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Abstract

It is proved that for every n > 3 and every even k > 4, where k # 2n, there
exists one-factorization of the complete graph K5, such that any two one-factors
do not induce a graph with a cycle of length k£ as a component. Moreover, some
infinite classes of one-factorizations, in which lengths of cycles induced by any two
one-factors satisfy a given lower bound, are constructed.

1 Introduction

A one-factor of a graph G is a regular spanning subgraph of degree one. A one-factoriza-
tion of G is a set F' = {Fy, Fy, ..., F,} of edge-disjoint one-factors such that E(G) =
Ui, E(F;). Evidently, the union of two edge-disjoint one-factors is a two-factor consisting
of cycles of even lengths.

The exact number N (2n) of all pairwise non-isomorphic one-factorizations of the com-
plete graph Ky, is known only for 2n < 14; namely N(4) = N(6) = 1, N(8) =6, N(10) =
396, cf. [14], N(12) = 526,915,620 [8], and N(14) = 1,132,835,421,602, 062, 347 [10].
Moreover, Cameron [4] proved that In N(2n) ~ 2n?In (2n) for sufficiently large n. There-
fore, any investigations (including enumeration) regarding all one-factorizations of Ky,
are deemed reasonable if they are restricted to a subclass which satisfies some additional
properties. One of the obvious requirements concerns an isomorphism of graphs induced
by pairs of one-factors. In this way, a question arises regarding the existence of uniform
(perfect) one-factorizations. A one-factorization is uniform when the union of any two
one-factors is isomorphic to the same graph H. In particular, if H is connected (i.e. a
Hamiltonian cycle), then a one-factorization is called perfect.

Perfect one-factorizations of complete graphs were introduced by Kotzig [11] and in
known notation by Anderson [2]. Only three infinite classes of perfect one-factorizations
are known, namely when 2n — 1 is prime [11, 3] and when n is prime [1]. All other known
examples of perfect one-factorizations of Ky, have been found using various methods,
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cf. [16, 17]. Perfect one-factorization conjecture, which claims the existence of perfect
one-factorizations for every even order of the complete graph, is far from proven. Perfect
one-factorizations are very rare among all one-factorizations; this argument is supported
by a comparison of known numbers, P(2n), of all perfect pairwise non-isomorphic one-
factorizations of Ky, with N(2n). There are P(4) = P(6) = P(8) = P(10) =1, P(12) =
5, cf. [16, 17], P(14) = 23 [7] and P(16) > 88 [15]. Uniform one-factorizations other
than those which are perfect have been investigated far less, cf. [5, 14]. In fact, there are
only three known infinite classes and several sporadic examples of uniform non-perfect
one-factorizations.

In this context, weaker properties regarding lengths of cycles which are required to
exist, or which are forbidden in the union of any two one-factors, may be considered. A
one-factorization F' = {Fy, Fy, ..., F,} of G is said to be k-cycle free if the union of any
two one-factors does not include the cycle Cj. Consequently, F is S-cycle free if the union
of any two one-factors does not include cycles of lengths from the set S. In particular,
if S =4{4,6,...,k}, then F is called k<-cycle free. It can be said that F' has a cycle of
length k if there are two one-factors in F', the union of which includes CY.

The aim of this paper is to find, for each n and each even k > 4 such that 2n # k, a
k-cycle free one-factorization of Ks,. For 2n # p+ 1, where p is a prime, or 2n # 6, 12,18
(mod 24), the existence of 2n-cycle free one-factorizations of K, is proven. Moreover,
some infinite classes of k<-cycle free one-factorizations are constructed.

2 Constructions and their properties

The following two facts are easily observed.

Claim 1 For n > 2, if | is the minimum positive integer such that ged(l,n) > 1, then

ged(l,n) = 1. Moreover, for odd n' > 3, if I' is the minimum even positive integer such
that ged(l',n') > 1, then ged(l',n’) =1"/2. O

Claim 2 If k > 2n > 4, then any one-factorization of Ko, is k-cycle free. O

The well-known canonical one-factorization G K5, of K5, has been published in Lucas’
[13] and attributed to Walecki.

Construction A Let V = {c0,0,1,...,2n —2}. Let GKs, denote a one-factorization of
K5, which consists of one-factors F; = {{i — j,i +j}: 7 =1,2,...n— 1} U{oo,i}, for
1=20,1,...2n — 2, where labels are taken modulo 2n — 1.

It is well-known that G K, is perfect if and only if 2n — 1 is prime [11]. Dinitz et. al.
6] investigated lengths of cycles which may appear in the union of any two one-factors in
GK,,. Lemma 3 is a corollary to that result; a short proof is presented here in order to
provide detailed constructions of cycles applied in further results.

Lemma 3 (cf. [6]) Forn > 3 and even k such that 4 < k < 2n, the one-factorization
GKs, of Ks, contains a cycle of length k if and only if k/2 |2n—1 or k—1|2n — 1.
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Proof: Let p = 2n — 1. Assume that GK>, contains a cycle C}, of length k which appears
in the union H of two one-factors Fj, and F;, where h < i and h,i € {0,1,...,p—1}. Let
z =1 — h. Consider separately two cases.
Case I: Cj contains the vertex co. Then neighbors of oo in H are h and i. Consecutive
vertices along the cycle Cy, in H are: 0o, i, h—z, 142z, h—3z, i+4z, h—5z, ..., i+(k—2)z,
oo, where k is the minimum even positive integer such that i + (kK — 2)z = h  (mod p)
(which is equivalent to (k — 1)z =0 (mod p)). Since 0 < z < p, ged(k —1,p) =k —1
follows by Claim 1.
Case II: C} does not contain oco. Let h + x be a vertex of Cy. Then x # 0 and neighbors
of h+x in H are h — z and i + z — x. Consecutive vertices along Cj in H are: h + z,
h—zi+z+x,h—2z—2,i+32+x,h—4z—z, ..., h—(k—2)z —x, h+ x, where k
is the minimum even positive integer such that h — (k —2)z —x =i+ 2 —x (mod p).
Similarly to the above, since 0 < z < p, by the equivalence kz =0 (mod p) and Claim
1, ged(k,p) = k/2.

To prove sufficiency, suppose first that k& < 2n and k/2 | p. Then £k =2 (mod 4).
In order to find a cycle of length k, take two one-factors Fy and Fj, where i = ;75. Let
[ be the length of a cycle which does not contain oo in the union of Fy and F;. Then,
repeating calculations of Case II, [ is the minimum even positive integer such that [t = 0

(mod p). Then /2 =0 (mod p) and next, since k/2 is odd, I = k. Similarly, for any

/2 —
even k < 2n where k — 1 | p, two one-factors Fy and Fj are taken, where j = £5. If [ is
the length of a cycle which contains oo, then as in Case I, [ is the minimum even positive
integer such that (I —1)j =0 (mod p). Thus [ = k. O

The above Lemma 3 is equivalent to the following result.

Corollary 4 For n > 3 and even k > 4, the one-factorization GK, of K, is k-cycle
free if and only if k/242n —1 and k —1{2n — 1. O

By Lemma 3, the one-factorization GG K5, has a trivial lower bound on the minimum
length of cycles it contains.

Corollary 5 Let r be the minimum prime factor of 2n — 1. If r > 5, then the one-
factorization GKs, of Ko, is (r — 1)<-cycle free. O

Lemma 3 immediately yields another property of GK5,. Namely, for any order 2n,
G K, cannot be a non-perfect uniform one-factorization because G K, contains a cycle
of length 2n.

Another well-known one-factorization of the complete graph of order 2n for odd n is
denoted by GA,, [2].

Construction B Let n be odd. In what follows, labels of vertices are taken modulo
n. Let V.= Vo UV, where V,,, = {0y, 1n,...,(n — 1)} for m = 0,1. Let GAs, be
a one-factorization of Ks, with one-factors Fy, F,..., Fa, o. Let F; = {{(i — j)m, (1 +
NDmt: j=12,...(n—1)/2, m = 0,1} U{ip, 41}, for i = 0,1,...n — 1. Moreover, let
Fooi ={{josG+i+11}: j=0,1,...n—1}, fori=0,1,...n— 2.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R3 3



It is well-known that GAs, is perfect if and only if n is prime [1]. The following
presents a stronger property of GAs,.

Lemma 6 For odd n > 3 and even k such that 4 < k < 2n, the one-factorization G As,
of Ky, contains a cycle of length k if and only if k/2 | n.

Proof: Assume first that G A,,, contains a cycle C) which is included in the union H of
two one-factors Fj, and F;, where h < i and h,i € {0,1,...,2n — 2}. Consider separately
three cases.

Case I: h <1 < n —1. Note that, if in the construction of GK, ; the vertex subset
V(Kns1) \ {00} is replaced with V,,,, for m = 0,1, and moreover, GK,; is restricted
to the vertices of V,,, then a near one-factorization of K, into near one-factors F/" =
HG =9 m, i+ m}: j=1,2,...(n—1)/2} is obtained, where i = 0,1,...,n— 1. It is
clear that F/™ C F; (the one-factor of GAs,) for every admissible ¢ and m. A cycle C}, in
H has all vertices either in Vj or in V; or in both subsets together. In the previous two
cases C}, corresponds to a cycle of the same length either in Fi) U F? or in F}} UF}. Then,
by Case II in the proof of Lemma 3, gcd(k,n) = k/2. In the latter case, k =2 (mod 4)
and Cj, consists of two paths of length k£/2—1 (one of them with all vertices in V and the
other one with all vertices in V}) joint together by the edges {hg, h1} (of F},) and {ig, 71}
(of F}). These two paths correspond to a path with endvertices h and 7 included in a cycle
of length k/2 + 1 ( which contains the vertex co), induced by one-factors with indices h
and ¢ in GK, 1. Thus, by Case I in the proof of Lemma 3, ged(k/2,n) = k/2 holds.
Case II: h < n < 4. Consider two subcases.

II.A: hg is not a vertex of the cycle C in H. Then also h; is not in Cj. Note that the
length of Cj is divisible by 4. Let (h + z)o be a vertex of Cj for some x # 0. Then
neighbors of (h+ z)p in H are (h — x)g and (h 4+ z + i+ 1);. Consecutive vertices along
the cycle Cy in H are: (h+x)o, (h+az+i+ 1)1, (h—x—1— 1)1, (h— 2 — 21— 2),
(h+a+2i+2)g, (h+a+3i+3), (h—z—30i—3)1, ..., (h—x— D) (h 4 2),,
where k is the minimum even positive integer such that h —z — @ =h—xz (mod n).
Since n < i+ 1 < 2n, by the above equivalence £(i + 1) = 0 (mod n) and Claim 1,
ged(k/2,n) = k/2.

II.B: hg is a vertex of Cy. Then hy is in C} as well. Note that £ =2 (mod 4). The
neighbors of hg in H are h; and (h + i + 1);. Consecutive vertices along the cycle Cy,
in H are: hg, (h+i+ 1)1, (h—i—1), (h—2i —2), (h+ 2i+ 2), (h+ 3i+ 3)i,

(h—3i—3), ..., (h+ k(i;rl))l, ho, where k is the minimum even positive integer such

that h + @ =h (mod n). Analogously to the previous case, since n < i+ 1 < 2n, by
Claim 1, ged(k/2,n) = k/2 is easily observed.
Case III: n < h < i. Then neighbors of yo in H are (y + h + 1); and (y + i + 1);.
Consecutive vertices along Cy in H are: yo, (y +i+ 1)1, (y+i—h)o, (y +2i — h+ 1)1,
(y + 2i — 2h)g, ..., (y+%)1, Yo, Where y—i-w =y+h+1 (modn).
Similarly to the previous case, since 0 < i — h < n, by g(z —h)=0 (mod n) and Claim
1, ged(k/2,n) = k/2 holds.

To show sufficiency, suppose that & < 2n and k/2 | n. To find a cycle of length &, take
one-factors F,, and F; such that i =n + kL/Z Note that, if [ is the length of a cycle in the
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union of F,, and Fj, then [ is the minimum even positive integer such that (i —n) =0

(mod n) (cf. calculations of Case III above). Thus éki/Q =0 (mod n), whence [ = k. O

Lemma 6 is equivalent to the following.

Corollary 7 For oddn > 3 and even k > 4, the one-factorization G As, of K», is k-cycle
free if and only if k/2 { n. O

Lemma 6 immediately provides a lower bound on the minimum length of cycles in

GAs,.

Corollary 8 Let n be odd and n > 3. Let r be the minimum prime factor of n. Then
the one-factorization G Ay, of Kay is (2r — 2)<-cycle free. O

Lemma 6 also yields an obvious corollary that GAs, cannot be a non-perfect uniform
one-factorization.

Presented below is an inductive construction for another family of one-factorizations
of Kgn.

Construction C Let n be even. In what follows, labels of vertices are taken mod-
ulo n. Let V= VoUW, where V,, = {0y, 1p,...,(n — 1),,} for m = 0,1. Let
F ={Fy,Fy,...,F,_5} be a k-cycle free one-factorization of K,, where V = V(K,) =
{0,1,...,n}. Two copies of F are taken by replacing V with V; and Vi, respectively. In
this way, n—1 one-factors F; of K5, are obtained, i = 0,1,...,n—2. The nth one-factor is
F..1={{jo,71}: j=0,1,...n—1}. Remaining n— 1 one-factors are built based on one-
factors in F'; namely, if {vg, uo} is the edge of one-factor I, for some h € {0,1,...,n—2},
then {vg,u1} and {vy,uo} are the edges of one-factor F, .

The above method allows for the construction of k-cycle free one-factorizations of Ko,
where n is even and k # 4 (mod 8).

Lemma 9 For evenn > 4 and even k > 6 such that k Z4 (mod 8), if there is a k-cycle
free one-factorization of K, then a k-cycle free one-factorization of K, exists.

Proof: Assume that a k-cycle free one-factorization F' of K, is given. Let H be the
union of two one-factors Fj and F; in the one-factorization of K5, obtained by applying
Construction C, where h < i and h,7 € {0,1,...,2n — 2}. If both h,i < n — 1, then
H does not contain C}, because all cycles in H are, in fact, copies of cycles in the given
one-factorization F of K, which is k-cycle free. If i = n —1or h = n — 1, one can
see that every cycle in H has length 4. In what follows, assume that ¢ > n. If ¢ —
h = n, it is evident that every cycle in H has length 4 as well. Otherwise ¢ — h # n.
Note that every cycle in H corresponds to a cycle in the union of one-factors F;, and
F,_, in K,. Let C; denote a cycle of length [ in F, U F,;_,, with consecutive vertices
v', 0?03, ... vl Suppose that h < n — 1. Note that C; corresponds either to a cycle

C] (ifl =0 (mod4)) of length [ or to a cycle C¥ (if l =2 (mod 4)) of length 2/ in
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H; consecutive vertices of C] are vi,v3, v, v, v5, 05, . .. ol ol while CY, has vertices
vh, vg, v vt ol ok ol TR 0?7 2l In the latter case, by the assumption,
k # 21. Consider the last case n < h. Then C; corresponds to a cycle C/” of the same
length [ in H with consecutive vertices v, v?,v3, v}, ..., v5"!, vl. Hence, since K, is k-cycle
free, k # | and the assertion holds. OJ

By the above Lemma 9, if 2n =0 (mod 8), then a one-factorization built by applying
Construction C does not contain a cycle of length 2n. Moreover, starting from n = 4
and applying the above inductive construction for consecutive powers of 2, a well-known
class of uniform one-factorizations of complete graphs with all cycles of length 4 is easily
obtained, cf. [4].

Construction C also enables the building of a {k/2, k}-cycle free one-factorization of
K, using a given {k/2, k}-cycle free one-factorization of K.

Lemma 10 For even n > 4 and even k > 12 such that k = 4 (mod 8), if there is a
{k/2, k}-cycle free one-factorization of K,,, then a {k/2,k}-cycle free one-factorization of
Ko, exists.

Proof: The assertion follows immediately from the proof of Lemma 9. Namely, by the
assumption, a given one-factorization of K, does not contain a cycle of length [ such that
Il =2 (mod 4). Hence, by the proof of Lemma 9, every cycle in a one-factorization of
K, obtained by applying Construction C, has either length 4 or has the same length as
a corresponding cycle in a given one-factorization of K. U

The next infinite class of one-factorizations yields further examples of k-cycle free and
k<-cycle free one-factorizations of complete graphs.

Construction D Let p > 3 be a prime and r = (p — 1)/2. Let n be an odd integer
such that n > p and ged(n,r) = 1. Let r=! be the inverse of 7 in Z,. In what follows,
labels of vertices are taken modulo n, while indices are taken modulo p. Consider a one-
factorization of K, denoted by HK,,11. Let V =1V, UV U...UV,_4, where V,, =
{00,0mm, Ly, ..., (n = 1)} for m =0,1,...,p—1. Thus VyNViN...V,_qy = {oo}. Let
Fronsi = 4G = s (i ok + G = 12, (0= 1)/2} Ui, 50} Uf{jmss (G + (i +
m)r Vpast: j=0,1,...n—1,s=1,2,...,r}fori=0,1,...n—1,m=0,1,...,p— 1.

Note that H K, is an extension of GK,: one-factorization induced by every V; is
the one-factorization GK, 1 of K,.1. Moreover, if every set V; \ oo is replaced by a
single vertex u;, and all edges with the same endvertices are contracted to a single edge,
loops being removed, then the corresponding one-factorization GK,, of K, would be
obtained.

Presented below are investigations into possible lengths of cycles in H K, ;.

Lemma 11 For odd prime p and for odd n such that n > p and ged(n, (p —1)/2) =1,
and for even k such that 4 < k < pn-+1, the one-factorization HKp,11 of Kpn41 contains
a cycle of length k if and only if one of the following conditions holds:
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() kE<n+1andk—1|n,
(2) k>n+1andk—1|np,
(3) k<2n and k/2 | n,
(4) k> 2n and k/2 | np.

Proof: Assume that H K, contains a cycle of length k which appears in the union H
of one-factors Fj, and F;, where h < i and h,i € {0,1,...,pn — 1}. Consider separately
two cases.
Case I: mn < h <i < (m+1)n for some m € {0,1,...,p—1}. One-factorization induced
by V,, is the one-factorization GK, .1 of K, 1 and therefore, by Lemma 3, either condition
(1) or (3) is satisfied when k& < n+1 and all vertices of Cy come from V;,,. Consider the case
where all vertices of C}, are in V'\ V,,,. In fact, all vertices of C}, are in V,,,_,UV}, s for some
s €{1,2...,r}. Then clearly k < 2n. Let y,,_s be a vertex of Cj. Neighbors of the vertex
Ym—s are —(y+ (h+m)r=1) s and —(y+ (i+m)r~1) ;. Consecutive vertices along the
cycle Cy are: Yp_s, —(y+(h+m)r™) s, W+ h—0)r™) s, —(y+2h—i+m)r™) ,es,
(y+ (2h = 20)r™ ) sy ey —(y + DIty Y, Where k is the minimum
even positive integer such that —y — WT* =—y—(i+m)r! (mod n). Since
0 <i—h <n,then0< (i—h)r~' <nand, by the equivalence £(i —h)r=' =0 (mod n)
and Claim 1, gcd(%,n) = g and then (3) holds.
Case II: mn < h < (m + 1)n and gn < i < (¢ + 1)n for some m,q € {0,1,...,p — 1},
m < q. Let z = ¢ — m. Consider two subcases.
IILA: oo is a vertex of Cx. Then k = p+ 1 (mod 2p). Neighbors of co in H are hy,
and ¢,. Note that indices of consecutive vertices in the cycle Cj appear in the order
according to the labels of vertices in Case I of the proof of Lemma 3. Thus the first p+1
consecutive vertices along Cy in H are: oo, i, = z'm+z, —(h+ri+m)r,,_,, (h+ (T -
1>i +m — Q)T;zl—i-?»m (2h + (T - 1)Z +2m — q) m—3z) (2h + (T - 2)2 +2m — 2(_]) m+5z’
o (rh+ (r=r)i+rm —rq)rl,. = (h — 2),. Note that (h — z),, # hy, because
0 < z < p < n. Thus the neighbor of (h— 2),, in F}, is (h+ 2),,. Moreover, (i 4+ 22),+, #
ims-- Then the next 2p consecutive vertices along Cj, in H are: (h+ 2)p, = (h + 2)4—s,
~(rz4rhtitq)ryl, (et (r—Dhtitg=m)rily, —(re+(r—1)h+2i+2g—mjr s
(rz+ (r—2h+2i+2¢—2m)r L., ..., (rz+(r—r)h+ri+rqg—rmyr,l,. = (i+
22) sy (10— 22)mazy —(— 27’z—|—h—|—m+m)7‘m o (—2rz4+h+(r—1)0i+m— ) s
—(=2rz+2h+ (r — )i+ 2m — q)r, e (=2rz + 2h + (1 — 2)i +2m — 2q)7 ) sss - - -
(=2rz+rh+ (r—r)i+rm—rq)rmy. = (b — 32)m,. Therefore, after the next %
segments, each of which contains 2p vertices, the kth vertex in Cy is (h — %z)m = h,,.
Since 0 < z < p < n, if k is the minimum even positive integer such that %z =0

(mod n), then £ — 1 > n and moreover, by Claim 1, gcd( Ln) = %. Thus (2) is
satisfied.

II.B: oo is not a vertex of Cy. Then k =0 (mod 2p). Let (h + x),, be a vertex of Cj.
Then z # 0 and neighbors of (h + x),, in H are (h — x),, and (—h +x — (i + q)r ) ez
First segment of 2p consecutive vertices along C} is (cf. second segment of Cj in Subcase
ILA): (h+ ) = (h+2)ges, —(rz +rh+ i+ @)r ., (ra+ (r—Dh+i+q—m)r L,
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o Tt 2)g =i+ 2+ Dmis, (1 =2 = 2)mis, —(=rz+htrit (04 m —rq)r,.,
(=rz+h+ =i+ r+Dm—(r+1)q)r s, -y (h—2—22), # (h—2),,. After the next
2£p — 1 segments, each of which contains 2p vertices, we end up at (h—xz— %z)m =(h—2)nm
Since 0 < z < p < n and moreover, k is the minimum even positive integer such that
I—'jz =0 (mod n), k> 2n holds and, by Claim 1, gcd(l—'j,n) = %. Hence (4) is satisfied.

To prove sufficiency, in order to find a cycle of length k, take the union of two one-
factors Fy and F;. Let ¢ = 5 ifk<n+4+1land k—1|n. Thus 1 <i < n. Let [ be the
length of a cycle in the union of Fy and F; which contains oo and with all vertices in Vj.
Then, by applying calculations of Case I in the proof of Lemma 3, [ is the minimum even
positive integer such that ({—1)i =0 (mod n). Thus ==tn =0 (mod n) and therefore
I'= k. Similarly, let i = 3% (mod n) if k£ < 2n and k/2 | n. Hence, if [ is the length of a
cycle in Fy U F; with all vertices in V,,_; U Vj, by calculations as in Case I above, [ is the
minimum even positive integer such that —ir‘l = (mod n). Hence [ = k. Analogously,
let i = ny% (= n)if bk >n+1 >p+1andk—1\np If [ is the length of a cycle in

Fy U F; Wthh contains oo, by calculations as in Subcase II.A above, [ is the minimum

even positive integer such that l_le = (mod n), where z = i/n = 7 < n. Then
lpl k= (mod n), whence k = [. In the last case, if & > 2n > 2p and k/2 | np, then
i = nz7s > n. Note that k =2 (mod 4). If [ is the length of a cycle in the union Fo U F;
which does not contain oo, then [ is the minimum even positive integer such that o= =0
(mod n), where z = i/n = :/172 < n, cf. Subcase II1.B. Hence Lk”—/’; = (mod n) and,
since k/2 is odd, k = [ holds. O

Lemma 11 is equivalent to the following result.

Corollary 12 For odd prime p and for odd n such that n > p and ged(n, (p—1)/2) =1,
and for even k > 4, the one-factorization HK,,+1 of Kyt is k-cycle free if and only if
all of the following conditions hold:

(W) k—14nifk<n+1,

(2) k—=11npifk>n+1,

(3) k/24n if k < 2n,

(4) k/24np if k > 2n. O

Lemma 11 yields a trivial lower bound on the minimum length of cycles in H K, 1.

Corollary 13 Let p be an odd prime and n be odd such that n > p and ged(n, (p—1)/2) =
1. Let r be the minimum prime factor of n. If r > 5, then the one-factorization H K, 1
of Kpnt1 is (r — 1)<-cycle free. O

It is clear that H K, ; cannot be uniform. Taking two one-factors Fy and Fj, its
union H has a cycle of length n + 1 with all vertices in Vj, while one-factors Fy and Fj,
make a Hamiltonian cycle in K.

The next inductive construction, similar to H K, 1, produces a one-factorization of
Kpn41 for odd n and odd prime p, which does not have cycles of even lengths k, where
k#0,p+1 (mod2p)ork=p+1.
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Construction E Let p > 3 be a prime and r = (p — 1)/2. Let n be an odd integer such
that n > p and ged(n,r) = 1. Let r=! be the inverse of r in Z,. In what follows, labels of
vertices are taken modulo n, while indices are taken modulo p. Let V = VUV U. . .UV,_;,
where V;, = {00, 0, Ly ..., (n—1) } form = 0,1,...,p—1. Let F be a k-cycle free one-
factorization of K41, where V = V(K,41) = {00,0,1,...,n — 1}. Let E; be a one-factor

in F’, 1=0,1,...n—1. To construct one-factor F,,,.; of Kan, form=20,1,...,p—1 and
i=0,1,...,n—1, copies of all edges of F} are taken by replacing V with V,,, and moreover,
the set of edges {{]m_s, G+GE+mrHpast: 7=01,...n—1, s=1,2,...,r} is
added.

Lemma 14 For odd prime p and for odd n > p such that ged(n, (p — 1)/2) = 1, and for
even k > 4, where k Z 0,p+1 (mod 2p) or k = p+ 1, and moreover, k/2 t n, if there
is a k-cycle free one-factorization of K, 11, then a k-cycle free one-factorization of Kpni1
er1sts.

Proof: Assume that a k-cycle free one-factorization F of K, is given. Let H be the union
of two one-factors F}, and F; in the one-factorization obtained by applying Construction
E, where h < i and h,i € {0,1,...,pn — 1}.

Suppose that h and i satisfy mn < h < i < (m + 1)n for some m € {0,1,...,p— 1}.
Then H does not contain a cycle of length k£ with all vertices in V,, because one-
factorization induced by V,, is the given k-cycle free one-factorization F of K, 1. More-
over, let C; be a cycle of H with all vertices in V' \ V,, and let y,,_s be a vertex of Cy, for
some s € {1,2...,r}. Note that () is exactly the same cycle as in Case I of the proof of
Lemma 11 and, since ged(k/2,n) < k/2 by the assumption, [ # k is satisfied.

It remains to consider the case when mn < h < (m+ 1)n and gn < i < (¢ + 1)n for
some m,q € {0,1,...,p— 1}, m < q. Let 2 = ¢ —m. If 0o is a vertex of a cycle C; in
H, then l = p+ 1 (mod 2p), cf. Subcase II.A in the proof of Lemma 11. Moreover,
neighbors of oo in H are h,, and i, and the first p+ 1 consecutive vertices along the cycle
C; in H (by Subcase IL.A in the proof of Lemma 11) are: oo, ig, ..., (b — 2)m # hm.
Hence | # p+ 1. If oo is not a vertex of C; in H, then I =0 (mod 2p), cf. Subcase I1.B
in the proof of Lemma 11. Thus [ # k. U

To prove main results one more construction, slightly different from Construction E,
is needed.

Construction F Let p > 3 be a prime and » = (p — 1)/2. Let n be an odd integer
such that n > p and ged(n,r) = 1. Let r—! be the inverse of r in Z,. In what follows,
labels of vertices are taken modulo n and moreover, indices are taken modulo p. Let
r=(p—-1)/2. Let V=V, UV U...UV, 4, where V;, = {00,0m, 1;n,. .., (n— D)}
form = 0,1,...,p— 1. Let F be a k cycle free one-factorization of K, ., where V =
V(Kpt1) = {00,0,1,...,n—1}. Let E; be a one-factorin £, i =0, 1,...n—1. To construct
one-factor F,,,,,; of Kpn+17 form=0,1,...,p—1landi=0,1,...,n—1, copies of all edges
of F, are taken by replacing V with Vj,, and the set of edges {{]m o —(J Fir ) mas}
j=0,1,...n—1, s=1,2,...,r} is added.
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Lemma 15 For odd prime p and for odd n > 3 such that ged(n, (p — 1)/2) = 1, and for
even k > 4 where k # 2p, k # p+ 1 and moreover, k/2 { n, if there is a k-cycle free
one-factorization of K11, then a k-cycle free one-factorization of Ky, exists.

Proof: Assume that a k-cycle free one-factorization F of K, is given. Let H be the
union of two one-factors Fj, and F; in the one-factorization constructed according to
Construction F, where h < i and h,7 € {0,1,...,pn —1}.

Suppose that h and ¢ satisfy mn < h <1i < (m+ 1)n for some m € {0,1,...,p — 1}.
Then clearly H does not contain a cycle of length k with all vertices in V,, because one-
factorization induced by Vj, is the given one-factorization F' of K1, which is k-cycle
free. Let C; be a cycle of H with all vertices in V' \ V,,. In fact, all vertices of C,
are in V,,_s U V,,1s for some s € {1,2...,7r}. Clearly | < 2n. Let y,,_s be a vertex
of C;. Neighbors of the vertex 1,,_, in H are —(y + hr™Y) s and —(y + 1) pys.
Consecutive vertices along the cycle C; are: v,,_s, —( + hr D otss W+ (h—9)r™Y) s,

_(y + (2h - i)T_l) m+s (y + (2h - 22')7,—1) m—ssy - - - (y + (l 2l _1> m+ss Ym—s, where [
is the minimum even positive integer such that —y — lhgﬂ “t=—y—ir! (modn).
Since 0 < (i — h)r~' < n, by the equivalence (i — h)r~' =0 (mod n) and Claim 1,

ged(L,n) = 1/2 holds. Thus I # k.

It remains to consider the case when mn < h < (m+ 1)n and gn < i < (¢ + 1)n for
somem,q € {0,1,...,p—1}, m < q. Let z = ¢g—m. Assume that oo is a vertex of C; in H.
Neighbors of oo in H are h and 7,. Note that p+1 consecutive vertices along Cyin H are
50, ig = mszs —(hHTD) o, (e (r— D)) g0, — (2 (= 1)), (2 (r—2)i)r s

- (rh + (r —7)i)rmsp. = him. Hence I =p+1 # k. Consider the case when oo is not
a vertex of C; in H. Let (h + x),, be a vertex of C; for some x # 0. Then neighbors of
(h+x),, in H are (h—x),, and —(h+x+ir ), . = —(h —i— T+ir ) e Therefore 2p
consecutive vertices along C’l are: (h+a)m, —(re+rh+i)r o, (re+(r—1h+i)r, .,

o (re+ (r—r)h + m) 1)z = (EF Dtz (0 = Dmsey, —(=12 + h 4 12)r ,,% 2
(=rz+h+(r—1)i)r, s, .., (—re+rh+(r—r)i)r . = (h—2)n,. Thus [ = 2p and,

by the assumption, [ # k. O

Note that a one-factorization made by Construction F does not contain a cycle of
length np + 1. Moreover, if n = p and GK,,;, is taken as a one-factorization F of Ky,
then one-factorization produced in this way is a known uniform one-factorization of K2,
with cycles of lengths p+1, 2p, 2p, . . . 2p. Applying Construction F more than once for just-
obtained uniform one-factorization easily produces a series of uniform one-factorizations
for all orders of the form p* + 1, x > 2, where every one-factor has one cycle of length
p+1and (p” ! —1)/2 cycles of length 2p, cf. [4].

3 Main results

The constructions presented in the previous section are used to prove general results on
k-cycle free one-factorizations.
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Theorem 16 For each n and each even k > 4 such that k # 2n, the complete graph K,
has a k-cycle free one-factorization.

Proof: Let k = 2’\0p1\1 p§‘2 ...p2v be the prime factorization of k into non-trivial factors,
Aj > 1 for each p; and p; < pa < ... < p,. Since k is even, A\g > 1. If & > 2n, by Claim
2 the assertion is true. Thus, the result is trivial for n = 4. In what follows, let k < 2n.
For the induction, assume that a k-free one-factorization of K, exists for every m such
that 2 < m < n and 2m # k. Consider separately two cases:

Case I: k/2 1 n. Thus k # n. For odd n, by Corollary 7, the one-factorization G A,, is
k-cycle free. Assume that n is even. If A\g # 2, then to find a required one-factorization
of Ky, apply Lemma 9. Consider the case \y = 2. Note that &£ > 4 because otherwise
k/2 = 2|n. Let x = max{y : ged(2¥,n) = 2¥}. Hence immediately k # n/2Y for every
y < x. Let n' = n/2*. Note that both k/2tn' and k/4 { n’. Thus, the one-factorization
GAy, of Koy, by Corollary 7, is {k/2, k}-cycle free. In the next steps apply = times
Construction C to get, by Lemma 10, one-factorizations of Ky, of Kg,,..., of Ky,,
respectively, which are {k/2, k}-cycle free.

Case II: k/2 | n. Hence, for every j = 1,2,...,w, p; | n and clearly p;  2n — 1. Thus
ged(k/2,2n—1) = 1. If ged(k—1,2n—1) < k—1, by Corollary 4 the one-factorization GKo,,
is k-cycle free. Consider the opposite case ged(k—1,2n—1) = k—1. Let f be the minimum
nontrivial factor of 2n — 1 and e = 2"}71. Thus e > f > 3 and ged(e, (f —1)/2) = 1.
Moreover, since ged(k/2,ef) = 1, ged(k/2,e) = 1 and f { k/2 immediately follow, and
then £ 2 0 (mod 2f). The aim is to show that e # k — 1. Suppose to the contrary
that e = k — 1. Then 2n — 1 = ef = (kK — 1)f and, since n = zg for some integer z,
k(f—z) = f—1. Thus, k is a divisor of f —1, whence f > k+1 = e+2, which contradicts
the fact that f is the minimum factor of 2n — 1. By the inductive assumption there is a
k-cycle free one-factorization of K..1. If f is not a factor of K — 1 (it means k # f + 1
(mod 2f)) or f =k — 1, then to find a required one-factorization of K.s; apply Lemma
14 (with p := f). Otherwise flk — 1 and f < k — 1. In this case, to find a k-cycle free
one-factorization of K.r.1, apply Lemma 15 (with p := f). O

The existence of 4-cycle free one-factorizations of complete graphs has already been
stated in [9].

For an infinite class of even orders 2n of complete graphs, 2n-cycle free one-factoriza-
tions may be constructed. Note that all one-factorizations GKs,, GAs,, as well as H Ky,
are not useful for this purpose since, as was noted earlier, they contain Hamiltonian cycles.

Theorem 17 Let 2n # p+ 1, where p is a prime, or 2n % 6,12,18 (mod 24). Then the
complete graph Ko, has a 2n-cycle free one-factorization.

Proof: Let 2n # p+ 1 for every prime p. Let f be the minimum prime factor of 2n — 1
and e = 2221 Then e > f > 3 and to construct a 2n-cycle free one-factorization of Kz
apply, by Lemma 15, Construction F.

If 2n = 2,4 (mod 6), then it is easily observed than any Steiner one-factorization
of order 2n (cf. [12]) is 2n-cycle free; in fact, the union of any two one-factors contains
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the cycle Cy. If 2n =0 (mod 8), then n is even and, by Claim 2, any one-factorization
of K, is 2n-cycle free. Hence, by Lemma 9, Construction C produces a required one-
factorization. m

At present, the existence problem of k-cycle free one-factorizations when k = 2n has
been only partially solved. In contrast to perfect one-factorizations, orders of the form
2n = p + 1, for p being prime, appear to be the most difficult regarding constructions
of 2n-cycle free one-factorizations of K,,. However, the existence of n-cycle free one-
factorization of K, when n =2 (mod 4), by Lemma 10, immediately implies the exis-
tence of 2n-cycle free one-factorization of Ks,. Moreover, known examples of non-perfect
uniform one-factorizations of Ky, (cf. [5]), as well as the 2n-cycle free one-factorizations
for 2n = 18 given in the Appendix, cover all unsolved cases for orders less than 102.

The more general question concerns k<-cycle free one-factorizations of the complete
graph. This appears to be much more difficult. One obvious argument is that perfect
one-factorizations of Ko, are simply (2|n/2])<-cycle free one-factorizations. Even for
k = 6, all constructions presented in this paper are not sufficient to obtain a complete
classification, i.e. the case 2n = 28 remains unsolved. However, for every order 2n = 2
(mod 4), a 6<-cycle free one-factorization of Ky, may be constructed.

Theorem 18 For every oddn > 5, there exists one-factorization of Ko, which is 6<-cycle
free.

Proof: Let q be the minimum prime factor of n. If ¢ > 5, then the one-factorization
G Ay, by Corollary 8, is 8<-cycle free. Therefore, assume that ¢ = 3. Clearly, 31 2n — 1.
If 5 is not a factor of 2n — 1, then the one-factorization G K5,, by Corollary 5, is 6<-cycle
free. It remains to consider the case when 5 | 2n— 1. Let 2n—1 = ryry... 7, be the prime
factorization of 2n — 1 into non-trivial factors, where 5 =r; < r, < ... <r, and v > 2.
Note that for r, > 7 there exists a 6<-cycle free one-factorization F of K, 11, namely, by
Corollary 5, as F' the one-factorization GK,,; may be substituted. Otherwise r, = 5 and
on — 1 = 5% for some © > 2. Let F' be the one-factorization GAs2y; of Ks2yy which is
clearly perfect. In the next steps apply v — 1 times (v — 2 times if r, = 5) the inductive
Construction E, taking as p’s consecutive prime factors of 2n — 1 in the non-increasing
order. In this way, by Lemma 14, a series of 6<-cycle free one-factorizations is constructed,
ending up at the order 2n. 0

Although it is not possible to construct k<-cycle free one-factorizations for all orders
2n > k > 6, infinite families of orders may be provided, for which such one-factorizations
do exist. Evidently, by Corollary 5, the one-factorization GKs, is k<-cycle free for every
order 2n such that the prime factorization of 2n — 1 does not contain a factor less than
k. Let n > 3 and let r be the minimum prime factor of 2n — 1. Moreover, let | =
max{r; — 1,2ry — 2}, where r; is the minimum prime factor of 2"r—_1 and 7, the minimum
prime factor of n. If » > 5, then there exists an [<-cycle free one-factorization of K,
(which follows directly from Corollaries 8 and 13).
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Appendix

One-factors of 18-cycle free one-factorization of Kig, V(Kig) = {0,1,...,17}:

0-1,2-3,4-5,6-7,8-17,9-10,11-12,13-14,15-16;
0-3,1-2,4-13,5-6,7-8,9-12,10-11,14-15,16-17;
0-5,1-4,2-11,3-7,6-8,9-14,10-13,12-16,15-17;
0-7,1-6,2-5,3-12,4-8,9-16,10-15,11-14,13-17;
0-9,1-8,2-7,3-5,4-6,10-17,11-16,12-14,13-15;
0-11,1-17,2-16,3-9,4-15,5-12,6-13,7-14,8-10;
0-13,1-14,2-15,3-17,4-16,5-10,6-11,7-12,8-9;
0-15,1-12,2-9,3-10,4-11,5-17,6-16,7-13,8-14;
0-17,1-16,2-14,3-13,4-12,5-15,6-9,7-10,8-11.

0-2,1-3,4-7,5-8,6-15,9-11,10-12,13-16,14-17;
0-4,1-5,2-6,3-8,7-16,9-13,10-14,11-15,12-17;
0-6,1-7,2-8,3-4,5-14,9-15,10-16,11-17,12-13;
0-8,1-10,2-4,3-6,5-7,9-17,11-13,12-15,14-16;
0-10,1-9,2-12,3-11,4-14,5-16,6-17,7-15,8-13;
0-12,1-11,2-10,3-15,4-9,5-13,6-14,7-17,8-16;
0-14,1-13,2-17,3-16,4-10,5-9,6-12,7-11,8-15;
0-16,1-15,2-13,3-14,4-17,5-11,6-10,7-9,8-12;
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