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Abstract

It is proved that for every n ≥ 3 and every even k ≥ 4, where k 6= 2n, there

exists one-factorization of the complete graph K2n such that any two one-factors

do not induce a graph with a cycle of length k as a component. Moreover, some

infinite classes of one-factorizations, in which lengths of cycles induced by any two

one-factors satisfy a given lower bound, are constructed.

1 Introduction

A one-factor of a graph G is a regular spanning subgraph of degree one. A one-factoriza-

tion of G is a set F = {F1, F2, . . . , Fn} of edge-disjoint one-factors such that E(G) =⋃n
i=1 E(Fi). Evidently, the union of two edge-disjoint one-factors is a two-factor consisting

of cycles of even lengths.
The exact number N(2n) of all pairwise non-isomorphic one-factorizations of the com-

plete graph K2n is known only for 2n ≤ 14; namely N(4) = N(6) = 1, N(8) = 6, N(10) =
396, cf. [14], N(12) = 526, 915, 620 [8], and N(14) = 1, 132, 835, 421, 602, 062, 347 [10].
Moreover, Cameron [4] proved that ln N(2n) ∼ 2n2 ln (2n) for sufficiently large n. There-
fore, any investigations (including enumeration) regarding all one-factorizations of K2n

are deemed reasonable if they are restricted to a subclass which satisfies some additional
properties. One of the obvious requirements concerns an isomorphism of graphs induced
by pairs of one-factors. In this way, a question arises regarding the existence of uniform
(perfect) one-factorizations. A one-factorization is uniform when the union of any two
one-factors is isomorphic to the same graph H. In particular, if H is connected (i.e. a
Hamiltonian cycle), then a one-factorization is called perfect.

Perfect one-factorizations of complete graphs were introduced by Kotzig [11] and in
known notation by Anderson [2]. Only three infinite classes of perfect one-factorizations
are known, namely when 2n− 1 is prime [11, 3] and when n is prime [1]. All other known
examples of perfect one-factorizations of K2n have been found using various methods,
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cf. [16, 17]. Perfect one-factorization conjecture, which claims the existence of perfect
one-factorizations for every even order of the complete graph, is far from proven. Perfect
one-factorizations are very rare among all one-factorizations; this argument is supported
by a comparison of known numbers, P (2n), of all perfect pairwise non-isomorphic one-
factorizations of K2n, with N(2n). There are P (4) = P (6) = P (8) = P (10) = 1, P (12) =
5, cf. [16, 17], P (14) = 23 [7] and P (16) ≥ 88 [15]. Uniform one-factorizations other
than those which are perfect have been investigated far less, cf. [5, 14]. In fact, there are
only three known infinite classes and several sporadic examples of uniform non-perfect
one-factorizations.

In this context, weaker properties regarding lengths of cycles which are required to
exist, or which are forbidden in the union of any two one-factors, may be considered. A
one-factorization F = {F1, F2, . . . , Fn} of G is said to be k-cycle free if the union of any
two one-factors does not include the cycle Ck. Consequently, F is S-cycle free if the union
of any two one-factors does not include cycles of lengths from the set S. In particular,
if S = {4, 6, . . . , k}, then F is called k<-cycle free. It can be said that F has a cycle of

length k if there are two one-factors in F , the union of which includes Ck.
The aim of this paper is to find, for each n and each even k ≥ 4 such that 2n 6= k, a

k-cycle free one-factorization of K2n. For 2n 6= p+1, where p is a prime, or 2n 6≡ 6, 12, 18
(mod 24), the existence of 2n-cycle free one-factorizations of K2n is proven. Moreover,
some infinite classes of k<-cycle free one-factorizations are constructed.

2 Constructions and their properties

The following two facts are easily observed.

Claim 1 For n ≥ 2, if l is the minimum positive integer such that gcd(l, n) > 1, then

gcd(l, n) = l. Moreover, for odd n′ ≥ 3, if l′ is the minimum even positive integer such

that gcd(l′, n′) > 1, then gcd(l′, n′) = l′/2. �

Claim 2 If k > 2n ≥ 4, then any one-factorization of K2n is k-cycle free. �

The well-known canonical one-factorization GK2n of K2n has been published in Lucas’
[13] and attributed to Walecki.

Construction A Let V = {∞, 0, 1, . . . , 2n− 2}. Let GK2n denote a one-factorization of
K2n which consists of one-factors Fi = {{i − j, i + j} : j = 1, 2, . . . n − 1} ∪{∞, i}, for
i = 0, 1, . . . 2n − 2, where labels are taken modulo 2n − 1.

It is well-known that GK2n is perfect if and only if 2n− 1 is prime [11]. Dinitz et. al.
[6] investigated lengths of cycles which may appear in the union of any two one-factors in
GK2n. Lemma 3 is a corollary to that result; a short proof is presented here in order to
provide detailed constructions of cycles applied in further results.

Lemma 3 (cf. [6]) For n ≥ 3 and even k such that 4 ≤ k ≤ 2n, the one-factorization

GK2n of K2n contains a cycle of length k if and only if k/2 | 2n − 1 or k − 1 | 2n − 1.
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Proof: Let p = 2n− 1. Assume that GK2n contains a cycle Ck of length k which appears
in the union H of two one-factors Fh and Fi, where h < i and h, i ∈ {0, 1, . . . , p− 1}. Let
z = i − h. Consider separately two cases.
Case I: Ck contains the vertex ∞. Then neighbors of ∞ in H are h and i. Consecutive
vertices along the cycle Ck in H are: ∞, i, h−z, i+2z, h−3z, i+4z, h−5z, . . ., i+(k−2)z,
∞, where k is the minimum even positive integer such that i + (k − 2)z ≡ h (mod p)
(which is equivalent to (k − 1)z ≡ 0 (mod p)). Since 0 < z < p, gcd(k − 1, p) = k − 1
follows by Claim 1.
Case II: Ck does not contain ∞. Let h + x be a vertex of Ck. Then x 6= 0 and neighbors
of h + x in H are h − x and i + z − x. Consecutive vertices along Ck in H are: h + x,
h − x, i + z + x, h − 2z − x, i + 3z + x, h − 4z − x, . . ., h − (k − 2)z − x, h + x, where k
is the minimum even positive integer such that h − (k − 2)z − x ≡ i + z − x (mod p).
Similarly to the above, since 0 < z < p, by the equivalence kz ≡ 0 (mod p) and Claim
1, gcd(k, p) = k/2.

To prove sufficiency, suppose first that k ≤ 2n and k/2 | p. Then k ≡ 2 (mod 4).
In order to find a cycle of length k, take two one-factors F0 and Fi, where i = p

k/2
. Let

l be the length of a cycle which does not contain ∞ in the union of F0 and Fi. Then,
repeating calculations of Case II, l is the minimum even positive integer such that li ≡ 0
(mod p). Then lp

k/2
≡ 0 (mod p) and next, since k/2 is odd, l = k. Similarly, for any

even k ≤ 2n where k − 1 | p, two one-factors F0 and Fj are taken, where j = p
k−1

. If l is
the length of a cycle which contains ∞, then as in Case I, l is the minimum even positive
integer such that (l − 1)j ≡ 0 (mod p). Thus l = k. �

The above Lemma 3 is equivalent to the following result.

Corollary 4 For n ≥ 3 and even k ≥ 4, the one-factorization GK2n of K2n is k-cycle

free if and only if k/2 - 2n − 1 and k − 1 - 2n − 1. �

By Lemma 3, the one-factorization GK2n has a trivial lower bound on the minimum
length of cycles it contains.

Corollary 5 Let r be the minimum prime factor of 2n − 1. If r ≥ 5, then the one-

factorization GK2n of K2n is (r − 1)<-cycle free. �

Lemma 3 immediately yields another property of GK2n. Namely, for any order 2n,
GK2n cannot be a non-perfect uniform one-factorization because GK2n contains a cycle
of length 2n.

Another well-known one-factorization of the complete graph of order 2n for odd n is
denoted by GA2n [2].

Construction B Let n be odd. In what follows, labels of vertices are taken modulo
n. Let V = V0 ∪ V1, where Vm = {0m, 1m, . . . , (n − 1)m} for m = 0, 1. Let GA2n be
a one-factorization of K2n with one-factors F0, F1, . . . , F2n−2. Let Fi = {{(i − j)m, (i +
j)m} : j = 1, 2, . . . (n − 1)/2, m = 0, 1} ∪{i0, i1}, for i = 0, 1, . . . n − 1. Moreover, let
Fn+i = {{j0, (j + i + 1)1} : j = 0, 1, . . . n − 1}, for i = 0, 1, . . . n − 2.
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It is well-known that GA2n is perfect if and only if n is prime [1]. The following
presents a stronger property of GA2n.

Lemma 6 For odd n ≥ 3 and even k such that 4 ≤ k ≤ 2n, the one-factorization GA2n

of K2n contains a cycle of length k if and only if k/2 | n.

Proof: Assume first that GA2n contains a cycle Ck which is included in the union H of
two one-factors Fh and Fi, where h < i and h, i ∈ {0, 1, . . . , 2n − 2}. Consider separately
three cases.
Case I: h < i ≤ n − 1. Note that, if in the construction of GKn+1 the vertex subset
V (Kn+1) \ {∞} is replaced with Vm, for m = 0, 1, and moreover, GKn+1 is restricted
to the vertices of Vm, then a near one-factorization of Kn into near one-factors F m

i =
{{(i − j)m, (i + j)m} : j = 1, 2, . . . (n − 1)/2} is obtained, where i = 0, 1, . . . , n − 1. It is
clear that F m

i ⊂ Fi (the one-factor of GA2n) for every admissible i and m. A cycle Ck in
H has all vertices either in V0 or in V1 or in both subsets together. In the previous two
cases Ck corresponds to a cycle of the same length either in F 0

h ∪F 0
i or in F 1

h ∪F 1
i . Then,

by Case II in the proof of Lemma 3, gcd(k, n) = k/2. In the latter case, k ≡ 2 (mod 4)
and Ck consists of two paths of length k/2−1 (one of them with all vertices in V0 and the
other one with all vertices in V1) joint together by the edges {h0, h1} (of Fh) and {i0, i1}
(of Fi). These two paths correspond to a path with endvertices h and i included in a cycle
of length k/2 + 1 ( which contains the vertex ∞), induced by one-factors with indices h
and i in GKn+1. Thus, by Case I in the proof of Lemma 3, gcd(k/2, n) = k/2 holds.
Case II: h < n ≤ i. Consider two subcases.
II.A: h0 is not a vertex of the cycle Ck in H. Then also h1 is not in Ck. Note that the
length of Ck is divisible by 4. Let (h + x)0 be a vertex of Ck for some x 6= 0. Then
neighbors of (h + x)0 in H are (h − x)0 and (h + x + i + 1)1. Consecutive vertices along
the cycle Ck in H are: (h + x)0, (h + x + i + 1)1, (h − x − i − 1)1, (h − x − 2i − 2)0,

(h + x + 2i + 2)0, (h + x + 3i + 3)1, (h − x − 3i − 3)1, . . ., (h − x − k(i+1)
2

)0, (h + x)0,

where k is the minimum even positive integer such that h− x− k(i+1)
2

≡ h− x (mod n).
Since n < i + 1 < 2n, by the above equivalence k

2
(i + 1) ≡ 0 (mod n) and Claim 1,

gcd(k/2, n) = k/2.
II.B: h0 is a vertex of Ck. Then h1 is in Ck as well. Note that k ≡ 2 (mod 4). The
neighbors of h0 in H are h1 and (h + i + 1)1. Consecutive vertices along the cycle Ck

in H are: h0, (h + i + 1)1, (h − i − 1)1, (h − 2i − 2)0, (h + 2i + 2)0, (h + 3i + 3)1,

(h − 3i − 3)1, . . ., (h + k(i+1)
2

)1, h0, where k is the minimum even positive integer such

that h + k(i+1)
2

≡ h (mod n). Analogously to the previous case, since n < i + 1 < 2n, by
Claim 1, gcd(k/2, n) = k/2 is easily observed.
Case III: n ≤ h < i. Then neighbors of y0 in H are (y + h + 1)1 and (y + i + 1)1.
Consecutive vertices along Ck in H are: y0, (y + i + 1)1, (y + i − h)0, (y + 2i − h + 1)1,

(y + 2i − 2h)0, . . ., (y + ki−(k−2)h+2
2

)1, y0, where y + ki−(k−2)h+2
2

≡ y + h + 1 (mod n).
Similarly to the previous case, since 0 < i − h < n, by k

2
(i − h) ≡ 0 (mod n) and Claim

1, gcd(k/2, n) = k/2 holds.
To show sufficiency, suppose that k ≤ 2n and k/2 | n. To find a cycle of length k, take

one-factors Fn and Fi such that i = n + n
k/2

. Note that, if l is the length of a cycle in the

the electronic journal of combinatorics 16 (2009), #R3 4



union of Fn and Fi, then l is the minimum even positive integer such that l
2
(i − n) ≡ 0

(mod n) (cf. calculations of Case III above). Thus l
2

n
k/2

≡ 0 (mod n), whence l = k. �

Lemma 6 is equivalent to the following.

Corollary 7 For odd n ≥ 3 and even k ≥ 4, the one-factorization GA2n of K2n is k-cycle

free if and only if k/2 - n. �

Lemma 6 immediately provides a lower bound on the minimum length of cycles in
GA2n.

Corollary 8 Let n be odd and n ≥ 3. Let r be the minimum prime factor of n. Then

the one-factorization GA2n of K2n is (2r − 2)<-cycle free. �

Lemma 6 also yields an obvious corollary that GA2n cannot be a non-perfect uniform
one-factorization.

Presented below is an inductive construction for another family of one-factorizations
of K2n.

Construction C Let n be even. In what follows, labels of vertices are taken mod-
ulo n. Let V = V0 ∪ V1, where Vm = {0m, 1m, . . . , (n − 1)m} for m = 0, 1. Let
F = {F 0, F 1, . . . , F n−2} be a k-cycle free one-factorization of Kn, where V = V (Kn) =
{0, 1, . . . , n}. Two copies of F are taken by replacing V with V0 and V1, respectively. In
this way, n−1 one-factors Fi of K2n are obtained, i = 0, 1, . . . , n−2. The nth one-factor is
Fn−1 = {{j0, j1} : j = 0, 1, . . . n−1}. Remaining n−1 one-factors are built based on one-
factors in F ; namely, if {v0, u0} is the edge of one-factor F h, for some h ∈ {0, 1, . . . , n−2},
then {v0, u1} and {v1, u0} are the edges of one-factor Fn+h.

The above method allows for the construction of k-cycle free one-factorizations of K2n,
where n is even and k 6≡ 4 (mod 8).

Lemma 9 For even n ≥ 4 and even k ≥ 6 such that k 6≡ 4 (mod 8), if there is a k-cycle

free one-factorization of Kn, then a k-cycle free one-factorization of K2n exists.

Proof: Assume that a k-cycle free one-factorization F of Kn is given. Let H be the
union of two one-factors Fh and Fi in the one-factorization of K2n obtained by applying
Construction C, where h < i and h, i ∈ {0, 1, . . . , 2n − 2}. If both h, i < n − 1, then
H does not contain Ck because all cycles in H are, in fact, copies of cycles in the given
one-factorization F of Kn which is k-cycle free. If i = n − 1 or h = n − 1, one can
see that every cycle in H has length 4. In what follows, assume that i ≥ n. If i −
h = n, it is evident that every cycle in H has length 4 as well. Otherwise i − h 6= n.
Note that every cycle in H corresponds to a cycle in the union of one-factors F h and
F i−n in Kn. Let Cl denote a cycle of length l in F h ∪ F i−n with consecutive vertices
v1, v2, v3, . . . , vl. Suppose that h < n − 1. Note that Cl corresponds either to a cycle
C ′

l (if l ≡ 0 (mod 4)) of length l or to a cycle C ′′

2l (if l ≡ 2 (mod 4)) of length 2l in
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H; consecutive vertices of C ′

l are v1
0, v

2
0, v

3
1, v

4
1, v

5
0, v

6
0, . . . , v

l−1
1 , vl

1, while C ′

2l has vertices
v1
0, v

2
0, v

3
1, v

4
1, . . . , v

l−1
0 , vl

0, v
l+1
1 , vl+2

1 , . . . , v2l−1
1 , v2l

1 . In the latter case, by the assumption,
k 6= 2l. Consider the last case n ≤ h. Then Cl corresponds to a cycle C ′′′

l of the same
length l in H with consecutive vertices v1

0, v
2
1, v

3
0, v

4
1, . . . , v

l−1
0 , vl

1. Hence, since Kn is k-cycle
free, k 6= l and the assertion holds. �

By the above Lemma 9, if 2n ≡ 0 (mod 8), then a one-factorization built by applying
Construction C does not contain a cycle of length 2n. Moreover, starting from n = 4
and applying the above inductive construction for consecutive powers of 2, a well-known
class of uniform one-factorizations of complete graphs with all cycles of length 4 is easily
obtained, cf. [4].

Construction C also enables the building of a {k/2, k}-cycle free one-factorization of
K2n, using a given {k/2, k}-cycle free one-factorization of Kn.

Lemma 10 For even n ≥ 4 and even k ≥ 12 such that k ≡ 4 (mod 8), if there is a

{k/2, k}-cycle free one-factorization of Kn, then a {k/2, k}-cycle free one-factorization of

K2n exists.

Proof: The assertion follows immediately from the proof of Lemma 9. Namely, by the
assumption, a given one-factorization of Kn does not contain a cycle of length l such that
l ≡ 2 (mod 4). Hence, by the proof of Lemma 9, every cycle in a one-factorization of
K2n, obtained by applying Construction C, has either length 4 or has the same length as
a corresponding cycle in a given one-factorization of Kn. �

The next infinite class of one-factorizations yields further examples of k-cycle free and
k<-cycle free one-factorizations of complete graphs.

Construction D Let p ≥ 3 be a prime and r = (p − 1)/2. Let n be an odd integer
such that n ≥ p and gcd(n, r) = 1. Let r−1 be the inverse of r in Zn. In what follows,
labels of vertices are taken modulo n, while indices are taken modulo p. Consider a one-
factorization of Kpn+1 denoted by HKpn+1. Let V = V0 ∪ V1 ∪ . . . ∪ Vp−1, where Vm =
{∞, 0m, 1m, . . . , (n − 1)m} for m = 0, 1, . . . , p − 1. Thus V0 ∩ V1 ∩ . . . Vp−1 = {∞}. Let
Fmn+i = {{(i − j)m, (i + j)m} : j = 1, 2, . . . (n − 1)/2} ∪{im,∞} ∪{{jm−s,−(j + (i +
m)r−1)m+s} : j = 0, 1, . . . n− 1, s = 1, 2, . . . , r} for i = 0, 1, . . . n− 1, m = 0, 1, . . . , p− 1.

Note that HKnp+1 is an extension of GKp: one-factorization induced by every Vi is
the one-factorization GKn+1 of Kn+1. Moreover, if every set Vi \ ∞ is replaced by a
single vertex ui, and all edges with the same endvertices are contracted to a single edge,
loops being removed, then the corresponding one-factorization GKp+1 of Kp+1 would be
obtained.

Presented below are investigations into possible lengths of cycles in HKpn+1.

Lemma 11 For odd prime p and for odd n such that n ≥ p and gcd(n, (p − 1)/2) = 1,
and for even k such that 4 ≤ k ≤ pn+1, the one-factorization HKpn+1 of Kpn+1 contains

a cycle of length k if and only if one of the following conditions holds:
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(1) k ≤ n + 1 and k − 1 | n,

(2) k > n + 1 and k − 1 | np,
(3) k ≤ 2n and k/2 | n,

(4) k > 2n and k/2 | np.

Proof: Assume that HKpn+1 contains a cycle of length k which appears in the union H
of one-factors Fh and Fi, where h < i and h, i ∈ {0, 1, . . . , pn − 1}. Consider separately
two cases.
Case I: mn ≤ h < i < (m+1)n for some m ∈ {0, 1, . . . , p−1}. One-factorization induced
by Vm is the one-factorization GKn+1 of Kn+1 and therefore, by Lemma 3, either condition
(1) or (3) is satisfied when k ≤ n+1 and all vertices of Ck come from Vm. Consider the case
where all vertices of Ck are in V \Vm. In fact, all vertices of Ck are in Vm−s∪Vm+s for some
s ∈ {1, 2 . . . , r}. Then clearly k ≤ 2n. Let ym−s be a vertex of Ck. Neighbors of the vertex
ym−s are −(y+(h+m)r−1) m+s and −(y+(i+m)r−1) m+s. Consecutive vertices along the
cycle Ck are: ym−s, −(y+(h+m)r−1) m+s, (y+(h−i)r−1) m−s, −(y+(2h−i+m)r−1) m+s,

(y + (2h − 2i)r−1) m−s, . . ., −(y + kh−(k−2)i+2m
2

r−1) m+s, ym−s, where k is the minimum

even positive integer such that −y − kh−(k−2)i+2m
2

r−1 ≡ −y− (i + m)r−1 (mod n). Since
0 < i−h < n, then 0 < (i−h)r−1 < n and, by the equivalence k

2
(i−h)r−1 ≡ 0 (mod n)

and Claim 1, gcd(k
2
, n) = k

2
and then (3) holds.

Case II: mn ≤ h < (m + 1)n and qn ≤ i < (q + 1)n for some m, q ∈ {0, 1, . . . , p − 1},
m < q. Let z = q − m. Consider two subcases.
II.A: ∞ is a vertex of Ck. Then k ≡ p + 1 (mod 2p). Neighbors of ∞ in H are hm

and iq. Note that indices of consecutive vertices in the cycle Ck appear in the order
according to the labels of vertices in Case I of the proof of Lemma 3. Thus the first p + 1
consecutive vertices along Ck in H are: ∞, iq = im+z, −(h + ri + m)r−1

m−z, (h + (r −
1)i + m − q)r−1

m+3z, −(2h + (r − 1)i + 2m − q)r−1
m−3z , (2h + (r − 2)i + 2m − 2q)r−1

m+5z,
. . ., (rh + (r − r)i + rm − rq)r−1

m+pz = (h − z)m. Note that (h − z)m 6= hm because
0 < z < p ≤ n. Thus the neighbor of (h− z)m in Fh is (h+ z)m. Moreover, (i + 2z)m+z 6=
im+z. Then the next 2p consecutive vertices along Ck in H are: (h + z)m = (h + z)q−z,
−(rz+rh+ i+q)r−1

q+z, (rz+(r−1)h+ i+q−m)r−1
q−3z, −(rz+(r−1)h+2i+2q−m)r−1

q+3z,

(rz + (r − 2)h + 2i + 2q − 2m)r−1
q−5z, . . ., (rz + (r − r)h + ri + rq − rm)r−1

q−pz = (i +

2z)m+z, (i − 2z)m+z, −(−2rz + h + ri + m)r−1
m−z, (−2rz + h + (r − 1)i + m − q)r−1

m+3z,
−(−2rz + 2h + (r − 1)i + 2m − q)r−1

m−3z , (−2rz + 2h + (r − 2)i + 2m − 2q)r−1
m+5z, . . .,

(−2rz + rh + (r − r)i + rm − rq)r−1
m+pz = (h − 3z)m. Therefore, after the next k−(3p+1)

2p

segments, each of which contains 2p vertices, the kth vertex in Ck is (h − k−1
p

z)m = hm.

Since 0 < z < p ≤ n, if k is the minimum even positive integer such that k−1
p

z ≡ 0

(mod n), then k − 1 > n and moreover, by Claim 1, gcd( k−1
p

, n) = k−1
p

. Thus (2) is
satisfied.
II.B: ∞ is not a vertex of Ck. Then k ≡ 0 (mod 2p). Let (h + x)m be a vertex of Ck.
Then x 6= 0 and neighbors of (h + x)m in H are (h − x)m and (−h + x − (i + q)r−1)q+z.
First segment of 2p consecutive vertices along Ck is (cf. second segment of Ck in Subcase
II.A): (h + x)m = (h + x)q−z, −(rx + rh + i + q)r−1

q+z, (rx + (r − 1)h + i + q − m)r−1
q−3z,
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. . ., (i + x + z)q = (i + x + z)m+z, (i − x − z)m+z, −(−rx + h + ri + (r + 1)m − rq)r−1
m−z,

(−rx+h+(r−1)i+(r+1)m−(r+1)q)r−1
m+3z , . . ., (h−x−2z)m 6= (h−x)m. After the next

k
2p
−1 segments, each of which contains 2p vertices, we end up at (h−x− k

p
z)m = (h−x)m.

Since 0 < z < p ≤ n and moreover, k is the minimum even positive integer such that
k
p
z ≡ 0 (mod n), k > 2n holds and, by Claim 1, gcd( k

p
, n) = k

2p
. Hence (4) is satisfied.

To prove sufficiency, in order to find a cycle of length k, take the union of two one-
factors F0 and Fi. Let i = n

k−1
if k ≤ n + 1 and k − 1 | n. Thus 1 ≤ i < n. Let l be the

length of a cycle in the union of F0 and Fi which contains ∞ and with all vertices in V0.
Then, by applying calculations of Case I in the proof of Lemma 3, l is the minimum even
positive integer such that (l− 1)i ≡ 0 (mod n). Thus l−1

k−1
n ≡ 0 (mod n) and therefore

l = k. Similarly, let i = nr
k/2

(mod n) if k ≤ 2n and k/2 | n. Hence, if l is the length of a
cycle in F0 ∪ Fi with all vertices in Vp−1 ∪ V1, by calculations as in Case I above, l is the
minimum even positive integer such that l

2
ir−1 ≡ 0 (mod n). Hence l = k. Analogously,

let i = n np
k−1

(≥ n) if k > n + 1 ≥ p + 1 and k − 1 | np. If l is the length of a cycle in
F0 ∪ Fi which contains ∞, by calculations as in Subcase II.A above, l is the minimum
even positive integer such that l−1

p
z ≡ 0 (mod n), where z = i/n = np

k−1
< n. Then

l−1
p

np
k−1

≡ 0 (mod n), whence k = l. In the last case, if k > 2n ≥ 2p and k/2 | np, then

i = n np
k/2

> n. Note that k ≡ 2 (mod 4). If l is the length of a cycle in the union F0 ∪Fi

which does not contain ∞, then l is the minimum even positive integer such that l
p
z ≡ 0

(mod n), where z = i/n = np
k/2

< n, cf. Subcase II.B. Hence l
p

np
k/2

≡ 0 (mod n) and,

since k/2 is odd, k = l holds. �

Lemma 11 is equivalent to the following result.

Corollary 12 For odd prime p and for odd n such that n ≥ p and gcd(n, (p− 1)/2) = 1,
and for even k ≥ 4, the one-factorization HKpn+1 of Kpn+1 is k-cycle free if and only if

all of the following conditions hold:

(1) k − 1 - n if k ≤ n + 1,
(2) k − 1 - np if k > n + 1,
(3) k/2 - n if k ≤ 2n,

(4) k/2 - np if k > 2n. �

Lemma 11 yields a trivial lower bound on the minimum length of cycles in HKpn+1.

Corollary 13 Let p be an odd prime and n be odd such that n ≥ p and gcd(n, (p−1)/2) =
1. Let r be the minimum prime factor of n. If r ≥ 5, then the one-factorization HKpn+1

of Kpn+1 is (r − 1)<-cycle free. �

It is clear that HKpn+1 cannot be uniform. Taking two one-factors F0 and F1, its
union H has a cycle of length n + 1 with all vertices in V0, while one-factors F0 and Fn

make a Hamiltonian cycle in Kpn+1.

The next inductive construction, similar to HKpn+1, produces a one-factorization of
Kpn+1 for odd n and odd prime p, which does not have cycles of even lengths k, where
k 6≡ 0, p + 1 (mod 2p) or k = p + 1.
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Construction E Let p ≥ 3 be a prime and r = (p− 1)/2. Let n be an odd integer such
that n ≥ p and gcd(n, r) = 1. Let r−1 be the inverse of r in Zn. In what follows, labels of
vertices are taken modulo n, while indices are taken modulo p. Let V = V0∪V1∪. . .∪Vp−1,
where Vm = {∞, 0m, 1m, . . . , (n−1)m} for m = 0, 1, . . . , p−1. Let F̃ be a k-cycle free one-
factorization of Kn+1, where Ṽ = V (Kn+1) = {∞, 0, 1, . . . , n− 1}. Let F̃i be a one-factor
in F̃ , i = 0, 1, . . . n−1. To construct one-factor Fmn+i of Kpn+1, for m = 0, 1, . . . , p−1 and
i = 0, 1, . . . , n−1, copies of all edges of F̃i are taken by replacing Ṽ with Vm, and moreover,
the set of edges {{jm−s,−(j + (i + m)r−1)m+s} : j = 0, 1, . . . n − 1, s = 1, 2, . . . , r} is
added.

Lemma 14 For odd prime p and for odd n ≥ p such that gcd(n, (p − 1)/2) = 1, and for

even k ≥ 4, where k 6≡ 0, p + 1 (mod 2p) or k = p + 1, and moreover, k/2 - n, if there

is a k-cycle free one-factorization of Kn+1, then a k-cycle free one-factorization of Kpn+1

exists.

Proof: Assume that a k-cycle free one-factorization F̃ of Kn+1 is given. Let H be the union
of two one-factors Fh and Fi in the one-factorization obtained by applying Construction
E, where h < i and h, i ∈ {0, 1, . . . , pn − 1}.

Suppose that h and i satisfy mn ≤ h < i < (m + 1)n for some m ∈ {0, 1, . . . , p − 1}.
Then H does not contain a cycle of length k with all vertices in Vm because one-
factorization induced by Vm is the given k-cycle free one-factorization F̃ of Kn+1. More-
over, let Cl be a cycle of H with all vertices in V \ Vm and let ym−s be a vertex of Cl, for
some s ∈ {1, 2 . . . , r}. Note that Cl is exactly the same cycle as in Case I of the proof of
Lemma 11 and, since gcd(k/2, n) < k/2 by the assumption, l 6= k is satisfied.

It remains to consider the case when mn ≤ h < (m + 1)n and qn ≤ i < (q + 1)n for
some m, q ∈ {0, 1, . . . , p − 1}, m < q. Let z = q − m. If ∞ is a vertex of a cycle Cl in
H, then l ≡ p + 1 (mod 2p), cf. Subcase II.A in the proof of Lemma 11. Moreover,
neighbors of ∞ in H are hm and iq and the first p+1 consecutive vertices along the cycle
Cl in H (by Subcase II.A in the proof of Lemma 11) are: ∞, iq, . . ., (h − z)m 6= hm.
Hence l 6= p + 1. If ∞ is not a vertex of Cl in H, then l ≡ 0 (mod 2p), cf. Subcase II.B
in the proof of Lemma 11. Thus l 6= k. �

To prove main results one more construction, slightly different from Construction E,
is needed.

Construction F Let p ≥ 3 be a prime and r = (p − 1)/2. Let n be an odd integer
such that n ≥ p and gcd(n, r) = 1. Let r−1 be the inverse of r in Zn. In what follows,
labels of vertices are taken modulo n and moreover, indices are taken modulo p. Let
r = (p − 1)/2. Let V = V0 ∪ V1 ∪ . . . ∪ Vp−1, where Vm = {∞, 0m, 1m, . . . , (n − 1)m}
for m = 0, 1, . . . , p − 1. Let F̃ be a k-cycle free one-factorization of Kn+1, where Ṽ =
V (Kn+1) = {∞, 0, 1, . . . , n−1}. Let F̃i be a one-factor in F̃ , i = 0, 1, . . . n−1. To construct
one-factor Fmn+i of Kpn+1, for m = 0, 1, . . . , p−1 and i = 0, 1, . . . , n−1, copies of all edges
of F̃i are taken by replacing Ṽ with Vm, and the set of edges {{jm−s,−(j + ir−1)m+s} :
j = 0, 1, . . . n − 1, s = 1, 2, . . . , r} is added.
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Lemma 15 For odd prime p and for odd n ≥ 3 such that gcd(n, (p − 1)/2) = 1, and for

even k ≥ 4 where k 6= 2p, k 6= p + 1 and moreover, k/2 - n, if there is a k-cycle free

one-factorization of Kn+1, then a k-cycle free one-factorization of Kpn+1 exists.

Proof: Assume that a k-cycle free one-factorization F̃ of Kn is given. Let H be the
union of two one-factors Fh and Fi in the one-factorization constructed according to
Construction F, where h < i and h, i ∈ {0, 1, . . . , pn − 1}.

Suppose that h and i satisfy mn ≤ h < i < (m + 1)n for some m ∈ {0, 1, . . . , p − 1}.
Then clearly H does not contain a cycle of length k with all vertices in Vm because one-
factorization induced by Vm is the given one-factorization F̃ of Kn+1, which is k-cycle
free. Let Cl be a cycle of H with all vertices in V \ Vm. In fact, all vertices of Cl

are in Vm−s ∪ Vm+s for some s ∈ {1, 2 . . . , r}. Clearly l ≤ 2n. Let ym−s be a vertex
of Cl. Neighbors of the vertex ym−s in H are −(y + hr−1) m+s and −(y + ir−1) m+s.
Consecutive vertices along the cycle Cl are: ym−s, −(y + hr−1) m+s, (y + (h − i)r−1) m−s,

−(y + (2h− i)r−1) m+s, (y + (2h− 2i)r−1) m−s, . . ., −(y + lh−(l−2)i
2

r−1) m+s, ym−s, where l

is the minimum even positive integer such that −y − lh−(l−2)i
2

r−1 ≡ −y − ir−1 (mod n).
Since 0 < (i − h)r−1 < n, by the equivalence l

2
(i − h)r−1 ≡ 0 (mod n) and Claim 1,

gcd( l
2
, n) = l/2 holds. Thus l 6= k.

It remains to consider the case when mn ≤ h < (m + 1)n and qn ≤ i < (q + 1)n for
some m, q ∈ {0, 1, . . . , p−1}, m < q. Let z = q−m. Assume that ∞ is a vertex of Cl in H.
Neighbors of ∞ in H are hm and iq. Note that p+1 consecutive vertices along Cl in H are:
∞, iq = im+z, −(h+ri)r−1

m−z, (h+(r−1)i)r−1
m+3z, −(2h+(r−1)i)r−1

m−3z, (2h+(r−2)i)r−1
m+5z,

. . ., (rh + (r − r)i)r−1
m+pz = hm. Hence l = p + 1 6= k. Consider the case when ∞ is not

a vertex of Cl in H. Let (h + x)m be a vertex of Cl for some x 6= 0. Then neighbors of
(h + x)m in H are (h− x)m and −(h + x + ir−1)q+z = −(h + x + ir−1)m+2z . Therefore, 2p
consecutive vertices along Cl are: (h+x)m, −(rx+rh+ i)r−1

m+2z, (rx+(r−1)h+ i)r−1
m−2z,

. . ., (rx + (r − r)h + ri)r−1
m−(p−1)z = (i + x)m+z, (i − x)m+z, −(−rx + h + ri)r−1

m−z,

(−rx + h + (r− 1)i)r−1
m+3z, . . ., (−rx + rh + (r − r)i)r−1

m+pz = (h− x)m. Thus l = 2p and,
by the assumption, l 6= k. �

Note that a one-factorization made by Construction F does not contain a cycle of
length np + 1. Moreover, if n = p and GKn+1 is taken as a one-factorization F̃ of Kn+1,
then one-factorization produced in this way is a known uniform one-factorization of Kp2+1

with cycles of lengths p+1, 2p, 2p, . . .2p. Applying Construction F more than once for just-
obtained uniform one-factorization easily produces a series of uniform one-factorizations
for all orders of the form px + 1, x ≥ 2, where every one-factor has one cycle of length
p + 1 and (p x−1 − 1)/2 cycles of length 2p, cf. [4].

3 Main results

The constructions presented in the previous section are used to prove general results on
k-cycle free one-factorizations.
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Theorem 16 For each n and each even k ≥ 4 such that k 6= 2n, the complete graph K2n

has a k-cycle free one-factorization.

Proof: Let k = 2λ0pλ1

1 pλ2

2 . . . pλw

w be the prime factorization of k into non-trivial factors,
λj ≥ 1 for each pj and p1 < p2 < . . . < pw. Since k is even, λ0 ≥ 1. If k > 2n, by Claim
2 the assertion is true. Thus, the result is trivial for n = 4. In what follows, let k < 2n.
For the induction, assume that a k-free one-factorization of K2m exists for every m such
that 2 ≤ m < n and 2m 6= k. Consider separately two cases:
Case I: k/2 - n. Thus k 6= n. For odd n, by Corollary 7, the one-factorization GA2n is
k-cycle free. Assume that n is even. If λ0 6= 2, then to find a required one-factorization
of K2n apply Lemma 9. Consider the case λ0 = 2. Note that k > 4 because otherwise
k/2 = 2|n. Let x = max{y : gcd(2y, n) = 2y}. Hence immediately k 6= n/2y for every
y ≤ x. Let n′ = n/2x. Note that both k/2 - n′ and k/4 - n′. Thus, the one-factorization
GA2n′ of K2n′ , by Corollary 7, is {k/2, k}-cycle free. In the next steps apply x times
Construction C to get, by Lemma 10, one-factorizations of K4n′ , of K8n′ ,. . ., of K2n,
respectively, which are {k/2, k}-cycle free.
Case II: k/2 | n. Hence, for every j = 1, 2, . . . , w, pj | n and clearly pj - 2n − 1. Thus
gcd(k/2, 2n−1) = 1. If gcd(k−1, 2n−1) < k−1, by Corollary 4 the one-factorization GK2n

is k-cycle free. Consider the opposite case gcd(k−1, 2n−1) = k−1. Let f be the minimum
nontrivial factor of 2n − 1 and e = 2n−1

f
. Thus e ≥ f ≥ 3 and gcd(e, (f − 1)/2) = 1.

Moreover, since gcd(k/2, ef) = 1, gcd(k/2, e) = 1 and f - k/2 immediately follow, and
then k 6≡ 0 (mod 2f). The aim is to show that e 6= k − 1. Suppose to the contrary
that e = k − 1. Then 2n − 1 = ef = (k − 1)f and, since n = z k

2
for some integer z,

k(f −z) = f −1. Thus, k is a divisor of f −1, whence f ≥ k+1 = e+2, which contradicts
the fact that f is the minimum factor of 2n − 1. By the inductive assumption there is a
k-cycle free one-factorization of Ke+1. If f is not a factor of k − 1 (it means k 6≡ f + 1
(mod 2f)) or f = k − 1, then to find a required one-factorization of Kef+1 apply Lemma
14 (with p := f). Otherwise f |k − 1 and f < k − 1. In this case, to find a k-cycle free
one-factorization of Kef+1, apply Lemma 15 (with p := f). �

The existence of 4-cycle free one-factorizations of complete graphs has already been
stated in [9].

For an infinite class of even orders 2n of complete graphs, 2n-cycle free one-factoriza-
tions may be constructed. Note that all one-factorizations GK2n, GA2n, as well as HK2n,
are not useful for this purpose since, as was noted earlier, they contain Hamiltonian cycles.

Theorem 17 Let 2n 6= p+1, where p is a prime, or 2n 6≡ 6, 12, 18 (mod 24). Then the

complete graph K2n has a 2n-cycle free one-factorization.

Proof: Let 2n 6= p + 1 for every prime p. Let f be the minimum prime factor of 2n − 1
and e = 2n−1

f
. Then e ≥ f ≥ 3 and to construct a 2n-cycle free one-factorization of Kef+1

apply, by Lemma 15, Construction F.
If 2n ≡ 2, 4 (mod 6), then it is easily observed than any Steiner one-factorization

of order 2n (cf. [12]) is 2n-cycle free; in fact, the union of any two one-factors contains

the electronic journal of combinatorics 16 (2009), #R3 11



the cycle C4. If 2n ≡ 0 (mod 8), then n is even and, by Claim 2, any one-factorization
of Kn is 2n-cycle free. Hence, by Lemma 9, Construction C produces a required one-
factorization. �

At present, the existence problem of k-cycle free one-factorizations when k = 2n has
been only partially solved. In contrast to perfect one-factorizations, orders of the form
2n = p + 1, for p being prime, appear to be the most difficult regarding constructions
of 2n-cycle free one-factorizations of K2n. However, the existence of n-cycle free one-
factorization of Kn when n ≡ 2 (mod 4), by Lemma 10, immediately implies the exis-
tence of 2n-cycle free one-factorization of K2n. Moreover, known examples of non-perfect
uniform one-factorizations of K2n (cf. [5]), as well as the 2n-cycle free one-factorizations
for 2n = 18 given in the Appendix, cover all unsolved cases for orders less than 102.

The more general question concerns k<-cycle free one-factorizations of the complete
graph. This appears to be much more difficult. One obvious argument is that perfect
one-factorizations of K2n are simply (2bn/2c)<-cycle free one-factorizations. Even for
k = 6, all constructions presented in this paper are not sufficient to obtain a complete
classification, i.e. the case 2n = 28 remains unsolved. However, for every order 2n ≡ 2
(mod 4), a 6<-cycle free one-factorization of K2n may be constructed.

Theorem 18 For every odd n ≥ 5, there exists one-factorization of K2n which is 6<-cycle

free.

Proof: Let q be the minimum prime factor of n. If q ≥ 5, then the one-factorization
GA2n, by Corollary 8, is 8<-cycle free. Therefore, assume that q = 3. Clearly, 3 - 2n − 1.
If 5 is not a factor of 2n− 1, then the one-factorization GK2n, by Corollary 5, is 6<-cycle
free. It remains to consider the case when 5 | 2n−1. Let 2n−1 = r1r2 . . . rv be the prime
factorization of 2n − 1 into non-trivial factors, where 5 = r1 ≤ r2 ≤ . . . ≤ rv and v ≥ 2.
Note that for rv ≥ 7 there exists a 6<-cycle free one-factorization F̂ of Krv+1, namely, by
Corollary 5, as F̂ the one-factorization GKv+1 may be substituted. Otherwise rv = 5 and
2n − 1 = 5x for some x ≥ 2. Let F̂ be the one-factorization GA52+1 of K52+1 which is
clearly perfect. In the next steps apply v − 1 times (v − 2 times if rv = 5) the inductive
Construction E, taking as p’s consecutive prime factors of 2n − 1 in the non-increasing
order. In this way, by Lemma 14, a series of 6<-cycle free one-factorizations is constructed,
ending up at the order 2n. �

Although it is not possible to construct k<-cycle free one-factorizations for all orders
2n ≥ k ≥ 6, infinite families of orders may be provided, for which such one-factorizations
do exist. Evidently, by Corollary 5, the one-factorization GK2n is k<-cycle free for every
order 2n such that the prime factorization of 2n − 1 does not contain a factor less than
k. Let n ≥ 3 and let r be the minimum prime factor of 2n − 1. Moreover, let l =
max{r1 − 1, 2r2 − 2}, where r1 is the minimum prime factor of 2n−1

r
and r2 the minimum

prime factor of n. If r ≥ 5, then there exists an l<-cycle free one-factorization of K2n

(which follows directly from Corollaries 8 and 13).
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Appendix

One-factors of 18-cycle free one-factorization of K18, V (K18) = {0, 1, . . . , 17}:

0-1,2-3,4-5,6-7,8-17,9-10,11-12,13-14,15-16; 0-2,1-3,4-7,5-8,6-15,9-11,10-12,13-16,14-17;
0-3,1-2,4-13,5-6,7-8,9-12,10-11,14-15,16-17; 0-4,1-5,2-6,3-8,7-16,9-13,10-14,11-15,12-17;
0-5,1-4,2-11,3-7,6-8,9-14,10-13,12-16,15-17; 0-6,1-7,2-8,3-4,5-14,9-15,10-16,11-17,12-13;
0-7,1-6,2-5,3-12,4-8,9-16,10-15,11-14,13-17; 0-8,1-10,2-4,3-6,5-7,9-17,11-13,12-15,14-16;
0-9,1-8,2-7,3-5,4-6,10-17,11-16,12-14,13-15; 0-10,1-9,2-12,3-11,4-14,5-16,6-17,7-15,8-13;
0-11,1-17,2-16,3-9,4-15,5-12,6-13,7-14,8-10; 0-12,1-11,2-10,3-15,4-9,5-13,6-14,7-17,8-16;
0-13,1-14,2-15,3-17,4-16,5-10,6-11,7-12,8-9; 0-14,1-13,2-17,3-16,4-10,5-9,6-12,7-11,8-15;
0-15,1-12,2-9,3-10,4-11,5-17,6-16,7-13,8-14; 0-16,1-15,2-13,3-14,4-17,5-11,6-10,7-9,8-12;
0-17,1-16,2-14,3-13,4-12,5-15,6-9,7-10,8-11.
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