
An alternative definition of the notion valuation

in the theory of near polygons

Bart De Bruyn∗

Department of Pure Mathematics and Computer Algebra
Ghent University, Gent, Belgium

bdb@cage.ugent.be

Submitted: Sep 13, 2008; Accepted: Jan 20, 2009; Published: Jan 30, 2009

Mathematics Subject Classifications: 05B25, 51E12

Abstract

Valuations of dense near polygons were introduced in [9]. A valuation of a dense
near polygon S = (P,L, I) is a map f from the point-set P of S to the set N of
nonnegative integers satisfying very nice properties with respect to the set of convex
subspaces of S. In the present paper, we give an alternative definition of the notion
valuation and prove that both definitions are equivalent. In the case of dual polar
spaces and many other known dense near polygons, this alternative definition can
be significantly simplified.

1 Introduction

1.1 Basic definitions

A near polygon is a partial linear space S = (P,L, I), I ⊆ P × L, with the property that
for every point p ∈ P and every line L ∈ L, there exists a unique point on L nearest to p.
Here distances d(·, ·) are measured in the collinearity graph Γ of S. If d is the diameter
of Γ, then the near polygon is called a near 2d-gon. A near 0-gon is a point and a near
2-gon is a line. Near quadrangles are usually called generalized quadrangles (Payne and
Thas [11]).

If X1 and X2 are two nonempty sets of points of a near polygon S, then d(X1, X2)
denotes the minimal distance between a point of X1 and a point of X2. If X1 = {x1}, we
will also write d(x1, X2) instead of d({x1}, X2). For every nonempty set X of points of S
and every i ∈ N, Γi(X) denotes the set of all points y of S for which d(y, X) = i. If X is
a singleton {x}, then we will also write Γi(x) instead of Γi({x}).
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A nonempty set X of points of a near polygon S is called a subspace if every line
meeting X in at least two points has all its points in X. A subspace X is called convex
if every point on a shortest path between two points of X is also contained in X. Having
a subspace X, we can define a subgeometry SX of S by considering only those points
and lines of S which are contained in X. If X is a convex subspace, then SX is a sub-
near-polygon of S. If X1, X2, . . . , Xk are objects of S (like points, and nonempty sets
of points), then 〈X1, X2, . . . , Xk〉 denotes the smallest convex subspace of S containing
X1, X2, . . . , Xk. Obviously, 〈X1, X2, . . . , Xk〉 is the intersection of all convex subspaces
containing X1, X2, . . . , Xk. The maximal distance between two points of a convex subspace
F of S is called the diameter of F .

A near polygon S is called dense if every line of S is incident with at least three points
and if every two points of S at distance 2 have at least two common neighbours. By
Theorem 4 of Brouwer and Wilbrink [3], every two points of a dense near polygon at
distance δ from each other are contained in a unique convex sub-2δ-gon. These convex
sub-2δ-gons are called quads if δ = 2 and hexes if δ = 3. The existence of quads in dense
near polygons was already shown in Shult and Yanushka [12, Proposition 2.5]. With every
point x of a dense near polygon S, there is associated a linear space L(S, x) which is called
the local space at x. The points, respectively lines, of L(S, x) are the lines, respectively
quads, through x, and incidence is containment.

1.2 The main results

Let S = (P,L, I) be a dense near polygon. A function f from P to N is called a valuation
of S if it satisfies the following properties (we call f(x) the value of x):

(V1) there exists at least one point with value 0;

(V2) every line L of S contains a unique point xL with smallest value and f(x) = f(xL)+1
for every point x of L different from xL;

(V3) every point x of S is contained in a (necessarily unique) convex subspace Fx which
satisfies the following properties:

(i) f(y) ≤ f(x) for every point y of Fx.

(ii) every point z of S which is collinear with a point y of Fx and which satisfies
f(z) = f(y) − 1 also belongs to Fx.

Examples. (1) Let x be a given point of S and define f(y) := d(x, y) for every y ∈ P.
Then f is a valuation of S. We call f a classical valuation of S.

(2) Let O be an ovoid of S, i.e. a set of points of S meeting each line in a unique
point. Then define f(x) := 0 if x ∈ O and f(x) := 1 if x ∈ P \ O. Then f is a valuation
of S. We call f an ovoidal valuation of S.

Consider the following property for a function f : P → N:
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(V 3′) Through every point x of S, there exists a convex subspace Fx of S such that the
lines through x contained in Fx are precisely the lines through x containing a point
with value f(x) − 1.

If Property (V3’) is satisfied, then the convex subspace Fx through x is uniquely deter-
mined: if Lx denotes the set of lines through x containing a point with value f(x) − 1,
then Fx coincides with the smallest convex subspace of S containing all lines of Lx. (By
Brouwer and Wilbrink [3], see also [7, Theorem 2.14], a convex subspace F of S is com-
pletely determined by the set of lines of F through one of its points.)

The following theorem provides an alternative definition of the notion valuation.

Theorem 1.1 (Section 2) Let S = (P,L, I) be a dense near polygon and let f be a map
from P to N. Then f is a valuation of S if and only if f satisfies Properties (V1), (V2)
and (V3’).

It will turn out that in many dense near polygons, Property (V3’) is a consequence of
Property (V2). We first observe the following.

Theorem 1.2 (Section 2) Let S = (P,L, I) be a dense near polygon and let f be a
map from P to N satisfying Property (V 2). Then for every point x of S, the set of lines
through x containing a point with value f(x) − 1 is a subspace of the local space L(S, x).

Definition. Let S = (P,L, I) be a dense near polygon and let x be a point of S. We
say that the local space L(S, x) at x is regular if for every subspace S of L(S, x), there
exists a convex subspace FS through x such that the lines through x contained in FS are
precisely the elements of S.

In Sections 3 and 4, we will give a description of the known examples of dense near
polygons. Among other examples, we will discuss there the class of the dual polar spaces
and two near hexagons which we will denote by E1 and E2. We will prove the following:

Theorem 1.3 (Section 3) (a) All local spaces of a thick dual polar space are regular.
(b) Let S be a known dense near polygon not containing hexes isomorphic to E1 or E2.

Then every local space of S is regular.

Remarks. (1) Every local space of the near hexagon E1 is isomorphic to the complete
graph of 12 vertices (regarded as linear space). No such local space is regular: subspaces
containing i ∈ {3, 4, . . . , 11} points do not correspond with convex subspaces.

(2) Every local space of the near hexagon E2 is isomorphic to PG(3, 2) (regarded
as linear space). No such local space is regular: subspaces carrying the structure of a
PG(2, 2) do not correspond with convex subspaces.

By Theorems 1.1, 1.2 and 1.3, we have
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Corollary 1.4 Let S = (P,L, I) be a dense near polygon every local space of which is
regular. Then a map f : P → N is a valuation of S if and only if it satisfies Properties
(V 1) and (V 2). In particular, this holds if S is a thick dual polar space or a known dense
near polygon without hexes isomorphic to E1 or E2.

The following theorem shows that the conclusion of Corollary 1.4 is not necessarily true
in case there are hexes isomorphic to E1 or E2.

Theorem 1.5 (Section 4) Let S be a near hexagon isomorphic to either E1 or E2. Then
there exists a map f : P → N which satisfies Properties (V1) and (V2) and which is not
a valuation of S.

2 Proofs of Theorems 1.1 and 1.2

In this section S = (P,L, I) is a dense near polygon and f is a map from P to the set N

of nonnegative integers.

Lemma 2.1 If f is a valuation of S, then f satisfies Property (V3’).

Proof. Let x be an arbitrary point of S and let Fx denote the necessarily unique convex
subspace through x for which Property (V3) is satisfied. Let L be an arbitrary line
through x.

If L ⊆ Fx, then by (V3,i), f(y) ≤ f(x) for every y ∈ L. Hence, L contains a unique
point with value f(x) − 1 by (V2).

Conversely, suppose that L contains a point with value f(x) − 1. Then L ⊆ Fx by
(V3,ii).

So, F ′
x := Fx is the unique convex subspace of S through x such that the lines through

x contained in F ′
x are precisely the lines through x containing a point with value f(x)−1.

�

Lemma 2.2 Suppose f satisfies Property (V2) and let Q be a quad of S. Then precisely
one of the following two cases occurs:

(i) there exists a point x∗ ∈ Q such that f(x) = f(x∗) + d(x∗, x) for every x ∈ Q;
(ii) there exists an ovoid O of Q and an m∗ ∈ N such that f(x) = m∗ + d(x, O) for

every x ∈ Q.

Proof. It is well-known that for every point x of Q, the set {x}∪(Γ1(x)∩Q) is a maximal
subspace of Q. This implies that the set Γ2(x) ∩ Q is connected. We can distinguish the
following two cases:

(i) There exist points x∗, y1 ∈ Q such that f(y1) − f(x∗) ≥ 2. By Property (V2),
d(y1, x

∗) ≥ 2. Hence, d(y1, x
∗) = 2 and f(y1) − f(x∗) = 2. Every point collinear with

x∗ and y1 has value f(x∗) + 1 by (V2). Hence, also every point of Γ1(x
∗) ∩ Q has value

f(x∗) + 1 by (V2).
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Now, suppose y2 is a point of Q∩Γ2(x
∗) at distance 1 from y1. Then f(y1) = f(x∗)+2

and the unique point on the line y1y2 collinear with x∗ has value f(x∗) + 1. By (V2)
applied to the line y1y2, it follows that f(y2) = f(x∗) + 2.

Now, invoking the connectedness of Γ2(x
∗)∩Q, we see that every point of Γ2(x

∗)∩Q

has value f(x∗) + 2.
Summarizing, we have that f(x) = f(x∗) + d(x∗, x) for every x ∈ Q.

(ii) |f(x1)− f(x2)| ≤ 1 for any two points x1 and x2 of Q. Put m∗ := min{f(x) | x ∈ Q}.
Then f(x) ∈ {m∗, m∗ + 1}. Since every line of Q contains a unique point with smallest
value, the set of points of Q with value m∗ is an ovoid of Q. Hence, f(x) = m∗ + d(x, O)
for every x ∈ Q. �

The following lemma is precisely Theorem 1.2.

Lemma 2.3 If f satisfies Property (V 2), then for every point x of S, the set of lines
through x containing a point with value f(x) − 1 is a subspace of the local space L(S, x).

Proof. Let L1 and L2 be two lines through x containing a (unique) point with value
f(x) − 1 and let Q denote the unique quad through L1 and L2. We need to show that
every line of Q through x contains a point with value f(x) − 1. By Lemma 2.2, one of
the following two cases occurs:

(1) There exists a point x∗ ∈ Q such that f(u) = f(x∗) + d(x∗, u) for every u ∈ Q.
Since there are at least two lines of Q through x containing a point with value f(x) − 1,
we necessarily have d(x∗, x) = 2. But then every line of Q through x contains a unique
point with value f(x)−1 = f(x∗)+1, namely the unique point on that line collinear with
x∗.

(2) There exists an ovoid O of Q and an m∗ ∈ N such that f(u) = m∗ + d(u, O) for
every u ∈ Q. Since L1 and L2 contain points with value f(x)− 1, x does not belong to O.
Clearly, every line of Q through x contains a unique point with value f(x) − 1, namely
the unique point on that line belonging to O. �

Lemma 2.4 Suppose f satisfies Property (V2). Let F be a convex subspace of S and put
M := max{f(x) | x ∈ F}. If x and y are two points of F such that f(x) = f(y) = M ,
then x and y are connected by a path which entirely consists of points of F with value
equal to M .

Proof. We will prove the lemma by induction on d(x, y). The lemma trivially holds if
d(x, y) ≤ 1. So, suppose d(x, y) ≥ 2. Let Lx be an arbitrary line through x contained
in the convex subspace 〈x, y〉 ⊆ F and let u denote the unique point on Lx at distance
d(x, y)− 1 from y. Let Ly denote a line of 〈x, y〉 through y not contained in 〈u, y〉. Then
every point of Lx has distance d(x, y)−1 from a unique point of Ly. Now, since (V2) holds,
the lines Lx and Ly contain unique points with value M −1. So, since |Lx|, |Ly| ≥ 3, there
exist points x′ ∈ Lx and y′ ∈ Ly such that d(x′, y′) = d(x, y) − 1 and f(x′) = f(y′) = M .
By the induction hypothesis, x′ and y′ are connected by a path which entirely consists of
points of F with value equal to M . Hence, also x and y are connected by a path which
entirely consists of points of F with value equal to M . �
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Lemma 2.5 Suppose f satisfies Property (V2). Let Q be a quad of S, let x and y be two
distinct collinear points of Q such that f(x) = f(y) and let Lx and Ly be two lines of Q

different from xy such that x ∈ Lx and y ∈ Ly. Then the following holds: if Lx contains
a point with value f(x) − 1, then Ly contains a point with value f(y) − 1.

Proof. By Lemma 2.2, we can distinguish two possibilities:
(1) There exists a point x∗ ∈ Q such that f(u) = f(x∗) + d(x∗, u) for every point

u ∈ Q. Since f(x) = f(y), either x∗, x, y are contained on a line or x, y ∈ Q ∩ Γ2(x
∗).

In the former case, no line of Q through x distinct from xy contains a point with value
f(x)− 1. In the latter case, every line of Q through x contains a unique point with value
f(x) − 1. But in this case, also every line of Q through y contains a unique point with
value f(y) − 1.

(2) There exists an ovoid O of Q and an m∗ ∈ N such that f(u) = m∗ + d(u, O) for
every u ∈ Q. Then x, y 6∈ O. In this case, every line of Q through x contains a unique
point with value f(x) − 1 and every line of Q through y contains a unique point with
value f(y) − 1. �

Definition. If f satisfies Property (V3’), then for every point x of S, we denote by Fx

the unique convex subspace of S through x such that the lines through x contained in Fx

are precisely the lines through x containing a point with value f(x) − 1.

Lemma 2.6 If f satisfies Properties (V2) and (V3’), then f also satisfies Property (V3,i)
with respect to the convex subspaces Fx, x ∈ P.

Proof. Let x be a point of S. We need to show that f(y) ≤ f(x) for every point y of Fx.
Suppose the contrary holds. Then choose a y ∈ Fx such that f(y) > f(x) with d(x, y) as
small as possible. Let y1 be a point of Fx collinear with y at distance d(x, y) − 1 from x.
Then since d(x, y1) < d(x, y), f(y1) ≤ f(x). Hence, f(y) = f(x)+1 and f(y1) = f(x). By
Lemma 2.4, there now exists a path y1, y2, . . . , yk = x in 〈x, y1〉 connecting y1 with x such
that f(yi) = f(x) for every i ∈ {1, . . . , k}. (Since d(u, x) ≤ d(x, y1) < d(x, y), we have
f(u) ≤ f(x) for every u ∈ 〈x, y1〉.) We now inductively define a line Li, i ∈ {1, . . . , k},
of Fx through yi and show that this line contains a point with value f(x) + 1. Put
L1 := y1y ⊆ Fx. As remarked above y has value f(x) + 1. Suppose now that for a certain
i ∈ {1, . . . , k−1}, we have defined the line Li. Since Li contains a point with value f(x)+1
and yiyi+1 contains a point with value f(x) − 1 (recall (V2)), we have Li 6= yiyi+1. Now,
let Q denote the unique quad through Li and yiyi+1 and let Li+1 be a line of Q through
yi+1 distinct from yiyi+1. Since f(yi+1) = f(x), there are two possibilities by Property
(V2). Either Li+1 contains a point with value f(x) − 1 or a point with value f(x) + 1.
In the former case, it would follow from Lemma 2.5, that also Li would contain a point
with value f(x) − 1, a contradiction. Hence, Li+1 contains a point with value f(x) + 1.
Also, since Li and yiyi+1 are contained in Fx, the quad Q is contained in Fx and hence
Li+1 ⊆ Fx.

A contradiction is now readily obtained. The line Lk through yk = x is contained in
Fx and contains a point with value f(x) + 1. But by (V3’), we would also have that Lk
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contains a point with value f(x)− 1. So, our assumption was wrong and f(y) ≤ f(x) for
every point y of Fx. �

Lemma 2.7 Suppose f satisfies Properties (V2) and (V3’). Then Fy = Fx for every
point x of S and every y ∈ Fx with f(y) = f(x).

Proof. By Lemmas 2.4 and 2.6, there exists a path y = y1, y2, . . . , yk = x which entirely
consists of points of Fx with value f(x). We show the following by downwards induction
on i ∈ {1, 2, . . . , k}:

• If L is a line through yi containing a point with value f(x) − 1, then L ⊆ Fx.

• If L is a line through yi containing a point with value f(x) + 1, then L is not
contained in Fx.

Obviously, this claim holds if i = k. So, suppose i < k and that the claim holds for the
number i + 1.

Let L be a line through yi containing a point with value f(x) − 1. If L = yiyi+1,
then L ⊆ Fx. So, suppose L 6= yiyi+1. Let L′ be a line through yi+1 distinct from yiyi+1

contained in the quad 〈L, yiyi+1〉. By Lemma 2.5, L′ contains a point with value f(x)−1.
Hence, L′ ⊆ Fx by the induction hypothesis. Since L′ and yiyi+1 are contained in Fx, the
quad 〈L′, yiyi+1〉 = 〈L, yiyi+1〉 is contained in Fx. Hence, L ⊆ Fx.

Let L be a line through yi containing a point with value f(x) + 1. Then L cannot be
contained in Fx by Lemma 2.6.

Hence, the above claim holds for every i ∈ {1, 2, . . . , k}. The fact that it holds for
i = 1 implies that Fy = Fx. �

Lemma 2.8 Suppose f satisfies Properties (V2) and (V3’). Then f also satisfies Prop-
erty (V3,ii) with respect to the convex subspaces Fx, x ∈ P.

Proof. Let x be an arbitrary point of S, let y be a point of Fx and let z be a point
collinear with y for which f(z) = f(y) − 1. We need to show that z ∈ Fx. We will prove
this by induction on the number f(x) − f(y) (which is nonnegative by Lemma 2.6). If
f(x) = f(y), then we have that z ∈ Fy = Fx by Lemma 2.7. So, suppose f(x) > f(y).
Then x 6∈ Fy by Lemma 2.6. So, Fx 6⊆ Fy and there exists a line L through y contained
in Fx but not in Fy. Let u be an arbitrary point of L \ {y}. Then f(u) = f(y) + 1 and
hence d(u, z) = 2 by (V2). Let v denote a common neighbour of u and z distinct from
y. Then f(v) = f(y). The line uv is a line through u ∈ Fx containing a point with value
f(u) − 1, namely the point v. By the induction hypothesis, uv ⊆ Fx. Since also L ⊆ Fx,
the quad 〈uv, L〉 = 〈u, z〉 is contained in Fx. Hence, z ∈ Fx. �

Theorem 1.1 is an immediate corollary of Lemmas 2.1, 2.6 and 2.8.
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3 Proof of Theorem 1.3

Every known dense near polygon without hexes isomorphic to E1 and E2 is up to iso-
morphism either a line, a thick dual polar space of rank n ≥ 2, a near polygon In for
some n ≥ 2, a near polygon Hn for some n ≥ 2, a near 2n-gon Gn for some n ≥ 2, the
near hexagon E3, or is obtained from these near polygons by successive application of the
product and glueing constructions. So, in order to prove Theorem 1.3, it suffices to verify
the following: (I) all local spaces of a thick dual polar space of rank n ≥ 2 are regular;
(II) all local spaces of the near 2n-gon In, n ≥ 2, are regular; (III) all local spaces of the
near 2n-gon Hn, n ≥ 2, are regular; (IV) all local spaces of the near 2n-gon Gn, n ≥ 2,
are regular; (V) all local spaces of E3 are regular; (VI) if A1 and A2 are two dense near
polygons of diameter at least 1 such that every local space of Ai, i ∈ {1, 2}, is regular,
then also every local space of the product near polygon A1 × A2 is regular; (VII) if A1

and A2 are two dense near polygons of diameter at least 2 such that every local space of
Ai, i ∈ {1, 2}, is regular, then also every local space of any glued near polygon of type
A1 ⊗A2 is regular.

(I) Let Π be a nondegenerate thick polar space of rank n ≥ 2. With Π there is associated a
dual polar space ∆ whose points are the maximal (i.e. (n−1)-dimensional) totally singular
subspaces of Π and whose lines are the (n − 2)-dimensional totally singular subspaces of
Π (natural incidence). If γ is an (n − 1 − k)-dimensional totally singular subspace of Π,
then the set of all maximal singular subspaces of Π containing γ is a convex subspace
Fγ of ∆. Conversely, every convex subspace of ∆ is obtained in this way. Now, let α be
an arbitrary point of ∆. Then α can be regarded as an (n − 1)-dimensional projective
space. From this point of view, the local space L(∆, α) at α is nothing else than the dual
projective space associated with α. If S is a subspace of L(∆, α), then S consists of all
hyperplanes of α which contain a given subspace β of α. Then S, regarded as set of lines
of ∆, consists of all lines of ∆ through α contained in Fβ. This proves that every local
space of ∆ is regular.

(II) Consider a nonsingular parabolic quadric Q(2n, 2), n ≥ 2, in PG(2n, 2) and a hyper-
plane of PG(2n, 2) intersecting Q(2n, 2) in a nonsingular hyperbolic quadric Q+(2n−1, 2).
Let In = (P,L, I) be the following point-line geometry: (i) P is the set of all maximal
subspaces (of dimension n − 1) of Q(2n, 2) not contained in Q+(2n − 1, 2); (ii) L is the
set of all (n − 2)-dimensional subspaces of Q(2n, 2) not contained in Q+(2n − 1, 2); (iii)
incidence is reverse containment. Then by Brouwer et al. [2], In is a dense near 2n-gon. If
γ is an (n−1−k)-dimensional subspace of Q(2n, 2) which is not contained in Q+(2n−1, 2)
if k ∈ {0, 1}, then the set Fγ of all maximal subspaces of Q(2n, 2) containing γ is a convex
subspace Fγ of In. Conversely, every convex subspace of In is obtained in this way. It
follows that every local space of In is isomorphic to the projective space PG(n − 1, 2)
(regarded as linear space) in which a point has been removed. Specifically, if α is a point
of In, then L(In, α) is the dual projective space associated with α ∼= PG(n−1, 2) in which
the point α∩Q+(2n−1, 2) has been removed. Now, let S be a subspace of L(In, α). Then
there exists a subspace β in α distinct from α ∩ Q+(2n − 1, 2) such that S consists of

the electronic journal of combinatorics 16 (2009), #R16 8



all hyperplanes of α through β distinct from α ∩ Q+(2n − 1, 2). The following obviously
holds: the lines through α contained in the convex subspace Fβ are precisely the elements
of S. This proves that every local space of In is regular. More information on the convex
subpolygons of the dense near 2n-gon In can be found in [7, Section 6.4].

(III) Let A be a set of size 2n + 2, n ≥ 2. Let Hn = (P,L, I) be the following point-line
geometry: (i) P is the set of all partitions of A in n + 1 subsets of size 2; (ii) L is the
set of all partitions of A in n − 1 subsets of size 2 and one subset of size 4; (iii) a point
p ∈ P is incident with a line L ∈ L if and only if the partition defined by p is a refinement
of the partition defined by L. By Brouwer et al. [2], Hn is a dense near 2n-gon. If Mn

denotes the partial linear space whose points, respectively lines, are the subsets of size
2, respectively size 3, of the set {A1, A2, . . . , An+1} (natural incidence), then every local
space of Hn is isomorphic to the linear space Ln obtained from Mn by adding lines of size
2. In fact, for every point x of Hn, we can construct the following explicit isomorphism
φx between L(Hn, x) and Ln. Recall that the point x is a partition {A1, A2, . . . , An+1} of
A in n + 1 subsets of size 2. Then for every line L of Hn, put φx(L) := {Ai, Aj} where
Ai and Aj are the unique elements of {A1, A2, . . . , An+1} such that Ai ∪ Aj is contained
in the partition defined by L.

Now, let x be an arbitrary point of Hn and let S be an arbitrary subspace of L(Hn, x).
As before, let {A1, . . . , An+1} be the partition of A corresponding with x and let φx be
the isomorphism between L(Hn, x) and Ln as defined above. Then φx(S) is a subspace
of Ln. So, there exist mutually disjoint subsets α1, . . . , αk (k ≥ 0) of size at least 2 of
{A1, A2, . . . , An+1} such that the points of φx(S) are precisely the pairs of {A1, . . . , An}
which are contained in αi for some i ∈ {1, . . . , k}. Now, for every i ∈ {1, . . . , k}, put
Bk :=

⋃

C∈αi
C and let Bk+1, . . . , Bl denote those elements of {A1, A2, . . . , An+1} which

are not contained in α1∪α2∪· · ·∪αk. Then {B1, B2, . . . , Bl} is a partition of A in subsets
of even size. By Theorem 6.15 of [7], the set of points of Hn which regarded as partitions
of A are refinements of {B1, B2, . . . , Bl} is a convex subspace FS of Hn. The lines of Hn

through x contained in FS are precisely the elements of S. This proves that all local
spaces of Hn are regular. More information on the convex subspaces of the dense near
2n-gon Hn can be found in [7, Chapter 6.2].

(IV) Let H(2n− 1, 4), n ≥ 2, denote the Hermitian variety X3
0 + X3

1 + · · ·+ X3
2n−1 = 0 of

PG(2n− 1, 4) (with respect to a given reference system). If p is a point of PG(2n− 1, 4),
then the number of nonzero coordinates of p (with respect to the same reference system)
is called the weight of p. The set of all i ∈ {0, 1, . . . , 2n− 1} such that the i-th coordinate
of p is nonzero is called the support of p. The Hermitian variety H(2n − 1, 4) consists of
all points of PG(2n − 1, 4) of even weight.

Let Gn = (P,L, I) be the following point-line geometry: (i) P is the set of all maximal
subspaces of H(2n− 1, 4) generated by n points of weight 2 whose supports are mutually
disjoint; (ii) L is the set of all (n − 2)-dimensional subspaces of H(2n − 1, 4) which
contain n − 2 points of weight 2 whose supports are mutually disjoint; (iii) incidence is
reverse containment. By De Bruyn [6], Gn is a dense near 2n-gon. Every line L of Gn

is generated by a unique set of n − 1 points whose supports are mutually disjoint. This
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set either consists of n − 1 points of weight 2 or n − 2 points of weight 2 and 1 point of
weight 4. If γ is a subspace of H(2n − 1, 4) generated by points (of even weight) whose
supports are mutually disjoint, then the set of all generators of H(2n− 1, 4) containing γ

is a convex subspace Fγ of Gn ([7, Theorem 6.27]). Conversely, every convex subspace of
Gn is obtained in this way.

Now, consider a reference system in the projective space PG(n−1, 4) and let Ui, i ≥ 1,
be the set of points of PG(n − 1, 4) of weight i (with respect to that reference system).
Let Ln denote the linear space induced on U1 ∪ U2 by the lines of PG(n − 1, 4). Then
every local space of Gn is isomorphic to Ln. In fact for every point x of Gn, we can
construct the following explicit isomorphism φx between L(Gn, x) and Ln. Recall that
a point x of Gn is generated by n points p1, p2, . . . , pn of weight 2 whose supports are
mutually disjoint. Put PG(n − 1, 4) = 〈p1, p2, . . . , pn〉. If L is a line through x, then
one of the following two cases occurs: (1) there exists a unique i ∈ {1, . . . , n} such that
L = 〈{p1, . . . , pn} \ {pi}〉; (2) there exists a unique pair {i, j} ⊆ {1, . . . , n} such that
L = 〈({p1, . . . , pn} \ {pi, pj}) ∪ {r}〉, where r is some point (of weight 4) of pipj \ {pi, pj}.
In the former case, we define φx(L) := pi and in the latter case, φx(L) := r.

Now, let x be an arbitrary point of Gn. Then we know that x = 〈p1, p2, . . . , pn〉 where
p1, p2, . . . , pn are points of weight 2 whose supports are mutually disjoint. For every
p ∈ 〈p1, p2, . . . , pn〉, let Xp be the smallest subset of {1, . . . , n} such that p ∈ 〈pi | i ∈
Xp〉. For all i, j ∈ Xp with i 6= j, let p{i,j} denote the unique point in the singleton
〈pi, pj〉 ∩ 〈p, {pk | k ∈ Xp \ {i, j}}〉.

Now, let S be an arbitrary subspace of L(Gn, x). Since φx(S) is a subspace of Ln,
we can find a subset A = {pi1 , . . . , pik} ⊆ {p1, . . . , pn} (k ≥ 0) and points q1, . . . , ql ∈
〈p1, . . . , pn〉 (l ≥ 0) such that: (i) |Xq1

|, . . . , |Xql
| ≥ 2; (ii) the sets {pi1}, . . . , {pik}, {pi | i ∈

Xq1
}, . . . , {pi | i ∈ Xql

} are mutually disjoint; (iii) a point of Ln belongs to φx(S) if and
only if it belongs to 〈pi1 , . . . , pik〉 or is of the form (qi){j,k} for some i ∈ {1, . . . , l} and
some j, k ∈ Xqi

with j 6= k. Let ql+1, . . . , qm denote those points of {p1, . . . , pn} which are
not contained in {pi1, . . . , pik} ∪ {pi | i ∈ Xq1

} ∪ · · · ∪ {pi | x ∈ Xql
}. Then the supports of

the points q1, . . . , qm of PG(2n − 1, 4) are mutually disjoint. This means that there is a
convex subspace Fβ of Gn associated with the subspace β = 〈q1, . . . , qm〉 of H(2n − 1, 4).
Now, a line L of Gn through x belongs to Fβ if and only if L ∈ S. This proves that every
local space of Gn is regular. More information on the convex subspaces of the near 2n-gon
Gn can be found in [7, Section 6.3].

(V) Consider in PG(6, 3) a nonsingular parabolic quadric Q(6, 3) and a nontangent hyper-
plane π intersecting Q(6, 3) in a nonsingular elliptic quadric Q−(5, 3). There is a polarity
associated with Q(6, 3) and we call two points of PG(6, 3) orthogonal when one of them
is contained in the polar hyperplane of the other. Let N denote the set of 126 points of π

for which the corresponding polar hyperplane intersects Q(6, 3) in a nonsingular elliptic
quadric. Let E3 = (P,L, I) be the following point-line geometry: (i) the elements of E3

are the 6-tuples of mutually orthogonal points of N ; (ii) the elements of E3 are the pairs
of mutually orthogonal points of N ; (iii) incidence is reverse containment. By Brouwer
and Wilbrink [3], E3 is a dense near hexagon. The first construction of this near hexagon
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is due to Aschbacher [1]. Every local space of E3 is isomorphic to the linear space W (2)
obtained from the generalized quadrangle W (2) of order 2 by adding its ovoids as extra
lines (see [7, Theorem 6.98]). Since every subspace of W (2) is either the empty set, a
singleton, a line or the whole space, every local space of E3 is regular.

(VI) Let A1 and A2 be two dense near polygons of diameter at least 1. Then a product
near polygon A1 × A2 can be defined, see [7, Section 1.6]. Let x be an arbitrary point
of A1 × A2 and let L be a set of lines through x forming a subspace of L(A1 × A2, x).
Through x there are convex subspaces F1 and F2 such that: (i) F1

∼= A1, F2
∼= A2; (ii)

F1∩F2 = {x}; (iii) every line through x is contained in either F1 or F2. Let Li, i ∈ {1, 2},
denote the set of lines through x contained in Fi. Then Li ∩ L is a subspace of L(Fi, x).
Since L(Fi, x) is regular, there exists a unique convex subspace Gi of Fi through x such
that the lines through x contained in Gi are precisely the lines of Li ∩ L. Now, by [7,
Section 4.6], the convex subspace 〈G1, G2〉 intersects F1 in G1 and F2 in G2. Hence, the
set of lines through x contained in 〈G1, G2〉 coincides with L. This proves that all local
spaces of A1 ×A2 are regular.

(VII) Let A1 and A2 be two dense near polygons of diameter at least 2. If A1 and A2

satisfy certain nice conditions (see [7, Theorem 4.11]) then a so-called glued near polygon
A1 ⊗A2 can be derived from A1 and A2. Let x be an arbitrary point of A1 ⊗A2 and let
L be a set of lines through x forming a subspace of L(A1 ⊗A2, x). Through x there are
convex subspaces F1 and F2 such that: (i) F1

∼= A1, F2
∼= A2; (ii) F1 ∩F2 is a line L; (iii)

every line through x distinct from L is contained in either F1 or F2. Let Li, i ∈ {1, 2},
denote the set of lines through x contained in Fi. Then Li ∩ L is a subspace of L(Fi, x).
Since L(Fi, x) is regular, there exists a unique convex subspace Gi of Fi through x such
that the lines through x contained in Gi are precisely the lines of Li ∩ L. Now, by [7,
Section 4.6], the convex subspace 〈G1, G2〉 intersects F1 in G1 and F2 in G2. Hence, the
set of lines through x contained in 〈G1, G2〉 coincides with L. This proves that all local
spaces of A1 ⊗ A2 are regular. For an extensive discussion of glued near polygons and
their properties, we refer to [7, Chapter 4].

4 Proof of Theorem 1.5

4.1 The case of the near hexagon E1

Let M denote the following matrix:

















1 0 0 0 0 0 1 1 1 1 1 0
0 1 0 0 0 0 0 1 −1 −1 1 −1
0 0 1 0 0 0 1 0 1 −1 −1 −1
0 0 0 1 0 0 −1 1 0 1 −1 −1
0 0 0 0 1 0 −1 −1 1 0 1 −1
0 0 0 0 0 1 1 −1 −1 1 0 −1

















.
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The 12 columns of the matrix M define a set K of 12 points in PG(5, 3). This set of
12 points, which was first discovered by Coxeter [4], has several nice properties, see e.g.
Lemma 4.1 below. For every point x of PG(5, 3), define the generating index iK(x) of x as
the minimal number of points of K which are necessary to generate a subspace containing
x.

Lemma 4.1 ([4], [8]) (a) The maximal index of a point of PG(5, 3) is equal to 3.
(b) If L is a line of PG(5, 3) through a point x of K, then L \ {x} contains a unique

point with smallest index.
(c) Every i ∈ {1, 2, 3, 4, 5} distinct points of K generate an (i−1)-dimensional subspace

of PG(5, 3). The 4-dimensional subspace generated by 5 distinct points of K contains
precisely 6 points of K.

(d) The group of automorphisms of PG(5, 3) stabilizing K acts 5-transitively on the
set of points of K.

Now, embed PG(5, 3) as a hyperplane in the projective space PG(6, 3). Let E1 be the
following point-line geometry: (i) the points of E1 are the points of PG(6, 3) \ PG(5, 3);
(ii) the lines of E1 are the lines of PG(6, 3), not contained in PG(5, 3), which contain a
point of K; (iii) incidence is derived from the one of PG(6, 3). Then by De Bruyn and De
Clerck [8], E1 is a dense near hexagon. The first construction of E1 (using cosets of the
extended ternary Golay code) is due to Shult and Yanushka [12, Section 2.5].

Let P denote the point-set of E1. In this subsection, we will prove that there exists a
map f : P → N satisfying properties (V1) and (V2) such that max{f(x) | x ∈ P} = 2. In
view of the fact that every valuation of E1 is either classical or ovoidal (see [10, Theorem
1]), this implies that f is not a valuation of E1. This proves that Theorem 1.5 holds in
the case the near hexagon is isomorphic to E1.

Let x be an arbitrary point of PG(5, 3) with index 3. For every y1 ∈ K, the line
xy1 contains a unique point y′

1 with index 2 (Lemma 4.1(b)). By Lemma 4.1(c), there
exist unique points y2 and y3 of K such that y′

1 ∈ 〈y2, y3〉. Define Ay1
:= {y1, y2, y3} and

αy1
:= 〈y1, y2, y3〉. By Lemma 4.1(c), αy1

is a plane which intersects K in the set Ay1
.

Obviously, Ay1
= Ay2

= Ay3
and x ∈ αy1

= αy2
= αy3

. So, the set U := {αy | y ∈ K} has

size |K|
3

= 4. By Lemma 4.1(c), any two distinct planes of U intersect in the point x. Put
U = {α1, α2, α3, α4}. Then for every i ∈ {1, 2, 3, 4}, there exists a unique line Li ⊆ αi

through x disjoint from αi ∩K. Let α be the subspace of PG(5, 3) generated by the lines
L1, L2, L3 and L4.

We claim that α is a plane of PG(5, 3), i.e. the lines of α through x are precisely the
lines L1, L2, L3 and L4. By Lemma 4.1(d), we may without loss of generality suppose
that the points (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0) and (0, 0, 1, 0, 0, 0) belong to α1 and that
(0, 0, 0, 1, 0, 0) and (0, 0, 0, 0, 1, 0) belong to α2. Then the sixth point of K in the subspace
〈(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0)〉 is the unique
point of α2 ∩ K distinct from (0, 0, 0, 1, 0, 0) and (0, 0, 0, 0, 1, 0). This point is equal to
(1, 1,−1,−1, 1, 0). It follows that the point x is equal to (1, 1,−1, 0, 0, 0). The remaining
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planes of U are (up to transposition) α3 = 〈(0, 0, 0, 0, 0, 1), (1, 0, 1,−1,−1, 1), (0,−1,−1,
−1,−1,−1)〉 and α4 = 〈(1, 1, 0, 1,−1,−1), (1,−1, 1, 0, 1,−1), (1,−1,−1, 1, 0, 1)〉. We can
now easily calculate the lines L1, L2, L3 and L4:

L1 = 〈(1, 1,−1, 0, 0, 0), (1,−1, 0, 0, 0, 0)〉,

L2 = 〈(1, 1,−1, 0, 0, 0), (0, 0, 0, 1, 1, 0)〉,

L3 = 〈(1, 1,−1, 0, 0, 0), (1,−1, 0, 1, 1, 0)〉,

L4 = 〈(1, 1,−1, 0, 0, 0), (1,−1, 0,−1,−1, 0)〉.

Hence, α = 〈L1, L2, L3, L4〉 is a plane of PG(5, 3). Now, let B be an arbitrary 3-space
of PG(6, 3) through α not contained in PG(5, 3). Let A denote the projective plane
obtained by taking the quotient space of PG(6, 3) over the subspace B. The 13 points
A1, A2, . . . , A13 of A are the 13 4-spaces of PG(6, 3) containing B. Without loss of gen-
erality, we may suppose that Ai = 〈B, αi〉 for every i ∈ {1, 2, 3, 4}. By Lemma 4.1(c),
{A1, A2, A3, A4} is a set of 4 points of A, no three of which are collinear.

Now, for every map µ : {A1, . . . , A13} → N satisfying µ(A1) = µ(A2) = µ(A3) =
µ(A4) = 1, let fµ be the following map from P to N: if y ∈ B \ PG(5, 3), then fµ(y) = 0;
if y ∈ Ai \ (PG(5, 3) ∪ B) for a certain i ∈ {1, . . . , 13}, then fµ(y) = µ(Ai). The function
fµ satisfies properties (V1) and (V2) if and only if

(∗) for every line χ of A containing Ai, i ∈ {1, 2, 3, 4}, there exists a unique
point zχ,i ∈ χ \ {Ai} such that µ(z) = µ(zχ,i) + 1 for every z ∈ χ \ {Ai, zχ,i}.

We show that there exists a function µ : {A1, . . . , A13} → N satisfying Property (∗).
Let A5, A6 and A7 be those points of A such that {A1, A2, A5, A7} and {A3, A4, A6, A7}
are lines of A. Then define µ(A1) = µ(A2) = µ(A3) = µ(A4) = µ(A5) = µ(A6) = 1,
µ(A7) = 0 and µ(A) = 2 for every point A of A not contained in {A1, . . . , A7}. Then µ

satisfies Property (∗). Hence, fµ is a map satisfying (V1) and (V2). Since the maximal
value attained by fµ is equal to 2, fµ is not a valuation of E1. (Recall that every valuation
of E1 is either classical or ovoidal.)

4.2 The case of the near hexagon E2

Let D denote the unique Steiner system S(5, 8, 24). (Recall that there are 24 points in
such a Steiner system, each block contains 8 points and every five distinct points are
contained in a unique block.) If B1 and B2 are two distinct blocks of S(5, 8, 24), then
|B1 ∩B2| ∈ {0, 2, 4}. Moreover, if |B1 ∩B2| = 0, then the complement of B1 ∪B2 is again
a block. From S(5, 8, 24), we can construct the following incidence structure E2: (i) the
points of E2 are the blocks of S(5, 8, 24); (ii) the lines of E2 are the triples of mutually
disjoint blocks; (iii) incidence is containment. Then E2 is a dense near hexagon by Shult
and Yanushka [12, p. 40] (see also [7, Section 6.6]).

Now, let x and y be two given distinct points of D. If B is a block of D, then we
define f(B) := 0 if x, y ∈ B, f(B) := 1 if x, y 6∈ B and f(B) := 2 if |{x, y} ∩ B| = 1.
Clearly, f satisfies Properties (V1) and (V2). The map f cannot be a classical valuation
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of E2 (since f(B) 6= 3 for any block B of D), nor an ovoidal valuation of E2 (there exists
a block B with f(B) = 2). Now, by [10, Theorem 2] (see also [7, Theorem 6.81]), every
valuation of E2 is either classical or ovoidal. Hence, f is not a valuation.
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