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Abstract

We generalize a classical result of Sabidussi that was improved by Hemminger, to
the case of directed color graphs. The original results give a necessary and sufficient
condition on two graphs, C and D, for the automorphsim group of the wreath
product of the graphs, Aut(C o D) to be the wreath product of the automorphism
groups Aut(C) o Aut(D). Their characterization generalizes directly to the case
of color graphs, but we show that there are additional exceptional cases in which
either C or D is an infinite directed graph. Also, we determine what Aut(C o D)
is if Aut(C o D) 6= Aut(C) o Aut(D), and in particular, show that in this case there
exist vertex-transitive graphs C ′ and D′ such that C ′ oD′ = C oD and Aut(C oD) =
Aut(C ′) o Aut(D′).

1 Introduction

The main purpose of this paper is to revisit a well-known and important result of Sabidussi
[10] giving a necessary and sufficient condition for the wreath product C o D (defined
below) of two graphs C and D to have automorphism group Aut(C) oAut(D), the wreath
product of the automorphism group of C and the automorphism group of D (defined
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below). Sabidussi originally considered only almost locally finite graphs X and finite
graphs Y . (A graph is almost locally finite if the set of vertices of infinite degree is finite.)
The condition that X be almost locally finite is needed for Sabidussi’s proof, but is clearly
not needed in general. Indeed, note that (X oY )c, the complement of X oY , has the same
automorphism group as X oY , (X oY )c = Xc oY c, but Xc is not almost locally finite if X
is infinite and almost locally finite. Sabidussi improved his own result by weakening the
conditions, in a later paper [11]. Then Hemminger [6, 7, 8] fully generalized Sabidussi’s
result, reaching a complete characterization of wreath product graphs with no “unnatural”
automorphisms (to use his terminology).

Since Sabidussi and Hemminger published their papers, the wreath products of di-
graphs and color digraphs have also been considered in various contexts. It is therefore
of interest to explore how their results do or do not generalize to such structures.

We will show that Hemminger’s characterization can be directly generalized to any
color graphs, and that all of the results in [6, 7, 8, 10] and [11] hold for finite digraphs,
although their proofs do not suffice to show this. Furthermore, in the case where either C
orD is an infinite digraph (with or without colors), we will show that additional conditions
are necessary to ensure that there are no unnatural automorphisms. We will explore
some of the exceptional digraphs, and prove a theorem that provides conditions under
which Hemminger’s characterization extends to color digraphs. We will also give several
corollaries, covering special cases that are of interest, in which some of the terminology
required in the complete characterization can be simplified or omitted.

One such corollary consists of the case where C and D are both finite, vertex-transitive
graphs (a common context in which Sabidussi’s result is applied). Here we will further
show that if C and D are not both complete or both edgeless, then there exist vertex-
transitive graphs C ′ and D′ such that C oD = C ′ oD′ and Aut(C oD) = Aut(C ′) oAut(D′).

Finally, the wreath product of Cayley graphs arises naturally in the study of the
Cayley Isomorphism problem (definitions are provided in the final section, where this
work appears). We show that if C and D are CI-graphs of abelian groups G1 and G2,
respectively, then C o D need not be a CI-graph of G1 × G2, and then give a necessary
condition on G1 and G2 that will ensure that C oD is a CI-graph of G1 ×G2.

In order to simplify awkward terminology, throughout this paper we will refer to sub-
structures of color digraphs simply as “subdigraphs” rather than “color subdigraphs.” The
reader should understand that the color structure is carried through into the substructure,
even though we do not explicitly include the word.

Although most of our definitions and terminology will be included in the next sec-
tion, we distinguish the definitions of wreath products, both of (color) (di)graphs and of
permutation groups.

We begin by defining a more general structure than the wreath product. It was actually
the automorphism group of this structure, the C-join of a set of graphs, that Hemminger
analyzed in the paper [8], although he confined his analysis to graphs rather than color
digraphs.

Definition 1.1 Let C be a color digraph, and let {Dc : c ∈ V (C)} be a collection of
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color digraphs. The C-join of these color digraphs is the color digraph whose vertex set
is the union of all of the vertices in the collection. There is an arc of color k from dc to
d′c′, where dc is a vertex of Dc, d

′
c′ is a vertex of Dc′ and c, c′ are vertices of C, if either of

the following holds:

• c = c′ and there is an arc of color k from dc to d′c′ in Dc(= Dc′); or

• there is an arc of color k from c to c′ in C.

Another way of describing this structure is that each vertex c of C is replaced by a copy
of Dc, and we include all possible arcs of color k from Dc to Dc′, if and only if there is an
arc of color k from c to c′ in C.

Now we can define the wreath product.

Definition 1.2 The wreath product of two color digraphs C and D is the C-join of {Dc :
c ∈ V (C)}, where Dc

∼= D for every c ∈ V (C). We denote the wreath product of C and
D by C oD.

It is important to note that we are following the French tradition of denoting the wreath
product of both graphs and groups in this paper, consistent with work of Sabidussi,
Alspach, and others. There is another school of work, according to whose notation the
order of the graphs making up the wreath product is reversed; that is, the graph that we
have denoted C oD, is denoted by D o C. They also reverse the notation we use for the
wreath product of permutation groups (defined below). This is true in work by Praeger,
Li and others, and is an unfortunate potential source of confusion.

The name wreath product was chosen because of the close connection (mentioned
earlier) to the wreath product of automorphism groups. In Sabidussi’s original paper
[10], this product is called the “composition” of graphs.

Definition 1.3 Let Γ and Γ′ be permutation groups acting on the sets Ω and Ω′, respec-
tively. The wreath product of Γ with Γ′, denoted Γ o Γ′, is defined as follows. It is the
group of all permutations δ acting on Ω × Ω′ for which there exist γ ∈ Γ and an element
γ′x of Γ′ for each x ∈ Ω, such that

δ(x, y) = (γ(x), γ′x(y)) for every (x, y) ∈ Ω × Ω′.

Wreath products can be defined in general for abstract groups, but we will only be con-
sidering the special case of permutation groups, so we confine ourselves to this simpler
definition.

It is always the case that Aut(C) oAut(D) ≤ Aut(C oD), for color digraphs C and D.
This is mentioned as an observation in [10], for example, in the case of graphs, and color
digraphs are equally straightforward.

In fact, it is very often the case that Aut(C) o Aut(D) = Aut(C oD). Harary claimed
that this was always the case in [5], but this was corrected by Sabidussi in [10], who
provided a characterization for precisely when Aut(C) o Aut(D) = Aut(C oD), where C
is an almost locally finite graph and D is a finite graph. Hemminger was able to remove
all conditions on C and D [6, 7, 8].
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Section 2 of this paper will provide background definitions and notation. Section 3
will state Hemminger’s result, as well as stating and proving our generalization. Section
4 will provide some useful corollaries and elaborate on one of the conditions required in
our result. Section 5 will use results from the third section to consider the question of
what the structure of Aut(C oD) can be, if it is not Aut(C) o Aut(D), and will give the
result mentioned previously, on vertex-transitive graphs.

The final section will produce the results that relate to the Cayley Isomorphism prob-
lem for graphs that are wreath products of Cayley graphs on abelian groups.

2 Definitions and terminology

Before we can state Hemminger’s characterisation of when Aut(C oD) = Aut(C) oAut(D),
or state and prove our generalization, we need to introduce some additional notation and
terminology.

In what follows, everything is stated in terms of color digraphs; color graphs can be
modelled as color digraphs by replacing each edge of color k by a digon (arcs in both
directions) of color k, for every color k, so all of the definitions and results also hold for
color graphs.

Suppose that a color digraph X has arcs of r colors, 1 through r. Whenever we
consider color digraphs in this paper, we assume that all non-arcs have been replaced by
arcs of a new color, color 0. This serves to simplify our notation and some aspects of the
proofs. Thus, for any pair of distinct vertices x and y in a color digraph, there will be an
arc of color k from x to y for some 0 ≤ k ≤ r.

Definition 2.1 In any color digraph X, we say that the induced subdigraph on the set
S of vertices of X is externally related in X, if whenever x, y ∈ S and v ∈ V (X) \ S, the
arc from v to x has the same color as the arc from v to y, and the arc from x to v has the
same color as the arc from y to v.

That is, an externally related subdigraph in X is an induced subdigraph whose vertices
have exactly the same in-neighbours and out-neighbours of every color, within the set
V (X) \ S.

The above definition is given in the context of graphs, in Hemminger’s paper [8]. We
now define a related concept.

Definition 2.2 In any color digraph X, we say that the vertices x and y are k-twins, if
x 6= y and the following two conditions hold:

1. there are arcs of color k from x to y, and from y to x; and

2. the subdigraph induced on {x, y} is externally related in X.

That is, k-twins are a pair of vertices that are mutually adjacent via two arcs of color k,
and that, with the exception of this mutual adjacency, have exactly the same in-neighbours
and out-neighbours of every color.

the electronic journal of combinatorics 16 (2009), #R17 4



It is straightforward to verify that dropping the requirement that k-twins be distinct
yields an equivalence relation that partitions the vertices of any digraph into equivalence
classes. We call these equivalence classes externally related k-classes of vertices. Notice
that the induced digraph on any subset of such a class is itself externally related; we call
such subdigraphs externally related k-cliques.

Definition 2.3 For any color k, we say that the k-complement of X is disconnected if,
upon removing all arcs of color k, the underlying graph is disconnected.

That is, the k-complement of X is disconnected if X has a pair of vertices x and y,
for which every path between x and y in the underlying graph of X must use an edge of
color k.

Notice that saying that the 0-complement of X is disconnected is equivalent to saying
that X is disconnected.

Notation 2.4 For any wreath product C oD of color digraphs C and D, and any vertex
x of C, we use Dx to denote the copy of D in C oD that corresponds to the vertex x of C.

To simplify things somewhat, it will be convenient to have a term for automorphisms
that fail to behave as we would wish. We therefore adopt the following definition from
Hemminger’s paper [8].

Definition 2.5 Let C oD be a wreath product of color digraphs C and D, and let µ be
an automorphism of C o D. We say that µ is natural if for any vertex x of C, there is
a vertex y of C (not necessarily distinct) such that µ(Dx) = Dy. If this is not the case,
then µ is unnatural.

We need some further terminology from Hemminger’s work before we can state his
result.

Definition 2.6 Let M be a partition of the vertices of C, such that for every A ∈ M ,
the induced subdigraph on A is externally related in C. We define the color digraph CM

to be the color digraph whose vertices are elements of M , with an arc of color k from A
to B if and only if there is an arc of color k in C, from some vertex x ∈ A to some vertex
y ∈ B (where A,B ∈M).

Note that due to the subdigraphs on A and B being externally related, we could
equivalently have required an arc of color k from every vertex in A to every vertex in B.

Definition 2.7 Let C and C ′ be color digraphs and σ a map from V (C) to V (C ′). Then
σ is a smorphism if whenever x, y ∈ V (C) with σ(x) 6= σ(y), there is an arc of color k
from σ(x) to σ(y) in C ′ if and only if there is an arc of color k from x to y in C.

In other words, σ preserves the colors of arcs between any vertices that have distinct
images.
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Definition 2.8 Suppose that X = C oD, where both C and D have more than one vertex,
and there is some vertex x ∈ V (C) for which the induced subdigraph on V (C) \ {x} is
externally related, and D is isomorphic to the C-join of {D′

y : y ∈ V (C)}, where D′
y
∼= D

for every y 6= x, and D′
x is arbitrary. Then we call x an inverting C-point of X.

Although this definition comes from Hemminger’s work, it is a sufficiently odd struc-
ture to warrant some further discussion. Clearly, since D′

y is a proper subgraph of D, yet
is isomorphic to D, we are considering only infinite structures here. Perhaps the simplest
example of a graph that has this structure can be given as follows. Let C be any color
digraph that has a vertex x for which the induced subdigraph on V (C) \ {x} is exter-
nally related, and let D be the countably infinite wreath product C o C o C o . . .. Then
X = C o D = C o C o C o . . . ∼= D, and x is an inverting C-point of X. The reason this
structure is important (and the reason for its name), is that there is a natural automor-
phism of X that does something quite unusual. Since X = C oD, we have copies Dx and
{Dy : y ∈ V (C) \ {x}} of D. Now, Dx is isomorphic to the C-join of {D′

y : y ∈ V (C)}, so
there is a natural automorphism of X that fixes this D′

x pointwise, while swapping this
D′

y with Dy for every vertex y of C with y 6= x. The fact that V (C) \ {x} is externally
related guarantees that this is an automorphism. Essentially, this automorphism turns
things inside-out (or inverts), by swapping the copies of D that are inside of Dx with
those that are outside, leaving only D′

x fixed.
The above definitions and notation are sufficient to allow us to state Hemminger’s

result. To be able to give our generalization, we need to describe and name a family of
digraphs.

Definition 2.9 Let S be any set, with |S| > 1 and a total order < defined on its elements.
Let the color digraph G be the digraph whose vertices are the elements of S, with an arc
of color k from si to sj, and an arc of color k′ from sj to si, if and only if si < sj, where
k 6= k′. Then a (k, k′) total order digraph is any color digraph that can be formed as the
G-join of any collection of color digraphs.

We distinguish some special cases of this definition.

Notation 2.10 If S = Z under the usual total order, we denote the corresponding graph
G itself (from Definition 2.9) by Z.

Similarly, if S = {1, 2, . . . , i} under the usual total order, we denote the corresponding
graph G by Zi.

Notice that these are (k, k′) total order digraphs, since each is the trivial join of itself with
a collection of single vertices.

Definition 2.11 A (k, k′) total order digraph G′ is separable if there is some digraph G,
such that G oG′ has an unnatural automorphism.

The above definition is somewhat unsatisfying, as will be discussed in greater detail
later.

the electronic journal of combinatorics 16 (2009), #R17 6



As we frequently pass back and forth between referring to a set of vertices in a color
digraph, and the subdigraph that they induce, we also need notation for this.

Notation 2.12 If A ⊆ V (C), we let Ā denote the induced subdigraph of C on the vertices
of A.

Finally,

Notation 2.13 We denote the color digraph on a single vertex by K1.

This concludes our background material.

3 Generalizing Sabidussi and Hemminger’s Results

We are using some of the generalized terminology that applies to color digraphs to state
Hemminger’s theorem, but in the situation of graphs (the context in which he proved his
result), the colors available are 0 and 1, corresponding to non-edges and edges (respec-
tively).

Theorem 3.1 (Hemminger) For graphs C and D, Aut(C o D) ∼= Aut(C) o Aut(D) if
and only if:

1. if C has a pair of k-twins, then the k-complement of D is connected, where k ∈
{0, 1};

2. if

• M is a proper partition of V (C);

• the subgraphs induced by the elements of M are externally related in C; and

• σ : C → CM is an onto smorphism such that Ā oD ∼= σ−1(A) oD for all A ∈M ,

then all such isomorphisms are natural ones;

3. if A is an externally related subgraph of C then A o D does not have an inverting
A-point.

Our theorem requires some additional conditions on C and D since arcs are permitted.

Theorem 3.2 Suppose that C and D are color digraphs, with the conditions that

i. if C has an externally related subdigraph that is isomorphic to the Z-join of a collec-
tion of color digraphs Yz, where Yi 6∼= K1 implies Yi−1

∼= Yi+1
∼= K1 for every integer

i, then D is not a separable (k, k′) total order digraph; furthermore,

ii. if C has an externally related subdigraph that is isomorphic to the Z3-join of color
digraphs Y1, Y2 and Y3, where Y1

∼= Y3
∼= K1 and Y2 is arbitrary, then D is not a

(k, k′) total order digraph that is isomorphic to a proper subdigraph of itself.

Then we have Aut(C oD) ∼= Aut(C) o Aut(D) if and only if:

1. for every k ∈ {0, 1, . . . , r}, if C has a pair of k-twins, then the k-complement of D
is connected;
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2. if

• M is a proper partition of V (C);

• the subdigraphs induced by the elements of M are externally related in C; and

• σ : C → CM is an onto smorphism such that Ā oD ∼= σ−1(A) oD for all A ∈M ,

then all such isomorphisms are natural ones;

3. if A is an externally related subdigraph of C then A oD does not have an inverting
A-point.

Some additional notation will be useful throughout this section.

Notation 3.3 Consider C o D where C and D are color digraphs, and let µ be a pre-
determined automorphism of C oD. For each x ∈ V (C), we use Bx to denote the induced
subdigraph of C on {y ∈ V (C) : V (Dy) ∩ V (µ(Dx)) 6= ∅}. Also, for each x, y ∈ V (C),
define Ux,y = V (µ(Dx)) ∩ V (Dy).

Thus Ux,y = ∅ if and only if y 6∈ V (Bx). If |V (Bx)| = 1 for every x ∈ V (C) holds for
every automorphism, then there is no unnatural automorphism. Although it will not be
stated explicitly, wherever we assume the existence of an unnatural automorphism, µ, in
the results that follow, we will choose µ so that there is some x for which |V (Bx)| > 1.

Notation 3.4 With a fixed µ, let T = {x ∈ V (C) : |V (Bx)| > 1}.

We begin with a useful lemma.

Lemma 3.5 Let X = C oD be a color digraph with a fixed automorphism, µ. Let v, w, x
and y be vertices of C such that:

• v 6= x, y;

• x, y ∈ V (Bw); and

• Uw,v 6= V (Dv).

Then in C, the arc from x to v has the same color as the arc from y to v, and the arc
from v to x has the same color as the arc from v to y.

Proof. Since Uw,v 6= V (Dv), there is some vertex u of C such that Uu,v 6= ∅. Since X is
a wreath product, all arcs from Dw to Du have the same color (the color of the arc from
w to u in C), so all arcs from µ(Dw) to µ(Du) have this same color. In particular, the
arcs from vertices in Uw,x to vertices in Uu,v all have this same color, as do the arcs from
vertices in Uw,y to vertices in Uu,v. Again since X is a wreath product, this must be the
color of both the arc in C from x to v and the arc in C from y to v, which are therefore
the same. Considering the reverse arcs instead of those we have examined, completes the
argument.

The following is an immediate consequence:

Corollary 3.6 Let C oD be a color digraph with a fixed automorphism, µ. Then for any
vertex w ∈ V (C), the subdigraph Bw is externally related in C.

the electronic journal of combinatorics 16 (2009), #R17 8



The next lemma will also be required. As it will be used in a slightly different context
in a later section of the paper, we state it in greater generality than is needed for the
current context.

Lemma 3.7 Suppose that C,D,C ′ and D′ are color digraphs, and that C oD = C ′ oD′.
For every vertex v of C, every vertex w of C ′ for which V (D′

w) 6⊆ V (Dv), and every vertex
x 6= v of C for which V (Dx) ∩ V (D′

w) 6= ∅, we conclude that

• there is some color k for which every arc from any vertex of V (Dv) \ V (D′
w) to any

vertex of V (Dv) ∩ V (D′
w) has color k. Furthermore, this color k is the color of the

arcs from Dv to Dx.

• Similarly, there is some color k′ for which every arc to any vertex of V (Dv)\V (D′
w)

from any vertex of V (Dv) ∩ V (D′
w) has color k′. Furthermore, k′ is the color of the

arcs from Dx to Dv.

Proof. First, if V (Dv) ∩ V (D′
w) is either ∅ or V (Dv), the result is vacuously true. So we

may assume that there is some vertex y of C ′ such that y 6= w and V (Dv) ∩ V (D′
w) 6= ∅

and V (Dv) ∩ V (D′
y) 6= ∅.

Since V (D′
w) 6⊆ V (Dv), we must have some vertex x of C for which x 6= v and

V (Dx) ∩ V (D′
w) 6= ∅. Let k be the color of the arcs from Dv to Dx.

Now, since V (Dv) ∩ V (D′
y) 6= ∅ and V (Dx) ∩ V (D′

w) 6= ∅, we must have that all arcs
from D′

y to D′
w have color k. But this is true for any y for which V (Dv)∩V (D′

y) 6= ∅. So in
fact, all arcs from V (Dv)\V (D′

w) to V (D′
w), and therefore in particular, to V (Dv)∩V (D′

w),
have color k.

Reversing the direction of each arc and replacing k with k′ in the argument above,
completes the proof of the lemma.

For simplicity of use in this section, we re-write the lemma above in terms of an
automorphism, µ. Simply replace each D′

a in the statement and proof of the lemma, by
µ(Da) to achieve the following result.

Corollary 3.8 Suppose that C and D are color digraphs, with a fixed automorphism µ
of C oD. For every vertex v of C, every vertex w of C for which Uw,v 6= V (µ(Dw)), and
every vertex x 6= v of C for which x ∈ Bw, we conclude that

• there is some color k for which every arc from any vertex of V (Dv) \ Uw,v to any
vertex of Uw,v has color k. Furthermore, this color k is the color of the arcs from
Dv to Dx.

• Similarly, there is some color k′ for which every arc to any vertex of V (Dv) \ Uw,v

from any vertex of Uw,v has color k′. Furthermore, k′ is the color of the arcs from
Dx to Dv.

Our next lemma explores the circumstances under which the configuration forbidden
by condition (i) of Theorem 3.2 can arise.
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Lemma 3.9 Suppose that C and D are color digraphs and conditions (ii) and (1) of
Theorem 3.2 hold, but C oD has an unnatural automorphism, µ. Given this µ, T = {x ∈
V (C) : |V (Bx)| > 1}. Then either

• for any w ∈ T , there is at most one x ∈ V (Bw) such that Uw,x 6= V (Dx), or

• whenever there is some w0 ∈ T , with x0, x1 ∈ V (Bw0
) and x0 6= x1, and the arcs

between x0 and x1 in C have two distinct colors, k and k′, we can choose {wi : i ∈ Z}
so that the induced subdigraph of C on the vertices of

⋃

i∈Z
V (Bwi

) is an externally
related (k, k′) total order digraph that is isomorphic to the Z-join of a collection of
color digraphs Yz, where Yi 6∼= K1 implies Yi−1

∼= K1 and Yi+1
∼= K1.

Proof. We assume that the first of the conclusions given in the lemma does not hold, and
deduce the second. First we show that without loss of generality we can choose w0, x0

and x1 so that Uw0,x0
6= V (Dx0

), and Uw0,x1
6= V (Dx1

). Because we are assuming that
the first conclusion does not hold, the only other possibility is that whenever w ∈ T with
x, y ∈ V (Bw), x 6= y, Uw,x 6= V (Dx) and Uw,y 6= V (Dy), then the arcs between x and y
both have the same color, k (say). By Corollary 3.6, Bw is externally related. Furthermore,
two applications of Lemma 3.5 to the vertices of Bw, with first x and then y taking the
role of v, yield the conclusion that Bw is an externally related k-clique. In particular, x
and y are k-twins. Furthermore, calling on Corollary 3.8, since x, y ∈ V (Bw) and the arcs
between them in both directions have color k, we conclude that the k-complement of Dy

(and therefore of D) is disconnected. But this contradicts condition (1) of Theorem 3.2.
There are five significant steps in the remainder of this proof:

1. showing that there is a set {wi : i ∈ Z} such that for every i, V (Bwi
)∩V (Bwi+1

) 6= ∅;

2. showing that if i < j and xi 6= xj, then the arc from xi to xj has color k and the
arc from xj to xi has color k′, where xi ∈ V (Bwi−1

) ∩ V (Bwi
);

3. showing that if i 6= j then wi 6= wj and xi 6= xj;

4. showing that the induced subdigraph of C on
⋃

i∈Z
V (Bwi

) is externally related; and

5. showing that the induced subdigraph of C on the vertices of
⋃

i∈Z
V (Bwi

) is a (k, k′)
total order digraph that is isomorphic to the Z-join of a collection of color digraphs
Yz, where Yi 6∼= K1 implies Yi−1

∼= K1 and Yi+1
∼= K1.

As some of these steps require lengthy arguments, separating the proof into these five
steps will make it easier to read.

Step 1: showing that there is a set {wi : i ∈ Z} such that for every i, V (Bwi
) ∩

V (Bwi+1
) 6= ∅.

We begin to form a chain forwards and backwards from µ(Dw0
) for as long as possible,

such that for each xi and xi+1 in the chain (where i is an integer), xi, xi+1 ∈ V (Bwi
),

xi 6= xi+1, and wi 6= wi+1. Notice that the given w0, x0 and x1 satisfy these conditions.
For as long as this chain continues, we will certainly have V (Bwi

) ∩ V (Bwi+1
) 6= ∅,

since xi+1 ∈ V (Bwi
) ∩ V (Bwi+1

).
In order to complete this first section of our proof, we need to show that the chain

is infinite (in both directions). Suppose to the contrary that it comes to an end. Going
forward, it can only end if Uwi,xi+1

= V (Dxi+1
) or V (µ(Dwi

)); similarly, going backwards,
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it can only end if Uwi,xi
= V (Dxi

) or V (µ(Dwi
)). In any of these events, we have that D

is isomorphic to a proper subdigraph of itself. We know that Bw0
is externally related (by

Corollary 3.6). We claim that Bw0
is isomorphic to the Z3-join of the induced subdigraphs

of C on x0, {v ∈ V (Bw0
) : v 6= x0, x1}, x1 (in that order). To prove this, we need only

show that for any vertex y ∈ V (Bw0
) with y 6= x0, x1, we have arcs of color k from x0 to y

and from y to x1, and arcs of color k′ from x1 to y and from y to x0. But letting w0 take
the role of w and x0 take the role of v in Corollary 3.8, and recognising that the colors k
and k′ are uniquely determined by arcs between Uw0,x0

and V (Dx0
)\Uw0,x0

(recall that we
have chosen w0 and x0 so that both of these sets are nonempty), we see that the lemma
tells us that the arcs from Dx0

to Dx1
have the same color as the arcs from Dx0

to Dy,
and the arcs from Dx1

to Dx0
have the same color as the arcs from Dy to Dx0

. Similarly,
letting x1 take the role of v in Corollary 3.8 and recalling that Uw0,x1

and V (Dx1
) \Uw0,x1

are nonempty, we conclude that the arcs from Dx0
to Dx1

have the same color as the arcs
from Dy to Dx1

, and the arcs from Dx1
to Dx0

have the same color as the arcs from Dx1
to

Dy. This proves our claim. Finally, notice that either application of Corollary 3.8 allowed
us to conclude that D (specifically, Dx0

or Dx1
) is a (k, k′) total order digraph. Now we

have a contradiction to condition (ii) of Theorem 3.2.
So we have such a collection.
Step 2: showing that if i < j and xi 6= xj, then the arc from xi to xj has color k and

the arc from xj to xi has color k′, where xi ∈ V (Bwi−1
) ∩ V (Bwi

).
Inductively, assume that all arcs from Dxi

to Dxi+1
have color k (the base case of this,

with i = 0, has been established in Step 1, and this makes sense, since xi 6= xi+1). Then
since xi ∈ V (Bwi

), and xi+1 ∈ V (Bwi+1
), all arcs from µ(Dwi

) to µ(Dwi+1
) must have

color k (since wi 6= wi+1). Now, since xi+1 ∈ V (Bwi
), and xi+2 ∈ V (Bwi+1

), all arcs from
Dxi+1

to Dxi+2
must have color k. This establishes that all arcs from Dxi

to Dxi+1
have

color k for any i ≥ 0. Similarly, working backwards from our base case of i = 0, since
xi ∈ V (Bwi−1

) and xi+1 ∈ V (Bwi
), all arcs from µ(Dwi−1

) to µ(Dwi
) must have color k,

and since xi−1 ∈ V (Bwi−1
) and xi ∈ V (Bwi

), all arcs from Dxi−1
to Dxi

must have color
k. This establishes that all arcs from Dxi

to Dxi+1
have color k for any integer i, which

will form the base case for our next induction.
Fix i, let j ≥ i, and inductively suppose that either all arcs from Dxi

to Dxj
have

color k, or xj = xi. If xj = xi then since all arcs from Dxj
to Dxj+1

have color k (by
our last inductive argument), so do all arcs from Dxi

to Dxj+1
, completing the induction.

Otherwise, since xi ∈ V (Bwi
), and xj ∈ V (Bwj

), all arcs from µ(Dwi
) to µ(Dwj

) must
have color k if wi 6= wj. And since xi ∈ V (Bwi

) and xj+1 ∈ V (Bwj
), all arcs from

Dxi
to Dxj+1

must have color k. On the other hand, if wi = wj, then wi 6= wj+1, but
xj ∈ V (Bwi

) = V (Bwj
) and xj+1 ∈ V (Bwj+1

), so since all arcs from Dxj
to Dxj+1

have
color k (by our last inductive argument), so must all arcs from µ(Dwi

) to µ(Dwj+1
). Since

xi ∈ V (Bwi
) also, all arcs from Dxi

to Dxj+1
must also have color k. This completes the

proof that all arcs from Dxi
to Dxj

have color k whenever j > i, if xj 6= xi. Reversing the
direction of the arcs and replacing k by k′ throughout the two inductive arguments that
we have just concluded, will prove that all arcs from Dxj

to Dxi
have color k′ whenever

j > i, if xj 6= xi.
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Step 3: showing that if i 6= j, then wi 6= wj and xi 6= xj.
Suppose that there is some xi such that xi = xj for some j 6= i. Without loss of

generality, assume j > i. Then since xi 6= xi+1, we must have j ≥ i + 2 > i + 1. Now by
Step 2 of this proof, since i + 1 > i and xi 6= xi+1, all arcs from Dxi

to Dxi+1
must have

color k. However, since j > i+1 and xi = xj 6= xi+1, all arcs from Dxj
to Dxi+1

must have
color k′. But xi = xj, so we can only conclude that k′ = k, contradicting an assumption.

Now, if wi = wj but j > i, then we could have chosen xj+1 = xi+1 (before the choice
of wj+1 is made), but we have just seen that this is not possible.

Step 4: showing that the induced subdigraph of C on the vertices of
⋃

i∈Z
V (Bwi

) is
externally related.

Let y be any vertex of C for which y 6∈ V (Bwi
) for any integer i. For some fixed i,

suppose the arc from y to xi has color `, and let v ∈ V (C) be such that y ∈ V (Bv). Since
xi ∈ V (Bwi

) ∩ V (Bwi−1
), we must have all arcs from µ(Dv) to both µ(Dwi

) and µ(Dwi−1
)

have color `. Hence the arcs from y to both xi−1 and xi+1 have color `. Proceeding
inductively, we see that all arcs from any vertex of µ(Dv) to any vertex of µ(Dwj

) has
color `, for any j, and therefore all arcs from y to any vertex of Bwi

has color `, for any i.
Reversing the arcs in this argument, we can also prove that the arcs to y from any vertex
of
⋃

i∈Z
V (Bwi

) all have the same color, completing this section of our proof.
Step 5: showing that the induced subdigraph of C on the vertices of

⋃

i∈Z
V (Bwi

) is a
(k, k′) total order digraph that is isomorphic to the Z-join of a collection of color digraphs
Yz, where Yi 6= K1 implies Yi−1 = K1 and Yi+1 = K1.

All of the vertices xi (where i is an integer) are distinct, and k′ 6= k. We claim that
if x ∈ V (Bwi

) for some i, then the arcs from xi to x and from x to xi+1 in C have color
k, and the reverse arcs have color k′. This is a direct consequence of applying Corollary
3.8, recognising that the colors k and k′ are uniquely determined by the arcs between
Uwi,xi

and V (Dxi
) \ Uwi,xi

. Let G be the induced subdigraph of C on the vertices of
⋃

i∈Z
V (Bwi

). It is now straightforward to see that G can be formed as the Z-join of a
collection of color digraphs Yz, where each Yz is either a single vertex (corresponding to
each xi), or the induced subdigraph of C on the vertices of V (Bwi

) \ {xi, xi+1}. This
produces the additional structure that if Yz 6∼= K1, then Yz−1 and Yz+1 must come from
some xi and xi+1, and are therefore single vertices.

The main focus in our proof of Theorem 3.2, will be to come up with a contradiction to
condition (2) of that theorem, if the other conditions are assumed to hold. The partition
of V (C) that we construct will be based on the sets V (Bw) where w ∈ V (C). It will
therefore be critical to know that if v, w ∈ T , there is no x ∈ V (C) for which x ∈ V (Bv)
and x ∈ V (Bw). The following lemma together with its corollary provide this assurance.

Lemma 3.10 Suppose that C and D are color digraphs and conditions (i), (ii), and
(1) of Theorem 3.2 hold, but C o D has an unnatural automorphism, µ. Given this µ,
T = {x ∈ V (C) : |V (Bx)| > 1}. Then for any w ∈ T , there is at most one x ∈ V (Bw)
such that Uw,x 6= V (Dx).
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Proof. Let w ∈ T . Towards a contradiction, suppose that v, x ∈ V (Bw) with v 6= x,
Uw,v 6= V (Dv), and Uw,x 6= V (Dx). We know that all arcs from Dv to Dx must have the
same color, k (say), and likewise, all arcs from Dx to Dv have the same color, k′ (say).

Corollary 3.6 tells us that Bw is externally related. Suppose that k′ = k. Then for
any vertex y with y 6= v, x and y ∈ V (Bw), two applications of Lemma 3.5, first using
the same labels as in that lemma, and then reversing the roles of x and v, yield the
conclusion that Bw is an externally related k-clique, so in particular, v and x are k-twins.
Furthermore, calling on Corollary 3.8, since x, v ∈ V (Bw) and the arcs between them in
both directions have color k, we conclude that the k-complement of Dv (and therefore of
D) is disconnected. But this contradicts condition (1) of Theorem 3.2.

We must therefore have k′ 6= k. Again calling on Corollary 3.8, we see that Dv (and
therefore D) must be a (k, k′) total order digraph. Furthermore, since both Uw,v, Uw,x 6= ∅,
µ is unnatural, so D must be a separable (k, k′) total order digraph. But now Lemma
3.9 either provides a contradiction to condition (i) of Theorem 3.2, or yields the desired
conclusion.

Corollary 3.11 Suppose that C and D are color digraphs and conditions (i), (ii), and
(1) of Theorem 3.2 hold, but C oD has an unnatural automorphism, µ. Let x ∈ Bw such
that Uw,x 6= V (µ(Dw)). If y ∈ V (C) with y 6= w and x ∈ V (By), then Uy,x = V (µ(Dy)).

Proof. This is just Lemma 3.10 relative to µ−1 instead of to µ.

With these results in hand, we are ready to prove our main theorem.
Proof.

Necessity.

1. Suppose that x and y are a pair of k-twins in C, and the k-complement of D is
disconnected, so that D′ is a component of the k-complement of D. Then define µ
by µ(D′

x) = D′
y, µ(D′

y) = D′
x, and µ acts as the identity on all other vertices. It is

easy to see that this is an automorphism of C oD, and it is clearly unnatural.

2. Suppose M is a partition of V (C), the subdigraphs induced by the elements of M
are externally related in C, and σ : C → CM is an onto smorphism such that for
each A ∈ M , there is an isomorphism σA : Ā o D → σ−1(A) o D. Further suppose
that for some B ∈ M , σB is unnatural.

Define σ′ : C oD → C oD by σ′|ĀoD = σA for each A ∈ M . It is straightforward to
check that σ′ is an automorphism, and since σB is unnatural, so is σ′.

3. Suppose that x is an inverting A-point. Define µ to be the identity on all vertices of
C oD that are not in A oD, and on all vertices of D′

x (as defined in the definition of
an inverting A-point), while µ exchanges Da with D′

a for all vertices a ∈ V (A)\{x}.
Then it is straightforward to verify that µ is an automorphism, and µ is clearly
unnatural.

Sufficiency. Suppose that (1), (2) and (3) hold, while µ is an unnatural automorphism
of C oD. We aim to construct a contradiction to condition (2). We will therefore proceed
as follows:
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1. construct a partition M of V (C) and show that it is a partition;

2. show that the subgraphs induced by the elements of M are externally related in C;

3. show that M is in fact a proper partition;

4. define a mapping µ : C → CM and show that it is an onto smorphism;

5. show that Ā oD ∼= µ−1(A) oD for all A ∈M ; and

6. show that there is an unnatural isomorphism between Ā oD and µ−1(A) oD for some
A ∈M .

(1) Let M1 = {{V (Bx)} : x ∈ V (C) and |V (Bx)| > 1}. Let M2 = {{x} : x ∈ V (C)
but x 6∈ A for any A ∈ M1}, and let M = M1 ∪M2. To show that M is a partition,
we need only show that the elements of M1 are disjoint. Suppose to the contrary, that
x ∈ V (Bv) ∩ V (Bw) with v 6= w and Bv, Bw ∈ M1. Then Uv,x 6= V (µ(Dv)), so Corollary
3.11 asserts that Uw,x = V (µ(Dw)). But this contradicts |V (Bw)| > 1.

(2) For every element A ∈ M , Ā = Bw for some w ∈ V (C), so this is a direct
consequence of Corollary 3.6.

(3) Now we show that M is a proper partition of V (C). If not, then there is some
vertex w of C such that V (Bw) = V (C).

Case 1. V (Dw) ⊆ V (µ(Dw)).
We cannot have Dw = µ(Dw). There must exist x 6= w for which x ∈ V (Bw), and

since V (µ(Dx)) ∩ V (µ(Dw)) = ∅, we must have Uw,x 6= V (Dx). By Lemma 3.10, for
any y 6= x ∈ V (C), we must have Uw,y = V (Dy) ⊂ V (µ(Dw)). By Corollary 3.8 (with y
playing the role of v), there are some fixed colors k and k′ such that for any y 6= x ∈ V (C),
the arcs from Dy to Dx all have color k, and the arcs from Dx to Dy all have color k′.
Also, by Corollary 3.11, for any v 6= w ∈ V (C), we must have Uv,x = V (µ(Dv)) ⊂ V (Dx),
so Corollary 3.8 using µ−1 instead of µ, tells us that for any v 6= w ∈ V (C), the arcs
from µ(Dw) to µ(Dv) all have color k, and the arcs from µ(Dv) to µ(Dw) all have color
k′. If k = k′, then w and x are k-twins, and Corollary 3.8 implies that the k-complement
of D is disconnected, contradicting condition (1). So k 6= k′. But now C is the Z3-join
of Y1

∼= K1 (vertex w), Y3
∼= K1 (vertex x), and Y2, the induced subgraph of C on the

vertices {v ∈ V (C) : v 6= w, x}. Additionally, Corollary 3.8 implies that D is a (k, k ′) total
order digraph, and since V (Dw) ⊂ V (µ(Dw)), D is isomorphic to a proper subdigraph of
itself. But this contradicts condition (ii).

Case 2. V (Dw) 6⊆ V (µ(Dw)).
Since V (Bw) = V (C), we must have Uw,w 6= ∅; the case that we are in further implies

Uw,w 6= V (Dw). As in the previous case, Lemma 3.10, Corollary 3.11 and Corollary 3.8
allow us to conclude that there are fixed colors k and k′ such that for any v 6= w ∈ V (C),
the arcs from Dv to Dw all have color k, the arcs from Dw to Dv all have color k′, the
arcs from µ(Dw) to µ(Dv) all have color k, and the arcs from µ(Dv) to µ(Dw) all have
color k′. Together, these force k′ = k. Furthermore, this shows that the subdigraph of
C on V (C) \ {w} is externally related. Notice also that since V (Bw) = V (C), µ(Dw) is
isomorphic to the C-join of {D′

v : v ∈ V (C)}, where D′
v
∼= D for every v 6= w, and D′

w is
the induced subdigraph of C oD on Uw,w. But this means that w is an inverting C-point
of C oD, contradicting condition (3).
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We conclude that M must indeed be a proper partition of V (C).
(4) Now, µ induces a mapping µ : C → CM defined by µ(w) = Ā where A ∈ M

such that V (µ(Dw)) ⊆ V (Ā o D). It is clear from the definition of M and the fact
that M is a partition, that such an A exists and is unique, so µ is well-defined. Also,
since µ is onto, so is µ. Note that V (Bw) ⊆ V (µ(w)) and V (µ(Dw)) ⊆ V (Bw o D), so
V (µ(Dw)) ⊆ V (µ(w) oD), for all w ∈ V (C). We claim that µ is a smorphism. To see this,
let x, y ∈ V (C) with µ(x) 6= µ(y). The following statements are equivalent, using the fact
(see part (2) above) that every element A of M induces an externally related subdigraph:

• the arc from µ(x) to µ(y) in CM has color k;

• all arcs from µ(x) to µ(y) in C have color k;

• all arcs from µ(x) oD to µ(y) oD in C oD have color k;

• all arcs from µ(Dx) to µ(Dy) in C oD have color k;

• all arcs from Dx to Dy in C oD have color k; and

• the arc from x to y in C has color k.

(5) It is clear from the definition of µ that µ restricted to µ−1(A) oD is an isomorphism

between Ā oD and µ−1(A) oD for each A ∈M .
(6) Since µ is an unnatural automorphism of C oD, there must be some Bx on which the

restriction of µ to µ−1(Bx) is unnatural. But this contradicts condition (2), completing
the proof of our theorem.

4 Corollaries and Elucidation

The conditions included in the full statements of Theorems 3.1 and 3.2 require so much
terminology as to make them difficult to read, much less to apply. We therefore provide
some corollaries in which the terminology and conditions are significantly simpler.

Corollary 4.1 Suppose that C is a finite color digraph, and D is not isomorphic to a
proper subdigraph of itself. Then we have

Aut(C oD) ∼= Aut(C) o Aut(D)

⇔

for every k ∈ {0, 1, . . . , r},

if C has a pair of k-twins, then the k-complement of D is connected.

Proof. Condition (i) of Theorem 3.2 cannot occur since Z is an infinite color digraph.
Condition (ii) is not possible because D is not a proper subdigraph of itself. As to
condition (3), the definition of an inverting A-point again requires that D be a proper
subdigraph of itself.

The omission of condition (2) is less obvious. However, observe that the conclusion of
Lemma 3.10 can only occur if D is isomorphic to a proper subdigraph of itself, since µ is
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an unnatural automorphism. Since condition (2) is not required in this lemma, it can be
omitted in our theorem as long as D is not isomorphic to a proper subdigraph of itself.

In fact, without changing the proof, we can generalize this somewhat; we have included
the less general version because the statement is simpler and applies more directly to
common situations such as when C oD is finite.

Corollary 4.2 Let C be a color digraph that has no induced subdigraph G for which

• G is an externally related (k, k′) total order digraph; and

• G has an induced subdigraph isomorphic to Z.

Let D be a color digraph that is not isomorphic to a proper subdigraph of itself. Then we
have

Aut(C oD) ∼= Aut(C) o Aut(D)

⇔

for every k ∈ {0, 1, . . . , r},

if C has a pair of k-twins, then the k-complement of D is connected.

Notice that taking the case when C and D are color graphs (with edges rather than
arcs), gives the following result, which is also a corollary of Theorem 3.1. Although the
original proof in [8] did not include colors, their inclusion does not affect the proof.

Corollary 4.3 Let C be any color graph, and let D be color graph that is not isomorphic
to a proper subdigraph of itself. Then we have

Aut(C oD) ∼= Aut(C) o Aut(D)

⇔

for every k ∈ {0, 1, . . . , r},

if C has a pair of k-twins, then the k-complement of D is connected.

Before proceeding with other matters, we return to the point made earlier, that the
definition of a “separable” (k, k′) total order digraph is not very satisfying. In fact, its
use in condition (i) of Theorem 3.2 verges on the circular, saying that we will not allow
D to be a (k, k′) total order digraph for which it is possible to construct the situation we
wish to avoid: an unnatural automorphism in C o D. We have provided no insight into
which (k, k′) total order digraphs have this undesirable characteristic.

While it may be possible to weaken condition (i), we will now provide some examples
of separable (k, k′) total order digraphs, that serve to demonstrate some of the variety
that exists within this class.

Example 4.4 Let G be the (k, k′) total order digraph formed by taking the Z3-join of
H1 = K1 = H3 and any color digraph H2. Take D to be the infinite wreath product
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G o G o . . .. Then D is a separable (k, k′) total order digraph. That D is a (k, k′) total
order digraph is clear; to see that it is separable, we show that G oD has an unnatural iso-
morphism. Label the vertices of G that correspond to H1 and H3 by 1 and 3, respectively,
and the vertices that correspond to H2 by their labels in H2. Similarly, within Di, label
the vertices of the outermost G that correspond to H1 and H3 by Di,1 and Di,3, respec-
tively, and for any vertex α of H2, label the vertices of the outermost G that correspond
to this vertex, by Di,α. Notice that G oD ∼= D, by some isomorphism, σ (say). Then the
map µ defined by µ(D1,1) = D1 (using the isomorphism given by σ−1); µ(D1,α) = Dα for
any vertex α of H2 (again using σ−1); µ(D1,3) = D3,1; µ(Dα) = D3,α for any vertex α of
H2 (now using σ); µ(D3) = D3,3 (again using σ) is an unnatural automorphism of G oD.

Example 4.5 Let S be the intersection of the rational numbers with the open interval
(0, 1), under the usual total order, and let D be the (k, k′) total order digraph formed on
this set (where no join has been performed). Then D is a separable (k, k′) total order
digraph. To see this, we show that Z o D has an unnatural automorphism. There is an
isomorphism σ that maps S onto two copies of itself, since S is countably infinite. Let µ
be the map that takes Di to itself for all i < 0, takes D0 to D0 ∪D1 using σ, and takes
Di to Di+1 for all i > 0. This is an unnatural automorphism of Z oD.

However, in the finite case, it is possible to come up with a characterization of separable
(k, k′) total order digraphs.

Proposition 4.6 Let D be a finite, separable (k, k′) total order digraph. Then for some
a, D can be formed as the wreath product of Za with some finite color digraph D′.

Furthermore, in this case, Z oD has an unnatural automorphism.

Proof. Let D be a finite, separable (k, k′) total order digraph. By definition, k 6= k′, and
there is some (k, k′) total order digraphG, such thatGoD has an unnatural automorphism.
For any subdigraph D′ of D and any vertex v of G, we denote the subdigraph of Dv

corresponding to D′ by D′v.
While there are any vertices of D not in V (D0)∪. . .∪V (Dj−1) (where this is the empty

set if j = 0), recursively define Dj to be the smallest nonempty induced subdigraph of
D such that for every v ∈ V (Dj) and every w ∈ V (D) \ (V (D0) ∪ . . . ∪ V (Dj)), there
is a k-arc from v to w and a k′-arc from w to v. Define i to be the number of these
subdigraphs (i.e., one greater than the largest subscript used). Notice that this choice of
D0, . . . , Di−1 is uniquely determined by the structure of D. Notice also that since D is a
total order digraph, by definition we must have i ≥ 2.

Let µ be an unnatural automorphism of G oD. Then there exist vertices w, x, y of G
for which x 6= y, and x, y ∈ V (Bw). Since i ≥ 2, we can in fact choose x and y to ensure
that V (Dx) ∩ V (µ(D0

w) 6= ∅, and V (Dy) ∩ µ(Dj
w) 6= ∅ for some j 6= 0. Notice that since

all arcs from D0 to Dj have color k, and the reverse arcs all have color k′, it must be the
case that all arcs from Dx to Dy have color k, and the reverse arcs have color k′.

Suppose that there were an additional vertex v of G for which v 6= x, y and v ∈ V (Bw).
Since D is finite, we must have Uw,x 6= V (Dx), Uw,y 6= V (Dy), and Uw,v 6= V (Dv). We
can therefore apply Lemma 3.5 three times, with w playing its own role each time, and

the electronic journal of combinatorics 16 (2009), #R17 17



each of x, y and v taking on the role of v once. This allows us to conclude (among other
things) that

• the arcs from x to v and from y to v have the same color;

• the arcs from x to y and from x to v have the same color; and

• the arcs from y to x and from y to v have the same color.

Combining these statements yields the conclusion that the arcs from x to y and from y
to x have the same color, which forces k = k′. But this is a contradiction. We therefore
conclude that for any vertex w of G, there are at most two distinct vertices x and y of G
for which x, y ∈ V (Bw). A similar argument shows that for any vertex x of G, there are
at most two distinct vertices v and w of G for which x ∈ V (Bv) and x ∈ V (Bw).

We have shown that V (µ(Dw)) ⊂ V (Dx) ∪ V (Dy). Since the arc from x to y has
color k and the reverse arc has color k′, there must be some 0 ≤ i′ < i such that
Uw,x = V (µ(D0

w))∪. . .∪V (µ(Di′−1
w )), and Uw,y = V (µ(Di′

w))∪. . .∪V (µ(Di−1
w )). Because of

the uniqueness of the decomposition of D, we must have Uw,x = V (Di−i′

x ))∪ . . .∪V (Di−1
x );

also, Uw,y = V (D0
y) ∪ . . . ∪ V (Di−i′−1

y ). In fact, this shows that µ(Dj
w) ∼= Dj

w
∼= Di−i′+j

x

for every 0 ≤ j ≤ i′ − 1; furthermore, µ(Di′+j
w ) ∼= Di′+j

w
∼= Dj

y for every 0 ≤ j ≤ i− i′ − 1.

Rewriting the first of these statements as Dj
x
∼= Dj+i′−i

w for every i − i′ ≤ j ≤ i − 1,
considering both statements in the general context of the color digraph D, and performing
addition on the superscripts modulo i, we arrive at the conclusion that Dj ∼= Dj+i′ for
every 0 ≤ j ≤ i−1. Therefore, if d = gcd(i, i′), we have Dj ∼= Dj+sd for every 0 ≤ j ≤ d−1
and for every 1 ≤ s < i/d. But this means that if we take D′ to be the induced subdigraph
of D on the vertices V (D0)∪ . . .∪V (Dd−1), we have that D′ is isomorphic to the induced
subdigraph of D on the vertices V (Dsd) ∪ . . . ∪ V (D(s+1)d−1) for every 1 ≤ s < i/d, so
D ∼= Zi/d oD

′. This completes the proof of the first statement.
To prove the second statement, label the copies of D′ in Z o (Zi o D

′) as D′
a,b, where

a ∈ Z and 1 ≤ b ≤ i indicate which vertices of Z and Zi (respectively) give rise to this
copy of D′. Define µ by

µ(D′
a,b) =

{

D′
a,b+1 if b < i, and

D′
a+1,1 if b = i

.

It is not hard to show that µ is an automorphism, and µ is clearly unnatural.

Now we have a characterisation of when Aut(C oD) = Aut(C) o Aut(D), but on the
surface of it, this gives us little information about what Aut(C oD) might look like, if it
is not Aut(C) o Aut(D). This is the question we consider in the next section.

5 What else could Aut(C oD) be?

Quite often, it is the case that even if Aut(C oD) 6= Aut(C) oAut(D), there are nontrivial
color digraphs C ′ and D′ for which C ′ oD′ = C oD and Aut(C oD) = Aut(C ′) o Aut(D′).
Later in this section, we will determine precisely which color digraphs have this property.
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Before doing so, however, we will provide a result that gives the form of Aut(C o D) in
some generality. We will assume that D is finite, and that C has no induced subdigraph
G for which

• G is an externally related (k, k′) total order digraph; and

• G has an induced subdigraph isomorphic to Z.

Thus, Corollary 4.2 will apply.
We require a few more pieces of notation in this section.

Notation 5.1 In the next few results, it will prove convenient to have a special notation
for the colour digraph on n vertices that has an arc of color k from every vertex to every
other vertex (that is, the complete digraph on n vertices, all of whose arcs have color k).
We denote this by Kk

n.

The following two pieces of notation will be used in both this section and the next.

Notation 5.2 Let Γ be a permutation group acting on the set Ω. Then for any partition
P of the elements of Ω, we let fixΓ(P) denote the subgroup of Γ that fixes every set P ∈ P
setwise.

Notation 5.3 We denote the symmetric group acting on the elements of the set Ω by
SΩ, or if Ω = {1, . . . , n}, by Sn.

By Corollary 4.2, if we have Aut(C oD) 6= Aut(C) oAut(D), we must have some color
k for which C has a pair of k-twins, and the k-complement of D is disconnected. Suppose
that the k-complement of D is disconnected, and let D′ be a connected component of the
k-complement of D. Then we must have arcs of color k in both directions between every
vertex of D′ and every vertex of D that is not in D′, and therefore the k′-complement
of D is connected for every k′ 6= k, even if k = 0. This has shown that if Aut(C oD) 6=
Aut(C) oAut(D), then the color k for which C has a pair of k-twins and the k-complement
of D is disconnected, is unique. Henceforth, k will be used exclusively to denote this color.

With this fixed k, we consider the externally related k-classes of C. These form a
partition of the vertices of C. We denote this partition by P.

Let B be the set of connected components of the k-complement of D; we partition
B into subsets B1, . . . ,Bm where all of the components in Bi are isomorphic for every
1 ≤ i ≤ m, and m is the number of nonisomorphic components of the k-complement of
D. For each 1 ≤ i ≤ m, let Bi ∈ Bi be any one copy of the component in this set of
isomorphic components. Then it is straightforward to see that

Aut(D) = ×
1≤i≤m

(SBi
o Aut(Bi)) ,

a direct product of wreath products.
We are now ready to give the form of Aut(C oD).

Theorem 5.4 For any color digraphs C and D, where D is finite and there are no colors
k1, k2 for which C has an induced subdigraph G, where
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• G is an externally related (k1, k2) total order digraph; and

• G has an induced subdigraph isomorphic to Z (where the colors of the total order in
Z are k1 and k2.

We must have

Aut(C oD) =
(

Aut(C) o 1Aut(D)

)

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

,

where 1Aut(D) denotes the identity element of Aut(D).

Before proving this theorem, some comments are appropriate.

There is redundancy in the group
(

Aut(C) o 1Aut(D)

)

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

.

To see this, we clarify how the group
(

Aut(C) o 1Aut(D)

)

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

acts on the vertices of C o D. For each of the m nonisomorphic connected components
Bi of the k-complement of D, let B ′

i denote the induced subgraph of D with the same

vertices as Bi, so B′
i is isomorphic to the k-complement of Bi. Then×

P∈P

SBi×P o Aut(Bi)

takes all of the vertices of C in each of the externally related k-classes of C in turn, and
permutes all components isomorphic to B ′

i in each copy of D that corresponds to these
vertices of C. Since this is done to each of the m nonisomorphic connected components
independently, this produces all of the direct products of wreath products. We then have
Aut(C) o 1Aut(D) acting as usual on the vertices of C oD. The redundancy occurs because
each of the m nonisomorphic components of the k-complement of D has been permuted
independently within each externally related k-class of C, and then each copy of D is
permuted as a set by the action of Aut(C) o 1Aut(D).

It is possible to remove this redundancy. Notice that every externally related k-class
of C consists of a Kk

i , and if we delete the edges of this Kk
i , each of the vertices in this

equivalence class has exactly the same in-neighbours and out-neighbours of every color,
as every other vertex in the equivalence class. Therefore we have fixAut(C)(P) =×

P∈P

SP .

We could therefore write Aut(C oD) as

(Aut0(C) o 1Aut(D))

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

,

where Aut0(C) is a permutation group for which Aut(C) = Aut0(C) n fixAut(C)(P). This
notation has the advantage that it can be written as a semi-direct product: this group is
in fact

(Aut0(C) o 1Aut(D)) n

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

,
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since

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

/Aut(C) oAut(D) (this will be shown in our proof)

and the redundancy has been eliminated. However, difficulties in choosing the precise
action of Aut0(C) make this method of eliminating redundancy seem somewhat artificial,
so we have left in the redundancy.

With these comments in mind, we proceed with the proof of the theorem.
Proof. Let Q be a partition of the vertices of D into sets of vertices, each of which induces
a connected component of the k-complement of D. Then we let Q′ be a partition of the
vertices of C oD, where for each Q ∈ Q, and for each v ∈ V (C), there is a set Q′

v ∈ Q′,
namely Q′

v = {(v, w) : w ∈ Q}. We claim that the partition Q′ is preserved by every
element of Aut(C o D), by which we mean that if g ∈ Aut(C o D), (v, w) ∈ Q′

v, and
g((v, w)) ∈ Q′′ ∈ Q′, then g(Q′

v) = Q′′.
Towards a contradiction, suppose that there were some g ∈ Aut(C o D) that did

not preserve the partition Q′. Then there must be some Q′
v ∈ Q′ for which there exist

Q′, Q′′ ∈ Q′ with Q′ 6= Q′′, such that g(Q′
v) ∩ Q

′ 6= ∅, and g(Q′
v) ∩ Q

′′ 6= ∅. Recall that
each element of Q′ is a set of vertices of C o D in some copy of D that corresponds to
the vertices of a connected component of the k-complement of D. Therefore, there exists
some vertex v′ of C for which Q′ ⊂ V (Dv′). If g(Q′

v) ⊂ V (Dv′), then since the vertices
of Q′ form a connected component of the k-complement of D, C o D must have every
possible arc of color k in both directions between g(Q′

v)∩Q
′ and g(Q′

v)\Q
′. Since both of

these sets are nonempty, this leads to the contradiction that g(Q′
v) induces a disconnected

subgraph of the k-complement of D.
If, on the other hand, g(Q′

v) 6⊂ V (Dv′), then we may assume Q′′ ⊂ V (Dv′′) for some
v′′ 6= v′. If the two arcs between v and v′ in C have the same color, k, say, then C oD must
have every possible arc of color k in both directions between g(Q′

v)∩Dv′ and g(Q′
v) \Dv′ .

Since both of these sets are nonempty, this again leads to the contradiction that g(Q′
v)

induces a disconnected subgraph of the k-complement of D. So the arcs between v and
v′ in C have two distinct colors. In the proof of Lemma 3.9, condition (1) of Theorem
3.2 is only used to show that we can choose w0, x0 and x1 so that Uw0,x0

6= V (Dx0
) and

Uw0,x1
6= V (Dx1

). But here D is finite, so the fact that v′, v′′ ∈ V (Bv) is enough to show
that this holds for v taking the role of w0, and v′, v′′ taking the roles of x0 and x1, and
these vertices satisfy the premise of the second conclusion of Lemma 3.9. Notice that the
first conclusion of Lemma 3.9 does not hold. Condition (ii) of Theorem 3.2 holds since D
is finite, and the second conclusion of Lemma 3.9 cannot hold because of the restrictions
on C. All of this together with the fact that g is an unnatural automorphism of C oD,
produce a contradiction from Lemma 3.9. We conclude that the partition Q′ is indeed
preserved by every element of Aut(C oD).

With this fact in hand, it is straightforward to verify that
[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

= fixAut(CoD)(P).

Since fixAut(CoD)(P) is the kernel of the projection of Aut(C oD) onto the partition P, this
group is in fact normal in Aut(C o D), as we claimed in the observations that preceded
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this proof.
Since fixAut(CoD)(P)/Aut(C oD), every automorphism in Aut(C oD) can be formed by

combining an automorphism in fixAut(CoD)(P) with an automorphism that permutes sets
of the partition P according to some automorphism of C; as mentioned in our observa-
tions, Aut0(C) o 1Aut(D) would provide a semi-direct product since redundancy would be
eliminated, but we certainly have

Aut(C oD) ≤ (Aut(C) o 1Aut(D))

[

×
1≤i≤m

(

×
P∈P

SBi×P o Aut(Bi)

)]

.

Since both of the groups that make up the product on the right have been shown to be
subgroups of Aut(C oD), we have the desired equality.

Although it is of interest to have determined this exact form of the automorphism
group of any wreath product color digraph, the expression at which we have arrived is
not always as enlightening as it could be. For many wreath products of color digraphs
C oD, it turns out that if Aut(C oD) 6= Sn for some n then it is possible to find nontrivial
color digraphs C ′ and D′ for which C ′ o D′ ∼= C o D, and Aut(C o D) = Aut(C ′ o D′) =
Aut(C ′) o Aut(D′). That is to say, that in these cases, if Aut(C oD) 6= Aut(C) o Aut(D),
it merely means that we have made the wrong choices for C and D, the factors of our
wreath product.

We will require a lemma.

Lemma 5.5 Let C, C ′, D and D′ be color digraphs. Suppose that X = C oD = C ′ oD′.
Suppose further that there is some vertex v of C for which Dv is neither a union of copies
of D′, nor contained within a copy of D′.

Whenever there is some color k, 0 ≤ k ≤ r, for which the k-complement of D is
disconnected, then C ′ has k-twins, and the k-complement of D′ is disconnected.

Proof. Let w be a vertex of C ′ such that V (D′
w) ∩ V (Dv) 6= ∅, V (D′

w) \ V (Dv) 6= ∅, and
V (Dv) \ V (D′

w) 6= ∅. Let v′ be a vertex of C such that V (Dv′) ∩ V (D′
w) 6= ∅. All arcs

from Dv to Dv′ have the same color, k, say.
By Lemma 3.7, all arcs from V (Dv) \ V (D′

w) to V (Dv) ∩ V (D′
w) have color k also.

Notice that this means that the k′-complement of D is connected for every k′ 6= k. Thus,
if there is some some color k′ for which the k′-complement of D is disconnected, we must
have k′ = k, and if the color of the arcs from V (Dv)∩ V (D′

w) to V (Dv) \ V (D′
w) is not k,

then the k-complement of D is also connected, a contradiction. So there are arcs of color
k in both directions between V (Dv) \ V (D′

w) and V (Dv) ∩ V (D′
w). In particular, for any

vertex w′ 6= w of C ′ for which V (Dv) ∩ V (D′
w′) 6= ∅, the arcs in both directions between

D′
w and D′

w′ have color k.
This is enough to allow us to use Lemma 3.7, with D′

w and Dv taking on each others’
roles, to conclude that all arcs in either direction between V (D′

w) ∩ V (Dv) and V (D′
w) \

V (Dv), have color k. Since both of these sets are nonempty, the k-complement of D′ is
disconnected.
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Finally, we establish that w and w′ are k-twins. We have already shown that the arcs
between w and w′ in C ′ have color k. Let w′′ ∈ V (C ′), and suppose that the arc from w
to w′′ has color k′. Let v′′ be any vertex of C for which V (Dv′′) ∩ V (D′

w′′) 6= ∅. Then all
arcs from D′

w to D′
w′′ have color k′, and the various nonempty intersections establish that

this is equivalent to all arcs from Dv to Dv′′ having color k′, which in turn is equivalent
to all arcs from D′

w′ to D′
w′′ having color k′; that is, the arc from w′ to w′′ has color k′.

We can reverse the direction of the arcs in this argument to complete the proof that w
and w′ are k-twins, as claimed.

The next result characterises precisely which finite color digraphs C and D have the
property that, if Aut(C oD) 6= Aut(C) o Aut(D), either C oD ∼= Kk

n for some color k and
some n, or there are nontrivial color digraphs C ′ and D′ for which C ′ oD′ = C oD, and
Aut(C ′ oD′) = Aut(C ′) oAut(D′). Although assuming that C and D are finite makes the
proof straightforward, this condition is not used very stringently and could probably be
weakened.

Proposition 5.6 Let C and D be finite color digraphs, C having n1 vertices, and D
having n2 vertices, with n1n2 = n, and X = C o D. The conditions on C and D that
follow are both necessary and sufficient to ensure that

Aut(X) 6= Aut(C) o Aut(D) ⇒
(Aut(X) = Sn,

or ∃ nontrivial C ′, D′ such that C ′ oD′ = X and Aut(X) = Aut(C ′) o Aut(D′))

The conditions are: For any color k for which C has k-twins and the k-complement of D
is not connected, at least one of the following must hold:

1. D ∼= Kk
n2

and C ∼= Kk
n1

;

2. • D = D′′ oD′ for some nontrivial D′′ and D′,

• Aut(D) = Aut(D′′) o Aut(D′), and

• if there is some k′ for which C has k′-twins and there is some vertex v of
D′′ that forms a singleton component of the k′-complement of D′′, then the
k′-complement of D′ is connected;

or

3. C = C ′ o C ′′ for some nontrivial C ′ and C ′′, and Aut(C) = Aut(C ′) o Aut(C ′′).

Proof. Sufficiency. Suppose that the conditions hold, and that Aut(X) 6= Aut(C) o
Aut(D). Then by Corollary 4.1, there is some k for which C has k-twins and the k-
complement of D is not connected. We break the proof down into cases, according to
which of the three conditions holds.

Case 1. D ∼= Kk
n2

and C ∼= Kk
n1

.
Then X = C oD ∼= Kk

n, so Aut(X) = Sn, completing the proof in this case.
Case 2. D ∼= D′′ o D′ for some nontrivial D′′ and D′, Aut(D) = Aut(D′′) o Aut(D′),

and: if there is some k′ for which C has k′-twins and there is some vertex v of D′′ that
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forms a singleton component of the k′-complement of D′′, then the k′-complement of D′

is connected.
We claim that Aut(X) = Aut(C oD′′) o Aut(D′). Since D′′ and D′ are nontrivial, so

is C ′ where C ′ = C oD′′, and (since wreath products are associative) clearly X = C ′ oD′,
so establishing our claim will be sufficient to complete the proof in this case. Again, we
will use the conditions in Corollary 4.1 to establish our claim.

Suppose that for some color k′, C ′ has k′-twins, which we will call v0 and v1. Recall
that C ′ = C o D′′. If v0 and v1 are in the same copy of D′′ within C ′, then choosing
corresponding vertices v′0 and v′1 in D′′, we must have v′0 and v′1 being k′-twins in D′′.
Now, since Aut(D) = Aut(D′′) oAut(D′), Corollary 4.1 forces the k′-complement of D′ to
be connected.

If, on the other hand, v0 and v1 are in different copies of D′′ within C ′, then the
vertices v′0 and v′1 of C corresponding to these copies of D′′ must have the property that
v′0 and v′1 are k′-twins in C. Furthermore, since there are arcs of color k′ in both directions
between v0 and the copy of D′′ in C ′ that contains v1, there must be arcs of color k′ in
both directions between v1 and every other vertex in this copy of D′′. So the vertex in
D′′ corresponding to v1 will be the special vertex v described in this case, and we may
therefore assume that the k′-complement of D′ is connected.

We have shown that C ′ having k′-twins forces the k′-complement ofD′ to be connected,
so by Corollary 4.1, Aut(X) = Aut(C ′) o Aut(D′) and we are done.

Case 3. C ∼= C ′ oC ′′ for some nontrivial C ′ and C ′′, and Aut(C) = Aut(C ′) oAut(C ′′).
We claim that Aut(X) = Aut(C ′) oAut(C ′′ oD). Since C ′ and C ′′ are nontrivial, so is

D′ where D′ = C ′′ oD, and (since wreath products are associative) clearly X = C ′ oD′,
so establishing our claim will be sufficient to complete the proof in this case. Again, we
will use the conditions in Corollary 4.1 to establish our claim.

Since Aut(C) = Aut(C ′) o Aut(C ′′), we have that for any color k′, C ′ having k′-twins
implies that the k′-complement of C ′′ is connected. But if the k′-complement of C ′′ is
connected, then the k′-complement of C ′′ o D, which is the same as the k′-complement
of D′, will also certainly be connected, so Corollary 4.1 again tells us that Aut(X) =
Aut(C ′) o Aut(D′) and we are done.

Necessity. We consider all of the ways in which the assumption

Aut(X) 6= Aut(C) o Aut(D) ⇒
(Aut(X) = Sn,

or ∃ nontrivial C ′, D′ such that C ′ oD′ ∼= X and Aut(X) = Aut(C ′) o Aut(D′))

can be satisfied, and show that for each, the conditions must hold.
First, if Aut(X) = Aut(C) oAut(D), then by Corollary 4.1, for every color k, C having

k-twins implies that the k-complement of D is connected, so the premise of the conditions
never occurs, and therefore the conditions are vacuously satisfied.

If Aut(X) = Sn, then there must be some color k for which X ∼= Kk
n. Hence we must

have C ∼= Kk
n1

and D ∼= Kk
n2

. Notice that C has no k′-twins for any k′ 6= k, so the premise
of our conditions can only be satisfied by the color k. We have shown that in this case,
condition (1) is satisfied whenever the premise holds.
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Finally, if there exist nontrivial C ′ and D′ such that X ∼= C o D = C ′ o D′ and
Aut(X) = Aut(C ′) o Aut(D′), then since Aut(X) 6= Aut(C) o Aut(D), Corollary 4.1 tells
us that there must be some color k for which the k-complement of D is disconnected.
So by Lemma 5.5, if there were a copy of D that were neither a union of copies of D′,
nor contained within a copy of D′, then C ′ has k-twins and the k-complement of D′ is
disconnected, but by Corollary 4.1, this is a contradiction. Hence any copy of D must
either be a union of copies of D′, or contained within a copy of D′.

Suppose first that every copy of D is a union of copies of D′ (since D is finite, it is
impossible to have some copies of D being unions of copies of D′, while others are strictly
contained in a copy of D′). Since Aut(X) = Aut(C ′) o Aut(D′) 6= Aut(C) o Aut(D), the
union must be nontrivial. Then since C oD = C ′ oD′, we must in fact have D = D′′ oD′

for some nontrivial D′′ (we already have D′ nontrivial, by assumption), the first part of
condition (2). Notice C ′ = C oD′′.

Now, using Corollary 4.1, Aut(X) = Aut(C ′) oAut(D′) means that for any k′, if C ′ has
k′-twins then the k′-complement of D′ is connected. Notice that if D′′ has k′-twins then
C ′ must have k′-twins, and therefore the k′-complement of D′ must be connected. But
then we can conclude (by Corollary 4.1) that Aut(D) = Aut(D′′) o Aut(D′), the second
part of condition (2).

Suppose that there is some k′ for which C has k′-twins and some vertex v of D′′ that
has arcs of color k′ to and from every other vertex of D′′. Then in C ′, take the copies of
v in two copies of D corresponding to vertices in C that are k′-twins; these two vertices
will be k′-twins in C ′. So C ′ has k′-twins, and again the k′-complement of D′ must be
connected. This is precisely what remained to be shown of condition (2).

Finally, we suppose that every copy of D is contained within a copy of D′, so every
copy of D′ is a union of copies of D, and again since Aut(X) = Aut(C ′) o Aut(D′) 6=
Aut(C) o Aut(D), the union must be nontrivial. Then since C o D = C ′ o D′, we must
in fact have D′ = C ′′ o D for some nontrivial C ′′, and C = C ′ o C ′′ (we already have C ′

nontrivial, by assumption).
Now, using Corollary 4.1, Aut(X) = Aut(C ′) oAut(D′) means that for any k′, if C ′ has

k′-twins then the k′-complement of D′ is connected. Notice that the k′-complement of D′

being connected forces the k′-complement of C ′′ to be connected, since D′ ∼= C ′′ oD′. But
this has shown (using Corollary 4.1) that Aut(C) = Aut(C ′) o Aut(C ′′), and so condition
(3) holds.

It may not be easy to see precisely which color digraphs satisfy the condition given
in Proposition 5.6. In fact, although it is possible to show that vertex-transitive color
digraphs satisfy this condition, a direct proof of a stronger result turns out to be shorter.

Theorem 5.7 For any finite vertex-transitive color digraph X ∼= C o D, if Aut(X) 6=
Aut(C) o Aut(D) then there are some natural numbers r > 1 and s > 1, and some color
k, for which C ∼= C ′ oKk

r , D ∼= Kk
s oD′, and Aut(X) = Aut(C ′) o (Srs o Aut(D′)).

Proof. By Corollary 4.1, since Aut(X) 6= Aut(C) oAut(D), there is some color k for which
C has k-twins and the k-complement of D is disconnected.
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Since X (and therefore C) is vertex-transitive and finite, every externally related k-
class of C has the same size, r (say), and since C has k-twins, we have r > 1. Therefore,
every externally related k-class of C induces a subdigraph of C that is isomorphic to Kk

r

for some r > 1. Since each class is externally related, we have C ∼= C ′ o Kk
r for some

vertex-transitive color digraph C ′.
Since D is also vertex-transitive, every connected component of the k-complement of

D is isomorphic. If we give the name D′ to the induced subdigraph of D that corresponds
to the vertices in a connected component of the k-complement of D, we have D ∼= Kk

s oD
′,

where s is the number of connected components of the k-complement of D (greater than
1, since the k-complement of D is disconnected).

Hence X ∼= C ′ oKk
r oKk

s oD′ ∼= C ′ oKk
rs oD

′.
Notice that k is the only color for which the k-complement of Kk

rs oD
′ is disconnected,

and since each Kk
r was an externally related k-class of C, we see that C ′ cannot have

k-twins. Hence by Corollary 4.1, Aut(X) = Aut(C ′) o Aut(Kk
rs oD

′).
Now, the only color k′ for which Kk

rs has k′-twins, is k′ = k, and since each D′

corresponded to the vertices of a connected component of the k-complement of D, we
must have the k-complement of D′ connected. Hence by Corollary 4.1, Aut(Kk

rs oD
′) =

Aut(Kk
rs) o Aut(D′) = Srs o Aut(D′).

Combining the conclusions of the last two paragraphs, we have Aut(X) = Aut(C ′) o
(Srs o Aut(D′)), as desired.

6 Isomorphisms of Wreath Products of Cayley Di-

graphs of Abelian Groups

In recent years, a great deal of work has been directed towards solving the Cayley iso-
morphism problem. That is, given any two isomorphic Cayley (di)graphs Γ and Γ′ of a
group G, is it true that there exists α ∈ Aut(G) such that α(Γ) = Γ′? If the answer
to the preceding question is yes for every Γ′ isomorphic to Γ, then we say that Γ is a
CI-(di)graph of G. If any two isomorphic Cayley (di)graphs of G are isomorphic by a
group automorphism of G, we say that G is a CI-group with respect to (di)graphs. This
problem was first proposed in 1967 by Ádám [1] in a less general form when he conjectured
that Zn was a CI-group with respect to graphs. The problem was generalized by Babai
in [3]. The reader is referred to [9] for a recent survey of this problem. Here, we will be
concerned with the isomorphism problem for Cayley digraphs that can be written as a
wreath product. Intuitively, if Γ1 is a CI-(di)graph of G1, and Γ2 is a CI-(di)graph of G2,
then surely Γ1 o Γ2 is a CI-(di)graph G1 ×G2. This, however, is not true as the following
example shows. Before turning to this example, we will need Babai’s well-known charac-
terization of the CI property [3] (we remark that Alspach and Parsons [2] also obtained
this criterion, although in a less general form).

We require a few pieces of notation.
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Notation 6.1 If G is a group, then GL is the left regular representation of G. If H ≤ G,
we let H̄L = {gL ∈ GL : g ∈ H}.

Notation 6.2 We use NG(H) to denote the subgroup of G that normalizes H, where H
is a subgroup of G.

Lemma 6.3 For a Cayley (di)graph Γ of G the following are equivalent:

1. Γ is a CI-(di)graph,

2. given a permutation ϕ ∈ SG such that ϕ−1GLϕ ≤ Aut(Γ), GL and ϕ−1GLϕ are
conjugate in Aut(Γ).

Example 6.4 Let p be a prime. Then there exists a Cayley (di)graph Γ of Zp ×Zp2 such
that Γ = Γ1 o Γ1, where Γ1 is a CI-(di)graph of Zp and Γ2 is a CI-(di)graph of Zp2, but Γ
is not a CI-(di)graph of Zp × Zp2 .

Proof. We first claim that Zp o (Zp oZp) contains regular subgroups R1 and R2 isomorphic
to Zp × Zp2 that are not conjugate in AGL(1, p) o (AGL(1, p) o AGL(1, p)).

Define τ1, τ2, ρ1, ρ2 : Z
3
p → Z

3
p by

τ1(i, j, k) = (i+ 1, j + bi, k),
τ2(i, j, k) = (i+ 1, j, k),
ρ1(i, j, k) = (i, j, k + 1), and
ρ2(i, j, k) = (i, j + 1, k + cj),

where bi = 0 if i 6= p − 1 and bp−1 = 1, and cj = 0 if j 6= p − 1 and cp−1 = 1. It
is straightforward to verify that |τ1| = |ρ2| = p2, |τ2| = |ρ1| = p, and R1 = 〈ρ1, τ1〉 ∼=
Zp × Zp2

∼= 〈ρ2, τ2〉 = R2. Note that AGL(1, p) o (AGL(1, p) o AGL(1, p)) admits a unique
complete block system B consisting of p blocks of size p2 formed by the orbits of 1Sp

o
(AGL(1, p) o AGL(1, p)). Furthermore, fixR1

(B) = 〈τ p
1 , ρ1〉 and fixR2

(B) = 〈ρ2〉. Let
δ ∈ AGL(1, p) o (AGL(1, p) oAGL(1, p)). Then δ(B) = B so that fixδ−1R2δ(B) is cyclic while
fixR1

(B) is not cyclic. Hence R1 and R2 are not conjugate in AGL(1, p) o (AGL(1, p) o
AGL(1, p)) as claimed.

It thus only remains to show that there exists Cayley (di)graphs of Zp × Zp2 whose
automorphism groups contain Zp o (Zp o Zp) and are contained in AGL(1, p) o (AGL(1, p) o
AGL(1, p)). This though, is easy to accomplish using the literature. First, Alspach and
Parsons [2] have determined necessary and sufficient conditions for a Cayley (di)graph
of Zp2 to be a CI-digraph of Zp2 (including when the full automorphism groups contains
Zp o Zp), and Gu and Li [4] have determined for which values of m all Cayley graphs of
Zp2 that are regular of degree m are CI-graphs.

Lemma 6.5 Let G and H be groups and J ≤ SG, K ≤ SH contain GL and HL respec-
tively. Suppose that any two regular subgroups of J isomorphic to G are conjugate in J
and any two regular subgroups of K isomorphic to H are conjugate in K. Let ϕ ∈ SG oSH

such that ϕ−1(G×H)Lϕ ≤ J oK. Then ϕ−1(G×H)Lϕ and (G×H)L are conjugate in
J oK. Furthermore, ϕ−1ḠLϕ and ḠL are also conjugate in J oK.
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Proof. It is straightforward to verify that (G × H)L = ḠL × H̄L so that (G × H)L ≤
J o K. As ϕ ∈ SG o SH , ϕ(g, h) = (σ(g), ωg(h)), where σ ∈ SG, ωg ∈ SH . Let B be
the complete block system of J oK formed by the orbits of 1SG

oK. As any two regular
subgroups of J isomorphic to G are conjugate in J , there exists δ ∈ J o K such that
δ−1ϕ−1(G × H)Lϕδ/B = (G × H)L/B = ḠL. Replacing ϕδ by ϕ, we assume without
loss of generality that ϕ−1(G×H)Lϕ/B = GL. Hence ϕ(g, h) = (g′Lα(g), ωg(h)) for some
g′ ∈ G and α ∈ Aut(G). Define ψ : G × H → G × H by ψ(g, h) = (α−1(g), h). Then
ψ ∈ Aut(G×H)∩(SG oSH). Furthermore, ϕ−1(G×H)Lϕ is conjugate to (G×H)L in J oK
if and only if ψ−1ϕ−1(G×H)Lϕψ is conjugate to (G×H)L in ψ−1J oKψ = αJα−1 oK.
Replacing αJα−1 by J and ϕψ by ϕ, we assume without loss of generality that α = 1.
As ḠL ≤ J oK, we may also assume that g′ = 1. Hence ϕ(g, h) = (g, ωg(h)).

As any two regular subgroups of K isomorphic to H are conjugate in H, by standard
arguments there exists δ ∈ 1SG

o K such that δ−1ϕ−1H̄Lϕδ|B ≤ H̄L|B for every B ∈ B.
By replacing ϕ with ϕδ, we assume that ϕ−1H̄Lϕ|B ≤ H̄L|B for every B ∈ B, so that
ϕ(g, h) = (g, (h′g)Lαg(h)), where h′g ∈ H, αg ∈ Aut(H). As HL|B ∈ J oK for every B ∈ B,
we assume that h′g = 1H for every g ∈ G, so that ϕ(g, h) = (g, αg(h)). Let ` ∈ G, so that
the map (`, 1H)L ∈ (G×H)L. Then

ϕ−1(`−1, 1H)−1
L ϕ(`−1, 1H)L(`, h) = ϕ−1(`, 1H)Lϕ(1G, h)

= ϕ−1(`, 1H)L(1G, α1G
(h))

= ϕ−1(`, α1G
(h))

= (`, α−1
` α1G

(h)).

Setting k` to be the map defined by k`(`, h) = (`, α−1
` α1G

) and k`(i, h) = (i, h) if i 6= `, we
have that each k` ∈ J oK as ϕ−1(`−1, 1H)−1

L ϕ(`−1, 1H)L ∈ fixJ oK(B). Setting k = Π`∈Gk`,
we see that ϕk(g, h) = (g, α1G

(h)). It is then easy to see that k−1ϕ−1(G × H)Lϕk =
(G×H)L and k−1ϕ−1ḠLϕk = ḠL. The result then follows.

Theorem 6.6 Let Γ1 be a CI-digraph of H and Γ2 be a CI-digraph of K, where H and
K are abelian groups such that gcd(|H|, |K|) = r. If every Sylow p-subgroup of both H
and K is elementary abelian for every prime divisor p of r, then Γ1 o Γ2 is a CI-digraph
of G = H ×K.

Proof. It is straightforward to verify that (H×K)L = H̄L × K̄L so that Γ1 oΓ2 is a Cayley
digraph of H ×K. Let ϕ ∈ SG be such that ϕ−1GLϕ ≤ Aut(Γ1 o Γ2). We first show that
there exists δ ∈ Aut(Γ1 o Γ2) such that 〈GL, δ

−1ϕ−1GLϕδ〉 ≤ Aut(Γ1) o Aut(Γ2).
If Aut(Γ) = Aut(Γ1) o Aut(Γ2), we may take δ = 1. We thus assume that Aut(Γ) 6=

Aut(Γ1) o Aut(Γ2). By Theorem 5.7 we have that Aut(Γ) = Aut(Γ′
1) o (Srs o Aut(Γ′

2))
for some r, s > 1, where Γ1 and Γ2 are appropriate wreath products. It is not then
difficult to see that there exists δ ∈ Aut(Γ) such that 〈GL, δ

−1ϕ−1GLϕδ〉 ≤ (Aut(Γ′
1) o

Sr) o (Ss o Aut(Γ′
2). We thus assume without loss of generality (replacing δϕ by ϕ) that

ϕ−1GLϕ ≤ Aut(Γ1) o Aut(Γ2). Note that Aut(Γ1) o Aut(Γ2) admits a unique complete
block system B of |G| blocks of size |H| formed by the orbits of K̄L.
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Let r = pa1

1 · · · pam
m be the prime power decomposition of r. Let Pi be a Sylow pi-

subgroup of H and Qi be a Sylow pi subgroup of K, 1 ≤ i ≤ m. Then H = H ′ × Πm
i=1Pi,

and K = K ′ × Πm
i=1Qi, where gcd(|H ′|, r) = 1, gcd(|K ′|, r) = 1, and gcd(|H ′|, |K ′|) = 1.

Note that every Sylow subgroup of G/(H ′×K ′) is elementary abelian by hypothesis. Now,
as ϕ−1GLϕ ≤ Aut(Γ1)oAut(Γ2) and G is abelian, there exists K̂ ≤ G such that B is formed
by the orbits of ϕ−1K̂ϕ. Note that K ′ ≤ K̂. Let Ĥ ≤ G such that Ĥ× K̂ = G. Similarly,
observe that H ′ ≤ Ĥ. Then ϕ−1ĤLϕ/B ≤ Aut(Γ1) and ϕ−1Ĥ−1

L ϕ/B ∼= ϕ−1ĤLϕ. As

every Sylow subgroup of G/(H ′ × K ′) is elementary abelian and K ′ ≤ K̂, H ′ ≤ K̂, we
have that K̂ ∼= K and Ĥ ∼= H. It is then easy to see that there exists α ∈ Aut(G)
such that α−1K̂α = K and α−1Ĥα = H. Note that Γ and ϕ(Γ) are isomorphic by a
group automorphism of G if and only if α−1(Γ) and ϕ(Γ) are isomorphic by a group
automorphism of G. We may then, by replacing Γ with α−1(Γ), assume that K̂ = K and
Ĥ = H. But then ϕ ∈ SH o SK so that by Lemma 6.5 GL and ϕ−1GLϕ are conjugate in
Aut(Γ1) o Aut(Γ2). The result follows by Lemma 6.3.

The following result is now immediate.

Corollary 6.7 Let H and K be abelian groups such that every Sylow subgroup of H and
K is elementary abelian. If Γ1 is a CI-(di)graph of H and Γ2 is a CI-(di)graph of K, then
Γ1 o Γ2 is a CI-(di)graph of H ×K.

Corollary 6.8 Let H and K be abelian groups such that gcd(|H|, |K|) = r. Then the
following are equivalent:

1. whenever Γ1 is a CI-digraph of H and Γ2 is a CI-digraph of K, then Γ1 o Γ2 is a
CI-digraph of H ×K,

2. if p divides r is prime, then every Sylow p-subgroup of H and K is elementary
abelian.

Proof. That (2) implies (1) follows directly from Theorem 6.6. To show that (1) implies
(2), suppose that a Sylow p-subgroup of H or K is not elementary abelian for some prime
p|r. Then G must contain a subgroup isomorphic to Zp × Zp2 . By Example 6.4, there
a Cayley (di)graph Γ of Zp × Zp2 which can be written as a wreath product of a Cayley
(di)graph of Zp and a Cayley (di)graph of Zp2 and can also be written as a wreath product
of a Cayley (di)graph of Zp2 × Zp. It is then not difficult to see that |H| · |K|/p3 disjoint
copies of Γ is a Cayley (di)graph of H ×K that is not a CI-(di)graph of H ×K (as Γ is
not a CI-digraph of Zp × Zp2), a contradiction.

It is possible that a stronger result is true. We would like to propose the following
conjecture.

Conjecture 6.9 Let H and K be abelian groups, Γ1 a Cayley (di)graph of H, and Γ2

a Cayley (di)graph of K. If Γ1 is not a Cayley (di)graph of an abelian group with more
elementary divisors than H and Γ2 is not a Cayley (di)graph of an abelian group with
more elementary divisors than K, then Γ1 o Γ2 is a CI-(di)graph of H ×K.
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