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Abstract

A 2-factor-plus-triangles graph is the union of two 2-regular graphs G1 and G2

with the same vertices, such that G2 consists of disjoint triangles. Let G be the

family of such graphs. These include the famous “cycle-plus-triangles” graphs shown

to be 3-choosable by Fleischner and Stiebitz. The independence ratio of a graph

in G may be less than 1/3; but achieving the minimum value 1/4 requires each

component to be isomorphic to the 12-vertex “Du–Ngo” graph. Nevertheless, G
contains infinitely many connected graphs with independence ratio less than 4/15.

For each odd g there are infinitely many connected graphs in G such that G1 has

girth g and the independence ratio of G is less than 1/3. Also, when 12 divides n

(and n 6= 12) there is an n-vertex graph in G such that G1 has girth n/2 and G is

not 3-colorable. Finally, unions of two graphs whose components have at most s

vertices are s-choosable.

1 Introduction

The Cycle-Plus-Triangles Theorem of Fleischner and Stiebitz [5] states that if a graph G

is the union of a spanning cycle and a 2-factor consisting of disjoint triangles, then G is

3-choosable, where a graph is k-choosable if for every assignment of lists of size k to the

vertices, there is a proper coloring giving each vertex a color from its list. Sachs [8] proved

by elementary methods that all such graphs are 3-colorable. Both results imply an earlier

conjecture by Du, Hsu, and Hwang [1], stating that a cycle-plus-triangles graph with 3k

vertices has independence number k. Erdős [3] strengthened the conjecture to the more

well-known statement that these graphs are 3-colorable. We return to the original topic

of independence number but study it on a more general family of graphs.
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A 2-factor-plus-triangles graph is a union of two 2-regular graphs G1 and G2 on the

same vertex set, where the components of G2 are triangles. Note that G1 and G2 may

share edges. For such a graph G, we denote the vertex sets of the components of G2 as

T1, . . . , Tk, with Tx = {x1, x2, x3}, and we refer to Tx as a “triple” to distinguish it from

a 3-cycle in G1. When G1 is a single cycle, G is a cycle-plus-triangles graph.

Let G denote the family of 2-factor-plus-triangles graphs. It is easy to construct graphs

in G that contain K4 (see Figure 1, for example), so graphs in G need not be 3-colorable.

Erdos [3] asked if a graph in G is 3-colorable whenever its factor G1 is C4-free. Fleischner

and Stiebitz [6] answered this negatively, citing an infinite family of such graphs in G that

are 4-critical, due to Gallai. In fact, graphs in G with 3k vertices may fail to have an

independent set of size k, such as the graph in Figure 1 due to Du and Ngo [2]. Here we

draw only G1 and indicate the triples Ta, Tb, Tc, Td using subscripted indices.

• •

••

b2 a2

b1a1

• •

••

d2 c2

d1c1

• •

••

d3 b3

c3a3

Figure 1: The Du-Ngo graph GDN , omitting triangles on sets of the form {x1, x2, x3}.

An independent set is a set of pairwise nonadjacent vertices. The independence number

α(G) of a graph G is the maximum size of such a set in G.

Proposition 1.1. The independence number of the Du-Ngo graph GDN is 3.

Proof. An independent set S in GDN contains at most one vertex from each of the 4-cliques

{a1, b1, a2, b2} and {c1, d1, c2, d2}. Further, S contains two vertices of {a3, b3, c3, d3} only

if it avoids one of the 4-cliques. Thus |S| ≤ 3, and {a1, c1, d3} achieves the bound.

The independence ratio of an n-vertex graph G is α(G)/n. Proposition 1.1 states

that the independence ratio of GDN is 1/4. Because graphs in G have maximum degree

at most 4 and do not contain K5, Brooks’ Theorem implies that every graph in G has

independence ratio at least 1/4. We characterize the graphs achieving equality in this easy

bound; they are those in which every component is GDN . We produce larger independent

sets for all other graphs in G. We also construct infinitely many connected graphs in G
with independence ratio less than 4/15. However, we conjecture that for any t less than

4/15, only finitely many connected graphs in G have independence ratio at most t.

In light of Erdős’ question about 3-colorability of graphs in G when G1 has no 4-

cycle, we study the independence ratio under girth restrictions for G1. For any odd g,

we construct infinitely many connected examples in which the girth of G1 is g and yet
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the independence ratio is less than 1/3; it can be as small as 1
3
− 1

g2+2g
when g ≡ 1

mod 6. The number of vertices in each example is more than g2, and we conjecture that

the independence ratio of G is 1/3 when G1 has girth at least
√

|V (G)|. On the other

hand, no girth threshold less than |V (G)| can guarantee 3-colorability; when the number

of vertices is a nontrivial multiple of 12, we construct examples where G1 consists of just

two cycles of equal length but G is not 3-colorable.

Finally, we show that if G is a union of two graphs whose components have at most

s vertices, then G is s-choosable; this yields 3-choosability for graphs in G where the

components of G1 are all 3-cycles. This last result is an easy consequence of the s-

choosability of the line graphs of bipartite graphs.

Our graphs have no multiple edges; when G1 and G2 share an edge, its vertices have

degree less than 4 in the union. For a graph G and a vertex x ∈ V (G), the neighborhood

NG(x) is the set of vertices adjacent to x in G, and a G-neighbor of x is an element

of NG(x). For S ⊆ V (G), we let NG(S) =
⋃

x∈S NG(x). If A and B are sets, then

A − B = {a ∈ A : a /∈ B}.

2 Independence ratio at least 1/4

The independence number of a graph is the sum of the independence numbers of its

components. Therefore, to characterize the graphs in G with independence ratio 1/4, it

suffices prove that every connected graph in G other than GDN has independence ratio

larger than 1/4. Let G ′ = {G ∈ (G − {GDN}) : G is connected}.
Proving this is surprisingly difficult. We present an algorithm to produce a sufficiently

large independent set for any G ∈ G ′. A simple greedy algorithm finds an independent

set with almost 1/4 of the vertices; it will be applied to prove the full result. This simple

algorithm maintains an independent set I and the set S of neighbors of I.

Algorithm 2.1. Given an independent set I in G, let S = NG(I). While I ∪ S 6= V (G),

choose v ∈ V (G) − (I ∪ S) to minimize |N(v) − S|, and add v to I and NG(v) to S.

Lemma 2.2. If G is an n-vertex graph in G ′, then α(G) ≥ (n − 1)/4. If G has an

independent set I0 with 3|I0| > |NG(I0)|, then α(G) > n/4.

Proof. Initialize Algorithm 2.1 with I as any single vertex in G; this puts at most 4

vertices in S. At each subsequent step, some vertex v outside I ∪ S has a neighbor in S,

since G is connected and NG(I) = S. Hence each step adds at most 3 vertices to S and

1 vertex to I. Therefore, |S| ≤ 3|I| + 1 when the algorithm ends. Since n = |I| + |S| at

that point, we conclude that |I| ≥ (n − 1)/4.

If 3|I0| > |NG(I0)|, then initializing Algorithm 2.1 with I = I0 (and S = NG(I0))

yields |S| ≤ 3|I| − 1 at the end by the same computation, and hence |I| ≥ (n + 1)/4.
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In order to push the independence ratio above 1/4, we will preface Algorithm 2.1

with another algorithm that will choose the initial independent set more carefully, seek-

ing an independent set I0 as in Lemma 2.2 or one that will lead to a gain later under

Algorithm 2.1.

First we characterize how 4-cliques can arise in graphs in G (a k-clique is a set of k

pairwise adjacent vertices).

Lemma 2.3. A 4-clique in a graph G in G arises only as the union of a 4-cycle in G1

and disjoint edges from two triples in G2 (Figure 2 below shows such a 4-clique).

Proof. Let X be a 4-clique in G. Since G1 contributes at most two edges to each vertex,

each vertex in X has a G2-neighbor in X. In particular, no triple in G2 is contained in

X, and X must have the form {a1, a2, b1, b2} for some Ta and Tb. To make X pairwise

adjacent, a1, b1, a2, b2 in order must form a 4-cycle in G1.

We define a substructure that yields a good independent set for the initialization of

Algorithm 2.1. A bonus 4-clique in a graph in G is a 4-clique Q such that for some triple

Ta contributing two vertices to Q, the vertices of NG1
(a3) lie in the same triple. Figure 2

illustrates the definition.

• •

••

b2 a2

b1a1

•

•

•

c1

a3

c2

Figure 2: A bonus 4-clique

Lemma 2.4. If an n-vertex graph G in G ′ has a bonus 4-clique, then α(G) > n/4.

Proof. Consider a bonus 4-clique, labeled as in Figure 2 without loss of generality. The set

{b1, a3, c3} is independent, and its neighborhood is {a1, a2, b2, b3, c1, c2} ∪ NG1
(c3). Thus

setting I0 = {b1, a3, c3} in Lemma 2.2 yields the conclusion.

A block of a graph is a maximal subgraph that contains no cut-vertex. Two blocks in

a graph share at most one vertex, and a vertex in more than one block is a cut-vertex. A

leaf block of a graph G is a block that has at most one vertex shared with other blocks of

G. We need a structural result to extract large independent sets from leaf blocks.

Lemma 2.5. Let G be an n-vertex 4-regular graph in G ′. If G has no 4-clique, then G has

an independent set I such that 3|I| > |NG(I)| or such that 3|I| = |NG(I)| and |I| < n/4.
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Proof. Every vertex of G lies in a triple, and every triple lies in a block of G. Since G

is 4-regular, a leaf block contains a triple and at least one more vertex. A shortest path

joining two vertices of the triple that uses a vertex outside the triple yields an even cycle

with at most one chord. (Note: Erdős, Rubin, and Taylor [4] showed by a harder proof

that all 2-connected graphs other than complete graphs and odd cycles have such a cycle.)

An independent set I with |I| > n/4 vertices satisfies 3|I| > |NG(I)| and hence suffices.

We may assume that G has no 4-cycle, since G has no 4-clique and a 4-cycle in G with

at most one chord has an independent set I with 3|I| = |NG(I)| and |I| = 2 6= n/4 (note

that 3 | n). If C is an even cycle in G having at most one chord, then at least one of the

two maximum independent sets in C contains at most one vertex of such a chord and is

independent in G. Let I be such an independent set.

Since each vertex of I has at least two neighbors on C and at most two outside it,

3|I| ≥ |NG(I)|. We have found the desired set I unless |I| = n/4. In this case, let

T = V (G) − V (C). If I is not a maximal independent set, then α(G) > n/4, so we may

assume that every vertex of T has a neighbor in I. Since I ⊆ V (C), each vertex in I has

at most two neighbors in T . Hence each vertex of T has exactly one neighbor in I, and

each vertex of I has two neighbors in T (and C has no chord).

Let u, v, w be three consecutive vertices on C, with u, w ∈ I. Let {x, x′} = NG(u)∩ T

and {y, y′} = NG(w) ∩ T . If xx′ /∈ E(G), then replacing u with {x, x′} in I yields

α(G) > n/4. Hence we may assume that xx′ ∈ E(G), and similarly yy′ ∈ E(G). If v

has a neighbor in {x, x′, y, y′}, then G has a 4-cycle, which we excluded. Since G has

no 4-clique, some vertex in {x, x′} has a nonneighbor in {y, y′}, say xy /∈ E(G). Now

replacing {u, w} with {v, x, y} in I yields α(G) > n/4.

We now present an algorithm to apply before Algorithm 2.1, as “preprocessing”. The

proof of Lemma 2.5 can be implemented as an algorithm used by Algorithm 2.6 when

G has no 4-clique. Like Algorithm 2.1, Algorithm 2.6 maintains an independent set

I ⊆ V (G) and the set S of its neighbors. It produces a nonempty independent set I such

that 3|I| > |S| or such that 3|I| = |S| < 3n/4 and all vertices of 4-cliques lie in I ∪ S.

After Algorithm 2.6, we apply Algorithm 2.1 starting with this set as I. Lemma 2.2

implies that if 3|I| > |S|, then α(G) > n/4. We will show in Theorem 2.8 that if 3|I| = |S|,
then the exhaustion of the 4-cliques during Algorithm 2.6 will guarantee the existence of

a step in Algorithm 2.1 in which S gains at most two vertices. Thus again we will have

3|I| > |S| and |I| > n/4 at the end.

To facilitate the description of Algorithm 2.6, we introduce several definitions. A triple

having two vertices in a 4-clique is a clique-triple. Two clique-triples that contribute two

vertices each to the same 4-clique (see Lemma 2.3) are mates. If Ta intersects a 4-clique

Q, but I ∪ S does not intersect Ta ∪ Q, then Ta is a free clique-triple.

Algorithm 2.6. Given an n-vertex graph G in G ′, initialize I = S = ∅. Maintain

S = NG(I). When we “stop”, the current set I is the output.
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Suppose first that G has no 4-clique. If E(G1) ∩ E(G2) 6= ∅, then let I consist of one

endpoint of such an edge and stop. Otherwise, G is 4-regular; let I be an independent set

produced by the algorithmic implementation of Lemma 2.5, and stop.

If G has a bonus 4-clique, then define I as in Lemma 2.4 and stop.

If G has a 4-clique but no bonus 4-clique, then repeat the steps below until either

3|I| > |S| or I ∪ S contains all vertices of 4-cliques; then stop.

1. If a vertex outside I ∪S has at most two neighbors outside S, add it to I and stop.

2. If there is a free clique-triple Ta with mate Tb such that S contains b3 or some

G1-neighbor of a3, then add {a3, b1} to I and stop.

3. Otherwise, let Ta be a free clique-triple with mate Tb, and let NG1
(a3) = {c3, d3}.

Since G has no bonus 4-clique, c 6= d. If {c1, d1, c2, d2} is not a 4-clique in G, then add

{a3, b1} to I. If {c1, d1, c2, d2} is a 4-clique in G, then add {a3, b1, c3, d1} to I.

Lemma 2.7. For G ∈ G ′, Algorithm 2.6 produces an independent set I with neighborhood

S such that 3|I| > |S| or such that 3|I| = |S| and I ∪ S contains all 4-cliques in G.

Proof. First suppose G has no 4-clique. If G is 4-regular, then Algorithm 2.6 uses the

construction of Lemma 2.5 to produce I such that 3|I| > |S| or such that 3|I| = |S| and

|I| < n/4 (and hence I∪S 6= V (G)). If G is not 4-regular, then it finds such a set of size 1.

If G has a bonus 4-clique, then the independent set I is as in the proof of Lemma 2.4,

with 3|I| > |S|.
Therefore, we may assume that G has a 4-clique but no bonus 4-clique. In this case,

the algorithm iterates Step 3 until it reaches a state where Step 1 or 2 applies or it runs

out of free clique-triples.

To show that ending in Step 1 or 2 yields the desired conclusion, suppose that each

instance of Step 3 maintains 3|I| ≥ |S|. In Step 1, we then add one vertex to I and at

most two to S. In Step 2, we add {a3, b1} to I and {a1, a2, b2, b3} ∪ NG1
(a3) to S, but S

already contains at least one of these six vertices.

Hence we must show that Step 3 maintains 3|I| ≥ |S|. To avoid getting stuck by

running out of free clique-triples before absorbing all 4-cliques into I ∪ S, also we must

maintain that every 4-clique not contained in I ∪ S intersects a free clique-triple.

These two properties hold initially. Suppose that they hold when we enter an instance

of Step 3. We have mates Ta and Tb, with Ta being free. Since Step 2 does not apply,

b3 /∈ S, so Tb also is free. Since G has no bonus 4-clique, c 6= d.

In the first case, {c1, d1, c2, d2} is not a 4-clique, and we add {a3, b1} to I. This adds

{a1, a2, b2, b3} ∪ NG1
(a3) to S, gaining six vertices. The 4-clique {a1, a2, b1, b2} has been

absorbed. The vertices of other 4-cliques that might enter I ∪ S are those in Tc ∪ Td.

Suppose that {c1, c2, x1, x2} is a 4-clique, with Tx the mate of Tc. If Tx is not free before

this instance of Step 3, then x3 ∈ S, but now Step 2 would have applied instead of Step 3,

with Tc as Ta and Tx as Tb. Since the addition to I does not affect x3, afterwards Tx

remains free. Similarly, the mate of Td remains free if Td is a clique-triple.
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In the second case, {c1, d1, c2, d2} is a 4-clique, and we add {c3, d1} to I. This is an

instance of the first case for the mates Tc and Td unless NG1
(c3) = {a3, b3}. However, that

requires G = GDN , labeled as in Figure 1. Since G ∈ G ′, we find a 4-clique where the first

case of Step 3 applies.

Theorem 2.8. For G ∈ G ′, using the output of Algorithm 2.6 as initialization to Algo-

rithm 2.1 produces an independent set having more than 1/4 of the vertices of G.

Proof. By Lemma 2.2, we may assume that the output of Algorithm 2.6 is an independent

set I with neighborhood S such that 3|I| = |S| and every 4-clique is contained in I ∪ S.

Furthermore, if G has no 4-clique, then I ∪ S 6= V (G). To complete the proof, we show

that with such an initialization, the final step of Algorithm 2.1 adds at most two vertices

to S (hence strict inequality holds at the end).

We claim that also I ∪ S 6= V (G) when G has a 4-clique and Algorithm 2.6 ends

with 3|I| = |S|. We noted in the proof of Lemma 2.7 that ending in Step 1 or 2 yields

3|I| > |S|, so ending with 3|I| = |S| requires ending in Step 3. On the last step, we have

free mates Ta and Tb, and we add {a3, b1} to I and {a1, a2, b2, b3} ∪ NG1
(a3) to S. If this

exhausts V (G), then NG1
(a3) = V (G) − (I ∪ S) − (Ta ∪ Tb) before the final step. The

other vertices of the triples containing the vertices of NG1
(a3) are already in S. These two

vertices lie in the same triple; otherwise, each has at most two neighbors outside S before

the last step, and Step 1 would apply. On the other hand, if they belong to the same

clique, then {a1, a2, b1, b2} is a bonus 4-clique, which would have been used at the start.

Hence we may assume that at least one vertex remains outside I ∪ S when we move

to Algorithm 2.1. We claim that at most two vertices are added to S in the final step

of Algorithm 2.1. If three vertices are added to S, then let x be the vertex added to I,

with neighbors u, v, w added to S. Choosing one of {u, v, w} instead of x would also add

at least three vertices to S, since we chose v to minimize |N(v) − S|. This implies that

{u, v, w, x} is a 4-clique in G. This possibility is forbidden, since all vertices contained in

4-cliques are added to I ∪ S during Algorithm 2.2.

Corollary 2.9. Every 2-factor-plus-triangles graph has independence ratio at least 1/4,

with equality only for graphs whose components are all isomorphic to GDN .

3 Constructions

The Du-Ngo graph GDN is the only graph in G ′ with independence ratio 1/4. In this

section, we construct a sequence of graphs with independence ratio less than 4/15.

Figure 3 shows a 27-vertex graph G in G ′ with α(G) = 1
4
(27 + 1). Note that G is

connected. An independent set I has at most six vertices in the subgraph inside the

dashed box (at most two from each “column” of 4-cycles). Also, I has at most one

vertex in the remaining 3-cycle [x3, y3, z3] in G1. Hence α(G) ≤ 7 = (27 + 1)/4, and

{a1, b3, c1, d3, e1, f3, x3} achieves the upper bound.
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•

b2 a2

b1a1

•

••

•

d2 c2

d1c1

•

••

•

f2 e2

f1e1

•

••

•

x1 b3

x2a3

•

••

•

y1 d3

y2c3

•

••

•

z1 f3

z2e3

•

••

x3

z3y3

Figure 3: A graph in G ′ with independence number (n + 1)/4

One may ask whether infinitely many graphs G in G ′ satisfy α(G) = (|V (G)| + 1)/4,

or at least with α(G) ≤ (|V (G)| + c)/4 for some constant c. We conjecture that no such

constant exists; in fact, we conjecture the following stronger statement.

Conjecture 3.1. For every t < 4/15, only finitely many graphs in G ′ have independence

ratio at most t.

This conjecture is motivated by the following theorem, which shows that the conclusion

is false when t ≥ 4/15. To avoid confusion with our earlier use of G1 and G2, we use Qi

and Ri to index sequences of special graphs in this construction.

Theorem 3.2. For i ≥ 0, there is a graph Qi ∈ G with independence ratio 4(2i)−5/3
15(2i)−6

.

Proof. We first construct a rooted graph Ri for i ≥ 0. Then Qi will be built from three

disjoint copies of Ri by adding a 3-cycle on the roots. With v denoting the root of Ri, let

R′

i = Ri − v. We construct Ri with ni vertices such that

1. ni = 15(2i) − 6 and Ri is connected,

2. Ri decomposes into a 2-factor on R′

i and ni/3 disjoint triangles, and

3. α(R′

i) = 4(2i) − 2, with a maximum independent set avoiding the neighbors of v.

We show R0 in Figure 4 with root c3. This graph is connected, has 15(20)−6 vertices,

and is the union of a 2-factor on R′

0 and triangles with vertex sets Ta, Tb, and Tc. An

independent set in R′

0 has at most one vertex from each 4-clique, and {a1, b3} is an

independent set of size 2 avoiding Tc, so α(R′

0) = 4(20) − 2 = 2.

For i ≥ 1, start with two disjoint copies of Ri−1, having roots c3 and d3. Add triples

Tx and Ty on six new vertices. Augment the union of the 2-factors in the copies of R′

i−1
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••

•

b2 a2

b1a1
•

•

•

•

c1

b3

c2

a3

•

••

•

f2 e2

f1e1
•

•

•

•

d1

f3

d2

e3

•

•

• •

c3

d3

x3

•

•

•

•

x2

x1

y1 y2 y3

•

••

•

b2 a2

b1a1
•

•

•

•

c1

b3

c2

a3 •c3

R1

R0

Figure 4: The graphs R0 and R1

by adding the 3-cycle [c3, d3, x3] and the 4-cycle [x1, y1, x2, y2]. Leave y3 as the root in the

resulting graph Ri. Figure 4 shows R1.

Doubling and adding six vertices shows inductively that ni = 15(2i)− 6. By construc-

tion, Ri is the union of a 2-factor on R′

i and ni/3 disjoint triangles. For connectedness,

note that inductively each vertex in a copy of Ri−1 has a path to its root, and using the

added 3-cycle, 4-cycle, and triples yields a path from each vertex to the root of Ri.

It remains to check property (3). Let I be an independent set in R′

i. Maximizing the

contributions to I from the two copies of R′

i−1 yields |I| ≤ 2α(R′

i−1) + 2 = 4(2i) − 2.

Furthermore, since R′

i−1 has a maximum independent set avoiding the neighbors of the

root of Ri−1, we can use c3 and x1 as the two added vertices from R′

i, thereby forming a

maximum independent set in R′

i that avoids Ty.

In forming Qi by adding a 3-cycle on the roots of three disjoint copies of Ri, we obtain

a connected 2-factor-plus-triangles graph. We can obtain maximum contribution from

the three copies of R′

i obtained by deleting the roots without using any neighbor of the

roots. Hence α(Qi) = 3α(R′

i) + 1 = 12(2i) − 5. With Qi having 3ni vertices, we obtain

the independence ratio claimed.
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In light of Erdős’ question concerning the 3-colorability of graphs in G when 4-cycles

are excluded from G1, it is natural to ask whether this additional condition guarantees

independence ratio 1/3. The answer is no. For every odd g, we construct infinitely many

graphs in G ′ with independence ratio less than 1/3 formed using a 2-factor that has girth

g. When g ≡ 1 mod 6, the smallest graph in our family has g2 +2g vertices; this suggests

the following conjecture, which by our construction would be asymptotically sharp.

Conjecture 3.3. Every n-vertex graph in G ′ with girth at least
√

n has an independent

set of size at least n/3.

Our construction was motivated by an arrangement of triples on a 7-cycle, where two

of the triples have one element off the cycle. This arrangement, shown in Figure 5, is due

to Sachs (see [6]). We use it to build examples with girth 7. For larger g congruent to 1

modulo 6, we construct an arrangement on a g-cycle. A special list allows us to enlarge

the arrangement by multiples of 6.

•

•

•

••

•

•

z1

x1

z2

x2y1

z3

y2

• •y3 x3

Figure 5: The graph H ′

7

Definition 3.4. An a, b-brick is a list of six characters plus two holes called notches:

(a1, �, b1, a2, b2, a3, �, b3). An a, b-brick can link to a c, d-brick by starting the c, d-brick

at the second notch in the a, b-brick. The last element of the a, b-brick fits into the first

notch in the c, d-brick. The link leaves notches in the second and next-to-last positions.

A starter brick is a list of seven characters plus two notches that has the form

(y1, �, y2, z1, x1, z2, x2, �, z3). For g = 6j + 1, let H ′

g consist of two special vertices x3

and y3 plus the cycle of length g whose vertices in order are named by a cyclic arrange-

ment having a starter brick and a(i), b(i)-bricks for 1 ≤ i ≤ j − 1, linked together in order.

The a(1), b(1)-brick links to the second notch of the starter brick, and the a(j−1), b(j−1)-brick

links at its end to the first notch of the starter brick. In the degenerate case j = 1, the

starter brick links to itself, producing the graph H ′

7 shown in Figure 5. For each symbol

q, the vertices of {q1, q2, q3} in H ′

g form a triangle. Note that H ′

g has g + 2 vertices.

The remaining theorems in this section rest on the following simple lemma.
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Lemma 3.5. Let I be an independent set intersecting triples Ta and Tb in a graph G in

G. If Ta and Tb form an a, b-brick in G1, and I contains the vertex in a notch of the

a, b-brick, then I also contains the vertex farthest from it in the a, b-brick.

Proof. An a, b-brick has the form (a1, �, b1, a2, b2, a3, �, b3). If I contains the vertex in

the first notch, then I omits a1 and b1. Since I must intersect Ta, we have b2 /∈ I. Hence

I must contain b3 to intersect Tb.

Theorem 3.6. For each odd g, there are in G ′ infinitely many graphs with girth g whose

independence ratio is less than 1/3.

Proof. First suppose that g = 6j + 1. For k ≥ 1, we construct such a graph Hg,h,k with

(g + 2)hk vertices. Start with hk copies of the graph H ′

g of Definition 3.4, where h is odd

and at least 3. The vertices having the three subscripted copies of a given label form a

triple, with x3 and y3 lying outside the cycle as in Figure 5. Each copy of H ′

g requires an

additional superscript in the labels to distinguish its vertices from those of other copies.

Number the copies 0 through hk − 1. For 0 ≤ i ≤ k − 1, add a cycle on the vertices

representing x3 in copies hi + 1 through hi + h (mod hk) of H ′, and add a cycle on the

vertices representing y3 in copies hi through hi + h − 1 of H ′. This completes the graph

Hg,h,k; note that it has (g + 2)hk vertices and is a 2-factor-plus-triangles graph.

Since H ′

g has an x3, y3-path, the cycles on the copies of x3 and y3 make it possible to

reach each copy of H ′ from any other. Hence Hg,h,k is connected.

Each cycle in the 2-factor forming Hg,h,k has length g or h. A cycle of length h

contributes at most (h − 1)/2 vertices to an independent set; we apply this to the cycles

through the copies of x3 and y3. There are 2k such cycles, contributing at most k(h − 1)

vertices. In addition, we claim that the g-cycle in each copy of H ′

g contributes at most 2j

vertices to an independent set; note that 2j = (g − 1)/3. If this claim is true, then

α(Hg,h,k) ≤ hk
g − 1

3
+ k(h − 1) = hk

g + 2

3
− k < hk

g + 2

3
=

1

3
|V (Hg,h,k)|.

The inequality would be too weak if the g-cycle could contribute 2j + 1 vertices.

To prove the claim, note that the g-cycle contains the vertices of 2j − 1 full triples

(including one in the starter brick) plus {x1, x2, y1, y2}. To contribute more than 2j

vertices, we must find an independent set having an element from each full triple, plus

one of {x1, x2} and one of {y1, y2}.
Suppose that such an independent set I exists. Since the last vertex of each brick fits

into the first notch of the next brick, z3 ∈ I implies b
(j−1)
3 ∈ I, and y1 ∈ I implies a

(1)
1 ∈ I,

by applying Lemma 3.5 iteratively to each ordinary brick. In the first case, b
(j−1)
3 ∈ I

forbids having a vertex from {y1, y2}. In the second case, x2, z3 /∈ I, and I cannot have

two elements in {z1, x1, z2}. Both arguments apply in degenerate form when k = 0.

In the remaining case, z3, y1 /∈ I. Here one from each of Tx, Ty, Tz must be chosen

nonconsecutively from the string (y2, z1, x1, z2, x2), and this is not possible. This completes

the argument for g ≡ 1 mod 6.
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When g 6≡ 1 (mod 6), we set h to be g and let the first value higher than g that is

congruent to 1 modulo 6 play the role of g in the construction above. Since k is arbitrary,

the family is still infinite.

To form the smallest example constructed in Theorem 3.6 when g ≡ 1 mod 6, set

h = g and k = 1. The resulting graph Hg,g,1 has girth g and has g2 + 2g vertices. Letting

n = |V (Hg,g,1)|, we have an n-vertex example where G1 has girth
√

n + 1 − 1 and the

independence ratio (of Hg,g,1) is less than 1/3. When g 6≡ 1 mod 6 and we must use H ′

g′

for some g′ larger than g, we use even more vertices. This motivates Conjecture 3.3.

Although girth at least
√

n in G1 may be enough to force an independent set of size

n/3 in G, it does not force 3-colorability. Surprisingly, no threshold for the girth in terms

of n forces this except n itself, where G becomes a cycle-plus-triangles graph. Note that

if the girth of an n-vertex 2-regular graph G1 is not n, then it is at most n/2.

Theorem 3.7. If n = 24+12k with k ≥ 0, then there is an n-vertex 2-factor-plus-triangles

graph G such that G1 consists of two n/2-cycles and G is not 3-colorable.

Proof. We use a(i), b(i)-bricks as in Theorem 3.6, but for this theorem the starter bricks

have 12 symbols plus two notches. We use two starter bricks:

(z1, �, z2, u1, z3, u2, v3, w3, y2, x3, y1, x2, �, y3)

(ẑ2, �, ẑ3, v1, w1, ẑ1, v2, w2, u3, ŷ2, x1, ŷ3, �, ŷ1)

Let G1 consist of cycles C and Ĉ, where C consists of the first starter brick and a(i), b(i)-

bricks for 1 ≤ i ≤ k, and Ĉ consists of the second starter brick and â(i), b̂(i)-bricks for

1 ≤ i ≤ k, linked in order as in Theorem 3.6. The triples for u, v, w, x create connections

between the two cycles, but all other triples are confined to C or to Ĉ. When k = 0,

each starter brick links into itself to form a 12-cycle. (Examples with n vertices and girth

n/2 − 6r arise by using k − r ordinary bricks in C and k + r ordinary bricks in Ĉ; the

same argument applies.

Suppose that the resulting graph G has a proper 3-coloring f . Each color class is

an independent set having one vertex in each triple. Simplifying notation, let b3 and a1

denote the vertices in the first and second notches of the starter brick in C, respectively,

while b̂3 and â1 denote those vertices in Ĉ. Without loss of generality, we may assume

that f(a1) = 1. Repeatedly applying Lemma 3.5 yields f(z1) = 1. Now we may assume

that f(b3) = 3; repeatedly applying Lemma 3.5 yields f(y3) = 3.

If the neighbors in G1 of a vertex α belong to the same triple, then the third member

of that triple must have the same color as α. Hence f(x3) = f(y3) = 3, and f(u1) =

f(z1) = 1. Also, if a vertex next to α and another member of the triple containing α

have distinct colors, then f(α) is the third color. Hence f(x2) = 2 and f(z2) = 2. Once

we color two members of a triple, the third has the third color. Hence f(x1) = 1 and

f(z3) = 3. If two neighbors of α have distinct colors, then α has the third color. Hence

f(y1) = 1. Now f(y2) = 2.
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Since f(z3) = 3 and f(u1) = 1, we have f(u2) = 2, and then f(u3) = 3. Now f(x1) = 1

and f(u3) = 3 imply f(ŷ2) = 2, and hence f(ŷ3) = 3 and f(ŷ1) = 1. This leaves f(â1) = 2.

Iterating Lemma 3.5 now yields f(ẑ2) = 2 and f(b̂3) = 1. Now f(ẑ3) = 3 and f(ẑ1) = 1.

We have now determined the colors of all vertices in the starter bricks except those in

the triples Tv and Tw. For all other vertices in these bricks, the color matches the subscript.

The relevant remaining segments are (u2, v3, w3, y2) and (ẑ3, v1, w1, ẑ1, v2, w2, u3). Color

2 is forbidden from {v3, w3}. Hence it appears on one of {v1, v2} and one of {w1, w2}.
However, the subscripts on its appearances differ. If f(v1) = f(w2) = 2, then f(w1) =

f(v2) = 3 (since f(ẑ1) = 1), and then f(v3) = f(w3). If f(v2) = f(w1) = 2, then

f(w2) = f(v1) = 1 (since f(ẑ3) = f(u3) = 3), and again f(v3) = f(w3). Hence the

coloring cannot be completed.

4 Triangles-Plus-Triangles Graphs

Although some 2-factor-plus-triangles graphs are not 3-colorable, some (such as cycle-

plus-triangles graphs) are 3-choosable. Another such class occurs at the other “extreme”,

when the cycles in the 2-factor are 3-cycles. That is, the union of two graphs on the same

vertex set whose components are all triangles is 3-choosable.

We prove a more general statement in terms of the numbers of vertices in the com-

ponents of two subgraphs whose union is G. Our main tool is the theorem of Galvin [7]

about list coloring of the line graphs of bipartite graphs: if G is a bipartite multigraph

with maximum degree k, then the line graph of G is k-choosable.

Proposition 4.1. If G1 and G2 are graphs whose components have at most s vertices,

then G1 ∪ G2 is s-choosable.

Proof. Let G = G1 ∪G2. By adding isolated vertices to G1 and/or G2 as needed, we may

assume that V (G1) = V (G2) = V (G) without changing G. For each v ∈ V (G), let L(v)

be a set of s available colors. Form a graph H with a vertex for each component of G1 and

a vertex for each component of G2. For each vertex of G, place an edge in H joining the

vertices representing the components containing it in G1 and G2 (H is the “intersection

graph” of the components in G1 and G2). By construction, H is bipartite. The degree of

a vertex in H is the number of vertices in the corresponding component of G1 or G2.

Each edge of H corresponds to a vertex v in G. Assign to this edge the list L(v). Since

H is bipartite and has maximum degree at most s, Galvin’s Theorem implies that we can

choose a proper edge-coloring of H from the lists. This assigns colors to the vertices of G

from their lists so that vertices in the same component of G1 or in the same component

of G2 have distinct colors. Hence it is a proper coloring of G.

In particular, every triangles-plus-triangles graph is 3-choosable.
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