃

B∈Bi
(B) =

P. Hence D is a RTDλ[k, u]. Since k = λu, D is an STDλ[k, u] with block classes
B0,B1, · · · ,Bk−1 by Theorem 2.6. Any element µ of G induces an automorphism

P ∋ (i, ξ) −→ (i, ξµ) ∈ P (0 6 i 6 t − 1, ξ ∈ G)

of D. This satisfies the assertion of the theorem.

LEMMA 5.2 Let D = (P,B, I) be the STDλ[k, u] defined in Theorem 5.1. Then we have

the following statements.

(i) Let α0, α1, · · · , αt−1, β0, β1, · · · , βt−1 ∈ G. Set Dij
′ = αiDijβj for 0 6 i, j 6 t − 1.
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Then for 0 6 i, l 6 t − 1

∑

06j6t−1

Dij
′Dlj

′(−1)
=

{

λG if i 6= l,
k + λ(G − U) if i = l

.

If for this {Dij
′| 0 6 i, j 6 t − 1} we define an incidence structure D′ = (P ′,B′, I ′) using

Theorem 5.1, then it follows that D ∼= D′.

(ii) Let p, q ∈ Sym{0, 1, · · · , t − 1}. Set Dij
′′ = Dip,jq for 0 6 i, j 6 t − 1.

Then for 0 6 i, l 6 t − 1

∑

06j6t−1

Dij
′′Dlj

′′(−1)
=

{

λG if i 6= l,
k + λ(G − U) if i = l

.

If for this {Dij
′′| 0 6 i, j 6 t − 1} we define an incidence structure D′′ = (P ′′,B′′, I ′′)

using Theorem 5.1, then it follows that D ∼= D′′.

Proof. (i) Let 0 6 i, l 6 t − 1. Since U is a normal subgroup of G,

∑

06j6t−1

Dij
′Dlj

′(−1)
=

∑

06j6t−1

αiDijβjβj
−1Dlj

(−1)αi
−1

= αi(
∑

06j6t−1

DijDlj
(−1))αi

−1 =

{

λG if i 6= l,
k + λ(G − U) if i = l.

Let D′ = (P ′,B′, I ′) be the STDλ[k, u] corresponding to {Dij
′| 0 6 i, j 6 t − 1}, where

P ′ = {(i, α)′| 0 6 i 6 t − 1, α ∈ G} and B′ = {[j, β]′| 0 6 j 6 t − 1, β ∈ G}. We
define a bijection from P ∪ B to P ′ ∪ B′ by (i, α)f = (i, αiα)′ and [j, β]f = [j, βj

−1β]′.
Since (i, α)I[j, β] ⇐⇒ αβ−1 ∈ Dij ⇐⇒ αiαβ−1βj ∈ αiDijβj ⇐⇒ (αiα)(βj

−1β)−1 ∈ Dij
′

⇐⇒ (i, αiα)′I ′[j, βj
−1β]′ ⇐⇒ (i, α)fI ′[j, β]f , we have D ∼= D′.

(ii) Let 0 6 i, l 6 t − 1. Then

∑

06j6t−1

Dij
′′Dlj

′′(−1)
=

∑

06j6t−1

DipjqDlpjq
(−1)=

{

λG if i 6= l,
k + λ(G − U) if i = l.

Let D′′ = (P ′′,B′′, I ′′) be the STDλ[k, u] corresponding to {Dij
′′| 0 6 i, j 6 t − 1}, where

P ′′ = {(i, α)′′| 0 6 i 6 t − 1, α ∈ G} and B′′ = {[j, β]′′| 0 6 j 6 t − 1, β ∈ G}. We
define a bijection g from P ∪ B to P ′′ ∪ B′′ by (i, α)g = (ip

−1

, α)′′, [j, β]g = [jq−1

, β]′′.
Since (i, α)I[j, β] ⇐⇒ αβ−1 ∈ Dij ⇐⇒ αβ−1 ∈ D(ip−1 )p,(jq−1)q ⇐⇒ (ip

−1

, α)′′I ′′[jq−1

, β]′′

⇐⇒ (i, α)gI ′′[j, β]g, we have D ∼= D′′

6 STDλ[3λ, 3]’s

In this section, we consider an STDλ[3λ, 3] which has a semiregular noncyclic auto-
morphism group G on both points and blocks containing an elation of order 3. For
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that, we use notations and the construction of an STD stated in Theorem 5.1. Then
k = 3λ, u = 3, s = 3, and t = λ.

Let G be an elementary abelian group of order 9 and U a subgroup of G of order 3.
Set G = {(x, y)| x, y ∈ GF (3)} and U = {(x, 0)| x ∈ GF (3)}.

DEFINITION 6.1 Let Φ be the set of subsets of G with the form
D = {(a0, 0), (a1, 1), (a2, 2)}. Let D, D′ ∈ Φ. We define a binary relation on Φ as follows.

D ∼ D′ ⇐⇒ D′ = (a, b) + D for some (a, b) ∈ G.

LEMMA 6.2 ∼ is an equivalence relation on Φ and a complete system of representatives

of Φ/ ∼ are the following five sets.

D1 = {(0, 0), (0, 1), (0, 2)}, D2 = {(0, 0), (0, 1), (1, 2)}, D3 =
{(0, 0), (2, 1), (0, 2)}, D4 = {(0, 0), (1, 1), (2, 2)}, D5 = {(0, 0), (2, 1), (1, 2)}.

Proof. A straightforward calculation yields the lemma.

LEMMA 6.3 Let Dij ⊆ G such that |Dij| = 3 for 0 6 i, j 6 λ−1. Let for 0 6 i, i′ 6 λ−1

∑

06j6λ−1

DijDi′j
(−1) =

{

λG if i 6= i′,
3λ + λ(G − U) if i = i′

.

Here we remark that Di′j
(−1) =

∑

α∈Di′j

(−α). Then we have the following statements.

(i) For 0 6 i, j 6 λ − 1

Dij = {(a0, 0), (a1, 1), (a2, 2)} for some a0, a1, a2 ∈ GF (3).

(ii) We may assume that D0 0 = Dj0, D0 1 = Dj1, · · · , D0 λ−1 = Djλ−1
, D1 0 = Di1 ,

D2 0 = Di2 , · · · , Dλ−1 0 = Diλ−1
for some 1 6 j0 6 j1 6 · · · 6 jλ−1 6 5 and

for some 1 6 j0 6 i1 6 i2 6 · · · 6 iλ−1 6 5.

Proof. (i) holds by the definition of Dij ’s. (ii) holds from Lemma 5.2.

7 STD6[18, 3]’s

In this section we consider the case of λ = 6 in §6. That is, we will classify STD6[18, 3]’s
which have a semiregular noncyclic automorphism group of order 9 on both points and
blocks containing an elation of order 3.

LEMMA 7.1 The possibilities of (D0,0, D0,1, · · · , D0,5) and (D0,0, D1,0, · · · , D5,0) are the

following 12 cases respectively.

(1) (D1, D1, D4, D4, D5, D5),
(2) (D1, D2, D2, D2, D4, D5),
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(3) (D1, D2, D2, D3, D4, D5),
(4) (D1, D2, D3, D3, D4, D5),
(5) (D1, D3, D3, D3, D4, D5),
(6) (D2, D2, D2, D2, D2, D2),
(7) (D2, D2, D2, D2, D2, D3),
(8) (D2, D2, D2, D2, D3, D3),
(9) (D2, D2, D2, D3, D3, D3),
(10) (D2, D2, D3, D3, D3, D3),
(11) (D2, D3, D3, D3, D3, D3),
(12) (D3, D3, D3, D3, D3, D3).

Proof. The lemma holds by Lemma 4.4, Lemma 4.5, and Lemma 6.3 using a computer.

We follow the following procedure.

(i) All desired D = (Dij)06i,j65’s are determined.
(ii) Generalized Hadamard matrices GH(18, GF (3))’s corresponding to these D’s are de-
termined.
(iii) These generalized Hadamard matrices are normalised.
(iv) All generalized Hadamard matrices of (iii) which correspond to non isomorphic
STD6[18, 3]’s are chosen using Corollary 3.4.

We do not state the details of the calculation, because it requires a tedious explanation.
If the reader wants the information, we can offer a note about this.

EXAMPLE 7.2 D = (Dij)06i,j65

=

















{(0, 0), (0, 1), (0, 2)} {(0, 0), (0, 1), (0, 2)} {(0, 0), (1, 1), (2, 2)}
{(0, 0), (0, 1), (1, 2)} {(1, 0), (2, 1), (2, 2)} {(0, 0), (0, 1), (1, 2)}
{(0, 0), (0, 1), (1, 2)} {(2, 0), (1, 1), (2, 2)} {(1, 0), (1, 1), (2, 2)}
{(0, 0), (0, 1), (1, 2)} {(2, 0), (2, 1), (1, 2)} {(2, 0), (2, 1), (0, 2)}
{(0, 0), (1, 1), (2, 2)} {(0, 0), (2, 1), (1, 2)} {(1, 0), (0, 1), (2, 2)}
{(0, 0), (2, 1), (1, 2)} {(0, 0), (1, 1), (2, 2)} {(0, 0), (0, 1), (0, 2)}

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{(0, 0), (1, 1), (2, 2)} {(0, 0), (2, 1), (1, 2)} {(0, 0), (2, 1), (1, 2)}
{(1, 0), (1, 1), (0, 2)} {(1, 0), (2, 1), (2, 2)} {(2, 0), (1, 1), (1, 2)}
{(2, 0), (0, 1), (0, 2)} {(0, 0), (2, 1), (0, 2)} {(1, 0), (0, 1), (0, 2)}
{(2, 0), (1, 1), (2, 2)} {(1, 0), (1, 1), (0, 2)} {(0, 0), (2, 1), (2, 2)}
{(0, 0), (0, 1), (0, 2)} {(0, 0), (1, 1), (2, 2)} {(2, 0), (2, 1), (2, 2)}
{(0, 0), (2, 1), (1, 2)} {(0, 0), (0, 1), (0, 2)} {(0, 0), (1, 1), (2, 2)}

















satisfies the assumption of lemma 6.3. Thus we can get an STD6[18, 3] corresponding
to D. We state how to make a normalized generalized Hadamard matrix with D. The
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generalized Hadamard matrix GH(18, GF (3)) corresponding to D is

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 0 1 2 0 1 2 0 2 1 0 2 1
0 0 0 0 0 0 2 0 1 2 0 1 1 0 2 1 0 2
0 0 0 0 0 0 1 2 0 1 2 0 2 1 0 2 1 0
0 0 1 1 2 2 0 0 1 1 1 0 1 2 2 2 1 1
1 0 0 2 1 2 1 0 0 0 1 1 2 1 2 1 2 1
0 1 0 2 2 1 0 1 0 1 0 1 2 2 1 1 1 2
0 0 1 2 1 2 1 1 2 2 0 0 0 2 0 1 0 0
1 0 0 2 2 1 2 1 1 0 2 0 0 0 2 0 1 0
0 1 0 1 2 2 1 2 1 0 0 2 2 0 0 0 0 1
0 0 1 2 2 1 2 2 0 2 1 2 1 1 0 0 2 2
1 0 0 1 2 2 0 2 2 2 2 1 0 1 1 2 0 2
0 1 0 2 1 2 2 0 2 1 2 2 1 0 1 2 2 0
0 1 2 0 2 1 1 0 2 0 0 0 0 1 2 2 2 2
2 0 1 1 0 2 2 1 0 0 0 0 2 0 1 2 2 2
1 2 0 2 1 0 0 2 1 0 0 0 1 2 0 2 2 2
0 2 1 0 1 2 0 0 0 0 2 1 0 0 0 0 1 2
1 0 2 2 0 1 0 0 0 1 0 2 0 0 0 2 0 1
2 1 0 1 2 0 0 0 0 2 1 0 0 0 0 1 2 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Let H be the normalized generalized Hadamard matrix obtained from this matrix. Then

H =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 2 2 2 2 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
0 0 1 1 2 2 0 2 2 1 0 1 1 0 1 2 2 0
0 2 2 1 0 1 0 1 0 2 2 1 1 1 0 0 2 2
0 1 0 2 2 1 0 0 1 1 2 2 2 0 0 1 2 1
0 0 1 2 1 2 1 0 0 2 2 1 0 0 2 1 1 2
0 2 2 1 1 0 1 2 1 2 0 0 2 0 0 2 1 1
0 1 0 1 2 2 1 1 2 0 2 0 2 1 2 0 1 0
0 0 1 2 2 1 2 1 1 2 0 0 1 2 2 0 0 1
0 2 2 0 1 1 2 0 2 1 0 1 2 1 2 1 0 0
0 1 0 2 1 2 2 2 0 1 1 0 1 1 0 2 0 2
0 1 2 0 2 1 1 2 0 0 2 1 0 2 1 2 0 1
0 1 2 2 1 0 0 1 2 1 0 2 0 2 1 0 1 2
0 1 2 1 0 2 2 0 1 2 1 0 0 2 1 1 2 0
0 2 1 0 1 2 0 2 1 0 1 2 0 1 2 0 2 1
0 2 1 1 2 0 2 1 0 0 1 2 2 0 1 1 0 2
0 2 1 2 0 1 1 0 2 0 1 2 1 2 0 2 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Let L = (Lij)06i,j617 be the 54×54 matrix by replacing entries 0,1,2 of H with

0

@

1 0 0
0 1 0
0 0 1

1

A,

0

@

0 1 0
0 0 1
1 0 0

1

A,

0

@

0 0 1
1 0 0
0 1 0

1

A, respectively. Then L is a normalized incidence matrix of an

STD6[18, 3].

We denote the STD corresponding to a generalized Hadamard matrix GH(16, GF (3))
H by D(H). We have the following result.

THEOREM 7.3 There are exactly 20 nonisomorphic STD6[18, 3]’s which have a semireg-

ular noncyclic automorphism group of order 9 on both points and blocks containing an

elation of order 3. These are D(Hi) (i = 1, 2, · · · , 11) and D(Hj)
d

(j = 1, 2, 3, 4, 5, 7, 8, 9, 10), where Hi (i = 1, 2, · · · , 11) are generalized Hadamard matri-

ces of degree 18 on GF (3) given in Appendix A. Let Ωi = Ω(D(Hi)) and ∆i = ∆(D(Hi))
be a set of the point classes and a set of the block classes of D(Hi), respectively. Then we
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also have the following table.

i |AutD(Hi)| sizes of orbits on Ωi sizes of orbits on ∆i

1 54 × 3 (3,6,9) (18)
2 54 × 3 (3,6,9) (9,9)
3 54 × 3 (3,6,9) (9,9)
4 54 × 3 (3,6,9) (9,9)
5 108 × 3 (3,6,9) (9,9)
6 324 × 3 (9,9) (9,9)
7 432 × 3 (6,12) (18)
8 432 × 3 (6,12) (18)
9 648 × 3 (9,9) (18)
10 1080 × 3 (3,15) (18)
11 12960 × 3 (18) (18)

REMARK 7.4 (i) For any prime power q, it is known that there exist STD2[2q, q]’s (see
Theorem 6.33 in [6]). In particular, when q = 9, we can construct STD2[18, 9]’s and we get
STD6[18, 3]’s by reducing these STD2[18, 9]’s (see [6] or [9]). We checked that all STD’s
of these are isomorphic each other and this STD is isomorphic to D(H6).
(ii) We also checked that the tensor product of the STD2[6, 3] and the STD1[3, 3] yields
an STD6[18, 3], but this STD is isomorphic to D(H11). Therefore (i) and all STD’s of
Theorem 7.3 except D(H6) and D(H11) are new. If n6 is the number of nonisomorphic
STD6[18, 3]’s, n6 > 20.
(iii) D(H11) does not have a regular automorphism group on both the point set and the
block set.
(iv) It is known that a transversal design TDλ[k, u] is precisely the same as an orthog-
onal array OA(λu2, k, u, 2). Therefore, a symmetric transversal design STDλ[k; u] yields
OA(λu2, λu, u, 2) (see page 242 of [6]). If we can know the orbit structure of the full au-
tomorphism group of a symmetric transversal design STDλ[k, u] D, we can express more
clearly the orthogonal array OA(λu2, λu, u, 2) A corresponding to D.

8 STD7[21, 3]’s

In this section we consider the case of λ = 7 in §6. That is, we will classify STD7[21, 3]’s
which have a semiregular noncyclic automorphism group of order 9 on both points and
blocks containing an elation of order 3.

LEMMA 8.1 The possibilities of (D0,0, D0,1, · · · , D0,6) and (D0,0, D1,0, · · · , D6,0) are the

following 15 cases respectively.

(1) (D1, D1, D2, D4, D4, D5, D5),
(2) (D1, D1, D3, D4, D4, D5, D5),
(3) (D1, D2, D2, D2, D2, D4, D5),
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(4) (D1, D2, D2, D2, D3, D4, D5),
(5) (D1, D2, D2, D3, D3, D4, D5),
(6) (D1, D2, D3, D3, D3, D4, D5),
(7) (D1, D3, D3, D3, D3, D4, D5),
(8) (D2, D2, D2, D2, D2, D2, D2),
(9) (D2, D2, D2, D2, D2, D2, D3),
(10) (D2, D2, D2, D2, D2, D3, D3),
(11) (D2, D2, D2, D2, D3, D3, D3),
(12) (D2, D2, D2, D3, D3, D3, D3),
(13) (D2, D2, D3, D3, D3, D3, D3),
(14) (D2, D3, D3, D3, D3, D3, D3),
(15) (D3, D3, D3, D3, D3, D3, D3).

Proof. The lemma holds by Lemma 4.4, Lemma 4.5, and Lemma 6.3 using a computer.

By a similar computation as in §7, we have the following theorem.

THEOREM 8.2 There are exactly 3 nonisomorphic STD7[21, 3]’s which have a semireg-

ular noncyclic automorphism group of order 9 on both points and blocks containing an

elation of order 3. These are D(K1), D (K2), and D(K1)
d, where K1 and K2 are general-

ized Hadamard matrices of degree 21 on GF (3) given in Appendix B. Let Ωi = Ω(D(Ki))
and ∆i = ∆(D(Ki)) be a set of the point classes and a set of the block classes of D(Ki),
respectively. Then we also have the following table.

i |AutD(Ki)| sizes of orbits on Ωi sizes of orbits on ∆i

1 18 × 3 (3,9,9) (3,9,9)
2 336 × 3 (21) (21)

REMARK 8.3 (i) D(K1) and D(K1)
d are new two STD’s.

(ii) D(K2) have a regular automorphism group on both the point set and the block set.
D(K2) was constructed in [14].
(iii) B. Brock and A. Murray [3] constructed other two generalized Hadamard matrices
K3 and K4 given in Appendix C. Let D(Ki) be the STD7[21, 3] corresponding to Ki for
i = 3, 4. Then both D(K3) and D(K4) are selfdual and we have the following table.

i |AutD(Ki)| sizes of orbits on Ωi sizes of orbits on ∆i

3 12 × 3 (1,2,3,3,12) (1,2,3,3,12)
4, 16 × 3 (1,4,8,8) (1,4,8,8)

(iv) Therefore, if n7 is the number of nonisomorphic STD7[21, 3]’s, n7 > 5.
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0 2 0 2 1 2 1 1 1 0 0 2 1 2 1 2 2 0 1 0 0
0 2 1 0 2 1 2 0 2 1 1 2 0 1 0 1 2 0 1 2 0
0 1 1 2 2 1 0 0 1 2 2 0 1 0 2 0 2 1 1 0 2
0 1 1 0 0 2 2 2 0 0 2 1 1 2 2 1 2 0 0 1 1
0 1 1 2 0 2 0 2 2 1 0 0 2 1 1 2 1 1 0 2 0
0 1 2 1 2 0 0 1 2 0 1 2 2 0 1 1 2 2 0 0 1
0 2 0 1 0 1 2 2 2 2 0 1 1 0 1 0 0 2 1 2 1
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2
0 0 0 0 0 0 1 2 2 2 2 2 2 0 1 1 1 1 1 1 2
0 0 1 1 0 2 2 2 2 1 1 0 0 2 1 1 0 0 2 2 1
0 0 2 2 1 2 1 2 2 0 0 1 1 1 1 1 2 2 0 0 0
0 0 2 2 1 1 1 0 0 1 1 2 2 0 0 0 1 2 2 2 1
0 0 1 1 2 2 2 0 0 2 2 1 1 1 0 0 0 2 1 1 2
0 1 2 1 2 0 1 1 2 0 2 0 1 0 0 2 2 0 2 1 1
0 1 2 0 0 1 2 1 2 2 0 1 0 2 2 0 1 2 0 1 1
0 1 0 2 2 1 0 0 2 2 1 0 1 2 1 0 2 1 1 2 0
0 1 2 1 2 1 0 2 1 1 0 0 2 0 2 1 0 2 1 0 2
0 1 1 2 0 2 1 1 0 1 0 2 0 2 0 2 2 1 1 0 2
0 1 0 2 1 2 0 2 1 0 2 2 0 1 2 0 0 1 2 1 1
0 1 1 0 2 2 2 2 1 0 1 1 2 0 0 2 1 1 0 2 0
0 2 0 1 1 0 2 0 1 2 0 1 2 2 0 1 2 1 2 0 1
0 2 1 2 1 0 2 1 2 0 1 0 2 1 2 0 1 0 1 0 2
0 2 2 1 2 0 1 1 0 2 1 2 0 1 2 1 0 1 0 2 0
0 2 1 2 0 1 2 0 1 1 2 2 1 0 2 1 2 0 0 1 0
0 2 2 0 1 1 1 0 1 0 2 1 0 2 1 2 0 0 1 2 2
0 2 1 0 2 1 0 2 0 2 0 2 1 1 1 2 1 0 2 0 1
0 2 0 1 1 2 0 1 0 1 2 0 2 2 1 2 1 2 0 1 0
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