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Abstract

In this paper we investigate reachability relations on the vertices of digraphs. If
W is a walk in a digraph D, then the height of W is equal to the number of edges
traversed in the direction coinciding with their orientation, minus the number of
edges traversed opposite to their orientation. Two vertices u, v ∈ V (D) are Ra,b-
related if there exists a walk of height 0 between u and v such that the height of
every subwalk of W , starting at u, is contained in the interval [a, b], where a ia a
non-positive integer or a = −∞ and b is a non-negative integer or b = ∞. Of course
the relations Ra,b are equivalence relations on V (D). Factorising digraphs by Ra,∞

and R−∞,b, respectively, we can only obtain a few different digraphs. Depending
upon these factor graphs with respect to R−∞,b and Ra,∞ it is possible to define
five different “basic relation-properties” for R−∞,b and Ra,∞, respectively.

Besides proving general properties of the relations Ra,b, we investigate the ques-
tion which of the “basic relation-properties” with respect to R−∞,b and Ra,∞ can
occur simultaneously in locally finite connected transitive digraphs. Furthermore
we investigate these properties for some particular subclasses of locally finite con-
nected transitive digraphs such as Cayley digraphs, digraphs with one, with two or
with infinitely many ends, digraphs containing or not containing certain directed
subtrees, and highly arc transitive digraphs.

∗Supported in part by the Russian Foundation for Basic Research (grant 06-01-00378). The work was
done in part during the visit of Montanuniversität Leoben, Leoben, Austria in May, 2006.
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1 Introduction

In this paper we consider digraphs (i.e. directed graphs) which contain neither loops nor
multiple edges. Thus, if D is a digraph, then E(D) ⊆ (V (D)×V (D))\diag(V (D)×V (D))
where V (D) is the vertex set and E(D) is the edge set of D. If (u, v) ∈ E(D), then u is
called the initial vertex and v is called the terminal vertex of the edge (u, v). For v ∈ V (D),
deg−

D(v) := |{u : (u, v) ∈ E(D)}| is the in-degree of v, deg+
D(v) := |{u : (v, u) ∈ E(D)}| is

the out-degree of v. A digraph D is locally finite if both, deg−
D(v) and deg+

D(v), are finite
for every v ∈ V (D). For a digraph D we denote the underlying undirected graph of D
by D. So D is the graph with vertex set V (D) = V (D) and edge set E(D) = {{u, v} :
(u, v) ∈ E(D) or (v, u) ∈ E(D)}. We call a digraph D connected if D is connected.

In this paper we frequently consider quotient digraphs with respect to partitions of their
vertex sets. If D is digraph and τ a partition of V (D), then the vertex set of the quotient
graph D/τ is given by the sets of τ , and, for vertices uτ and vτ of D/τ , (uτ , vτ) ∈ E(D/τ)
if and only if uτ 6= vτ and there exist u1 ∈ uτ , v1 ∈ vτ such that (u1, v1) ∈ E(D). If R
is the equivalence relation on V (D) determined by τ , we also denote the digraph D/τ by
D/R.

For a digraph D, Aut(D) denotes the automorphism group of D. If G ≤ Aut(D) and τ
is a partition on V (D) determined by a G-invariant equivalence relation R, then G induces
a group of automorphisms of D/τ denoted by Gτ or GR. If Aut(D) acts transitively on
V (D) then we call D a transitive digraph and clearly all vertices of a transitive digraph
D have the same in-degree deg−(D) and the same out-degree deg+(D).

A walk W in a digraph D is a sequence (v0, e
ε1
1 , v1, . . . , vn−1, e

εn
n , vn), where n is a

non-negative integer, v0, . . . , vn ∈ V (D), e1, . . . , en ∈ E(D) (if n > 0) and ε1, . . . , εn ∈
{−1, 1}, such that, for each 1 ≤ i ≤ n, either εi = 1 and ei = (vi−1, vi) or εi = −1
and ei = (vi, vi−1). The vertices v0 and vn are called the initial and terminal vertex of
the walk W , respectively. The parameter n is called the length l(W ) of W . For a walk
W = (v0, e

ε1
1 , v1, . . . , vn−1, e

εn
n , vn) we define the height ht(W ) of W as ht(W ) =

∑i=n
i=1 εi.

If n = 0, we set ht(W ) = 0.
If W = (v0, e

ε1
1 , v1, . . . , vn−1, e

εn
n , vn) is a walk in a digraph D, then, for any pair i, j,

0 ≤ i ≤ j ≤ n, the walk (vi, e
εi+1

i+1 , . . . , e
εj

j , vj) is called the (i, j)-subwalk of W and denoted
by Wi,j.

In the sequel we say that a ∈ Z≤0∪{−∞} if a is a non-positive integer or a = −∞ and
b ∈ Z≥0 ∪{∞} if b is a non-negative integer or b = ∞. Let D be a digraph. Furthermore,
let a ∈ Z≤0∪{−∞} and let b ∈ Z≥0∪{∞}. Denote by RD

a,b the set of walks W of D with
ht(W ) = 0 and a ≤ ht(W0,j) ≤ b for each j, 0 ≤ j ≤ l(W ). The (a, b)-reachability relation
RD

a,b (or simply Ra,b) on V (D) is defined in the following way: uRD
a,bv if there exists a walk

W in RD
a,b with initial vertex u and terminal vertex v.

It is easy to see that Ra,b is an Aut(D)-invariant equivalence relation on V (D). The
equivalence class of a vertex v ∈ V (D) with respect to Ra,b is denoted by Ra,b(v). If
a′ ∈ Z≤0 ∪ {−∞} such that a′ ≤ a and b′ ∈ Z≥0 ∪ {∞} such that b′ ≥ b, then obviously
Ra,b ⊆ Ra′,b′. Of course, uR0,0v if and only if u = v. (Note that the definition of Ra,b can
be naturally generalized to digraphs with loops, but, for transitive connected digraphs
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with loops, any such relation with a < 0 or b > 0 is universal.) Furthermore, it is easy
to see that Ra,b is the equivalence relation generated by Ra,0 and R0,b (i.e. the smallest
equivalence relation on V (D) containing Ra,0 as well as R0,b). Thus, to consider Ra,b, it
is sometimes sufficient to consider Ra := Ra,0 and Rb := R0,b.

We emphasize that – motivated by a problem posed in [1] – the reachability relations Ra

and Rb were introduced in [8]. Moreover, it was already shown in [8] that there is a strong
connection between properties of Ra and Rb and various other properties of digraphs.
In this paper we study a more general concept of relations, namely the above defined
Ra,b. We prove basic properties of relations Ra,b which are in some cases generalizations
of results shown in [8]. Besides that we are mainly interested in structural and algebraic
properties of transitive digraphs when a → −∞ and b → +∞ for Ra and Rb, respectively.

A connected digraph D is a cycle if |V (D)| is finite and either |V (D)| = 1 (in which
case E(D) = ∅ and D is a trivial cycle) or every vertex of D has in-degree 1 and out-degree
1. A digraph D is a directed tree if D is a tree, and is a regular directed tree if D is a tree
and all vertices of D have the same in-degree and the same out-degree. A regular directed
tree D is called a chain if deg−(D) = deg+(D) = 1. It is easy to see that any connected
transitive digraph D with deg−(D) ≤ 1 is either a cycle or a chain or a regular directed
tree with in-degree 1 and out-degree > 1. Analogously, any connected transitive digraph
D with deg+(D) ≤ 1 is either a cycle or a chain or a regular directed tree with in-degree
> 1 and out-degree 1.

It can be proven (see Corollary 2.6 below) that, for any digraph D and for any a ∈
Z≤0 ∪ {−∞} and b ∈ Z≥0 ∪ {+∞}, the in-degree of every vertex of D/Ra,+∞ is ≤ 1
and the out-degree of every vertex of D/R−∞,b is ≤ 1. Thus (see Corollary 2.7 below),
for any connected transitive digraph D, the (connected transitive) digraph D/Ra,+∞ is
either a cycle or a chain or a regular directed tree with in-degree 1 and out-degree > 1.
Moreover (see Proposition 2.1 below), either D/Ra,+∞ is a cycle for all a ∈ Z≤0 ∪ {−∞},
or D/Ra,+∞ is a chain for all a ∈ Z≤0∪{−∞}, or D/Ra,+∞ is a regular directed tree with
in-degree 1 and out-degree > 1 for all a ∈ Z≤0. Analogously (see Corollary 2.7 below),
for any connected transitive digraph D, the (connected transitive) digraph D/R−∞,b is
either a cycle or a chain or a regular directed tree with in-degree > 1 and out-degree 1.
Moreover (see Proposition 2.1 below), either D/R−∞,b is a cycle for all b ∈ Z≥0 ∪ {+∞},
or D/R−∞,b is a chain for all b ∈ Z≥0 ∪ {+∞}, or D/R−∞, b is a regular directed tree
with in-degree > 1 and out-degree 1 for all b ∈ Z≥0. In particular, we get that, for any
connected transitive digraph D, the (connected transitive) digraph D/R−∞,+∞ is either
a cycle or a chain.

Furthermore, if D is a digraph and a ∈ Z≤0∪{−∞}, then either Ra,k+1 = Ra,k for some
positive integer k and Ra,+∞ = Ra,k, or Ra,k+1 6= Ra,k and Ra,+∞ 6= Ra,k for any positive
integer k (see Proposition 2.5 below). It follows from Corollary 2.4 (see below) that, for a
digraph D, the property to satisfy Ra,+∞ = Ra,k for some positive integer k holds either
for all or for none of non-positive integers a, i.e. this property of D is independent of the
choice of non-positive integer a. Thus we can formulate this property of D as R+∞ = Rk

for some positive integer k. Analogously, if D is a digraph and b ∈ Z≥0 ∪ {+∞}, then
either R−k−1,b = R−k,b for some positive integer k and R−∞,b = R−k,b, or R−k−1,b 6= R−k,b
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and R−∞,b 6= R−k,b for any positive integer k (see Proposition 2.5 below). It follows from
Corollary 2.4 (see below) that, for a digraph D, the property to satisfy R−∞,b = R−k,b

for some positive integer k holds either for all or for none of non-negative integers b, i.e.
this property of D is independent of the choice of non-negative integer b. Thus we can
formulate this property of D as R−∞ = R−k for some positive integer k.

It can be shown (see Corollary 2.12 and Proposition 2.10 below) that R−∞ = R−k

for some positive integer k in the case D/R−∞ is finite, and, analogously, R+∞ = Rk for
some positive integer k in the case D/R+∞ is finite. Thus, for any connected transitive
digraph D and any ε ∈ {−, +}, one of the following conditions holds:

1ε: Rε∞ = Rεk for some positive integer k and D/Rε∞ is a cycle.

2ε: Rε∞ = Rεk for some positive integer k and D/Rε∞ is a chain.

3ε: Rε∞ = Rεk for some positive integer k and D/Rε∞ is a regular directed tree with
in-degree > 1 and out-degree 1 in the case ε = − and with in-degree 1 and out-degree
> 1 in the case ε = +.

4ε: Rε∞ 6= Rεk for any positive integer k and D/Rε∞ is a chain.

5ε: Rε∞ 6= Rεk for every positive integer k and D/Rε∞ is a regular directed tree with
in-degree > 1 and out-degree 1 in the case ε = − and with in-degree 1 and out-degree
> 1 in the case ε = +.

It is quite natural to ask which pairs (i−, j+), 1 ≤ i, j ≤ 5, of these properties can
occur simultaneously for locally finite connected transitive digraphs D? In this paper we
proof the following Table Theorem which answers this question.

Theorem 1.1. Let D be a locally finite connected transitive digraph. In the following
table the symbol Y at the entry i−, j+ indicates that D can have properties i− and j+

simultaneously; N means that D cannot have both properties simultaneously.

1+ 2+ 3+ 4+ 5+

1− Y N N N N
2− N Y N N N
3− N N N Y N
4− N N Y N N
5− N N N N Y

We also investigate the same question for digraphs D from natural subclasses of the
class of locally finite connected transitive digraphs. In Section 4 we consider the follow-
ing subclasses: Cayley digraphs of finitely generated groups, the class of locally finite
connected transitive digraphs with infinitely many ends, locally finite connected transi-
tive digraphs containing certain directed subtrees, and locally finite connected highly arc
transitive digraphs.
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2 General properties of reachability relations

In this section we present some general facts on reachability relations on digraphs, which
are used (often implicitly) in the sequel. To do that we need some additional definitions:

Let D be a digraph. A sequence (v0, ..., vn), n ≥ 1, of pairwise different vertices of D
satisfying (vi, vi+1) ∈ E(D) for all 0 ≤ i < n is a directed path in D of length n. For any
positive integer i, the digraph Di is defined by V (Di) = V (D) and E(Di) = {(u, v)| u 6=
v and there exists a directed path
of length ≤ i in D with initial vertex u and terminal vertex v}. For any positive integer

i, the graph D
i
is obtained from D by inserting edges between any two different vertices

which are at distance at most i in D.
A walk of a digraph is closed if its initial vertex and its terminal vertex coincide.

For a walk W = (v0, e
ε1
1 , v1, . . . , vn−1, e

εn
n , vn) of a digraph D, the walk W−1 of D is

defined by W−1 := (vn, e−ε
n , vn−1, ..., v1, e

−ε
1 , v0). If l(W ) = 0 we set W−1 = W . If

W = (v0, e
ε1
1 , v1, . . . , vn−1, e

εn
n , vn) and W ′ = (u0, f

σ1

1 , u1, . . . , um−1, f
σm
m , um) are walks of a

digraph D such that vn = u0, then the walk WW ′ is called the concatenation of W and
W ′ and is defined by

WW ′ := (v0, e
ε1
1 , v1, . . . , vn−1, e

εn

n , vn = u0, f
σ1

1 , u1, . . . , um−1, f
σm

m , um)

(we set W := WW ′ if l(W ′) = 0 and W ′ := WW ′ if l(W ) = 0).
For a digraph D, the digraph D∗ is defined by V (D∗) = V (D) and E(D∗) = {(u, v)|

(v, u) ∈ E(D)}. Note that, for any a ∈ Z≤0 ∪ {−∞} and any b ∈ Z≥0 ∪ {+∞}, the
reachability relation RD

a,b coincides with the reachability relation RD∗

−b,−a (on V (D) =
V (D∗)).

As usual, a digraph D1 is contained in a digraph D2 if V (D1) ⊆ V (D2) and E(D1) ⊆
E(D2).

In the sequel we present some basic properties of reachability relations in digraphs.
Proposition 2.1 follows immediately from the above definitions.

Proposition 2.1. Let D be a digraph, let a ∈ Z≤0 ∪ {−∞} and b ∈ Z≥0 ∪ {+∞}. If in
addition a′ ∈ Z≤0 ∪ {−∞} and b′ ∈ Z≥0 ∪ {+∞}, then the following assertions hold.

(1) The equivalence relation on V (D) generated by Ra,b and Ra′ ,b′ coincides with
Rmin{a,a′},max{b,b′},

(2) The union of all equivalence classes with respect to RD
a,b contained in an arbi-

trary fixed equivalence class with respect to R
D/RD

a,b

a′,b′ is an equivalence class with respect to

RD
a+a′,b+b′ .

Proposition 2.2. Let D be a connected transitive digraph, let a ∈ Z≤0 ∪ {−∞}, b ∈
Z≥0 ∪ {+∞} and suppose |V (D/Ra,b)| > 1. Then u 6∈ Ra,b(v) for any vertex u with
(u, v) ∈ E(D).

Proof. Assume there exists (u, v) ∈ E(D) with uRa,bv. Since u 6= v it follows that a < 0
or b > 0. Since D is a connected transitive digraph and |V (D/Ra,b)| > 1, there exist
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(u, u′) ∈ E(D) and (v′, v) ∈ E(D) such that u′ 6∈ Ra,b(u) = Ra,b(v) and v′ 6∈ Ra,b(v) =
Ra,b(u). If a < 0 we obtain that (v, (u, v)−1, u, (u, u′), u′) ∈ Ra,b; if b > 0 we obtain that
(u, (u, v), v, (v′, v)−1, v′) ∈ Ra,b. Thus u′ ∈ Ra,b(v) or v′ ∈ Ra,b(u), a contradiction.

�

Let D be a digraph and let a ∈ Z≤0 ∪ {−∞}, b ∈ Z≥0 ∪ {+∞}. For u, v ∈
V (D) set uSav if either a = 0 and u = v or a 6= 0 and there exists a walk (u =
v0, e

ε1
1 , v1, . . . , v2n−1, e

ε2n

2n , v2n = v) in D with n ≤ −a such that ε1, ..., εn = −1 and
εn+1, ..., ε2n = 1. Analogously, for u, v ∈ V (D) put uSbv if either b = 0 and u = v or
b 6= 0 and there exists a walk (u = v0, e

ε1
1 , v1, . . . , v2n−1, e

ε2n

2n , v2n = v) of D with n ≤ b such
that ε1, ..., εn = 1 and εn+1, ..., ε2n = −1.

Proposition 2.3. Let D be a digraph, let a ∈ Z≤0 ∪ {−∞} and let b ∈ Z≥0 ∪ {+∞}.
Then the following assertions hold:

(1) If the out-degree of every vertex of D is ≥ 1, then Ra,0 is the minimal equivalence
relation on V (D) containing the relation Sa.

(2) If the in-degree of every vertex of D is ≥ 1, then R0,b is the minimal equivalence
relation on V (D) containing the relation Sb.

(3) If both the out-degree and the in-degree of every vertex of D are ≥ 1, Ra,b is the
minimal equivalence relation on V (D) containing the relation Sa as well as the relation
Sb.

Proof. To prove (1) note first that Sa is contained in Ra,0. On the other hand, as-
sume that uRa,0v and u 6= v. Then, by definition, there exists a walk W = (u =
v0, e

ε1
1 , v1, . . . , vn−1, e

εn
n , vn = v) in D such that, for any 0 ≤ j ≤ n, the height of the

(0, j)-subwalk W0,j of W is non-positive and not smaller than a. Since the out-degree of
every vertex of D is ≥ 1, for each j, 0 ≤ j ≤ n, either ht(W0,j) = 0 (in this case we define
wj := vj) or there exists a walk (vj = vj,0, ej,1, vj,1, . . . , vj,−ht(W0,j)−1, ej,−ht(W0,j), vj,−ht(W0,j)),
where ej,1, . . . , ej,−ht(W0,j) ∈ E(D) (in this case we set wj := vj,−ht(W0,j)). Now wiSawi+1

for every i, 0 ≤ i ≤ n − 1, since −ht(W0,j) < −a. Since w0 = v0 = u and wn = vn = v,
it follows that u and v are equivalent with respect to the minimal equivalence relation on
V (D) containing Sa. Thus assertion (1) holds. Assertion (2) can be shown analogously.
Since Ra,b is the minimal equivalence relation on V (D) containing Ra,0 and R0,b, assertion
(3) immediately follows from (1) and (2).

�

Corollary 2.4. Let D be a digraph and let a ∈ Z≤0 ∪{−∞}, b ∈ Z≥0 ∪{+∞}. Then the
following assertions hold.

(1) If the in-degree of every vertex of D is ≥ 1 and Ra,k = Ra,+∞ for some non-negative
integer k, then R0,k−a = R0,+∞.

(2) If the out-degree of every vertex of D is ≥ 1 and R−k,b = R−∞,b for some non-
negative integer k, then R−k−b,0 = R−∞,0.
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Proof. We prove assertion (2). Then assertion (1) obviously holds, since it is equivalent
to assertion (2) applied to the digraph D∗.

Of course, R−k−b,0 ⊆ R−∞,0. By Proposition 2.3 it is sufficient to show that S−∞ ⊆
R−k−b,0 to prove that R−∞,0 ⊆ R−k−b,0. Assume u, v ∈ V (D) and uS−∞v. Of course,
uR−k−b,0v if u = v. Suppose u 6= v. Then, by the definition of S−∞, for some positive in-
teger n there exist walks U = (u = u0, e

−1
1 , u1, ..., e

−1
n , un) and V = (v = v0, e

′−1
1 , v1, ..., e

′−1
n ,

vn) of D such that un = vn. If n ≤ k + b it follows that uR−k−b,0v. Suppose n > k + b.
Then Ub,nV −1

b,n ∈ R−∞,0. Since R−∞,b = R−k,b it follows that there exists a walk W ∈ R−k,b

with initial vertex ub and terminal vertex vb. Now U0,bWV −1
0,b ∈ R−k−b,0 and therefore

uR−k−b,0v, which completes the proof.

�

Proposition 2.5. Let D be a digraph and let a ∈ Z≤0 ∪ {−∞}, b ∈ Z≥0 ∪ {+∞}. Then
the following assertions hold:

(1) Conditions (1a) − (1c) are equivalent:
(1a) Ra−1,b = Ra,b,
(1b) Ra,b = R−∞,b,
(1c) the out-degree of every vertex of D/Ra,b is ≤ 1.

(2) Conditions (2a) − (2c) are equivalent:
(2a) Ra,b+1 = Ra,b,
(2b) Ra,b = Ra,+∞,
(2c) the in-degree of every vertex of D/Ra,b is ≤ 1.

(3) Conditions (3a) − (3c) are equivalent:
(3a) Ra−1,b+1 = Ra,b,
(3b) Ra,b = R−∞,+∞,
(3c) both, the in-degree and the out-degree of every vertex of D/Ra,b are ≤ 1.

Proof. We only prove assertion (1), since assertions (2) and (3) can be proved anal-
ogously. Obviously, (1c) implies (1b) while (1b) implies (1a). Suppose that (1a) holds.
Then, setting (a, b) = (−1, 0) and (a′, b′) = (0, 0) in Proposition 2.1(1), we obtain that

R
D/RD

a,b

−1,0 = R
D/RD

a,b

0,0 . This implies that the out-degree of every vertex of the digraph D/Ra,b

is ≤ 1. Thus (1a) implies (1c) and (1) holds.

�

Corollary 2.6. Let D be a digraph and let a ∈ Z≤0 ∪{−∞}, b ∈ Z≥0 ∪{+∞}. Then the
following assertions hold:

(1) The out-degree of every vertex of D/R−∞,b is ≤ 1.
(2) The in-degree of every vertex of D/Ra,+∞ is ≤ 1.
(3) Both the in-degree and the out-degree of every vertex of D/R−∞,+∞ are ≤ 1.

Corollary 2.7. Let D be a digraph and let a ∈ Z≤0 ∪{−∞}, b ∈ Z≥0 ∪{+∞}. Then the
following assertions hold:
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(1) D/R−∞,b is one of the following graphs: a cycle, a chain or a regular directed tree
with in-degree > 1 and out-degree 1.

(2) D/Ra,+∞ is one of the following graphs: a cycle, a chain or a regular directed tree
with in-degree 1 and out-degree > 1.

(3) D/R−∞,+∞ is either a cycle or a chain.

The next result gives a simple condition under which D/R−∞,+∞ is a cycle.

Corollary 2.8. Let D be a connected transitive digraph. Suppose there exists a closed
walk W in D with ht(W ) 6= 0. Then D/R−∞,+∞ is a cycle and |V (D/R−∞,+∞)| divides
ht(W ).

Proposition 2.9. Let D be a transitive digraph. Suppose there exists a closed walk W of
D with ht(W ) 6= 0. Put aW := min{ht(W0,j) : 0 ≤ j ≤ l(W )} and bW := max{ht(W0,j) :
0 ≤ j ≤ l(W )}. Then Ra,b = R−∞,+∞ for any non-positive integer a and any non-negative
integer b with b − a ≥ bW − aW .

Proof. Since D is transitive, there exists a closed walk Wx of length l(W ) for every x ∈
V (D) whose initial vertex and terminal vertex coincides with x, such that ht((Wx)0,j) =
ht(W0,j) for all j, 0 ≤ j ≤ l(W ).

Let a be an arbitrary non-positive integer and let b be an arbitrary non-negative integer
with b − a ≥ bW − aW . For a walk U in D with ht(U) = 0, set

H(U) := {j : 0 ≤ j ≤ l(U) and either ht(U0,j) < a or ht(U0,j) > b}.

Proceeding by induction on |H(U)| we prove that the initial vertex and the terminal
vertex of an arbitrary walk U of D with ht(U) = 0 are Ra,b-equivalent.

If |H(U)| = 0, then U ∈ Ra,b, and the initial vertex and the terminal vertex of U are
Ra,b-equivalent by definition.

Assume that there exists an integer i, 0 ≤ i ≤ l(U), with ht(U0,i) < a. Then we can
write U = U ′U ′′U ′′′ where l(U ′) < i < l(U ′U ′′), ht(U ′) = a = ht(U ′U ′′) and ht(U0,j) < a
for all j, l(U ′) < j < l(U ′U ′′). Let x′ be the initial vertex of the walk U ′′, and x′′ be the
terminal vertex of the walk U ′′. Since D is a transitive digraph and E(D) 6= ∅, there exists
a walk W ′ in D with initial vertex x′ such that ht(W ′) = l(W ′) = −aW if ht(W ) > 0 and
ht(W ′) = l(W ′) = bW if ht(W ) < 0. Analogously, there exists a walk W ′′ in D with initial
vertex x′′ such that ht(W ′′) = l(W ′′) = bW − ht(W ) if ht(W ) > 0 and ht(W ′′) = l(W ′′) =
−aW +ht(W ) if ht(W ) < 0. Let y′ be the terminal vertex of the walk W ′, and let y′′ be the
terminal vertex of the walk W ′′. Define Ũ := U ′W ′Wy′(W ′)−1U ′′W ′′(Wy′′)−1(W ′′)−1U ′′′ if
ht(W ) > 0, and set Ũ := U ′W ′(Wy′)−1(W ′)−1U ′′W ′′Wy′′(W ′′)−1U ′′′ if ht(W ) < 0. Then
ht(Ũ) = 0 and |H(Ũ)| < |H(U)|. Thus, by our induction hypothesis, the initial vertex
of U (which coincides with the initial vertex of Ũ) and the terminal vertex of U (which
coincides with the terminal vertex of Ũ) are Ra,b-equivalent.

Assume now that there exists an integer i, 0 ≤ i ≤ l(U) with ht(U0,i) > b. Then
we can write U = U ′U ′′U ′′′ where l(U ′) < i < l(U ′U ′′), ht(U ′) = b = ht(U ′U ′′) and
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ht(U0,j) > b for all j, l(U ′) < j < l(U ′U ′′). Let x′ be the initial vertex of the walk
U ′′, and x′′ be the terminal vertex of the walk U ′′. Since D is a transitive digraph
and E(D) 6= ∅, there exists a walk W ′ of D with initial vertex x′ such that ht(W ′) =
−l(W ′) = aW in the case ht(W ) > 0 and ht(W ′) = −l(W ′) = −bW in the case ht(W ) < 0.
Analogously, there exists a walk W ′′ in D with initial vertex x′′ such that ht(W ′′) =
−l(W ′′) = −bW + ht(W ) if ht(W ) > 0 and ht(W ′′) = −l(W ′′) = aW − ht(W ) if ht(W ) <
0. Let y′ be the terminal vertex of the walk W ′, and let y′′ be the terminal vertex of
the walk W ′′. Define Ũ := U ′W ′(Wy′)−1(W ′)−1U ′′W ′′Wy′′(W ′′)−1U ′′′ if ht(W ) > 0 and
set Ũ := U ′W ′Wy′(W ′)−1U ′′W ′′(Wy′′)−1(W ′′)−1U ′′′ if ht(W ) < 0. Then ht(Ũ) = 0 and
|H(Ũ)| < |H(U)|. Thus, by our induction hypothesis, the initial vertex of U (which
coincides with the initial vertex of Ũ) and the terminal vertex of U (which coincides with
the terminal vertex of Ũ) are Ra,b-equivalent.

�

We say that a connected digraph D has property Z if there exists a homomorphism of D
onto a chain, i.e. a mapping χ of V (D) onto the set Z of integers such that χ(v) = χ(u)+1
for any (u, v) ∈ E(D). Note that, if the digraph D with property Z admits a vertex-
transitive group of automorphisms G, then χ induces a natural homomorphism from G
onto Z.

The next result is more or less obvious and we present it without proof (see also [8]).

Observation. Let D be a connected digraph with |V (D)| > 1. Then D has property Z

if and only if ht(W ) = 0 for any closed walk W of D.

As a consequence of this observation and Proposition 2.9 we have the following result.

Proposition 2.10. Let D be a connected transitive digraph without property Z. Then
there exists a non-negative integer c such that Ra,b = R−∞,+∞ for any non-positive integer
a and any non-negative integer b with b − a ≥ c.

The following result immediately follows from Proposition 2.2.

Proposition 2.11. Let D be a connected transitive digraph. Then the following condi-
tions are equivalent.

(1) For some a ∈ Z≤0 ∪ {−∞} and some b ∈ Z≥0 ∪ {+∞} the digraph D/Ra,b has
property Z.

(2) For any a ∈ Z≤0∪{−∞} and any b ∈ Z≥0∪{+∞} the digraph D/Ra,b has property
Z.

Corollary 2.12. Let D be a connected transitive digraph and let a ∈ Z≤0 ∪ {−∞}, b ∈
Z≥0 ∪ {+∞}. Then the following assertions are equivalent:

(1) D/R−∞,b is infinite (by Corollary 2.7 this means that D/R−∞,b is either a chain
or a regular directed tree with in-degree > 1 and out-degree 1).

(2) D/Ra,+∞ is infinite (by Corollary 2.7 this means that D/Ra,+∞ is either a chain
or a regular directed tree with in-degree 1 and out-degree > 1).

(3) D/R−∞,+∞ is infinite (by Corollary 2.7 it means that D/R−∞,+∞ is a chain).
(4) D has property Z.
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Proof. If one of (1), (2), (3) or (4) holds, then the digraphs D/R−∞,b, D/Ra,+∞,
D/R−∞,+∞ or D/R0,0 = D have property Z, respectively. Thus the result follows from
Proposition 2.11.

�

Proposition 2.13. Let D be a connected transitive digraph and let a ∈ Z≤0 ∪ {−∞},
b ∈ Z≥0 ∪ {+∞}. Then the following assertions hold:

(1) If Ra,k+1 6= Ra,k for every positive integer k, then D contains a regular tree with
in-degree 2 and out-degree 1.

(2) If R−k−1,b 6= R−k,b for every positive integer k, then D contains a regular tree with
in-degree 1 and out-degree 2.

Proof. We only prove assertion (2) since (1) is equivalent to (2), formulated for the
digraph D∗.

Assume R−k−1,b 6= R−k,b for every positive integer k. Then assertion (1) of Proposi-
tion 2.1 implies that R−k−1 6= R−k for every positive integer k. Furthermore, by Proposi-
tion 2.10 and Corollary 2.12 the digraph D has property Z and the digraph D/R−∞,+∞

is a chain. In particular, the vertex-transitive group of automorphisms Aut(D) induces
an infinite cyclic group of automorphisms of D/R−∞,+∞.

It is easy to see that any transitive digraph with infinite out-degree contains a regular
tree with in-degree 1 and out-degree 2. Thus without loss of generality we can assume
that deg+(D) is finite. Now arguments used in the proof of Theorem 4.2 in [12] or in the
proof of Theorem 4.12 in [8] can be easily adapted to prove that D contains a regular tree
with in-degree 1 and out-degree 2.

For the convenience of the reader we roughly outline the arguments of the proof in
[8] here. The digraph D in consideration has property Z. Since D is transitive with
finite deg+(D) and R−k−1,b 6= R−k,b for every positive integer k, we can find, for any
vertex u of D, edges (u, u↗) and (u, u↘) of D such that there exist arbitrarily long
directed paths (v0, v1, ..., vl) and (w0, w1, ..., wl) in D with v0 = w0 = u, v1 = u↗, w1 =
u↘ and vl 6∈ R−l+1,0(wl). By the choice of (u, u↗) and (u, u↘), for any directed paths
(v′

0, v
′
1, ..., v

′
m) and (w′

0, w
′
1, ..., w

′
n) in D with v′

0 = w′
0 = u, v′

1 = u↗ and w′
1 = u↘, we have

{v′
1, ..., v

′
m} ∩ {w′

1, ..., w
′
n} = ∅. Fix an arbitrary vertex u of D, and define a subgraph Tu

of D by V (Tu) = {u} ∪ {(...(uε1)...)εt : t ≥ 1 and εs ∈ {↗,↘} for each s, 1 ≤ s ≤ t}
and E(Tu) = {(u, u↗), (u, u↘)} ∪ {((...(uε1)...)εt, ((...(uε1)...)εt)εt+1) : t ≥ 1 and εs ∈ {↗
,↘} for each s, 1 ≤ s ≤ t + 1}. The subgraph Tu is a directed subtree of D such that the
in-degree of every vertex of Tu different from u is 1 (the in-degree of u in Tu is 0) and the
out-degree of every vertex of Tu is 2. Since D is a transitive digraph, the result follows.

�
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3 Proof of Theorem 1.1

Obviously, if D is a digraph satisfying the pair of conditions (i−, j+), where 1 ≤ i, j ≤ 5,
then the digraph D∗ satisfies the pair of conditions (j−, i+). Thus, for any 1 ≤ i, j ≤ 5,
the pair of possibilities (i−, j+) is realized by some connected transitive digraph if and
only if the same holds for the pair (j−, i+). Hence it is sufficient to investigate which pairs
(i−, j+) with 1 ≤ i ≤ j ≤ 5 are realized for connected transitive digraphs.
(1−, 1+): Obviously, any cycle (and, more generally, any finite connected transitive di-
graph) has properties 1− and 1+ simultaneously. Moreover, by Proposition 2.9 and Corol-
laries 2.8, 2.12 and 2.7, any connected transitive digraph containing a closed walk of
non-zero height has properties 1− and 1+ simultaneously.

(1−, 2+), (1−, 3+), (1−, 4+), (1−, 5+): Properties 2+, 3+, 4+ and 5+ all imply that D/R0,+∞

is an infinite graph. Then it follows from Corollary 2.12 that also D/R−∞,0 is infinite,
a contradiction to property 1−. Therefore all these pairs of properties cannot occur
simultaneously.

(2−, 2+): If D is a chain, then of course D has both properties.

(2−, 3+), (2−, 4+), (2−, 5+): Assume that a connected transitive digraph D has prop-
erty 2− and simultaneously one of the properties 3+, 4+ or 5+. By 2−, R−∞,0 = R−k,0

for some positive integer k. We show first that R−∞,0 ⊆ R0,k. Let uR−∞,0v. Since
D is transitive and 2− is satisfied, there are walks U = (u = u0, e1, u1, ..., ek, uk) and
V = (v = v0, e

′
1, v1, ..., e

′
k, vk) in D such that ukR−∞,0vk. In addition 2− implies that

ukR−k,0vk, i.e. there exists a walk W ∈ R−k,0 with initial vertex uk and terminal ver-
tex vk. Now UWV −1 ∈ R0,k and, consequently, uR0,kv. Thus R−∞,0 ⊆ R0,k. On the
other hand, D/R−∞,0 is a chain by property 2−. Hence, by assertion (2) of Proposi-
tion 2.1, R−∞,0 = R−∞,+∞. Therefore, by assertion (1) of Proposition 2.1, R−∞,0 =
R0,k ⊆ R0,+∞ ⊆ R−∞,+∞. In particular, R0,k = R0,+∞ and, consequently, neither 4+ nor
5+ can be satisfied. Furthermore, since R−∞,0 = R0,+∞, it follows from 2− that D/R0,+∞

is a chain. Thus 3+ also can not be satisfied. We conclude that, for connected transitive
digraphs, 2− can not occur simultaneously with any of the properties 3+, 4+, 5+.

(3−, 3+), (3−, 5+): Assume that, for a connected transitive digraph D, 3− and one of
properties 3+ or 5+ hold simultaneously. By 3−, R−∞,0 = R−k,0 for some positive integer
k. Analogously to the case (2−, 3+) it is possible to show that R−∞,0 ⊆ R0,k ⊆ R0,+∞. By
assertion (1) of Proposition 2.1, it follows that R−∞,+∞ = R0,+∞. Since one of the proper-
ties 3+ or 5+ holds, we also obtain that D/R−∞,+∞ = D/R0,+∞ is a regular directed tree
with in-degree 1 and out-degree > 1. But this contradicts assertion (3) of Corollary 2.7.
Therefore, for connected transitive digraphs, property 3− excludes properties 3+ and 5+.

(3−, 4+): Any regular directed tree with out-degree 1 and in-degree > 1 has properties
3− and 4+.

(4−, 4+), (4−, 5+): Assume that, for a locally finite connected transitive digraph D, 4−

and one of the properties 4+ or 5+ are satisfied. Since D/R−∞,0 is a chain, we know
that R−∞,0 = R−∞,+∞ ⊇ R0,+∞. Fix x ∈ V (D). Since D is locally finite, S+1(x) :=
{y ∈ V (D) : xS+1y} is a finite subset of the set R0,+∞(x) ⊆ R−∞,0(x). It follows from
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R−∞,0(x) = ∪k≥0R−k,0(x) that S+1(x) ⊆ Ra,0(x) for some non-positive integer a. Since
D is transitive, we conclude that S+1 ⊆ Ra,0. Now assertion (2) of Proposition 2.3
implies that R0,1 ⊆ Ra,0. Hence Ra,1 ⊆ Ra,0 (assertion (2) of 2.1). Assertion (2) of
Proposition 2.5 implies that Ra,0 = Ra,+∞. But then assertion (1) of Corollary 2.4 implies
that R0,−a = R0,+∞, a contradiction.

(5−, 5+): Any regular directed tree with in-degree > 1 and out-degree > 1 has both
properties.

4 Reachability relations in various classes of digraphs

Considering Theorem 1.1 it is quite natural to investigate the question which pairs of
properties i−, j+ can occur simultaneously in digraphs from important subclasses of the
class of locally finite connected transitive digraphs. In this Section we consider the follow-
ing subclasses: the class of locally finite Cayley digraphs of groups, locally finite connected
transitive digraphs with one with two or with infinitely many ends, locally finite connected
transitive digraphs containing certain directed subtrees, and locally finite connected highly
arc transitive digraphs.

Let G be a group generated by M ⊆ G and 1 6∈ M . Recall that the Cayley digraph of G
with respect to M is the digraph DG,M with V (DG,M) = G and E(DG,M) = {(x, y) : x−1y ∈
M}. The digraph DG,M is connected and transitive with deg−(DG,M) = deg+(DG,M) =
|M |. A digraph D is a Cayley digraph if D ∼= DG,M for some group G and some generating
set M with 1 6∈ M of G.

To investigate locally finite Cayley digraphs we need the following result.

Proposition 4.1. Let G be a group generated by M ⊆ G and 1 6∈ M . Let D = DG,M

be the Cayley digraph of G with respect to M . Let a ∈ Z≤0 and b ∈ Z≥0. Then the
equivalence classes on V (D) = G with respect to Ra,b coincide with the left cosets in G of
the subgroup generated by ∪a≤m≤bM

mM−m.

Proof. Let n be an arbitrary positive integer. It is easy to see that, for g1, g2 ∈ G,
g1S−ng2 if and only if there exist 0 ≤ m ≤ n and x1, ..., xm ∈ M , y1, ..., ym ∈ M such that
g1 = g2x

−1
1 ...x−1

m y1, ..., ym. Analogously, for g1, g2 ∈ G, g1Sng2 if and only if there exist
0 ≤ m ≤ n and x1, ..., xm ∈ M , y1, ..., ym ∈ M such that g1 = g2x1...xmy−1

1 ...y−1
m . Now

Proposition 4.1 follows from Proposition 2.1 and Proposition 2.3.

�

Theorem 4.2. For locally finite Cayley digraphs the table coincides with the table pre-
sented in Theorem 1.1.

Proof. We first show that the (3−, 4+)-entry of the table is Y . Let d be a positive
integer, and G := 〈f1, ..., fd, h : h−1fih = f 2

i , 1 ≤ i ≤ d〉. Then F := 〈f1, ..., fd〉 is a free
subgroup of G with free generating set {f1, ..., fd}. Furthermore h−1Fh is a subgroup
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of F such that the index |F : h−1Fh| is infinite in the case d > 1. The index is equal
to 2 in the case d = 1. In addition U := ∪i∈Zh−iFhi is a normal subgroup of G such
that G = U h 〈h〉 is a semidirect product of U by the infinite cyclic group 〈h〉. Let
M := {h, hf1, ..., hfd}. Then M is a generating set of G and 1 6∈ M . Let D = DG,M be
the Cayley digraph of G with respect to M . By Proposition 4.1, for any a ∈ Z≤0 and
b ∈ Z≥0, the equivalence classes on V (D) = G with respect to Ra,b coincide with the left
cosets in G of the subgroup generated by ∪a≤m≤bM

mM−m. But it is easy to see that, in
the case a < 0 or b > 0, the subgroup generated by ∪a≤m≤bM

mM−m is hbFh−b. Thus, in
the case a < 0 or b > 0, the equivalence classes on V (D) = G with respect to Ra,b coincide
with the left cosets in G of the subgroup hbFh−b. It follows that the equivalence classes
on V (D) = G with respect to R0,+∞ coincide with the left cosets in G of the subgroup
U , and R0,+∞ 6= R0,b for any b ∈ Z≥0. Furthermore D/R0,+∞ is a chain, since G/U is an
infinite cyclic group generated by hU = MU . It also follows that the equivalence classes
on V (D) = G with respect to R−∞,0 coincide with the left cosets in G of the subgroup F ,
and, in addition, R−∞,0 = R−1,0. To find the in-degree of the digraph D/R−∞,0, note that,
for g ∈ G, (gF, F ) ∈ E(D/R−∞,0) if and only if g ∈ Fh−1F = h−1hFh−1F = h−1hFh−1.
Thus the in-degree of the digraph D/R−∞,0 is equal to the index |hFh−1 : F | which is
infinite in the case d > 1 and is equal to 2 in the case d = 1. Thus the Cayley digraph D
has properties 3− and 4+. Hence the (3−, 4+)-entry of the table is Y .

Replacing, in the definition of G, the relations h−1fih = f 2
i , 1 ≤ i ≤ d, by the

relations hfih
−1 = f 2

i , 1 ≤ i ≤ d, and repeating the arguments given above, we get that
the (4−, 3+)-entry of the Table is Y as well.

Any (non-trivial) cycle is a Cayley digraph and has properties 1− and 1+ simultane-
ously. (Furthermore, any Cayley digraph containing a closed walk of a non-zero height has
properties 1− and 1+ simultaneously, see the proof of Theorem 1.1.) Thus the (1−, 1+)-
entry of the table is Y . Since a chain is a Cayley digraph of Z and a regular directed tree
T with deg−(T ) = deg+(T ) > 1 is a Cayley digraph of a free group, the entries (2−, 2+)
and (5−, 5+) of the table are Y as well.

�

Let D be a digraph. An infinite sequence (v0, v1, . . .) of pairwise distinct vertices of D
is called a ray in D if (vi, vi+1) ∈ E(D) or (vi+1, vi) ∈ E(D) for each non-negative integer
i. Two rays R and Q in a digraph D are called equivalent if, in the underlying graph D,
there are infinitely many pairwise disjoint finite paths connecting vertices in P to vertices
in Q. The equivalence classes of all rays of a digraph D with respect to this relation
are called ends of D. The concept of ends can be defined in several different ways; this
definition is due to Halin [4]. It follows from results in [3], [5] that a transitive, connected,
infinite digraph has one, two or infinitely many ends.

Theorem 4.3. (1) For locally finite connected transitive one-ended digraphs, the table is
the same as in Theorem 1.1.

(2) For locally finite connected transitive two-ended digraphs, only the entries (1−, 1+)
and (2−, 2+) of the table equal Y ; all other entries of the table are equal to N .
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(3) For locally finite connected transitive digraphs with infinitely many ends, the table
differs from the table in Theorem 1.1 only in the entry (2−, 2+) which is N in this case.

Proof. (1) For an arbitrary digraph D, define the digraph D ↗ Z by V (D ↗ Z) =
V (D) × Z and E(D ↗ Z) = {((x, i), (y, i)) : (x, y) ∈ E(D), i ∈ Z} ∪ {((x, i), (y, i +
1)) : (x, y) ∈ E(D), i ∈ Z}. It is obvious that, in the case the out-degree of every
vertex of D is ≥ 1 and the in-degree of every vertex of D is ≥ 1, for each (x, i) ∈
V (D ↗ Z) we have RD↗Z

−1,0 ((x, i)) = {(x′, i′) : x′ ∈ RD
−1,0(x), i′ ∈ Z} and RD↗Z

0,1 ((x, i)) =
{(x′, i′) : x′ ∈ RD

0,1(x), i′ ∈ Z}. In addition, D ↗ Z is transitive if D is transitive, and
D ↗ Z is one-ended if D is infinite and connected. Now assertion (1) of Theorem 4.3
follows from Proposition 2.1 and Theorem 1.1. (Of course, there are infinite locally finite
connected transitive digraphs which have properties 1− and 1+ simultaneously as the
proof of Theorem 1.1 in Section 3 shows.)

(2) Assertion (2) of Theorem 4.3 is obvious.
(3) It follows from the proof of Theorem 1.1 (see Section 3), that to prove assertion

(3) of the Theorem it is sufficient to show that the (1−, 1+)-entry of the table is Y , while
the (2−, 2+)-entry of the table is N .

Any locally finite connected transitive digraphs containing a closed walk of a non-zero
height has properties 1− and 1+ simultaneously (see the proof of Theorem 1.1 in Section
3). Since there exist locally finite connected transitive infinitely-ended Cayley digraphs
containing closed walks of non-zero height (take, for example, the Cayley digraph of the
free product 〈g1〉 ∗ 〈g2〉 of cyclic groups of orders > 2 with respect to the generating set
{g1, g2}), the (1−, 1+)-entry of the table is Y .

If a transitive digraph D has both properties, 2− and 2+, simultaneously, then D has
property Z (see Corollary 2.12). But as was shown in [8], any digraph with infinitely many
ends and property Z has the property that at least one of the conditions R−∞,0 6= Ra,0

for all negative integers a, or R0,+∞ 6= R0,b for all positive integers b is satisfied. Hence
2− and 2+ cannot occur simultaneously.

�

To formulate our next result we define: A digraph D is of type T− if it contains a
regular directed tree with in-degree > 1 but does not contain a regular directed tree with
out-degree > 1; it is of type T+ if it contains a regular directed tree with out-degree > 1
but does not contain a regular directed tree with in-degree > 1. D is of type T± if it
contains a regular directed tree with in-degree > 1 as well as a regular directed tree with
out-degree > 1. It is of type NT if it neither contains a regular directed tree with in-degree
> 1 nor a regular directed tree with out-degree > 1.

Theorem 4.4. Let D be a connected locally finite transitive digraph. The table whose
(i−, j+)-entry is Y if D can have properties i− and j+ simultaneously, and is N otherwise,
is as follows:

(1) for D of type T±, the table coincides with the table of Theorem 1.1.
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(2) for D of type T−, the table differs from the table of Theorem 1.1 only in the entries
(4−, 3+) and (5−, 5+) which are N in this case.

(3) for D of type T+, the table differs from the table of Theorem 1.1 only in the entries
(3−, 4+) and (5−, 5+) which are N in this case.

(4) for D of type NT, the table differs from the table of Theorem 1.1 only in the entries
(3−, 4+), (4−, 3+) and (5−, 5+) which are N in this case.

Proof. Obviously, any cycle is of type NT and has properties 1− and 1+. Let Tm,n

denote the regular directed tree with in-degree m and out-degree n, with m, n ≥ 1. Let
T 2

m,n denote the digraph with V (T 2
m,n) = V (Tm,n) and E(T 2

m,n) = E(Tm,n)∪{(u, v) : there
exists w ∈ V (Tm,n) such that (u, w) ∈ E(Tm,n) and (w, v) ∈ E(Tm,n)}. Put D1 = T 2

2,2 and
D2 = T 2

2,1. By Proposition 2.9 and Corollary 2.8, each of digraphs D1, D2 has properties
1− and 1+ simultaneously. Furthermore, it is easy to see that D1 is of type T± while D2

is of the type T− and D∗
2 is of the type T+. Finally, any cycle is of type NT and has

properties 1− and 1+. Thus the (1+, 1−)-entries in the tables for all types T±, T+, T− and
NT are Y .

For an arbitrary digraph D, define the digraph D ↑ Z by V (D ↑ Z) = V (D) × Z

and E(D ↑ Z) = {((x, i), (x, i + 1)) : x ∈ V (D), i ∈ Z} ∪ {((x, i), (y, i + 1)) : (x, y) ∈
E(D), i ∈ Z}. If D is connected it is obvious that for every (x, i) ∈ V (D ↑ Z) we get
RD↑Z

−1,0((x, i)) = RD↑Z
0,1 ((x, i)) = {(x′, i) : x′ ∈ V (D)}. In addition D ↑ Z is transitive if

D is transitive. Furthermore, if D contains a regular directed tree T of in-degree > 1
(respectively, a regular directed tree T ∗ of in-degree > 1), then D ↑ Z contains T ↑ Z

(respectively, T ∗ ↑ Z) which contains a regular directed tree of in-degree (respectively, of
out-degree)> 1. It follows, the digraphs T2,2 ↑ Z, T2,1 ↑ Z and T1,2 ↑ Z are of types T±,
T− and T+, respectively, and have properties 2+ and 2− simultaneously. Finally, a chain
is of type NT and has properties 2− and 2+. Thus the (2−, 2+)-entries in the tables for
all types T±, T+, T− and NT are Y .

To complete the proof of assertion (1) we note that any regular directed tree of in-
degree > 1 and of out-degree > 1 is of type T± and has properties 5− and 5+ simultane-
ously. Furthermore, let DG,M be the Cayley digraph defined in the proof of Theorem 4.2.
It is easy to see that the subsemigroup of G generated by the subset {hf1, ..., hfd} of the
set M is free. Hence the subset {(hf1)

−1, ..., (hfd)
−1} of the set M−1 also generates a free

subsemigroup. In the case d > 1, it follows that the digraph DG,M is of type T±. Since
DG,M has properties 3− and 4+ (see the proof of Theorem 4.2), the (3−, 4+)-entry of the
table corresponding to the type T± is Y . Furthermore, in the case d > 1, the digraph
D∗

G,M is of type T± and has properties 4− and 3+. Thus the (4−, 3+)-entry of the table
corresponding to the type T± is Y as well. The proof of the assertion (1) of Theorem 4.4
is completed.

To complete the proof of assertion (2) of Theorem 4.4, note that any regular directed
tree with in-degree > 1 and out-degree 1 is of type T− and has properties 3− and 4+.
Furthermore, the assertion (2) of Proposition 2.14 implies that every connected transitive
digraph satisfying property 4− or property 5− contains a regular tree with in-degree 1 and
out-degree 2. In particular, digraphs of type T− neither have property 4− nor property
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5−. Thus assertion (2) holds.
Assertion (3) of Theorem 4.3 can be proved analogously (using a regular directed tree

with in-degree 1 and out-degree > 1 to show that the (3−, 4+)-entry of the corresponding
table is Y , and using assertion (1) of Proposition 2.14 to show that (4−, 3+)-, (5−, 5+)-
entries of the corresponding table are N).

Assertion (4) of Theorem 4.4 follows from Proposition 2.13.

�

Remark. Following [11] we say that a digraph D is in-hyperbolic with respect to v, where
v ∈ V (D), if there exists a positive integer t such that the digraph Dt (see Section 2)
contains a directed tree T with the following properties: v ∈ V (T ) and the out-degree
of v is 0; the out-degree of any vertex of T , different from v, is 1; the in-degree of any
vertex of T is 2. A digraph D is out-hyperbolic with respect to v, where v is a vertex of
D, if the digraph D∗ is in-hyperbolic with respect to v. If a digraph D is transitive and
in-hyperbolic (respectively, transitive and out-hyperbolic) with respect to some vertex,
then D is in-hyperbolic (respectively, out-hyperbolic) with respect to any vertex. We will
call such graphs in-hyperbolic (respectively, out-hyperbolic).

Analogously to the above we can define the following classes of locally finite connected
transitive digraphs D:

(1) D is in-hyperbolic and out-hyperbolic;
(2) D is in-hyperbolic but not out-hyperbolic;
(3) D is not in-hyperbolic but out-hyperbolic;
(4) D is neither in-hyperbolic nor out-hyperbolic.
An analysis of the proof of Theorem 4.4 shows that, for digraphs D satisfying (1),

(2), (3) or (4), the table whose (i−, j+)-entry is Y if D can have properties i− and j+

simultaneously, and is N otherwise, is given, respectively, by the assertion (1), (2), (3) or
(4) of Theorem 4.4.

An s-arc, s ≥ 0, is a walk (v0, e
ε1
1 , v1, . . . , vs−1, e

εs
s , vs) such that ε1 = . . . = εn = 1 and

vj 6= vj+2 for all 0 ≤ j ≤ s − 2. If Aut(D) acts transitively on the set of s-arcs, then
D is called s-arc transitive. D is said to be highly arc transitive if it is s-arc transitive
for all integers s ≥ 0. Highly arc transitive digraphs are an interesting class of digraphs
which were first intensively investigated in [1]. For further investigations and applications
of highly arc transitive digraphs we refer to [2], [6], [7], [9], [10].

Theorem 4.5. For connected infinite locally finite connected highly arc transitive di-
graphs the table coincides with the table in Theorem 1.1.

Proof. Obviously the examples of digraphs satisfying (2−, 2+), (3−, 4+), (3+, 4−) and
(5−, 5+) given in the proof of Theorem 1.1 are all highly arc transitive. As was shown in
[6], the digraph below (Figure 1)
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Figure 1

is highly arc transitive and does not have property Z. Hence R0,+∞ = R0,b and R−∞,0 =
Ra,0 for some b ∈ Z≥0∪{+∞}, a ∈ Z≤0∪{−∞} (see Proposition 2.10). Also, the quotient
digraphs D/R0,+∞ and D/R−∞,0 cannot be infinite since this would again imply that D
has property Z (see Corollary 2.12). Hence this graph satisfies 1− as well as 1+. The
result follows.

�
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