
Generation of optimal packings from optimal packings

Thierry Gensane ∗
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Abstract

We define two notions of generation between the various optimal packings QK
m of

m congruent disks in a subset K of R
2. The first one that we call weak generation

consists in getting QK
n by removing m − n disks from QK

m and by displacing the
n remaining congruent disks which grow continuously and do not overlap. During
a weak generation of QK

n from QK
m, we consider the contact graphs G(t) of the

intermediate packings, they represent the contacts disk-disk and disk-boundary. If
for each t, the contact graph G(t) is isomorphic to the largest common subgraph of
the two contact graphs of QK

n and QK
m, we say that the generation is strong. We

call strong generator in K, an optimal packing QK
m which generates strongly all the

optimal QK
k with k < m. We conjecture that if K is compact and convex, there

exists an infinite sequence of strong generators in K. When K is an equilateral
triangle, this conjecture seems to be verified by the sequence of hexagonal packings
QK

∆(k) of ∆(k) = k(k + 1)/2 disks. In this domain, we also report that up to

n = 34, the Danzer graph of QK
n is embedded in the Danzer graph of QK

∆(k) with

∆(k − 1) ≤ n < ∆(k). When K is a circle, the first five strong generators appears
to be the hexagonal packings defined by Graham and Lubachevsky. When K is
a square, we think that our conjecture is verified by a series of packings proposed
by Nurmela and al. In the same domain, we give an alternative conjecture by
considering another packing pattern.

1 Introduction

The search of the densest packing of n non-overlapping equal disks in a compact set of
the plane is a classical problem of discrete geometry. An introductory bibliography on
this subject can be found in [1, 8] and a large collection of packing problems in [2]. The
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literature focusses mainly on packings in a square, a disk or an equilateral triangle. All
best known packings up to 300 disks in the square and 500 disks in the circle are given
on the website [12].

The aim of this paper is to formulate some conjectures about a link of generation which
seems to exist among the various optimal packings in a domain K. It has been remarked
in [6] that some dense packings are obtained by removing one disk from a given packing
and by a a small rearrangement of the disks. We will say that an optimal packing QK

m

of m disks in K is a weak generator of an optimal packing QK
n , if it is possible to obtain

QK
n by removing m − n disks from QK

m and by displacing the n remaining congruent
disks whose size is increasing and which do not overlap. Let us look at the first row
of Fig. 1: we find from left to right, the optimal packing Q�

9 , an intermediate packing
Q(t) parameterized on [0, 1] and the optimal packing Q�

8 . After removing the central
disk of Q�

9 , the eight remaining disks behave like biological cells which search some space
in order to increase their size. Moreover, it is remarkable that for each t ∈]0, 1[, the
contact graph of Q(t) (whose edges represent the contacts disk-disk or disk-boundary) is
isomorphic to the largest maximal common subgraph of the contact graphs of Q�

9 and Q�
8 .

This observation is also verified when Q�
9 generates Q�

8 and Q�
7 in the second and third

rows of Fig. 1. When such a transformation exists between two packings, we say that the
generation from one to the other is strong. To find the largest maximal common subgraph
of two graphs G1, G2 is a NP-hard problem [3]. The restriction of this problem to induced
common subgraphs leads to the equivalent problem: How to find the largest clique in the
graph product G1 × G2, see [16]. Unfortunately, the largest common subgraph which

Figure 1: Strong generations of Q�
8 , Q�

7 , Q�
6 from Q�

9 .
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appears when a packing generates strongly another one is not induced (neither connected
in general). We emphasize that all largest maximal common subgraphs displayed in this
paper have been found without the help of a computer and must be considered as the
best common subgraphs we found. We differ to a subsequent work the use of codes which
compute the largest common subgraphs of two contact graphs. This should be the first
step in order to verify or invalidate the conjectures presented in this paper.

Let us now examine in Fig. 2, another series of largest common subgraphs G◦
k ∩ G◦19

relative to the generation of the optimal packings Q◦
k of k disks in the circle from the

optimal packingQ◦
19. The visualization of the largest common subgraphs allows to imagine

how Q◦
19 generates strongly Q◦

k after removing the disks whose centers are not in the
common structure. We can easily convince ourselves that Q◦

19 is a strong (resp. weak)
generator in the circle in the sense that it generates strongly (resp. weakly) all of the
previous optimal packings Q◦

k (the packing Q◦
18 is directly obtained by removing one disk

of Q◦
19 and the generations of the packings Q◦

1,Q◦
2, . . . ,Q◦

7 – found in [12] – are easily
settled). A natural question is to know whether there exists an infinity of generators in a
domain K. The following conjecture can be weakened by changing “strong” for “weak”.

Conjecture 1 Let K be a compact convex subset of R
2. There exists an infinite sequence

of integers n1 < n2 < . . . < nk < . . . such that each optimal packing QK
nk

of nk disks is a
strong generator in K.

After Section 2 in which we give our notation and definitions, we precise Conjecture 1
in Section 3 when K is the equilateral triangle. In Section 4, we deal with the disk packings
in the square. We will not come back to Conjecture 1 when K is a circle. Indeed, at the
time being we are not able to identify a regular pattern which produces an infinite series of
optimal packings in circle. Nevertheless, it is reasonable to think that the five hexagonal
packings Q◦

7,Q◦
19,Q◦

37,Q◦
61 and Q◦

91 described in [6] are the first five strong generators in
the circle.

2 Notation, definitions and examples

We denote by d(p,q) the distance from p to q, by S(p, r) the disk {m : d(p,m) ≤ r}
and by C(p, r) the circle {m : d(p,m) = r}. A set of n non-overlapping congruent disks
all contained in K is called a packing of K. For simplicity, we consider in the following
that K is either a disk or a polygon whose sides are tangent to a circle. In these cases, K
is an erosion-similar body – see [8] – and then the problem of finding the densest packing
of n disks in K is equivalent to the maximum separation problem : How to spread n
points inside K so that the minimum distance is as large as possible. For this spreading
version, an optimal packing is a configuration P = (p1, . . . ,pn) ∈ Kn which maximizes
the function f(P) = mini6=j d(pi,pj). Let g(P) = mini d(pi, ∂K) the minimum distance
between the points of P and the boundary of K. The function

ω(P) = min

{

f(P)

2
, g(P)

}
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k = 17 k = 16

k = 15 k = 14

k = 13 k = 12

k = 11 k = 10

k = 9 k = 8

Figure 2: Largest common subgraphs of the contact graphs of Q◦
k and Q◦

19 for 17 ≥ k ≥ 8.
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is the maximal radius r of the n congruent disks S(pi, r) ⊂ K such that they do not
overlap. We often identify the configuration P = (p1, . . . ,pn) ∈ Kn with the packing of
the n disks S(pi, ω(P)). Then an optimal packing QK

n of n disks in K is a configuration
P of n points in K which maximizes ω(P).

If K is a polygon, we choose a numbering of its sides and denote them by K1, . . . , Kl;
if K is a disk, we set K1 = ∂K. Let us recall that the Danzer graph Danzer(P) of a
packing P = (p1, . . . ,pn) is obtained by connecting two vertices pi and pj when the two
disks centered at these points contact each other. An isolated vertex of the Danzer graph
is called rattler. The Danzer graph is a subgraph of the contact graph that we now define:

Definition 1 The contact graph G = G(P) =(V, E) of a packing P =(p1, . . . ,pn) in K
is the simple, undirected and labelled graph defined by :

• V = {p1, . . . ,pn}∪
{

p
j
i

}

where p
j
i ∈ Kj is the point of contact – provided it exists –

of the disk S(pi, ω(P)) with the side Kj of K.

• E = {pipj : d(pi,pj) = 2 ω(P)} ∪
{

pip
j
i

}

.

• label(pi) = 0 and label(pj
i ) = j.

Note that the label of the contact graph is not a one–to–one mapping. A Danzer graph
is trivially labelled by label(pi) = 0 when it is considered as a subgraph of the contact
graph.

We will denote respectively by Q�
n , Q4

n , Q◦
n (one of) the optimal packing(s) of n disks

in the unit square, the equilateral triangle, the unit disk; we also denote by G�
n , G4n , G◦n

their respective contact graphs and by r�
n , r4n , r◦n the disk radii of Q�

n , Q4
n , Q◦

n. When we
consider the packings Q�

n , Q4
n , Q◦

n are solutions of the maximal separation problem, we
denote by d�

n , d4
n and d◦

n the minimum distance between the points of the configurations.
We now recall the definition of an isomorphism between two labelled graphs and the

definition of the largest maximal common subgraph of two graphs, see [16].

Definition 2 (a) Two labelled graphs G1=(V1, E1) and G2=(V2, E2) are said to be iso-
morphic if there exists a one-to-one mapping f : V1 −→ V2 which preserves the adjacency
and the labels:

∀u,v ∈ V1, (uv ∈ E1 ⇐⇒ f(u)f(v) ∈ E2) and label(f(u)) = label(u).

(b) We call common subgraph of two graphs G1 and G2 a structure (S1, S2), where S1 is
a subgraph of G1 isomorphic to a subgraph S2 of G2. A common subgraph is maximal if
there is no common subgraph (S ′

1, S
′
2) of G1 and G2 such that S1 is a proper subgraph of

S ′
1 and S2 is a proper subgraph of S ′

2. We say that a graph is isomorphic to a common
subgraph (S1, S2) if it is isomorphic to S1 (and S2). We consider that the size of a graph
is the number of its edges and we denote by G1∩G2 the largest maximal common subgraph
of G1 and G2. There is not always uniqueness of the largest maximal common subgraph
(that we shorten by largest common subgraph or l.c.s.).
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We now formalize the definition of weak and strong generations sketched out in the
introduction. The points (a) and (b) ensure that, after removing m − n disks of the
packing Qm, the n remaining disks move and grow continuously until they become the
packing Pn. The point (c) gives that during the transformation, the size of the contact
graph G(t) is maximal.

Definition 3 Let Qm = (q1, . . . ,qm), Pn = (p1, . . . ,pn) be two packings in K with
m ≥ n, and G1, G2 their respective contact graphs. Let G1 ∩ G2 (one of) the l.c.s. of
G1 and G2. We say that the packing Qm generates strongly the packing Pn if, up to a
permutation of the points of Qm, there exists a continuous map

Q : t ∈ [0, 1]→Q(t) = (q1(t),q2(t), . . .qn(t)) ∈ Kn

such that
(a) Q(0) = (q1, . . . ,qn) and Q(1) = (p1, . . . ,pn) = Pn,
(b) ω ◦ Q is an increasing map,
(c) for each t ∈]0, 1[, the contact graph G(t) of the packing Q(t) is isomorphic to the
largest common subgraph G1 ∩ G2.
In that case, we note Qm ↪→ Pn.

If (c) is not verified, we say that Qm generates weakly Pn and we note Qm → Pn.
An optimal packing QK

m which generates strongly (resp. weakly) all the optimal packings
QK

1 ,QK
2 , . . . ,QK

m−1 is called a strong (resp. weak) generator.

When Qm generates strongly Pn, the edges of G1 which are not in the l.c.s. G1 ∩ G2

correspond to the contacts which disappear when the transformation begin, either because
two disks move away each from the other or because a disk has been removed. The edges of
G2 which are not in G1∩G2 give the contacts which appear at the end of the transformation,
i.e. at t = 1. For instance, we have illustrated in Fig. 3 a strong generation of Q�

11 from
Q�

12; nine edges disappear from the contact graph G�
12 and four edges appear in G(t) when

t = 1. It is also of interest to recall that if qiqj (resp. qiq
j
i ) is an edge of G1 ∩G2, then for

each t ∈ [0, 1], the disk of Q(t) centered at qi(t) contacts the one centered at qj(t) (resp.
the side Kj of the boundary).

1

2 3

4 5

6 7

8 9

10 11

12 1

11

4
7

9

10

6

5

2

8

3 1 2 3

4 5

6

7

8

9

10 11

Figure 3: A strong generation Q�
12 ↪→ Q�

11.
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Example 1 We have already seen in the introduction that the optimal packing Q�
9 gen-

erates strongly Q�
8 , Q�

7 and Q�
6 . It is easy to verify that Q�

9 is a strong generator in the
square since it also generates strongly the first optimal packings Q�

1 , . . . ,Q�
5 (displayed

in Fig. 8).

Example 2 Here, the domain K = ∆ is the equilateral triangle. We establish the strong
generation of the packing Q4

13 = (p1, . . . ,p13) from Q4
15 = (q1, . . . ,q15) by doing a straight

edge and compass construction of the packing Q(t). In Fig. 4, we have represented in
bold lines one of the l.c.s. G413 ∩ G415. We adopt the numbering of this figure but we
consider here that the packing Q4

15 is solution of the maximal separation problem in ∆
(the points q1, q7 and q10 become the three corners of ∆). First, we remove q14 and q15.
Second, we choose a degree of opening of the compass and use this angle for applying on
q1,q2, . . . ,q6 an homothety centered at q1 of ratio u = (1− t) · 1 + t · d4

13/d
4
15 ≥ 1, we get

q1(t),q2(t), . . . ,q6(t). We set q7(t) = q7, q10(t) = q10 and u′ = ud4
15 aiming at u′ = d4

13

when t = 1. We find q8(t) as the point of C(q4(t), u
′)∩C(q7(t), u

′) which belongs to ∆ and
similarly, q11(t) = C(q6(t), u

′)∩C(q10(t), u
′)∩∆. The intersection of the circle C(q8(t), u

′)
with the side K1 = [q7,q10] ⊂ ∂K gives q9(t) and the intersection of C(q11(t), u

′) with
K1 gives q12(t). Finally, we get the point q13(t) = C(q9(t), u

′) ∩ C(q12(t), u
′) ∩ ∆. The

three points of Definition 3 are verified by the map t→Q(t) and then Q4
15 ↪→ Q4

13.

7

9 8

13 14 4

12 15 5 2

10 11 6 3 1

Figure 4: A strong generation of Q4
13 from Q4

15.

Example 3 The l.c.s G◦31 ∩ G◦37 displayed in Fig. 5, indicates clearly how Q◦
37 generates

strongly Q◦
31. We apply an homothety centered at O on the six vertices of the central

hexagon of G◦37 and we obtain qk(t) = 2ur◦37(cos kπ/3, sin kπ/3) where k ∈ {1, . . . , 6} and
u = (1− t) · 1 + t · r◦31/r◦37. Setting u′ = 2ur◦37, we remark that the vertical straight lines
through q1(t) and q2(t), i.e. x = ±u′ cos π/3 = ±ur◦37, intersect the circle C(O, 1− u′/2)
at two points q7(t) = (ur◦37, y7) and q8(t) = (−ur◦37, y8) with y7 = y8 > 0. We choose
q9(t) in C(q1(t), u

′) ∩ C(q7(t), u
′) and accordingly q10(t) in C(q2(t), u

′) ∩ C(q8(t), u
′).

Finally, rotations centered at O = q31(t) of angles jπ/3 give the other points qk(t) for
11 ≤ k ≤ 30.
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Figure 5: The l.c.s. G◦31 ∩ G◦37.

3 Generation in the equilateral triangle

A list of dense or optimal packings in the equilateral triangle up to n = 21 disks can be
found in [8]. Using their billiard algorithm, Graham and Lubachevsky [4] produced con-
jectures up to n = 34 and beyond. In the equilateral triangle, the hexagonal arrangements
of ∆(k) = k(k + 1)/2 disks are all optimal – see [8, 11] – and we conjecture below that
these hexagonal packings are strong generators. For each n, we denote by mn the first
triangular integer greater than n. We notice that up to n = 34, the Danzer graph of Q4

n

is embedded in the Danzer graph of Q4
mn

– i.e. is isomorphic to a subgraph of this graph –
and then is embedded in the contact graph G4mn

(all the vertices of the Danzer graph have
been labelled with 0). Moreover, it seems to be always possible to find a largest common
subgraph G4n ∩ G4mn

which contains the Danzer graph of Q4
n . In Fig. 6, we display such

l.c.s. for all the non-trivial optimal packings up to n = 20. Remark that in Fig. 4, we
have displayed a l.c.s. G413 ∩ G415 in which the Danzer graph of Q4

13 is not embedded.

Conjecture 2 Each optimal packing Q4
n is strongly generated from the hexagonal packing

Q4
mn

. Moreover, the Danzer graph of Q4
n is embedded in G4mn

and also in one of the largest
common subgraphs G4n ∩ G4mn

.

Remark 1 When QK
m generates strongly QK

n , the Danzer graph of QK
n is not always

embedded in the Danzer graph of QK
m, see for instance the two packings Q◦

15 and Q◦
19

in Fig. 2.

Remark 2 In [7], Lubachevsky et al. conjectured that the packings Q4
np(k) where np(k) =

4((k+1)p−1)+(2p+1)4(k)), have the pattern consisting of one triangle of side (k+1)p−1
and 2p+1 alternating triangles of sides k with p−1 rattlers. These packings are generated
from the hexagonal arrangement of 4((p+1)k+p) disks after removing a complete row of
(k + 1)p disks. It is also possible to consider an embedding of the Danzer graph of Q4

np(k)

in the Danzer graph of Q4
4((p+1)k+p) that yields a generation which begin by removing

(k + 1)p consecutive disks from a side.
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n = 4 n = 7

n = 8 n = 11

n = 12 n = 13

n = 16 n = 17

n = 18 n = 19

Figure 6: L.c.s. G4n ∩ G4mn
in which Danzer(Q4

n ) is embedded.
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4 Generation in the square

The problem of packing disks in a square has received a lot of attention, see for instance
[8, 15]. As in the case of the equilateral triangle, the authors of [5, 7, 13] tried to identify
the occurence of repeating patterns. Unfortunately, all these packing patterns cease to
be optimal as the numbers of disks exceeds a certain threshold. For instance, the pattern
of n = k(k + 1) disks which consists of k + 1 alternating columns with k disks each gives
the best known packings up to k = 7, and non-optimal packings for k ≥ 8. Nurmela et
al. proposed in [10] a pattern P1 by relaxing the ratio α/β where α is the number of
columns of disks and β is the number of rows of disks. See the left side of Fig. 7 where
the packing Q�

18 of this pattern is composed of 5 columns and 7 rows of disks. Using the
packings of the pattern P1, they get that the maximum number Np(σ) of points with
mutual distance at least 1 that can be placed into a square of side σ verifies

Np(σ) ≥ 2√
3

(

σ2 +
1−
√

3

2
σ

)

.

It is more difficult to identify a family of generator in the square. It appears that the
optimal packings of the pattern P1 coexist with optimal packings of another pattern that
we will denote by P2 : We think that each optimal packing Q�

n is generated strongly either
from an optimal packing of the pattern P1 or from an optimal packing of the pattern P2.
Let us define the two patterns, we suppose w.l.o.g. that b ≥ a.

• P1(a, b) : We have a+1 columns and b+1 rows of disks, a disk in a column touches
one or two disks in an adjacent column but not other disk in the same column, see
for instance Q�

12 = P1(3, 5) in Fig. 3 orQ�
18 = P1(4, 6) in Fig. 7. A direct calculation

shows that the packing P1(a, b) exists if, and only if, b ≤
√

3a. In this case, the
number of disks is n = b((a + 1)(b + 1) + 1)/2c and the disk radius equals rn =
dn/(2(1+dn)) where dn =

√
a2 + b2/(ab). The first optimal – or presumed optimal –

packings of the pattern P1 have n = 2, 5, 6, 12, 18, 27, 39, 52 disks, they are obtained
respectively for (a, b) = (1, 1), (2, 2), (2, 3), (3, 5), (4, 6), (5, 8), (6, 10), (7, 12).

• P2(a, b) : We have also a + 1 columns and b + 1 rows of disks, but here b = 2b′ + 1
is necessarily odd. The Danzer graph of these packings, as Q�

20 in Fig. 7, forms a
pattern of ab′ diamonds. Now, the existence of the packing P2(a, b) is equivalent to
b ≥
√

3a and a > b′. In this case, we have n = (a+1)(b′+1) and rn = dn/(2(1+dn))
where dn = (b′a−

√
a2 − b′2 + 1)/(a(b′2−1)). We will consider that the square lattice

packings of n = (a + 1)2 disks – which are optimal up to n = 36, see [9] – belong to
the pattern P2. Indeed, except the number of rows of disks, the model is valid when
b′ = a and gives effectively rn = 1/(2a+2). The first optimal packings – or presumed
optimal – of the pattern P2 have n = 4, 9, 16, 20, 25, 30, 36, 42 disks, they are ob-
tained respectively for (a, b) = (1, 3), (2, 5), (3, 7), (4, 7), (4, 9), (5, 9), (5, 11), (6, 11).
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Figure 7: The Danzer graphs of the packings Q�
18 = P1(4, 6) and Q�

20 = P2(4, 7).

Conjecture 3 Each optimal packings Q�
n is generated strongly either from an optimal

packing of the pattern P1 or from an optimal packing of the pattern P2.

We display in Fig. 8–10 all the best known packings up to n = 56. In each caption,
we indicate with k ←↩ n that we think that Q�

n generates strongly Q�
k . Sometimes,

it is possible to generate - weakly or strongly - an optimal packing of the pattern P1
from a packing of the pattern P2 or vice versa. For instance, there is no doubt that
Q�

20 = P2(4, 7) generates weakly Q�
18 = P1(4, 6), see Fig. 7.

In order to maintain Conjecture 1 for the generation in the square, we now describe the
infinite subseries of the packing pattern P1(a, b) given in [10]. Nurmela et al. conjectured
that all the packings of this series are optimal and find them by considering the sequence
of partial fractions of the continued expansion of 1/

√
3:

0

1
,
1

1
,
1

2
,
3

5
,
4

7
,
11

19
,
15

26
,
41

71
,
56

97
, . . . (1)

In (1), they set a equals to the numerator of each second value starting with 1
1

and b
equals to its denominator and get

(a, b) ∈ {(1, 1), (3, 5), (11, 19), (41, 71), . . .} . (2)

This yields a series of packings P1(a, b) which begin with n = 2, 12, 120, and 1512 points.
Szabó [14] proved that the limit density of this packing series is π/

√
12. The packing Q�

12

appears to be a strong generator and although it is quite difficult to verify if Q�
120 is a

strong generator, we conjecture:

Conjecture 4 The packing series P1(a, b) obtained by (2) and beginning with n = 2, 12,
120, 1512, is a sequence of strong generators.

Remark 3 In (1), each fourth value starting with 0 gives a fraction a/b with b odd and
b >
√

3a, and then a valid packing P2(a, b). The first three packings of this series have
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1, 20 and 2793 points. It is also possible to generate a Farey sequence which converges to
1/
√

3 using the classical method: Let A = 0
1
, B = 1

1
and X = A⊕B, where the sum ⊕ is

defined by c
d
⊕ e

f
= c+e

d+f
. If X < 1√

3
then we set A := X, else B := X. By iterating this

process, we find the sequence

0

0
,
1

1
,
1

2
,
2

3
,
3

5
,
4

7
,

7

12
,
11

19
,
15

26
,
26

45
,
41

71
,
56

97
,

97

168
, . . . . (3)

This Farey sequence converges slower than (1) but gives more optimal packings : The
fractions a

b
of (3) which verify b ≤

√
3a give the best known packings of P1 of n =

2, 6, 12, 52, 120, 621, 1512, 8281 disks. The fractions a
b

of (3) which verify b ≥
√

3a and b
odd give the best known packings of P2 of n = 20, 2793 disks. We think that all the valid
“Farey packings” are optimal.

We conclude this remark by noticing that the sum ⊕ has already been used in [15]:
In order to propose conjectural infinite grid packing sequences, the authors consider new
subseries of the pattern P1(a, b). For instance, the sums of two consecutive elements
of (2) lead to the packing series P1(4, 6), P1(14, 24), P1(52, 90), . . . which begin with n =
18, 188, 2412 disks.

1←↩ 2 2←↩ 4 3←↩ 4 4←↩ 5

5←↩ 6 6←↩ 9 7←↩ 9 8←↩ 9

9←↩ 12 10←↩ 12 11←↩ 12 12←↩ 16

13←↩ 16 14←↩ 16 15←↩ 16 16←↩ 20

Figure 8: Optimal packings Q�
k for k = 1 to 16.
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17←↩ 18 18←↩ 27 19←↩ 27 20←↩ 25

21←↩ 25 22←↩ 25 23←↩ 25 24←↩ 25

25←↩ 30 26←↩ 27 27←↩ 39 28←↩ 39

29←↩ 30 30←↩ 36 31←↩ 36 32←↩ 36

33←↩ 36 34←↩ 36 35←↩ 36 36←↩ 42

Figure 9: Best known packings Q�
k for k = 17 to 36.
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37←↩ 39 38←↩ 39 39←↩ 52 40←↩ 42

41←↩ 52 42←↩ 56 43←↩ 56 44←↩ 56

45←↩ 56 46←↩ 56 47←↩ 52 48←↩ 52

49←↩ 52 50←↩ 52 51←↩ 52 52←↩ 99

53←↩ 99 54←↩ 143 55←↩ 143 56←↩ 143

Figure 10: Best known packings Q�
k for k = 37 to 56.
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[10] K.J. Nurmela, P.R.J. Österg̊ard and R. aus dem Spring, Asymptotic behavior of
optimal circle packings in a square, Can. Math. Bull. 42 (1999), 380–385.

[11] N. Oler, A finite packing problem, Can. Math. Bull. 4 (1961), 153–155.

[12] E. Specht, website, http://hydra.nat.uni-magdeburg.de/packing/.
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