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Abstract

Recently, Guido, Isola and Lapidus [11] defined the Ihara zeta function of a
fractal graph, and gave a determinant expression of it. We define the Bartholdi zeta
function of a fractal graph, and present its determinant expression.

1 Introduction

Zeta functions of graphs started from p-adic Selberg zeta functions of discrete groups by
Ihara [14]. At the beginning, Serre [20] pointed out that the Ihara zeta function is the
zeta function of a regular graph. In [14], Ihara showed that their reciprocals are explicit
polynomials. A zeta function of a regular graph G associated to a unitary representation
of the fundamental group of G was developed by Sunada [22,23]. Hashimoto [13] treated
multivariable zeta functions of bipartite graphs. Bass [3] generalized Ihara’s result on
zeta functions of regular graphs to irregular graphs. Various proofs of Bass’ theorem were
given by Stark and Terras [21], Kotani and Sunada [15] and Foata and Zeilberger [5].

Bartholdi [2] extended a result by Grigorchuk [7] relating cogrowth and spectral radius
of random walks, and gave an explicit formula determining the number of bumps on paths
in a graph. Furthermore, he presented the “circuit series” of the free products and the
direct products of graphs, and obtained a generalized form “Bartholdi zeta function” of
the Ihara(-Selberg) zeta function.

All graphs in this paper are assumed to be simple. Let G be a connected graph with
vertex set V (G) and edge set E(G), and let R(G) = {(u, v), (v, u) | uv ∈ E(G)} be the
set of oriented edges (or arcs) (u, v), (v, u) directed oppositely for each edge uv of G. For
e = (u, v) ∈ R(G), u = o(e) and v = t(e) are called the origin and the terminal of e,
respectively. Furthermore, let e−1 = (v, u) be the inverse of e = (u, v).

A path P of length n in G is a sequence P = (e1, · · · , en) of n arcs such that ei ∈ R(G),
t(ei) = o(ei+1)(1 ≤ i ≤ n − 1). If ei = (vi−1, vi), 1 ≤ i ≤ n, then we also denote P by
(v0, v1, · · · , vn). Set |P | = n, o(P ) = o(e1) and t(P ) = t(en). Also, P is called an
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(o(P ), t(P ))-path. A (v, w)-path is called a v-closed path if v = w. The inverse of a closed
path C = (e1, · · · , en) is the closed path C−1 = (e−1

n , · · · , e−1
1 ).

We say that a path P = (e1, · · · , en) has a backtracking or a bump at t(ei) if e−1
i+1 = ei

for some i(1 ≤ i ≤ n − 1). A path without backtracking is called proper. Let Br be the
closed path obtained by going r times around a closed path B. Such a closed path is
called a multiple of B. Multiples of a closed path without bumps may have a bump. Such
a closed path is said to have a tail. If its length is n, then the closed path can be written
as

(e1, · · · , ek, f1, f2, · · · , fn−2k, e
−1
k , · · · , e−1

1 ),

where (f1, f2, · · · , fn−2k) is a closed path. A closed path is called reduced if C has no
backtracking nor tail. Furthermore, a closed path C is primitive if it is not a multiple of
a strictly shorter closed path. Let C be the set of closed paths. Furthermore, let Cnontail

and Ctail be the set of closed paths without tail, and closed paths with tail, respectively.
Note that C = Cnontail ∪ Ctail and Cnontail ∩ Ctail = φ.

We introduce an equivalence relation between closed paths. Two closed paths C1 =
(e1, · · · , em) and C2 = (f1, · · · , fm) are called equivalent if there exists an integer k such
that fj = ej+k for all j, where the subscripts are read modulo n. The inverse of C is not
equivalent to C if |C| ≥ 3. Let [C] be the equivalence class which contains a closed path
C. Also, [C] is called a cycle.

Let K be the set of cycles of G. Denote by R, P ⊂ R and PK ⊂ K the set of reduced
cycles, primitive, reduced cycles and primitive cycles of G, respectively. Also, primitive,
reduced cycles are called prime cycles. Let Cm, Cnontail

m , Ctail
m ,Km and PKm be the subset

of C, Cnontail, Ctail,K and PK consisting of elements with length m, respectively. Note that
each equivalence class of primitive, reduced closed paths of a graph G passing through a
vertex v of G corresponds to a unique conjugacy class of the fundamental group π1(G, v)
of G at v.

The Ihara zeta function of a graph G is a function of a complex variable t with | t |
sufficiently small, defined by

Z(G, t) = ZG(t) =
∏

[C]∈P

(1 − t|C|)−1,

where [C] runs over all prime cycles of G.
Let G be a connected graph with n vertices v1, · · · , vn. The adjacency matrix A =

A(G) = (aij) is the square matrix such that aij = 1 if vi and vj are adjacent, and aij = 0
otherwise. The degree of a vertex vi of G is defined by deg vi = deg Gvi =| {vj | vivj ∈
E(G)} |. If deg Gv = k(constant) for each v ∈ V (G), then G is called k-regular.

Ihara [14] showed that the reciprocal of the Ihara zeta function of a regular graph
is an explicit polynomial. The Ihara zeta function of a regular graph has the following
three properties: the rationality; the functional equations; the analogue of the Riemann
hypothesis(see [24]). The analogue of the Riemann hypothesis for the zeta function of
a graph is given as follows: Let G be any connected (q + 1)-regular graph(q > 1) and
s = σ+ it (σ, t ∈ R) a complex number. If ZG(q−s) = 0 and Re s ∈ (0, 1), then Re s = 1

2
.
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A connected (q + 1)-regular graph G is called a Ramanujan graph if for all eigenvalues
λ of the adjacency matrix A(G) of G such that λ 6= ±(q + 1), we have | λ |≤ 2

√
q.

This definition was introduced by Lubotzky, Phillips and Sarnak [16]. For a connected
(q + 1)-regular graph G, ZG(q−s) satisfies the Riemann hypothesis if and only if G is a
Ramanujan graph.

Hashimoto [13] treated multivariable zeta functions of bipartite graphs. Bass [3] gen-
eralized Ihara’s result on the Ihara zeta function of a regular graph to an irregular graph,
and showed that its reciprocal is a polynomial.

Theorem 1 (Bass) Let G be a connected graph. Then the reciprocal of the Ihara zeta
function of G is given by

Z(G, t)−1 = (1 − t2)r−1 det(I − tA(G) + t2(D − I)),

where r is the Betti number of G, and D = (dij) is the diagonal matrix with dii = deg vi

and dij = 0, i 6= j, (V (G) = {v1, · · · , vn}).

Stark and Terras [21] gave an elementary proof of Theorem 1, and discussed three
different zeta functions of any graph. Various proofs of Bass’ theorem were known. Kotani
and Sunada [15] proved Bass’ theorem by using the property of the Perron operator. Foata
and Zeilberger [5] presented a new proof of Bass’ theorem by using the algebra of Lyndon
words.

Let G be a connected graph. Then the bump count bc(P ) of a path P is the number of
bumps in P . Furthermore, the cyclic bump count cbc(C) of a closed path C = (e1, · · · , en)
is

cbc(C) =| {i = 1, · · · , n | ei = e−1
i+1} |,

where en+1 = e1. An equivalence class of primitive closed paths in G is called a primitive
cycle. Then the Bartholdi zeta function of G is a function of complex variables u, t with
| u |, | t | sufficiently small, defined by

ζG(u, t) = ζ(G, u, t) =
∏

[C]∈PK

(1 − ucbc(C)t|C|)−1,

where [C] runs over all primitive cycles of G.
If u = 0, then the Bartholdi zeta function of G is the Ihara zeta function of G. Because

the Bartholdi zeta function ζ(G, u, t) of a graph is divided into two parts concerned
with primitive, non-reduced cycles and primitive, reduced cycles (i.e., prime cycles) of G,
respectively:

ζ(G, u, t) =
∏

[C]∈PK\P

(1 − ucbc(C)t|C|)−1 ×
∏

[C]∈P

(1 − t|C|)−1.

By substituting u = 0, we obtain

ζ(G, 0, t) = 1 ·
∏

[C]∈P

(1 − t|C|)−1 = Z(G, t).
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Let n and m be the number of vertices and unoriented edges of G, respectively. Then
two 2m× 2m matrices B = (Be,f)e,f∈R(G) and J = (Je,f)e,f∈R(G) are defined as follows:

Be,f =

{

1 if t(e) = o(f),
0 otherwise

,Je,f =

{

1 if f = e−1,
0 otherwise.

Bartholdi [2] presented a determinant expression for the Bartholdi zeta function of a
graph.

Theorem 2 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

ζ(G, u, t)−1 = det(I2m − (B − (1 − u)J)t)

= (1 − (1 − u)2t2)m−n det(I − tA(G) + (1 − u)(D− (1 − u)I)t2).

In the case of u = 0, Theorem 2 implies Theorem 1.
The Ihara zeta function of a finite graph was extended to an infinite graph in [3,4,8,9,

10,11], and those determinant expressions were presented. Bass [3] defined the zeta func-
tion for a pair of a tree X and a countable group Γ which acts discretely on X with
quotient being a graph of finite groups. Clair and Mokhtari-Sharghi [4] extended Ihara
zeta functions to infinite graphs on which a group Γ acts isomorphically and with finite
quotient. In [8], Grigorchuk and Żuk defined zeta functions of infinite discrete groups,
and of some class of infinite periodic graphs.

Guido, Isola and Lapidus [9] defined the Ihara zeta function of a periodic simple
graph(i.e., an infinite graph). LetG = (V (G), E(G)) be a simple graph which is (countable
and) uniformly locally finite, and let Γ be a countable discrete subgroup of automorphisms
of G, which acts freely on G, and with finite quotient B = G/Γ. Then the Ihara zeta
function of a periodic simple graph is defined as follows:

ZG,Γ(t) =
∏

[C]Γ∈[P ]Γ

(1 − t|C|)−1/|ΓC |,

where [C]Γ runs over all Γ-equivalence classes of prime cycles in G.
Guido, Isola and Lapidus [9] presented a determinant expression for the Ihara zeta

function of a periodic simple graph by using Stark and Terras’ method [21].

Theorem 3 (Guido, Isola and Lapidus)

ZG,Γ(t) = (1 − t2)−(m−n) det Γ(I − tA(G) + (D − I)t2)−1,

where m =| E(B) |, n =| V (B) | and det Γ is a determinant for bounded operators
belonging to a von Neumann algebra with a finite trace.

Also, Guido, Isola and Lapidus [10] presented a determinant expression for the Ihara
zeta function of a periodic graph by using Bass’ method [3]. Furthermore, Guido, Isola
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and Lapidus [11] generalized the results of [9,10] to a fractal graph. In [11], they defined
the Ihara zeta function of a fractal graph and gave its determinant expression.

In this paper, we define the Bartholdi zeta function of a fractal graph, and present
its determinant expression. The proof is an analogue of the method of Guido, Isola and
Lapidus [11], and Mizuno and Sato’s method [17]. In Section 2, we give a short review on
a fractal graph. In Section 3, we present some combinatorial properties on closed paths of
a fractal graph. In Section 4, we define the Bartholdi zeta function of a fractal graph, and
show that it is holomorphic. In Section 5, we review a determinant for bounded operators
acting on an infinite dimensional Hilbert space and belonging to a von Neumann algebra
with a finite trace. In Section 6, we present a determinant expression for the Bartholdi
zeta function of a fractal graph.

2 Fractal graphs

Let G = (V (G), E(G)) be countable and connected. We assume that G has bounded
degree, i.e., d = supv∈V (G) deg Gv < ∞(see [18,19]). For two vertices v, w ∈ V (G), the
distance d(v, w) between v and w is defined as the length of the shortest path between v
and w. For v ∈ V (G) and r ∈ N, let Br(v) = {w ∈ V (G) | d(v, w) ≤ r}. For Ω ⊂ V (G),
let Br(Ω) = ∪v∈ΩBr(v).

A bounded operator A on `2(V (G)) has finite propagation r = r(A) ≥ 0 if, for all
v ∈ V (G), supp(Av) ⊂ Br(v) and supp(A∗v) ⊂ Br(v) S, where A∗ is the Hilbert space
adjoint of A. Let B(`2(V (G))) be the set of bounded operators on `2(V (G)). Note that
finite propagation operators forms a ∗-algebra.

A local isomorphim of the graph G is a triple (s(γ), r(γ), γ), where s(γ), r(γ) are
subgraphs of G and γ : s(γ) −→ r(γ) is a graph isomorphism. The local isomorpism γ
defines a partial isometry U(γ) : `2(V (G)) −→ `2(V (G)), by setting

U(γ)(v) :=

{

γ(v) if v ∈ V (s(γ)),
0 otherwise,

and extending by linearity.
An operator T ∈ B(`2(V (G))) is called geometric if there exists r ∈ N such that T

has finite propagation r and, for any local isomorphism γ, any vertex v ∈ V (G) such that
Br(v) ⊂ s(γ) and Br(γv) ⊂ r(γ), one has

TU(γ)v = U(γ)Tv, T ∗U(γ)v = U(γ)T ∗v.

The adjacencey matrix A(G) = (avw) and the degree matrix D(G) = (dvw) are defined
by

avw :=

{

1 if (v, w) ∈ R(G),
0 otherwise,

and

dvw :=

{

deg Gv if v = w,
0 otherwise,
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For a subgraph K of G, the frontier F(K) is the family of vertices in V (K) having
distance 1 from the complement of V (K) in V (G). A countably infinite graph G with
bounded degree is amenable if it has an amenable exhaustion, i.e., an increasing family of
finite subgraphs {Kn}n∈N such that ∪n∈NKn = G and

| F(Kn) |
| V (Kn) | −→ 0 as n→ ∞.

A countably infinite graph G with bounded degree is called self-similar or fractal if it
has an amenable exhaustion {Kn} such that the following conditions (i) and (ii) hold(see
[1,12]):
(i) For every n ∈ N, there is a finite set I(n.n + 1) of local isomorphisms such that, for
all γ ∈ I(n, n + 1), one has s(γ) = Kn,

⋃

γ∈I(n,n+1)

γ(Kn) = Kn+1,

and moreover, if γ, γ ′ ∈ I(n, n + 1) with γ 6= γ ′,

V (γKn) ∩ V (γ′Kn) = F(γKn) ∩ F(γ′Kn).

(ii) Let I(n,m)(n < m) be the set of all admissible products γ = γm−1 · · ·γn, γi ∈
I(i, i + 1), where “admissble” means that, for each term of the product, the range of γ i

is contained in the source of γi+1. Also, let I(n, n) = {idKn
}, and I(n) = ∪m≥nI(n,m).

We define the I-invariant frontier of Kn:

FI(Kn) =
⋃

γ∈I(n)

γ−1F(γKn).

and we require that
| FI(Kn) |
| V (Kn) | −→ 0 as n→ ∞.

Let I be the family of all local isomorphisms which can be written as admissible
products γε1

1 γ
ε2
2 · · ·γεk

k , where γi ∈ ∪n∈NI(n), εi = 1,−1 for i = 1, . . . , k and k ∈ N.
A trace on the algebra of geometric operators on a fractal graph is constructed as

follows(see [11]):

Theorem 4 (Guido, Isola and Lapidus) Let G be a fractal graph, and A(G) the ∗-
algebra defined as the norm closure of the ∗-algebra of geometric operators. Then, on
A(G), there is a well-defined faithful trace state TrI given by

TrI(T ) = lim
n

Tr(P (Kn)T )

Tr(P (Kn))
,

where P (Kn) is the orthogonal projection of `2(V (G)) onto its closed subspace `2(V (Kn)).
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We use the following result by Guido, Isola and Lapidus [11].

Proposition 1 (Guido, Isola and Lapidus) Let G be a connected fractal graph with
bounded degree d = supv∈V (G) deg Gv < ∞. Furthermore, let {Kn} be an amenable ex-
haustion of G such that satisfies the conditions (i) and (ii) in the definition of a fractal
graph. Let Ω be any finite subset of V (G). Then the following results hold:

1. For any r ∈ N,
| Br(Ω) |≤| Ω | (d+ 1)r.

2. Let Ωn,r = V (Kn) \Br(FI(Kn)) . Then, for n ≤ m,

| I(n,m) || Ωn,r |≤| V (Km) |≤| I(n,m) || V (Kn) | .

3. Let

εn =
| FI(Kn) |
| V (Kn) |

,

where εn → 0 as n → ∞ by the definition of a fractal graph. Furthermore, let
εn(d+ 1)r ≤ 1/2 for all n > n0. Then

0 ≤ | I(n,m) || V (Kn) |
| V (Km) | − 1 ≤ 2εn(d+ 1)r ≤ 1.

3 Closed paths in a fractal graph

Let G be a connected fractal graph. Furthermore, let {Kn} be an amenable exhaustion
of G such that satisfies the conditions (i) and (ii) in the definition of a fractal graph. Let
0 < u < 1. For s ≥ 1, the matrix As = ((As)i,j)vi,vj∈V (G) is defined as follows:

(As)i,j =
∑

P

ubc(P ),

where (As)i,j is the (i, j)-component of As, and P runs over all paths of length s from vi

to vj in G. Note that A1 = A(G). Furthermore, let A0 = I.

Lemma 1 Put Q = D − I. Then

A2 = (A1)
2 − (1 − u)D = (A1)

2 − (1 − u)(Q + I)

and
As = As−1A1 − (1 − u)As−2(Q + uI) for s ≥ 3.
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Proof. The first formula is clear. We prove the second formula. The proof is an
analogue of the proof of Lemma 1 in [21].

We count the paths of length s from vi to vk in G. Let s ≥ 3 and A(G) = (Ai,j).
Then the sum

∑

j(As−1)i,jAj,k counts three types of paths P,Q,R in G as follows:

P = (e1, · · · , es−1, es), es 6= e−1
s−1, es = (vj, vk),

Q = (e1, · · · , es−2, es−1, es), es−1 6= e−1
s−2, es = e−1

s−1 = (vj, vk),
R = (e1, · · · , es−2, es−1, es), es−2 = e−1

s−1 = es = (vj, vk).

Let T = (e1, · · · , es−2). Then the term corresponding to P,Q and R in the sum
∑

j(As−1)i,jAj,k is ubc(T ), ubc(T ) and ubc(T )+1, respectively. While, the term corresponding

to P,Q and R in (As)i,k is ubc(T ), ubc(T )+1 and ubc(T )+2, respectively. Thus,

(As)i,k =
∑

j

(As−1)i,jAj,k + (u− 1)(As−2)i,kqk + (u2 − u)(As−2)i,k,

where qk = deg vk − 1. Therefore, the result follows. Q.E.D.
For s ≥ 1, let Ctail

s be the set of all closed paths of length s with tails in G, and

as = lim
n→∞

1

| V (Kn) |
∑

x∈V (Kn)

{ubc(C) | C ∈ Ctail
s and o(C) = x}.

Then a1 = 0.

Lemma 2 1. For s ∈ N, as exists and is finite.

2.
as = TrI[(Q − (1 − 2u)I)As−2] + (1 − u)2as−2 for s ≥ 3.

Proof. 1: For n ∈ N, let

Ωn = V (Kn) \B1(FI(Kn)),Ω
′
n = V (Kn) ∩ B1(FI(Kn)).

Then, for all p ∈ N,

V (Kn+p) = ∪γ∈I(n,n+p)γΩn ∪ (∪γ∈I(n,n+p)γΩ
′
n).

Let
as(x) =

∑

x∈V (Kn)

{ubc(C) | C ∈ Ctail
s and o(C) = x}.
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Then as(x) ≤ ds−1. Thus, by 1 and 3 of Proposition 1, we have
∣

∣

∣

∣

1

| V (Kn+p) |
∑

x∈V (Kn+p)

as(x) −
1

| V (Kn) |
∑

x∈V (Kn)

as(x)

∣

∣

∣

∣

≤
∣

∣

∣

∣

| I(n, n + p) |
| V (Kn+p) |

∑

x∈Ωn

as(x) −
1

| V (Kn) |
∑

x∈V (Kn)

as(x)

∣

∣

∣

∣

+
| I(n, n+ p) |
| V (Kn+p) |

∑

x∈Ω′
n

| as(x) |

≤
∣

∣

∣

∣

| I(n, n + p) |
| V (Kn+p) |

− 1

| V (Kn) |

∣

∣

∣

∣

∑

x∈V (Kn)

| as(x) | +2
| I(n, n + p) |
| V (Kn+p) |

∑

x∈B1(FI(Kn))

| as(x) |

≤
∣

∣

∣

∣

1 − | V (Kn) || I(n, n + p) |
| V (Kn+p) |

∣

∣

∣

∣

ds−1 + 2
| V (Kn) || I(n, n + p) |

| V (Kn+p) |
| B1(FI(Kn) |
| V (Kn) | ds−1

≤ 2εn(d+ 1)ds−1 + 2
| V (Kn) || I(n, n + p) |

| V (Kn+p) |
| FI(Kn) | (d+ 1)

| V (Kn) | ds−1

≤ 6εn(d+ 1)ds−1 −→ 0 as n→ ∞,

where

εn =
| FI(Kn) |
| V (Kn) | → 0 as n→ ∞.

2: At first, we have

as = lim
n→∞

1

| V (Kn) |
∑

vi∈V (Kn)

{ubc(C) | C ∈ Ctail
s and o(C) = vi}

= lim
n→∞

1

| V (Kn) |
∑

vi∈V (Kn)

∑

(vi,vj)∈R(G)

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

= lim
n→∞

1

| V (Kn) |
∑

vj∈V (Kn)

∑

(vi,vj)∈R(G)

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

The third equality is proved as follows: Let

Ω = {v ∈ V (G) | v /∈ V (Kn), d(v,Kn) = 1} ⊂ B1(FI(Kn)).

Then we have

1

| V (Kn) |
∑

vi∈V (Kn)

∑

(vi,vj)∈R(G)

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

=
1

| V (Kn) |
∑

vj∈V (Kn)

∑

(vi,vj)∈R(G)

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

+
1

| V (Kn) |
∑

vj∈Ω

∑

(vi,vj)∈R(G),vi∈V (Kn)

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

− 1

| V (Kn) |
∑

vj∈V (Kn)

∑

(vi,vj)∈R(G),vi∈Ω

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }.
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But, we have
∣

∣

∣

∣

1

| V (Kn) |
∑

vj∈Ω

∑

(vi,vj)∈R(G),vi∈V (Kn)

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

∣

∣

∣

∣

≤ 1

| V (Kn) | | FI(Kn) | ds−1 −→ 0

and
∣

∣

∣

∣

1

| V (Kn) |
∑

vj∈V (Kn)

∑

(vi,vj)∈R(G),vi∈Ω

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

∣

∣

∣

∣

=

∣

∣

∣

∣

1

| V (Kn) |
∑

vj∈FI(Kn)

∑

(vi,vj)∈R(G),vi∈Ω

{ubc(C) | C = (vi, vj, . . .) ∈ Ctail
s }

∣

∣

∣

∣

≤ 1

| V (Kn) | | FI(Kn) | ds−1 −→ 0.

Thus, the third equality holds.
We want to count closed paths of length s with tails in G. The proof is an analogue

of the proof of Lemma 2 in [21].
Let s ≥ 3 and let vj be fixed. Furthermore, let C = (vi, vj, vl, · · · , vr, vj, vi) be any

closed path of length s with tails in G, and let P = (vj, vl, · · · , vr, vj).
Case 1. P does not have a tail, i.e., vl 6= vr.
Then the closed path C is divided into two types:

C1 = (vi, vj, vl, · · · , vr, vj, vi), vi 6= vl and vi 6= vr,
C2 = (vi, vj, vi, · · · , vr, vj, vi)(vl = vi)
or (vi, vj, vl, · · · , vi, vj, vi)(vr = vi).

Case 2. P has a tail, i.e., vl = vr.
Then the closed path C is divided into two types:

C3 = (vi, vj, vl, · · · , vl, vj, vi), vi 6= vl,
C4 = (vi, vj, vi, · · · , vi, vj, vi), vi = vl.

Now, we have

ubc(C1) = ubc(C3) = ubc(P ), ubc(C2) = ubc(P )+1, ubc(C4) = ubc(P )+2.

Thus,

bj =
∑

(vi,vj)∈R(G)

{ubc(C) | C ⊃ tail, |C| = s, C = (vi, vj, · · · )}

= (qj − 1)
∑

{ubc(P ) | P 6⊃ tail, |P | = s− 2, P : vj − closed path}

+ 2u
∑

{ubc(P ) | P 6⊃ tail, |P | = s− 2, P : vj − closed path}

+ qj
∑

{ubc(P ) | P ⊃ tail, |P | = s− 2, P : vj − closed path}

+ u2
∑

{ubc(P ) | P ⊃ tail, |P | = s− 2, P : vj − closed path}.
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That is,

bj = (qj − 1)
∑

{ubc(P ) | |P | = s− 2, P : vj − closed path}

+ 2u
∑

{ubc(P ) | P 6⊃ tail, |P | = s− 2, P : vj − closed path}

+ (1 + u2)
∑

{ubc(P ) | P ⊃ tail, |P | = s− 2, P : vj − closed path}.

Therefore, it follows that

as = lim
n→∞

1

| V (Kn) |
∑

vj∈V (Kn)

bj

= lim
n→∞

1

| V (Kn) |
∑

vj∈V (Kn)

(Q(vj, vj) − 1)
∑

{

ubc(P )
∣

∣ |P | = s− 2, P : vj − closed path
}

+ 2u lim
n→∞

1

| V (Kn) |
∑

vj

∑

{ubc(P ) | |P | = s− 2, P : vj − closed path}

+ (1 − 2u+ u2) lim
n→∞

1

| V (Kn) |
∑

vj

∑

{

ubc(P ) | P ⊃ tail,

|P | = s− 2, P : vj − closed path
}

.

Hence,
as = TrI[(Q − I)As−2] + 2uTrI [As−2] + (1 − u)2as−2.

Q.E.D.
For m ≥ 1, let Cm be the set of all closed paths of length s in G, and

Nm = lim
n→∞

1

| V (Kn) |
∑

{ucbc(C) | C ∈ Cm and C ⊂ Kn}.

Lemma 3 1. For m ∈ N, Nm exists and is finite.

2. Nm = TrI(Am) − (1 − u)am.

Proof. 1: At first, we have

Nm = lim
n→∞

1

| V (Kn) |
∑

{ucbc(C) | C ∈ Cm and o(C) = v ∈ V (Kn)}.
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For, by 2 of Proposition 1,

0 ≤
∣

∣

∣

∣

1

| V (Kn) |(
∑

{ucbc(C) | C ∈ Cm and o(C) = v ∈ V (Kn)}

−
∑

{ucbc(C) | C ∈ Cm and C ⊂ Kn})
∣

∣

∣

∣

=
1

| V (Kn) |
∣

∣

∣

∑

{ucbc(C) | C ∈ Cm, o(C) = v ∈ V (Kn) and C 6⊂ Kn}
∣

∣

∣

≤ 1

| V (Kn) |
∣

∣

∣

∑

{ubc(C) | C ∈ Cm, o(C) = v ∈ Bm(FI(Kn))}
∣

∣

∣

=
1

| V (Kn) |
∣

∣

∣

∑

v∈Bm(FI(Kn))

Am(v.v)
∣

∣

∣

≤ 1

| V (Kn) |
∣

∣

∣
Tr(P (Bm(FI(Kn)))Am)

∣

∣

∣

≤ ‖Am‖
| Bm(FI(Kn)) |

| V (Kn) |

≤ ‖Am‖(d+ 1)m | FI(Kn) |
| V (Kn) | −→ 0

if n→ ∞.
Furthermore, the existence of

lim
n→∞

1

| V (Kn) |
∑

{ucbc(C) | C ∈ Cm and o(C) = v ∈ V (Kn)}

is proved as 1 of Lemma 2.
Therefore, it follows that

Nm = lim
n→∞

1

| V (Kn) |
∑

{ucbc(C) | C ∈ Cm and o(C) = v ∈ V (Kn)}

= lim
n→∞

1

| V (Kn) |
∑

{ubc(C) | C ∈ Cnontail
m and o(C) = v ∈ V (Kn)}

+ lim
n→∞

1

| V (Kn) |
∑

{ucbc(C) | C ∈ Ctail
m and o(C) = v ∈ V (Kn)}

= lim
n→∞

1

| V (Kn) |
∑

v∈V (Kn)

Am(v.v)

− lim
n→∞

1

| V (Kn) |
∑

v∈V (Kn)

∑

{ubc(C) − ucbc(C) | C ∈ Ctail
m and o(C) = v ∈ V (Kn)}.

Hence, since cbc(C) = bc(C) + 1 for each closed path C of length s with tails, we have

Nm = TrI(Am) − (1 − u)am.

Q.E.D.
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4 The Bartholdi zeta function of a fractal graph

We define the notion of I-equivalence between cycles. Let G be a connected fractal
graph. Furthermore, let {Kn} be an amenable exhaustion of G such that satisfies the
conditions (i) and (ii) in the definition of a fractal graph. For [C], [D] ∈ K, [C] and [D]
are called I-equivalent, denoted [C] ∼ I[D], if there exista a local isomorphism γ ∈ I such
that D = γ(C). We denote by [C]I the set of I-equivalent class containing [C]. Note
that [C] ∈ [C]I . Let [K]I and [PK]I be the set of I-equivalence classes of K and PK,
respectively.

For [C] ∈ K, the size s(C) ∈ N of [C] is the least m ∈ N such that C ⊂ γ(Km) for
some local isomorphism γ ∈ I(m). Furthermore, the effective length `(C) ∈ N of [C] is
the length of the primitive closed path D underlying C, i.e., such that C = Dp for some
p ∈ N. The average multiplicity µ(C) of [C] is the number in [0,∞) given by

lim
n→∞

| I(s(C), n) |
| V (Kn) | .

Lemma 4 1. Let [C] ∈ K. Then the following limit exists and is finite:

lim
n→∞

| I(s(C), n) |
| V (Kn) | .

2. s(C), `(C), µ(C) only depend on [C]I ∈ [K]I . Furthermore, if C = Dk for some
[D] ∈ PK, k ∈ N, then s(C) = s(D), `(C) = `(D), µ(C) = µ(D).

3. For m ∈ N,

Nm =
∑

[C]I∈[Km]I

µ(C)`(C)ucbc(C).

Proof. 1: At first, we have

| I(s(C), n + 1) |=| I(s(C), n) || I(n, n + 1) |

for any n ≥ s(C). By 2 and 3 of Proposition 1, we obtain

∣

∣

∣

∣

| I(s(C), n) |
| V (Kn) | − | I(s(C), n+ p) |

| V (Kn+p) |

∣

∣

∣

∣

=
| I(s(C), n) |
| V (Kn) |

∣

∣

∣

∣

1 − | V (Kn) || I(n, n + p) |
| V (Kn+p) |

∣

∣

∣

∣

≤ 1

| Ωn,1 |
2εn(d+ 1).

Furthermore,

| I(s(C), n+ 1) |
| V (Kn+1) |

=
| I(s(C), n) |
| V (Kn) |

| V (Kn) || I(n, n + 1) |
| V (Kn+1) |

≥ | I(s(C), n) |
| V (Kn) | ,

and so the limit is monotone.
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2: Clear.
3: We have

Nm = lim
n→∞

1

| V (Kn) |
∑

{ucbc(C) | C ∈ Cm and C ⊂ Kn}

= lim
n→∞

∑

[C]I∈[Km]I

1

| V (Kn) |
∑

{ucbc(D) | D ∈ Cm, [D] ∼ I [C], D ⊂ Kn}

= lim
n→∞

∑

[C]I∈[Km]I

1

| V (Kn) |u
cbc(C)`(C) | I(s(C), n) |

=
∑

[C]I∈[Km]I

ucbc(C)`(C)µ(C).

Q.E.D.
We define the Bartholdi zeta function of a fractal graph as follows:

ζG,I(u, t) =
∏

[C]I∈[PK]I

(1 − ucbc(C)t|C|)−µ(C),

where u, t ∈ C are sufficiently small such that the infinite product converges, and u > 0.

Lemma 5
∂

∂t
log ζG,I(u, t) = t−1

∑

s≥1

Nst
s.

Proof. Since

log ζG,I(u, t) = −µ(C)
∑

[C]I∈[PK]I

log(1 − ucbc(C)t|C|)

= µ(C)
∑

[C]I∈[PK]I

∞
∑

s=1

1

s
ucbc(C)st|C|s,

we have

∂

∂t
log ζG,I(u, t) = t−1

∑

[C]I∈[PK]I

∞
∑

s=1

µ(C)|C|ucbc(C)st|C|s

= t−1

∞
∑

s=1

∑

[C]I∈[PK]I

µ(C)|C|ucbc(C)st|C|s

= t−1
∑

[C1]I∈[K]I

µ(C1)`(C1)u
cbc(C1)t|C1|.

Note that cbc(Cs) = cbc(C)s. The third equality is obtained by the fact that each closed
path of G is a multiple of some primitive closed path of G.
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Therefore, by Lemma 4, it follows that

∂

∂t
log ζG,Γ(u, t) = t−1

∑

s≥1

Nst
s. (1)

Q.E.D.

5 Analytic determinants for von Neumann algebras

with a finite trace

In an excellent paper [6], Fuglede and Kadison defined a positive-valued determinant for
von Neumann algebras with trivial center and finite trace. For an invertible operator A
with polar decomposition A = UH, the Fuglede-Kadison determinant of A is defined by

Det(A) = exp ◦τ ◦ logH,

where logH may be defined via the functional calculus.
Guido, Isola and Lapidus [9] extended the Fuglede-Kadison determinant to a deter-

minant which is an analytic function. Let (A, τ) be a von Neumann algebra with a finite
trace. Then, for A ∈ A, let

det τ (A) = exp ◦τ ◦ logA,

where

log(A) :=
1

2πi

∫

Γ

log λ(λ− A)−1dλ,

and Γ is the boundary of a connected, simply connected region Ω containing the spectrum
σ(A) of A. Then the following lemma holds(see [9, Lemma 5]).

Lemma 6 (Guido, Isola and Lapidus) Let A,Ω,Γ be as above, and φ, ψ two branches
of the logarithm such that both domains contain Ω. Then

exp ◦τ ◦ φ(A) = exp ◦τ ◦ ψ(A).

Next, we consider a determinant on some subset of A. Let (A, τ) be a von Neumann
algebra with a finite trace, and A0 = {A ∈ A | 0 /∈ conv σ(A)}. For any A ∈ A0, we set

det τ (A) = exp ◦τ ◦ (
1

2πi

∫

Γ

log λ(λ− A)−1dλ),

where Γ is the boundary of a connected, simply connected region Ω containing the spec-
trum conv σ(A), and log is a branch of the logarithm whose domain contains Ω. Then the
above determinant is well-defined and analytic on A0(see [9, Corollary 5.3]). Furthermore,
Guido, Isola and Lapidus [9] showed that det τ has the following properties.
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Proposition 2 (Guido, Isola and Lapidus) Let (A, τ) be a von Neumann algebra with
a finite trace, A ∈ A0. Then

1. det τ (zA) = z det τ (A) for any z ∈ C \ {0}.

2. If A is normal, and A = UH is its polar decomposition, then

det τ (A) = det τ (U) det τ (H).

3. If A is positive, then det τ (A) = Det(A), where Det(A) is the Fuglede-Kadison
determinant of A.

6 A determinant expression

In this section, we consider the following determinant:

det I(A) = exp ◦TrI ◦ logA

for A ∈ A(G).
In (

∑

s≥0 Ast
s)(I− tA1 + (1− u)(Q+ uI)t2), the coefficient of ts for any s ≥ 3 is 0 by

the second formula of Lemma 1. Furthermore, by the first formula of Lemma 1, we have

(
∑

s≥0

Ast
s)(I − tA1 + (1 − u)(Q + uI)t2) = (1 − (1 − u)2t2)I. (2)

Since (1 − (1 − u)2t2)−1 =
∑

j≥0(1 − u)2jt2j ,

I = (
∑

k≥0

Akt
k)(

∑

j≥0

(1 − u)2jt2j)(I − tA1 + (1 − u)(Q + uI)t2)

= (
∑

s≥0

[s/2]
∑

j=0

As−2j(1 − u)2jts)(I− tA1 + (1 − u)(Q + uI)t2).

By Lemmas 2 and 3, we have

Ns = TrI [As−(1−u)−1(Q−(1−2u)I)

[(s−1)/2]
∑

j=1

(1−u)2jAs−2j]−
{

0 if s is odd,
(1 − u)s−1a2 if s is even.

for s ≥ 3. Furthermore, N1 = TrIA1 = 0, and

N2 = TrIA2 − (1 − u)a2 = lim
n→∞

2u | E(Kn) |
| V (Kn) | − (1 − u) lim

n→∞

2u | E(Kn) |
| V (Kn) |

= 2u2 lim
n→∞

| E(Kn) |
| V (Kn) | .
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Next, set

N∗
s = As − (1 − u)−1(Q − (1 − 2u)I)

[s/2]
∑

j=1

(1 − u)2jAs−2j

= As + (1 − u)−1(Q − (1 − 2u)I)As − (1 − u)−1(Q − (1 − 2u)I)

[s/2]
∑

j=0

(1 − u)2jAs−2j.

Then (2) and (3) imply that

(

∑

s≥0

N∗
st

s
)

(I− tA1 + (1 − u)(Q + uI)t2)

= (I + (1 − u)−1(Q − (1 − 2u)I))(1− (1 − u)2t2)I − (1 − u)−1(Q − (1 − 2u)I)

= (1 − (1 − u)2t2)I − (1 − u)t2(Q − (1 − 2u)I).

Since N∗
0 = A0 = In,

(

∑

s≥1

N∗
st

s
)

(I − tA1 + (1 − u)(Q + uI)t2)

= (1 − (1 − u)2t2)I − (1 − u)t2(Q − (1 − 2u)I) − (I − tA1 + (1 − u)(Q + uI)t2)

= tA1 − 2(1 − u)(Q + uI)t2.

Therefore it follows that
∑

s≥1

N∗
st

s = (tA1 − 2(1 − u)(Q + uI)t2)(I − tA1 + (1 − u)(Q + uI)t2)−1.

Lemma 7 Let f : t ∈ Bε = {t ∈ C | | t |< ε} 7→ f(u, t) ∈ A(G) be a C1-function,
f(0, 0) = 0, and || f(u, t) ||< 1 for all t ∈ Bε, where the absolute value of u ∈ C is
suffiently small. Then

TrI(−
∂

∂t
log(I − f(u, t))) = TrI(

∂

∂t
f(u, t)(I− f(u, t))−1).

Proof. At first, we have

− log(I− f(u.t)) =
∑

n≥1

1

n
f(u, t)n.

Then, the above converges in operator norm, uniformly on compact subsets of Bε, and
|| f(u, t) ||< 1 for all t ∈ Bε. Furthermore,

∂

∂t
f(u, t)n =

n−1
∑

j=0

f(u, t)j ∂

∂t
f(u, t)f(u, t)n−j−1.
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Therefore, we have

− ∂

∂t
log(I − f(u, t))) =

∑

n≥1

n−1
∑

j=0

1

n
f(u, t)j ∂

∂t
f(u, t)f(u, t)n−j−1,

and so

TrI(−
∂

∂t
log(I − f(u, t))) =

∑

n≥1

1

n

n−1
∑

j=0

TrI(f(u, t)j ∂

∂t
f(u, t)f(u, t)n−j−1)

=
∑

n≥1

TrI(f(u, t)n−1j
∂

∂t
f(u, t))

= TrI(
∂

∂t
f(u, t)(I− f(u, t))−1).

Q.E.D.
We state the average Euler-Poincaré characteristic of a fractal graph(see [11]).

Lemma 8 (Guido, Isola and Lapidus) The following limit exists and is finite:

χav(G) := lim
n→∞

χ(Kn)

| V (Kn) | = −1

2
TrI(Q − I),

where χ(Kn) =| V (Kn) | − | E(Kn) |.

Theorem 5

ζG,I(u, t)
−1 = (1 − (1 − u)2t2)−χav(G) det I(I− tA(G) + (1 − u)(D − (1 − u)I)t2).

Proof. By Lemma 7, we have

TrI(
∑

s≥1

N∗
st

s) = TrI(−t
∂

∂t
log(I − tA1 + (1 − u)(Q + uI)t2)).

By Lemma 8, we have

a2 = u lim
n→∞

2 | E(Kn) |
| V (Kn) | = uTrI(Q + I).

If s is odd, then TrI(N
∗
s ) = Ns. Otherwise, we have

TrI(N
∗
s) = Ns − (1 − u)s−1TrI(Q − (1 − 2u)I) + (1 − u)s−1a2

= Ns − (1 − u)s−1TrI(Q − (1 − 2u)I− u(Q + I))

= Ns − (1 − u)sTrI(Q − I).
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Thus, for s ≥ 1, we have

TrI(N
∗
s) = Ns −

{

0 if s is odd,
(1 − u)sTrI(Q − I) if s is even.

Thus,

TrI(
∑

s≥1

N∗
st

s) =
∑

s≥1

Nst
s − TrI(Q − I)(

∑

j≥1

(1 − u)2jt2j)

=
∑

s≥1

Nst
s − TrI(Q − I)

(1 − u)2t2

1 − (1 − u)2t2
,

i.e.,
∑

s≥1

Nst
s = TrI(

∑

s≥1

N∗
st

s) + TrI(Q − I)
(1 − u)2t2

1 − (1 − u)2t2
.

(1) implies that

t
∂

∂t
log ζG,I(u, t)

= TrI(−t
∂

∂t
log(I − tA1 + (1 − u)(Q + uI)t2)) + TrI(Q − I)

(1 − u)2t2

1 − (1 − u)2t2

= TrI(−t
∂

∂t
log(I − tA1 + (1 − u)(Q + uI)t2)) − t

∂

∂t
log(1 − (1 − u)2t2)TrI(Q−I)/2.

Both functions are 0 at t = 0, and so

log ζG,I(u, t) = −TrI(log(I − tA1 + (1 − u)(Q + uI)t2)) − log(1 − (1 − u)2t2)TrI(Q−I)/2.

Hence the equality TrI(log(I − B)) = log det I(I − B) and Lemma 8 implies that

ζG,I(u, t) = (1 − (1 − u)2t2)χav(G) det I(I− tA(G) + (1 − u)(Q + uI)t2)−1.

Q.E.D.
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