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Abstract

Isogonal polyhedra are those polyhedra having the property of being vertex-

transitive. By this we mean that every vertex can be mapped to any other vertex

via a symmetry of the whole polyhedron; in a sense, every vertex looks exactly like

any other. The Platonic solids are examples, but these are bounded polyhedra and

our focus here is on infinite polyhedra. When the polygons of an infinite isogonal

polyhedron are all planar and regular, the polyhedra are also known as sponges,

pseudopolyhedra, or infinite skew polyhedra. These have been studied over the

years, but many have been missed by previous researchers. We first introduce a

notation for labeling three-dimensional isogonal polyhedra and then show how this

notation can be combinatorially used to find all of the isogonal polyhedra that can

be created given a specific vertex star configuration. As an example, we apply our

methods to the {4, 5} vertex star of five squares aligned along the planes of a cubic

lattice and prove that there are exactly 15 such unlabeled sponges and 35 labeled

ones. Previous efforts had found only 8 of the 15 shapes.

1 Introduction

Convex polyhedra with regular polygons as faces and with all vertices alike have been
known and studied since antiquity. The ones with all faces congruent are called reg-
ular or Platonic, while allowing different kinds of polygons as faces leads to uniform
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or Archimedean polyhedra. The aim of the present note is to study the analogues of
these classical polyhedra obtained by replacing “convex” with “acoptic” (that is, self-
intersection free) as well as admitting infinite numbers of faces. Such polyhedra have
been studied in the past. The best known examples are the three regular Coxeter-Petrie
polyhedra [7], in which six squares, four regular hexagons, or six regular hexagons meet at
each vertex. However, even though these types of polyhedra have a long history of study,
a consistent notation and descriptive terminology remains lacking. We hope to provide
such a framework here. After having done so, it will then be possible to give a coherent
review of the previous research, which we do in Section 5. (We note, however, that our
methods apply equally well to non-acoptic polyhedra; our decision to limit ourselves here
to acoptic polyhedra is done primarily for reasons of visual clarity: infinite polyhedra that
are non-acoptic wrap around themselves in hopelessly confusing shapes. We definitely do
not intend to imply that non-acoptic isogonal polyhedra are less mathematically valid for
study. Indeed, one of us has reported on non-acoptic isogonal prismatoids in previous
work [16]).

The meaning of “vertices that are all alike” can reasonably be interpreted in several
ways. On the one hand, it can be taken as saying that the star of each vertex (that is,
the family of faces that contain the vertex) is congruent to the star of every other vertex.
Another possible interpretation is that the polyhedron has sufficiently many symmetries
(geometric isometries) to make sure that every vertex star can be mapped to any other
vertex star by a symmetry of the whole polyhedron. This is the definition of an isogonal
polyhedron. One can hazard to guess that the ancients had the former meaning in mind,
while the isogonality condition is frequently imposed in more recent discussions. (There
are other interpretations as well, but they are not relevant to our present inquiry.) Al-
though the two concepts of “alike” are logically distinct, they lead to the same family
of five regular (Platonic) polyhedra. (We note that here, and throughout the sequel, we
consider two polyhedra as being the same if one can be obtained from the other by a
similarity transformation.) But for polyhedra often called “Archimedean” or “uniform”
the situation is different. Requiring that the vertices form one orbit under symmetries
(uniform polyhedra) yields one polyhedron fewer than if only congruence of stars is re-
quired (Archimedean polyhedra); the “additional” one is the pseudorhombicuboctahedron,
also known as “Miller’s mistake.” (Many presentations commit the error of conflating
the two meanings [17].) For infinite acoptic polyhedra with regular polygons as faces,
the difference between the two definitions is analogous to that between finite uniform
and Archimedean polyhedra, but in the infinite case the two notions entail even greater
differences than in the finite case.

In order to make our exposition precise we need to introduce several concepts and an
appropriate notation.

Platonic polyhedra are those with congruent regular convex polygons as faces, and
congruent vertex stars. The family of all such polyhedra having p-gons as faces and q
faces in each vertex star will be denoted by P(p, q). Here, and in the case of the other
families we consider, if the specific value of p or q is not relevant to the discussion, we
replace it with •; for example, P(4, •) denotes the family of all Platonic polyhedra with
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square faces. Additional restrictions, such as finite, infinite, or convex, can be indicated
using the particular words. We shall be interested here in a subset of Platonic polyhedra,
the isogonal Platonic polyhedra. The family of all such isogonal Platonic polyhedra will
be denoted by P{p, q}, and is a subfamily of P(p, q). In this notation, the three Coxeter-
Petrie polyhedra are infinite members of P{4, 6}, P{6, 4}, and P{6, 6}, respectively.

Similarly, Archimedean polyhedra have, as faces, convex regular polygons of at least
two kinds, and congruent vertex stars. Assuming the q faces in each vertex star have,
in cyclic order, p1, p2, . . . , pq sides, the family is denoted by A(p1, p2, . . . , pq). Uniform
polyhedra form the subfamily A{p1, p2, . . . , pq} of A(p1, p2, . . . , pq), and consist of those
polyhedra with all vertex stars equivalent by symmetries of the polyhedron. With these
definitions the pseudorhombicuboctahedron is seen as belonging to A(3, 4, 4, 4) but not
to A{3, 4, 4, 4}. Note that since Platonic polyhedra must have all polygons alike and
Archimedean polyhedra must have at least two different kinds, the two families are dis-
joint. This latter point simplifies the discussion.

To attain some familiarity with these definitions, let us consider the particular case
of four squares incident with each vertex; that is, the family P(4, 4). It is easy to verify
that the only possible vertex stars consist of two pairs of coplanar squares, inclined at the
common edges of the pairs at an angle τ to each other, where −π < τ < π (see Figure 1a).
Moreover, the only vertex star possible for each of the vertices at the endpoints (the distal
vertices) of the common edges just mentioned is a straight continuation of that edge, so
that the polyhedron must contain two-way infinite strips of squares (Figure 1b), meeting
at the angle τ . Hence the whole polyhedron is characterized by its intersection with a
plane perpendicular to the common direction of all the infinite strips. A few examples
with τ = π/2 = 90◦ are shown in Figure 2. The polyhedra that correspond to (a) and
(b) are in P{4, 4}, while the ones in (c) and (d) are in P(4, 4), but not in P{4, 4}. In
fact, it is easy to prove that the three polyhedra in (a) and (b) of Figure 2 are the only
ones in P{4, 4}, but that infinite sequences of zeros and ones (using sequences of no more
than two consecutive zeros or ones, to maintain the acoptic property) may be represented
by Platonic polyhedra of the types in (d) – therefore P(4, 4) contains infinitely many
members.

The above short discussion described all polyhedra in which each vertex star contains
four squares, with the angle τ = π/2 = 90◦. For other values of τ it is equally easy to find
a similar characterization of the possibilities; in particular, for τ = 0◦ the only polyhedron
that arises is the square tiling of the plane.

For this article we restrict attention to the case in which five squares are incident
with each vertex and the polyhedra are isogonal; in other words, polyhedra in P{4, 5}.
In addition, we also restrict our study to acoptic polyhedra; that is, those that have no
self-intersections. Finally, the vertex stars with five squares that come into consideration
are determined by the five dihedral angles at the edges where adjacent squares meet.
These angles can be reduced to depend on only two parameters, but there seems to be no
published account on the precise dependence, by which we mean the possible quintuples
of resultant values, or the number of possibilities for a given set of parameters. We shall
not consider the general situation, although our methods could deal with any particular
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Figure 1: (a) A vertex star with four squares, and the characteristic angle τ . The angle
τ in (a) is counted positive if the situation is as shown, and negative if the two coplanar
squares are directed upward. (b) The faces adjacent to the two-edge segment of the vertex
star form two infinite planar strips.
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Figure 2: Cross-sections of uniform (in (a) and (b)) and Archimedean but not uniform
(in (c) and (d)) polyhedra with four square faces in each vertex star, and with adjacent
pairs of coplanar squares perpendicular to each other.
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Figure 3: The angle τ in (a) is counted positive if the situation is as shown, and negative
if the two coplanar squares are directed upward. In (b), we have τ = 0.

case. By restricting one of the angles to 180◦, the vertex star remains dependent on an
angle τ , with −π/2 < τ < π, as illustrated in Figure 3. We shall assume that τ = 0◦;
in other words, that any two adjacent squares are either coplanar or enclose an angle of
π/2 = 90◦. This constitutes our third and final restriction on the vertex star we consider
here. Equivalently, the vertices of the polyhedra we consider are at the points of the
cubic (integer) lattice in 3-space, the faces are some of the squares of that lattice, and
the edges have length 1; this explains the title of the article. It is easy to verify that
the polyhedra we consider here must be periodic (repeatable by translations) in at least
two independent directions. This is in contrast to the example in Figure 2(a), which is
periodic in one direction only. The only reason the polyhedra are not all periodic in three
dimensions is because some of them extend infinitely in only two dimensions.

In order to deal with the seemingly straightforward question of finding the different
polyhedra possible under the rather strict limitations we impose, we must develop consid-
erable machinery. Thus it seems justified to provide here a short explanation for the need
of such elaborate tools. Our goals include finding how many different isogonal polyhedral
shapes are possible under the restrictions that each vertex star contains five squares, ad-
jacent squares being either coplanar or perpendicular. As we prove, there are precisely
fifteen. However, we know of no direct way of finding them all, or of proving directly that
there are no others. The difficulty of the task is best illustrated by the fact that neither
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of the two previous attempts (by Wachman et al. [25] in 1974 and by Wells [27] in 1977)
came even close to this goal. It seems that – in close analogy to the situation concerning
isogonal plane tilings – one has to proceed by a two-step approach. First, investigating a
more general (essentially combinatorial) variant of the problem leads to an enumeration
of possible “candidates” for the polyhedra we seek. Then each one of these combinatorial
“candidate polyhedra” can be investigated as to its realizability by an actual geometric
polyhedron. These steps are discussed in detail below.

2 Notation

We first describe how we encode by symbols the various polyhedra that we wish to con-
sider. The notation explained here is appropriate for all types of isogonal polyhedra, as is
the method for finding them that we will describe in the next section. In particular, even
though our focus here (as well as almost all of the previously published research) is on
sponges made up only of regular polygons, our notation and methods work equally well
on isogonal polyhedra that contain non-regular polygons. As examples of the notation,
though, we repeat that we are restricting attention to infinite acoptic isogonal polyhe-
dra, having square faces, with five squares in each vertex star and with adjacent faces
either perpendicular or coplanar (aligned with the cubic lattice). That is, that τ = 0◦

in the notation of Figure 3. For brevity, extending the terminology of [8] beyond purely
regular polyhedra, we refer to infinite isogonal polyhedra with regular polygons for faces
as sponges. Furthermore, simplifying the general notation of Section 1, if all faces are
n-gons and k meet at each vertex, we shall denote them by the generic symbol {n, k}.
Throughout this paper only, if n = 4 we shall also assume that the notation {4, k} implies
that the vertices are at points of the integer lattice. We note that not all members of
P{4, 5} satisfy this condition.

In the case of isogonal (and other) tilings of the plane (see [18], [20] section 6.3), it
is convenient to introduce the concepts of marked tilings, and their incidence symbols.
Analogously, it is useful to deal with marked (or labeled) sponges and their incidence
symbols. This enables one to use combinatorial approaches to enumerate all marked
sponges; then geometric considerations determine the enumeration of unmarked sponges,
which constitute the polyhedral shapes. The notation here is an expansion of that used for
planar tilings, which cannot cover the wealth of possibilities that arise in three dimensions.

We are concerned with acoptic polyhedra, and these are orientable. This means that
each face has two sides (as does the entire sponge); we shall describe one of the sides as
red, the other as black. The assumed isogonality of the sponges requires us to consider the
isometries that may map one vertex star to another (or to itself). While there are multiple
such isometries, some of which depend on the characteristics of the vertex star, three of
them can be considered fundamental, with any others being constructible from the three
basic ones. The first one is a reflection across a plane (not necessarily of symmetry); the
second is a rotation around an axis through the central vertex (a turn); and the third is
a rotation around an axis perpendicular to the axis through the central vertex (a flip).
An example of a dependent (constructible) isometry, that could be called an “inversion”
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(turning inside out), would be where opposing pairs of edges emanating from the central
vertex change places with each other. This isometry can only exist when the vertex star
has an even number of edges, and can be constructed by combining a reflection and a flip.
Of the three isometries, the turn and the flip are orientation-preserving (rigid motions),
while the reflection is orientation-reversing (mirror isometry). On the other hand, the
reflection and the turn are color-preserving, while the flip is color-reversing.

An incidence symbol for a sponge consists of two parts. The first part is the vertex
symbol. This is a labeling of the edges of a chosen vertex star V that can be used to
similarly label, in a consistent manner, the edges of all the vertex stars because of their
equivalence due to isogonality. The labeling of the vertex star V can depend on whether
or not there are symmetries of the sponge that map the vertex star V onto itself in a non-
trivial way. It should be noted that there exist strategies other than the one described
here for assigning vertex symbols to vertex stars that may produce different symbols.
Some of these symbols may or may not be more intuitively representational of the vertex
structure, and we make no claim that the method described here is superior. However, the
method here can always be guaranteed to work. It should also be noted that the choice
of starting edge and other arbitrary choices described below may also produce different
symbols; however, these can always be shown to be mere equivalents of each other.

To begin the creation of a vertex symbol, we (arbitrarily) choose the red sides of the
faces forming a vertex star V as the side of the vertex star to label. Next, again by
convention, we choose the counterclockwise orientation around V on its red side as the
direction of “positively increasing” edges. Then we (arbitrarily) select one edge of V as
the first and label it a+. In the case of the {4, 5} sponges considered here, we assume that
the chosen edge is the one that corresponds to the edge 04 in Figure 4(a), and that we
have chosen as the red side of the vertex star the side visible in that diagram. (When the
vertex star exhibits symmetries, some of the arbitrary choices above may produce just
such “natural” choices.) Proceeding counterclockwise around V we label the remaining
edges b+, c+, d+, and so on until all of the edges are labeled. Thus, the vertex symbol
of the {4, 5} vertex V would be a+b+c+d+e+. If V admits non-trivial symmetries, the
labeling is modified so that all edges of V in the same orbit get the same label. In the
case of the {4, 5} star (Figure 4(a)) only one non-trivial symmetry is possible, a reflection
of the vertex star across the plane containing the edge 04 and bisecting the angle between
the edges 01 and 02. This is incorporated into the vertex symbol as follows. If an
edge labeled x+ is mapped onto a different edge by a reflection, that edge is labeled
x−. If an edge labeled x+ is mapped onto itself by a reflection, it is labeled x without
any superscripts. Hence, in the case under consideration, the only other possible vertex
symbol, besides a+b+c+d+e+, is a b+c+c−b− (ignoring equivalents due to different choices
of starting edge).

Other symmetries of V (that are possible in some sponges) may require additional
handling. In the case of a simple turn, the edge labels just begin again. For example, in
the regular {4, 6} Coxeter-Petrie sponge the vertex star can be rotated two edges forward
as an isometry, giving it two orbits, so the vertex symbol would be a+b+a+b+a+b+. If an
edge x+/x−/x can be mapped into a different one via a flip, the flipped edge is labeled
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Figure 4: The {4, 5} vertex star and the “flattened” diagram of its neighbors.

x∧+/x∧−/x∧. Thus, the same (highly symmetric) {4, 6} vertex star above can ultimately
be labeled a a∧a a∧a a∧, which indicates all of its different kinds of symmetries. When
two polygons in a vertex star have a 180◦ dihedral angle (they are coplanar), special
situations are possible. As with reflection, where an edge x+ mapped onto itself is labeled
x, in the case of a flip that maps an edge onto itself x+/x−/x and x∧+/x∧−/x∧ are merged
to create x∗+/x∗−/x∗. Finally, because now two degrees of freedom are present (reflection
state and flip state), it is possible that a coplanar edge might be simultaneously both x+

and x∧− but neither x− nor x∧+. In this case, the symbol ‘&’ is used to represent this
combination, so that x+/x∧− together is represented as x&+. Similarly, x&− represents
the combination of x− and x∧+. Note that an edge can never have both reflective and
non-reflective symmetry, but it can have both reflected and flipped symmetry; in such a
case it would be labeled x∗.

The second part of the incidence symbol is the adjacency symbol. This expresses and
records how the two labels that each edge receives (from the two vertex stars that contain
it) are related. The adjacency symbol contains as many entries as are required to specify
the adjacency for each distinct edge label in the vertex symbol. For example, if the vertex
symbol were a+b+c+d+e+, then five symbols would be required in the adjacency symbol;
if the vertex symbol were a b+c+c−b−, then only three symbols would be required. Each
label in the adjacency symbol represents the label given to its paired vertex symbol edge
by the other vertex star incident with it. Given the definitions of the various vertex
symbol edge notations, certain restrictions apply on which adjacency symbols may be
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legitimate for a specific vertex symbol. For example, in the case of the {4, 5} sponges we
are considering, if the vertex symbol is a+b+c+d+e+ this (along with a consideration of
the dihedral angles involved) implies that a+ must be paired with one of a+, a−, b∧+, b∧−,
e∧+, or e∧−, which becomes the first entry in the adjacency symbol. Similarly, the second
entry of the adjacency symbol that corresponds to b+ must be one of a∧+, a∧−, b+, b−, e+,
or e−. In each case the pairing must be consistent by isogonality, must be mutual, and
must be sign and color (side) consistent. Thus, if an edge is labeled a+ at one end and
b∧− at the other end, then an edge with label a− or a∧+ at one end must have b∧+ or b−

at the other, and similarly for the other cases. The third entry corresponds to the edge
labeled c+; it must be one of c+, c−, c∧+, c∧−, d+, d−, d∧+, or d∧−. The same possibilities
are required for the fourth entry, which corresponds to the edge labeled d+, while the fifth
e+ entry’s possibilities must match those of the b+ entry. The mutuality of the entries
in the two parts of the incidence symbol implies that the letters in the adjacency symbol
form a permutation of a, b, c, d, e.

On the other hand, if the vertex symbol is a b+c+c−b−, then the first entry in the
adjacency symbol can only be a, while the other two entries must be among b+ or b−, and
c+, c−, c∧+, or c∧−, respectively. The mutuality connects the second and third entries to
the fourth and fifth entries, thus the last two entries are optional in the written symbol.

This completes the discussion of the notation used to specify isogonal polyhedra.
Two major points derive from using this notation in a search for sponges. The first is
that it allows an “identifier” to be assigned to a polyhedron that clearly distinguishes
it from another polyhedron. One no longer needs to study photographs or diagrams to
know whether two cited sponges are the same or not. The second, and more powerful,
advantage is that every sponge can be assigned an incidence symbol, and there can only be
a finite number of them for any particular vertex star. Thus by combinatorially compiling
a list of all possible symbols, then checking each one to see if it corresponds to an actual
sponge, a list of sponges can be produced that will then be known to be complete. As
we discuss in our historical review, attempts made without using such a combinatorially
labeled approach have often failed to find a complete set of sponges.

Therefore, as just stated, a list of all combinatorially possible symbols becomes the
starting list of candidates for geometric realizability. However, the above conditions still
permit a very large number of potential incidence symbols. This number can be drasti-
cally reduced by the observation illustrated in Figure 4(b) for the {4, 5} vertex star of
Figure 4(a). It expresses the fact that the vertex stars adjacent to a central vertex star
are also adjacent to each other in a circuit. This observation will be used below in a
technique that screens and eliminates possible combinatorial candidates without having
to fully consider their geometric constructability.

3 Methods

Our determination of the possible {4, 5} sponges was actually carried out in two different
ways. In the first, using lots of sheets of paper with diagrams like the one in Figure 4(b),
the different combinatorial candidate incidence symbols were determined by hand. The

the electronic journal of combinatorics 16 (2009), #R22 10



possibility of geometric realization was then explored by making cardboard models. The
alternative determination was carried out using computers to investigate the possible inci-
dence symbols and their geometric realizations in 3-dimensional space. Some readers may
consider only the manual results described here as a proper proof, though the computer
method was considerably faster and much easier. We first discuss the manual method,
then the computer one. We repeat that the methods below, while described specifically
for the {4, 5} sponges, are applicable to other types of isogonal polyhedra as well.

In order to explain the method of finding candidates for incidence symbols of {4, 5}
sponges, we start by looking at the neighbors of a given vertex. “Flattening out” such a
neighborhood as in Figure 4(b), we label the edges issuing from that vertex according to
the vertex symbol a+b+c+d+e+ near the vertex, and then first consider the possible labels
at the vertex situated at the other (distal) end of the edge labeled a+. (The choice for the
order of considering the edge adjacencies is arbitrary; the order described here is simply
the one we chose.) As mentioned earlier, this can be any label from among a+, a−, b∧+,
b∧−, e∧+, or e∧−. We treat them one by one. In Figure 5(a) we have selected a+, and
this then determines the labels at all edges incident with that vertex; in order to avoid
clutter, we show only the two labels (b+ and e+) that are relevant to the discussion. Next
we need to select the labels for the distal ends of the two edges marked by a •. Again
there are several possibilities, and we choose to pursue here in detail only two. Selecting
b+ for the position on the left, the knowledge of the vertex symbol and of the mutuality
of adjacency symbols determines all of the labels shown in Figure 5(b), with the labels
at places indicated by a • again open to different choices. We shall pursue these other
possibilities in Figure 6, but first we deal with the alternative choice of b− on the left in
Figure 5(a). As indicated in Figure 5(c), this choice immediately forces all of the other
labels and we arrive at the adjacency symbol a+e−d+c+b−, as a candidate for a sponge.

Returning to the original selection of b+ in Figure 5(b), the edges marked by a • remain
to be chosen. Excluding flipped vertices for the moment, there are four possible choices:
c+, c−, d+, and d−. These are specified in the four parts of Figure 6. In each case we
are left with a single conclusion. The choices in (a) and (d) do not lead to any adjacency
symbols since there is no allowable way of selecting labels at positions marked by a •.
On the other hand, the choices in (b) and (c) lead to the adjacency symbol candidates
a+e+c−d−b+ and a+e+d+c+b+.

Naturally, there are often additional multiple choices, but the number is never too
large for a complete manual determination.

The above examples did not demonstrate flipping any of the vertex stars. To illus-
trate how this works, let us instead select b∧− as the first entry of the adjacency symbol.
In Figure 7(a) we see that this forces several additional labels, until we reach the edges
marked by a •. Two of the possible choices are indicated in Figures 7(b) and (c), but both
still leave undecided the edges marked by a •. Further investigation shows that, using
the first choice of Figure 7(b), the only possible completions are the candidate adjacency
symbols b∧−a∧−c+d∧−e+ and b∧−a∧−c∧−d+e+. On the other hand, the choice in Fig-
ure 7(c) can be completed in four ways: b∧−a∧−c−d+e−, b∧−a∧−c−d−e−, b∧−a∧−c−d∧+e−,
and b∧−a∧−c−d∧−e−. Including flipped vertices for the choices following from Figure 5(b)
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Figure 5: The first two steps of the elimination method. After the first choice in (a) of the
edge adjacent to a+, the choice of e+ for the adjacent edge of b+ leads to further choices
in (b) while the choice of e− immediately leads to a successful conclusion in (c). Note the
reversed order of labels for reflected (minus) vertices compared to unreflected vertices.
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Figure 6: The four results of the choices starting from Figure 5(b). Figures (b) and (c)
can be completed successfully while (a) and (d) cannot: in both of the latter cases, at
least two different edges of the same vertex must be adjacent to d+.
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leads to the candidate symbols a+e+c∧+d∧+b+ and a+e+d∧−c∧−b+.
Several remarks need to be made at this time.
First, to the counterclockwise orientation we assumed for the vertex symbol starting

with the red side of the vertex star, there corresponds the clockwise orientation of the
black side of the vertex star. This explains the labels in Figure 7. (This is similar to the
reversal of orientation also required for reflected vertex stars.)

Next, we note that several incidence symbols may differ only inessentially. Since mirror
images of any sponge are considered as essentially the same, the directional orientation of
the edges on the red side of the vertex star may be reversed; in general, this may result
in a different adjacency symbol. Also, the side of the vertex star designated as red was
chosen arbitrarily; hence another two symbols may be found for the same sponge. For
example, if the adjacency edge choice above for the a+ edge had been e∧− instead of b∧−,
then six candidate adjacency symbols would also have been found, but starting with e∧−

instead of b∧−. However, these would all be duplicates of the six found above, since they
differ simply by the original choice of which edge to call b+ (which direction to proceed
around the central vertex) after starting from the same a+ edge.

After all possibilities for symbols have been exhausted according to the process de-
scribed above and all such inessential duplicates have been eliminated, a list of 36 can-
didate incidence symbols remain. These must next be tested via the use of cardboard
models (or the computer program) to verify that each symbol represents a constructible
polyhedron. It turns out that four of these 36 cannot be constructed (those with incidence
symbols a+b−c+d−e−, a+b−c∧+d−e−, a+b−c∧−d−e−, and b∧−a∧−c+d∧−e+). As the latter
symbol was one of the examples from above, we will continue with it to show how this
test rejects the symbol.

We will consider the edges surrounding the square in space defined by the a+ and
c+ edges emanating from the central vertex. (We state again that we know of no way
to know in advance which edge(s) will cause a failure: all edges must be tested. For
brevity, we have omitted the successful tests.) Starting with the c+ edge, its adjacent
vertex must also label that same edge as c+, according to the adjacency symbol. The
edge of that vertex parallel to the a+ edge of the original vertex will also be a+. A third
vertex adjacent to this second a+ edge must label its edge b∧−, also according to the
adjacency symbol. Finally, the edge of that third vertex that is parallel to the c+ edge
of the original vertex will be e−. Next, starting around the square in space with the a+

edge of the original vertex, its adjacent vertex must label that same edge as b∧−, and
the edge of that second vertex that is parallel to the c+ edge of the original vertex will
also be e−. However, even though this final edge is simultaneously found to be e− by
following the path around the square from both directions, the two vertices that meet
along this edge are not properly aligned: the two faces of each vertex star adjacent to
this edge are not coincident. Instead, one vertex has been rotated 180◦ from the other
and the polyhedron cannot be constructed. The “flattened” test is guaranteed to work
because it follows a path around a known polygon that is part of the specified vertex
star and links two consecutive edges emanating from the central vertex. However, in an
instance such as the above where the two edges are not consecutive, it is first of all not
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Figure 7: Demonstration of the method when choosing a flipped vertex adjacency. In
(a), b∧− has been chosen to be adjacent to a+ leaving choices to be made for the edges
adjacent to e+. In (b), e+ was chosen as the adjacent edge while in (c), e− was chosen.
Both of the latter choices still leave undetermined adjacencies. Note the reversal of order
of the edge labels for flipped vertices as compared to unflipped vertices.
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guaranteed that there will even be edges that meet when traveling around a particular
polygonal path through space, but because all dihedral angle information has been lost
during the flattening process the test cannot predict whether the vertices will or will not
properly align when they meet. For this reason, the “flattened” test is only a necessary
condition for polyhedron existence and acts as a simple, preliminary filter for the only
known true test, which is to actually attempt to construct the polyhedron.

We now turn to a description of the computerized methods. In one sense they are
essentially the same as the manual methods, except automated, but there are some com-
plications that arise from the computer’s lack of human intelligence to recognize “obvious”
opportunities and/or mistakes. We discuss these issues in more detail below.

The input data to the computer program consists of the (x,y,z) coordinates for each
vertex of each polygon in the vertex star, along with a vertex symbol to be associated
with the edges of the vertex star coordinates. The reason the vertex symbol is required is
that recognizing the geometrical symmetries of an arbitrary vertex star is very difficult for
a computer program. We do have a supplemental program that tests an arbitrary vertex
star for reflections, turns, and flips to help point out existing symmetries but, still, the
primary judge of a valid vertex symbol remains the responsibility of the human user of
the program. (Analyzing the symmetry group of the vertex star is a very useful technique
when compiling the list of all possible vertex symbols.) Also, making the vertex symbol
a program input allows the user to make the (arbitrary) choices of which are the red and
black sides, which edge is a, and which direction represents the ‘+’ orientation, for which
there may be aesthetically pleasing “natural” choices that a computer program would not
be able to recognize. Therefore, the end result is that vertex stars with symmetries that
support multiple vertex symbols must each be run through the program separately.

It is also important to note that running all possible vertex symbols separately is a
requirement, rather than an option. That is, it is not enough to try using only what
may appear to be the most general vertex symbol. As an example, the dodecahedron,
whose vertex star comprises three pentagons, cannot be constructed using the completely
asymmetric vertex symbol a+b+c+: some symmetry is required within the vertex symbol.
On the other hand, as will be seen, the {4, 5} vertex star analyzed here in its asymmetric
form can construct many more sponges than can be constructed when using just its
associated symmetric vertex symbol.

Another advantage relevant to the manual but not the computer method can be seen
above by the pre-elimination of certain edge adjacencies on examining the geometric vertex
stars. For example, it is immediately apparent that the c edges cannot be adjacent to
the b edges because their dihedral angles are different. But it takes more consideration
to recognize that only a+ or a− and not a∧+ or a∧− can match with an a+ edge. A
computer program can similarly pre-check the dihedral angles, and ours does so. But
while a program can determine whether two vertex stars, in specific positions, are arranged
properly so that a specified pair of edges match up correctly, it is quite a different thing
to supply two unaligned vertex stars and ask a computer program to check whether there
are any possible alignments. Therefore, instead of trying to pre-eliminate impossible
adjacencies, the computer program simply checks all of them. Because of the speed of
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modern computers this is not a problem at all and, moreover, it eliminates any possibility
of a potential adjacency being overlooked, which could be possible if a list of allowable
adjacencies were provided to the program as input.

Thus, the basic algorithm of the program can be described quite simply as follows.
Given a prescribed vertex star and its vertex symbol, generate all combinatorially possible
adjacency symbols and then check them, one at a time, to see if any valid polyhedra can
be created. (In practice, each adjacency symbol is checked as it is produced, so that large
lists of candidates do not need to be stored in internal computer memory.)

The first tests simply check the incidence symbol for consistency according to the rules
for pair-wise symmetry (if a is adjacent to b, then b must be adjacent to a), reflective
symmetry (if the a-b adjacency is reflective, then so must the b-a adjacency be), and
so on. Then, given a consistent incidence symbol, the next test is to check that the
dihedral angles of the vertex star match for all of the proposed edge adjacencies. The
third check is to apply the “flattened” test, as described above, in exactly the same
manner as for the manual method. Finally, the last test is to attempt to geometrically
construct the polyhedron, also following the same ideas as in the manual method, but
now done via computational geometry calculations rather than using cardboard models.
A final parameter supplied to the program is a specified rectangular prism volume; if the
program can fill this volume with the polyhedron without any errors then the polyhedron
is considered valid and is recorded. A very valuable advantage of the computer program
over the manual method is that, because all of the (x,y,z) coordinates of the points are
known at this time, the program can produce a three-dimensional VRML97 (Virtual
Reality Modeling Language, 1997) model of the polyhedron for viewing by web browsers
or stand-alone VRML97 viewing software. VRML97 is the current name for what used
to be called VRML 2.0. The new standard now for displaying 3-D objects on the Web
is X3D, but X3D has been designed to also read VRML97 files, so these images should
still be viewable for some time. Web browser plug-ins to display and manipulate the
VRML97 objects in 3-D can be found on the Web using any of the common search engines.
Once installed on a computer, the software enables a person to rotate and examine the
polyhedron on the computer screen as if they were holding a physical model in their
hands, without any of the cardboard, tape, or patience required by the manual method.

A summary description of the computer algorithm is shown in Figure 8 in pseudocode.
We mentioned earlier the possibility of duplicate incidence symbols. These can occur

when using either the manual or computer method, though they can often be avoided in
the manual method by recognizing that certain vertex symbols are merely duplicates and
eliminating them early in the process. However, these are always a concern when using the
computer method because the program reports in its final output every possible incidence
symbol, and these will include all duplicates. But they can be removed in a straightforward
manner. Consider a situation where a vertex star has a symmetry, but it has been
marked so as to remove that symmetry. Using the {4, 5} vertex star analyzed here as an
example, the a+b+c+d+e+ vertex symbol overrides the reflective symmetry contained in
the geometric vertex star, as recognized by its symmetric symbol a b+c+c−b−. We showed
above, starting in Figure 7, that the incidence symbol [a+b+c+d+e+; b∧−a∧−c∧−d+e+]
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Create the initial central vertex at the origin
Add it to a first-in-first-out aligned candidate vertex queue
Loop

Get the next candidate vertex from the queue
If an accreted vertex already exists at its position then

If the two vertices are equal then
Discard the candidate vertex

Else
The polyhedron is invalid

End if
Else

Loop through all edge vertices of the candidate vertex
If an accreted vertex already exists at that position then

If the accreted vertex does not align with the candidate vertex then
The polyhedron is invalid

End if
End if

End loop

If the polyhedron is still valid then
Accrete the candidate vertex to the polyhedron
Loop through all vacant edge vertices of the candidate vertex

If the position is within the specified volume then
Create a new aligned vertex at that position
Add the new candidate vertex to the queue

End if
End loop

End if
End if

End loop when no more candidate vertices exist or if the polyhedron is invalid

If the polyhedron is valid then
Record the polyhedron

End if

Figure 8: The computer vertex accretion algorithm to generate isogonal polyhedra.
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passed all tests and therefore represents a {4, 5} sponge. If we had instead labeled the
b edge in the reverse orientation, so that the edge now labeled e+ would be b+, and
so on, our vertex symbol would become a+e+d+c+b+ (temporarily keeping the edges in
the same symbol position). Using this new labeling of the edges, our adjacency symbol
would change to e∧−a∧−d∧−c+b+, since we only changed the names of the edges, not their
adjacency relationships. When we then rearrange the edges (equally in both vertex and
adjacency symbols), we arrive at the vertex symbol [a+b+c+d+e+; e∧−b+c+d∧−a∧−], which
is different from our original one. Yet it is the same sponge. On the other hand, if we
apply this same relabeling to this new incidence symbol, we arrive back at our original
one. (This is because the symmetry is a two-way reflection.) In other cases the symbols
will not change and will map back onto themselves, and in some vertex stars with more
than two-way symmetries there will be a chain of connections. Therefore, because of this
relabeling technique, it is always possible to eliminate the duplicate incidence symbols
produced by the program. (In fact, we also have a short utility program that does this
for us.) While eliminating the duplicates is somewhat of an inconvenience, one advantage
is that, for every vertex symbol that maps into a different symbol, there must be another
one that maps back into the original. This fact helps serve as a self-validation of the
program results, showing that no vertex symbols were left out.

As for validation of the program, we first performed normal software testing procedures
using simple, well-known vertex stars such as the Platonic solids. Another test was to
submit the vertex stars for the planar isogonal tilings results reported by Grünbaum and
Shephard [18]. In this case, only adjacency symbols without x∧ edges were considered
in order to correspond to the two-dimensional situation. The program correctly found
exactly the same 91 tilings originally reported, up to symbol isomorphism. A third test
was to replicate the results found by Hughes Jones [21] using vertex stars constructed
from equilateral triangles arranged according to the possible paths when traversing a
cuboctahedron. Again, the program found exactly the same shapes, but additionally listed
the possible labelings for those shapes that possessed a symmetry. Finally, as regards the
{4, 5} vertex star specifically being analyzed here, the results from the computer program
and the manual results described above matched exactly.

4 Results

After all of the screening tests have been performed and the non-constructible and du-
plicate vertex symbols eliminated, what remains is a list of 32 incidence symbols with
the asymmetric vertex symbol a+b+c+d+e+ (N1 through N32), and three additional ones
using the symmetric vertex symbol a b+c+c−b− (S1, S2, S3). Observe that after substitut-
ing a for a+ and a−, c− for d+, and b− for e+ in each of the asymmetric vertex symbols,
some of them reduce to one of the three symmetric sponge symbols but some become
inconsistent. The inconsistent ones therefore represent truly asymmetric sponges, while
the others represent labeled versions of the three symmetric sponges. We show the final
results in Table 1.

Therefore we have proven the following result:
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Symbol # Shape # Vertex symbol Adjacency symbol

N1 1 a+b+c+d+e+ a−b+c−d+e−

N2 2 a−b+c−d−e−

N3 3 a−b+c−d∧+e−

N4 4 a−b+c−d∧−e−

N5 5 a−b−c+d−e−

N6 6 a−b−c−d∧+e−

N7 7 a−b−c−d∧−e−

N8 8 b∧−a∧−c−d+e−

N9 9 b∧−a∧−c−d−e−

N10 10 b∧−a∧−c−d∧+e−

N11 11 b∧−a∧−c−d∧−e−

N12 12 b∧−a∧−c∧−d+e+

S1 13 a b+c+c−b− a b+c−c+b−

N13 a+b+c+d+e+ a−b+c−d−e+

N14 a+b+d+c+e+

N15 a−e−c−d−b−

N16 a+e−d+c+b−

S2 14 a b+c+c−b− a b−c−c+b+

N17 a+b+c+d+e+ a+b−c−d−e−

N18 a−b−c−d−e−

N19 a+b−d+c+e−

N20 a−b−d+c+e−

N21 a+e+c−d−b+

N22 a−e+c−d−b+

N23 a+e+d+c+b+

N24 a−e+d+c+b+

S3 15 a b+c+c−b− a b−c∧+c∧−b+

N25 a+b+c+d+e+ a+b−c∧+d∧+e−

N26 a−b−c∧+d∧+e−

N27 a+b−d∧−c∧−e−

N28 a−b−d∧−c∧−e−

N29 a+e+c∧+d∧+b+

N30 a−e+c∧+d∧+b+

N31 a+e+d∧−c∧−b+

N32 a−e+d∧−c∧−b+

Table 1: The 35 different incidence symbols and 15 different geometric sponges.
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Theorem 1 If squares are restricted to lie only along the planes of a cubic lattice, then
there are 35 different incidence symbols for labeled {4, 5} sponges that lead to exactly 15
different geometric {4, 5} sponges.

The 15 unlabeled geometric {4, 5} sponges are shown in Figures 9, 10 and 11. While
some of the sponges may at first glance appear identical, N10 and N11 in particular, a
careful examination shows that they are all different. Files for displaying the different
{4, 5} sponges in VRML97 format can be retrieved at:

<http://hdl.handle.net/1773/4603>

Note that the images in Figures 9-11 are not shown using the red/black color scheme in
order to try to make the 2-dimensional images more representative of the appearances of
the 3-dimensional objects. However, the VRML97 images are displayed with the red/black
vertex star colors as described above.

5 Historical and other remarks

Perhaps the most noticeable aspect of the history of sponges is the nearly total absence
of continuity and connection between the works of various authors, and none of them
appear to have considered the possibility that it might be possible to isogonally connect
their congruent vertex stars in different ways to create the same polyhedron (i.e., labeled
sponges). About the only reference found in most (but not all) papers and books on the
topic is the 1937 paper by Coxeter [7]. In it Coxeter describes the three regular {4, 6},
{6, 4}, and {6, 6} sponges, and proves that there are no other regular sponges. The term
‘sponge’, attributed to Andreas, was first described by Coxeter only later, in 1939 [8].

In 1950, ApSimon [1] described two triangle-faced infinite polyhedra, one in P{3, 12}
and another in P{3, 9}. He also described an infinite polyhedron in P(3, 8) but not in
P{3, 8}, as well as (in [2] and [3]) several other infinite polyhedra having certain kinds of
symmetries.

In 1967, Gott [12] described nine sponges: the three regular sponges, as well as (in
words but without diagrams) two sponges based on a bending of the regular {4, 6} vertex
star, and one each in P{3, 8}, P{3, 10}, P{4, 5}, and P{5, 5}. The last one is most
remarkable, and had not been previously reported by any other researchers. The two
triangle-faced polyhedra are distinct from the ones found by ApSimon. The {4, 5} sponge
is the one denoted here as S2 and shown in Figure 11.

One of the papers [26] in a series published by Wells in Acta Crystallographica, starting
in 1954 and ending in 1976, deals with sponges. In this paper (published in 1969) are
stereo pair photographs of models of several {3, •} and {4, 5} sponges. Most of the results
of the series are collected in his later book [27], but some of the reproductions there are
of poorer quality than these original ones.

In his note [23] from 1970, which is devoted to a study of infinite periodic minimal
surfaces, Schoen mentions infinite uniform polyhedra, and provides some illustrations.
The main topic is quite old, going back at least to an 1865 paper of Schwarz [24]. The
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Shape 1 Shape 2 Shape 3

   
N1 a−b+c−d+e− N2 a−b+c−d−e− N3 a−b+c−d∧+e−

Shape 4 Shape 5 Shape 6

   
N4 a−b+c−d∧−e− N5 a−b−c+d−e− N6 a−b−c−d∧+e−

Figure 9: The first six (N1-N6) of the twelve {4, 5} sponges of type N.
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Shape 7 Shape 8 Shape 9

   
N7 a−b−c−d∧−e− N8 b∧−a∧−c−d+e− N9 b∧−a∧−c−d−e−

Shape 10 Shape 11 Shape 12

   
N10 b∧−a∧−c−d∧+e− N11 b∧−a∧−c−d∧−e− N12 b∧−a∧−c∧−d+e+

Figure 10: The second six (N7-N12) of the twelve {4, 5} sponges of type N.
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Shape 13 Shape 14 Shape 15

 
S1 a b+c−c+b− S2 a b−c−c+b+ S3 a b−c∧+c∧−b+

Figure 11: The three {4, 5} sponges of type S.

connection between minimal surfaces and uniform polyhedra appears in various other
writings as well (besides [23] see, for example, Goodman-Strauss and Sullivan [11] and
the references given in these papers). For a splendid catalog of minimal surfaces (without
mention of polyhedra) and a long list of references, see Lord and Mackay [22].

Quoting Coxeter [7] and papers by Wells (later summarized in his book [27]), Williams
briefly considers infinite uniform polyhedra [28].

A collection of more than one hundred infinite uniform polyhedra is the 1974 work
of Wachman, Burt, and Kleinmann [25]. It contains seven of our {4, 5} sponges, three
others in P{4, 5} with pairs of dihedral angles other than 90◦ or 180◦, and one in P(4, 5)
only. It also includes five {4, 6} sponges, including one of the two described by Gott with
some faces at 60◦ dihedral angles, and thirteen P{3, •} sponges, as well as a large number
of infinite polyhedra with more than one kind of regular polygon as faces. Of the seven
matching ours here, their numbers 1, 2, 3, 4, 5, 8, and 10 correspond to our S2, N5,
S3, N7, N11, N6, and S1 sponges, respectively. (The missing numbers are the non-{4, 5}
sponges described above.) No other source has anything approaching the richness of this
collection. It is regrettable that none of the mathematical reviewing journals took any
note of this publication.

In 1977 there appeared two works relevant to the topic considered here. One is the
paper by Grünbaum [14] where several new kinds of regular polyhedra are considered,
and which gives a number of references to infinite uniform polyhedra. The other is the
book by Wells [27] which, as mentioned above, collects and extends the results of several
of his papers; it has a chapter on what we define as Platonic sponges. Wells presents
nine triangle-faced and six square-faced sponges, plus the three regular Coxeter-Petrie
sponges. In the two adjoining chapters he also describes several with more than one kind
of regular polygon as faces.

In the 1979 paper by Grünbaum and Shephard [19], the beginnings of the application of
incidence symbols to infinite collections of polygons in periodic surfaces in 3-dimensional
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space were described. This was one of the ingredients that led to the enumeration ap-
proaches of the present paper.

None of the works discussed so far makes any claim on completeness (except that
Coxeter [7] proves that there are no other regular sponges besides the three he found).

In 1993, Grünbaum [15] described a new {4, 5} sponge, the one listed here as N2.
It was the discovery of this previously unknown sponge, after so many previous reports
appeared to have exhausted the {4, 5} possibilities, that was a prime motivator for finding
a systematic method to search for all isogonal polyhedra based on a given vertex star and
that ultimately led to the work we describe here. At that time Grünbaum also proposed
five conjectures about isogonal polyhedra composed of regular polygons. Conjecture 1,
that there were no more {3, •} sponges than those already discovered, was proven false
by Hughes Jones in 1995. The {4, 5} results presented in this paper show Conjecture 5,
that there are no further flexible uniform polyhedra than those discovered at that time,
to also have been false. The remaining three conjectures still appear to be holding up,
though: (2) there are no uniform polyhedra with more than 12 faces at a vertex; (3) if a
uniform polyhedron has more than eight faces at a vertex then they must all be triangles;
and (4) there are no uniform polyhedra with all face polygons having more than six sides.

The first paper to report a complete enumeration of a specific type of sponge is
Hughes Jones [21] in 1995. Hughes Jones considers infinite isogonal polyhedra formed
by triangles that lie in the planes of a tiling of 3-space by regular tetrahedra and octa-
hedra, which meets our definition of {3, •} sponges. In these sponges every vertex star
consists of triangles, the free edges of which form a Hamiltonian path on the edges of
a (uniform) cuboctahedron, which is usually denoted as (3.4.3.4). By a combinatorial
analysis analogous to the one presented above for the {4, 5} sponges, and subsequent
verification of their geometric realizability, Hughes Jones proves that there are precisely
26 sponges of this class of {3, •}. More specifically, there is a single {3, 7} sponge, three
{3, 8} sponges, thirteen {3, 9} sponges, and nine {3, 12} sponges. Without giving any
details, Hughes Jones claims to know of eleven other polyhedra in P{3, •} but not in the
cuboctahedron class under consideration, and that six of them can be found in Wells’ [27]
book. Using our methods, and starting with the same set of vertex stars, we also found the
same list of sponges reported by Hughes Jones. However, we also found that some of these
vertex stars (specifically, a few of the non-reflectively symmetric ones) form chiral pairs
when the vertex star is reflected. That is, the starting set of vertex stars must also include
their reflected versions in order to obtain a truly complete set of {3, •} cuboctahedron-
based sponges. We hope to discuss this topic of chiral pair sponges in more detail in a
future publication.

The only other published work with a complete enumeration of all sponges of a specific
kind is the recent paper by Goodman-Strauss and Sullivan [11]. Using an approach
completely different from the one followed here, the authors show that there are precisely
six {4, 6} cubic lattice sponges. (We obtained the same result during the early stages
of our work on this paper. Also, we and other researchers ([12], [25], [27]) have found
additional {4, 6} sponges not restricted to a cubic lattice alignment. We hope to discuss
these further in the future as well.) They also investigate more general polyhedra in
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P(4, 6), and connections to periodic minimal surfaces. Sadly enough, the review of [11]
in Mathematical Reviews (2004k:52020) does not mention the description within this
paper of the five non-regular {4, 6} cubic lattice sponges. Even worse, since it is totally
misleading, is the review in the Zentralblatt (1048.52008).

The recent book [6] by Conway, Burgiel, and Goodman-Strauss considers several
sponges under a different point of view; all those shown can be found in [25] and [27].

* * * * *

Other than our own Web pages [10], there is still very little other material on sponges
and related objects on the Web as of this date. Most of what appears seems to originate
from the book by Wells [27]. Two pages by Dutch [9] deal with infinite isogonal polyhedra.
The first shows the three regular Coxeter-Petrie polyhedra and two from Gott’s [12] paper,
his {3, 8} and {3, 10} sponges. The second page shows the two sponges labeled by Wells as
(4,5)-4tb and (4,5)-8ti, which are actually two views of the same sponge, one being seen as
the complement of the other. He also includes six examples in P{3, •} described by Wells.
They are shown in very attractive color graphics, and accompanied by an explanation of
their construction.

A larger collection that attempts to include all of the ones described by Wells as well
as some others including Gott’s, is by Green [13]. She also provides some explanations
and some simple VRML models. Bulatov [5] shows some infinite isogonal polyhedra taken
from Green’s pages, but also describes some interesting infinite classes of very complex
but finite, non-acoptic isogonal polyhedra. Finally, a good starting point for references
and links to infinite isogonal polyhedra is the entry in Wikipedia under ‘Infinite skew
polyhedron’, though its page as of this writing has only a few pictures of sponges, all
of which are from sources discussed here already (primarily those described by Coxeter-
Petrie, Gott, and Wells).

* * * * *

It is worth mentioning that several of the {4, •} sponges are not rigid. By this we
mean that if the sponges are considered as constructed of rigid squares connected by
hinges along their edges, a physical model of the sponge can move as a mechanism. The
only mention of this possibility we found in the literature is a comment by Coxeter (in [4],
p. 153) concerning the regular sponge {4, 6}: “. . . to make {4, 6}, use rings of four squares.
This last model, however, is not rigid; it can gradually collapse, the square holes becoming
rhombic. (In fact, J. C. P. Miller once made an extensive model and mailed it, flat in
an envelope).” The other {4, 6} sponges are rigid. Many of the {4, 5} sponges described
here are movable, though not always while remaining isogonal or acoptic. Considering the
asymmetric ones, all can be isogonally constructed with a different τ angle (see Figure 3)
except N12, but shapes N1, N2, . . . N5 are no longer acoptic, leaving only shapes N6,
N7, . . . N11 as both flexible and isogonal. (Setting τ 6= 0 violates the symmetry of the
vertex star so that none of the symmetric sponges can be constructed.) As an example,
the version of N7 for τ = π/4, having tunnels with regular octagonal cross-section, is
shown on page 20 of Wachman et al. [25].
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