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Abstract

Combinatorial covers of graphs were defined by Chung and Yau. Their main
feature is that the spectra of the Combinatorial Laplacian of the base and the total
space are related. We extend their definition to directed graphs. As an application,
we compute the spectrum of the Combinatorial Laplacian of the homesick random
walk RWµ on the line. Using this calculation, we show that the heat kernel on the
weighted line can be computed from the heat kernel of ‘(1 + 1/µ)-regular’ tree.

1 Introduction

A finite presentation of a group determines a locally finite graph, the Cayley graph. In
general, the graph depends on the presentation and it does not reflect the algebraic
properties of the group. But the Cayley graph provides information on the “large scale”
properties of the group i.e., properties of the group at infinity. This is the motivation for
the question posed by M. Gromov:

∗Partially Supported by an N.S.F. R.E.U. Grant
†Partially Supported by a Canisus College Summer Research Grant
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Question. What is the relation between the spectrum of a random walk on the Cayley
graph of the group to the geometry at infinity of the group?

A classical result towards this direction is given in [5] where the spectral radius (the
maximal eigenvalue) of the normalized adjacency operator on a graph is connected to
properties of the graph and the group. Notice that the normalized adjacency operator
encodes the simple random walk on the graph, the one that each direction has the same
probability.

One of the properties of the group that is reflected to its Cayley graph is the rate of
growth of the elements of the group when they expresses as products of the generators and
their inverses. The corresponding quantity in the Cayley graph is the rate of growth of
the elements of the combinatorial spheres (or balls) centered at the vertex that represents
the identity element. In [6], a family of random walks RWµ are defined on a rooted graph.
They are nearest neighbor “homesick” random walks that depend on a parameter µ. In
these random walks it is µ times more likely for the particle to move towards the root
than to move away from it. The main result in [6] is that the growth of the graph is a
threshold value. The random walk is transient if and only if µ is larger than the growth
and positive recurrent if and only if µ is smaller than the growth. When the graph is the
Cayley graph of a group, the result states that the growth of the group can be predicted
from the properties of the homesick random walk on the Cayley graph.

The goal of this project is to explain Lyons’ result using spectra of operators defined
on the Hilbert space generated by the vertices of the graph. The definition of the random
walk in [6] equips the graph with the structure of a directed weighted graph. The random
walk in this case is encoded by the adjacency operator for this graph. Following the
ideas in [1] and [3], we will work instead with a variant of the adjacency operator, the
combinatorial Laplacian.

In [1] and [3], the definition of the combinatorial Laplacian is given. Also, graph
coverings are used for the calculation of the spectrum and a basis of eigenfunctions of the
Laplacian. The idea is that when a graph G covers a graph H, then the combinatorial
structure of H is simpler and the Laplacian can be calculated for H. Then the authors
develop methods to deduce from that Laplacian ofG. The calculations are used for getting
a closed formula for the heat kernel associated to the combinatorial Laplacian for k-regular
trees (Cayley graphs of free groups and free products of copies of Z/2Z) and lattices
(Cayley graphs of free abelian groups). In [2], the definition of the combinatorial Laplacian
is extended to directed, weighted graphs and the basic properties of the construction are
proved.

We extend the methods of [3] to weighted directed graphs. More specifically, we define
combinatorial covers in this case. We extend the methods of [3] and use them to compare
the eigenvalues and eigenfunctions of the base and the cover graphs. As an application,
we calculate the heat kernel of the homesick random walk on the 2-regular tree. As in
[3], the heat kernel of the infinite tree is computed as the limit of the heat kernel of the
l-combinatorial neighborhood of the root, as l goes to infinity. For the l-neighborhood, we
construct a combinatorial cover for the 2-regular tree to the weighted, directed segment.
The general theory implies that there are two types of eigenvalues for the Laplacian in
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question. The first type includes eigenvalues that admit eigenfunctions that do not vanish
at the root. Those eigenvalues are induced from the directed segment. The eigenfunctions
for the second type of the eigenvalues vanish at the root. After taking limits as l goes to
infinity, our main result computes the heat kernel in this case.

Theorem (Main Theorem). For the homesick random walk with parameter µ on the
infinite line, the heat kernel Ht(a, b) satisfies:

1. When b = 0:

Ht(a, 0) =
µ
√

2(µ+ 1)

π

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x) sin x

[
1

µ
sin(a+ 1)x− sin(a− 1)x

]

µ2 + 2µ+ 1 − 4µ cos2 x
dx.

2. If both a and b are not 0, then Ht(a, b) is:

K

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x)[sin((|a| + 1)x) − sin(|a| − 1)x][sin((|b| + 1)x) − sin(|b| − 1)x]

µ2 + 2µ+ 1 − 4µcos2x
dx,

where K = 2
π
(µ2 + ε) and ε = sign(a)·sign(b).

Notice that, up to a constant multiple, the formula (1) is the formula given in Theorem
2 in [3] for k regular trees if we set k = 1 + 1/µ. In some sense, the formula in (1) is the
heat kernel on the 1 + 1/µ-regular tree, even though 1 + 1/µ is not an integer.

Trees are (topological) covers of graphs. In this sense they are universal among graphs.
The authors intend to extend the calculations to k-regular trees. The goal is to get
a formulation of Lyons’ theorem using the spectrum of the heat kernel on the Cayley
graph. The authors believe that such a formulation will extend Lyons’ result giving more
information on the growth of the graph (or group).

The first two authors would like to thank Canisius College for its hospitality during the
R.E.U. program in the summer 2006, when this paper was completed. All three authors
would like to thank Terry Bisson for discussions during the preparation of this project.

2 Preliminaries

All graphs considered will be locally finite as undirected graphs i.e., only finitely many
edges will be incident to a given vertex. We consider a weighted directed graph G which
has a vertex set V = V (G) and a weight function w : V × V → R such that

w(u, v) ≥ 0, for all u, v ∈ V.

For u, v ∈ V , if w(u, v) > 0, then we say (u, v) is an edge and u is adjacent to v. The
degree dv of a vertex v is defined as:

dv =
∑

u∈V

w(v, u).
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Our main example of weighted directed graphs will be the lazy random walks used in
[6]. Given a simple undirected unweighted rooted graph (G, z) we weight the edge (u, v)
as follows:

w(u, v) :=






µ
du + (µ− 1)d−u

, v ∈ S|u|−1(z)

1
du + (µ− 1)d−u

, otherwise

where du is the degree of u and d−u = |N(u) ∩ S|u|−1(z)|, where Sr(z) denotes the com-
binatorial ball of radius r centered at z. That defines a random walk on G denoted
RWµ.

In [6], the properties of RWµ on a Cayley graph are connected to the growth of the
group. Let Γ be a finitely presented group and X a finite generating set. We assume that
X is symmetric i.e., X = X−1. The Cayley graph, G(Γ, X) is the (non-directed) graph
with vertex set Γ. Also, the pair (γ1, γ2) is an edge if γ−1

1 γ2 ∈ X. Also, define the length
of an element γ ∈ Γ as

`(γ) = min{r : γ = v1. . .vr, vi ∈ X}.

Let σr be the number of elements of Γ of length r. Notice that σr is the number of points
on the combinatorial sphere of G(Γ, X) centered at the identity of radius r. The growth
of the group is defined as ([4]):

ω(Γ, X) = lim sup
r→∞

r
√
σr.

If ω(Γ, X) > 1 then Γ is said to have exponential growth, if ω(Γ, X) = 1 the growth is
subexponential and if σr has the same growth as a polynomial function, Γ is said to have
polynomial growth. In [6], it was shown that:

• If µ < ω(Γ, X), then RWµ is transient.

• If µ > ω(Γ, X), then RWµ is positive recurrent

We will use covers to study the spectrum of a random walk.

Definition 2.1. Let G̃ and G be two weighted directed graphs. We say G̃ is a covering
of G (or G is covered by G̃) if there is a map π : V (G̃) → V (G) satisfying the following
two properties:

(i) There is an m ∈ R, called the index of π; such that for u, v ∈ V (G), we have
∑

x∈π−1(u)
y∈π−1(v)

w(x, y) = mw(u, v), and
∑

x∈π−1(u)
y∈π−1(v)

w(y, x) = mw(v, u).

(ii) For x, y ∈ V (G̃) with π(x) = π(y) and v ∈ V (G), we have
∑

z∈π−1(v)

w(z, x) =
∑

z′∈π−1(v)

w(z′, y), and
∑

z∈π−1(v)

w(x, z) =
∑

z′∈π−1(v)

w(y, z′).
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Remark 2.2.

1. Notice that the definition generalizes the definition given in [3]. We need to consider
“two sided” sums because the graphs are directed.

2. The definition of covering given above does not correspond to the classical definition
of graph coverings, that is the direct generalization of graph coverings to directed
weighted graphs. Let G̃ and G be directed, weighted graphs. A map π : V (G̃) →
V (G) is called a classical graph covering if the following hold:

(a) For each x, y in V (G̃), w(x, y) = w(π(x), π(y)). Thus π induces a map on the

set of edges on G̃.

(b) For each x ∈ V (G̃) we write

Nout(x) = {e ∈ E(G̃) : e emanates from x}.

Then the map π induces a bijection

π : Nout(x) → N out(f(x)),

such that w(e) = w(π(e)).

In this paper, a cover will mean a covering as in the definition above.

As in [3], it is not hard to show the following properties of covers.

Lemma 2.3. Suppose G̃ is a covering of G with index m. Let u, v ∈ V (G) and x ∈ π−1(v),
then

(i) ∑

z∈π−1(u)

w(x, z) =
m

|π−1(v)|w(v, u);

(ii) ∑

z∈V ( eG)

w(x, z) =
m

|π−1(v)|
∑

u∈V (G)

w(v, u);

(iii)

dx =
m

|π−1(v)|dv.

From the definition of a covering (i) and (ii) still hold if we replace w(x, z) by w(z, x) and
w(v, u) by w(u, v).
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Let G be a finite graph. The transition probability matrix P of a graph is defined as

P (u, v) =
w(u, v)

du

.

It is obvious that P (u, v) > 0 only if (u, v) is an edge. Further as in the undirected case
∑

v

P (u, v) = 1,

however in the directed case it is not true in general that
∑

u P (u, v) = 1. The transition
probability matrix defines a random walk on the graph.

The Perron-Frobenius Theorem ([7]) implies that the transition probability matrix P
of a graph has a unique left eigenvector φ with φ(v) > 0 for all v, and φP = φ. We will
treat φ as a row vector. We can normalize and choose φ such that

∑

v

φ(v) = 1.

We call φ the Perron vector of P . We can now define the Laplacian L of a directed graph
([2]):

L = I − Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2

2
where Φ denotes the diagonal matrix with entries Φ(v, v) = φ(v) and P ∗ is the transpose
of P . The Laplacian satisfies L∗ = L, that is, the Laplacian is symmetric. The spectrum
of a graph is the eigenvalues and eigenfunctions of the Laplacian of the graph.

We give an extension of the definition of the combinatorial Laplacian to infinite rooted
graphs. Let (G, z) be any locally finite weighted directed graph. Let Br(z) be the ball of
radius r centered at z when G is considered as a simple graph i.e., when the weights and
the orientation are ignored. Then for u, v ∈ V (G) define

L(u, v) = L(l)(u, v)

where L(l) is the combinatorial Laplacian of Bl(z) with l large enough so that u and v
are contained in Bl−2(z). Since L(l) depends on the nearest neighbors, the definition of L
does not depend on l. It is a direct calculation that l defines an operator on L2(V (G))
when there is a uniform bound on the degrees dv, with v ∈ V (G).

2.1 Example - The k-regular Tree

Consider the homesick random walk on the k-regular tree Tk with root z. In particular
the weights are given as follows:

w(x, y) =






1

k
, x = z, y ∼ z,

1

k + µ− 1
, x 6= z, y /∈ S|x|−1(z),

µ

k + µ− 1
, x 6= z, y ∈ S|x|−1(z)
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The combinatorial l-sphere centered at z has sl = k(k − 1)l−1 if l > 0. We write

v
(l)
i , i = 1, 2, · · · , sl,

for the elements of the combinatorial l-sphere centered at z. Let T
(l)
k be the l-ball in Tk

i.e., we truncate Tk to include all the vertices within combinatorial distance l from z.
We consider the homesick random walk induced on T

(l)
k . It has the same weights as the

random walk on Tk except that:

w(v
(l)
i , v) = 1, when v

(l)
i ∼ v.

Let P (l) be the matrix of the random walk. Also, set

ρ =
k − 1

µ
.

Lemma 2.4. Let ψl be the Frobenius–Perron vector of T
(l)
k . Then

ψl(v
(m)
i ) = ψl(v

(m)
i ), for all 0 ≤ m ≤ l, 1 ≤ i, j ≤ sm.

Thus ψl is constant along each sphere centered at z. Furthermore,

ψl(v
(n)
i ) =





1 − ρ

2(1 − ρl)
, n = 0

(1 + ρ)(1 − ρ)

2µn−1k(1 − ρl)
, 1 ≤ n ≤ l − 1

1 − ρ

2µl−1k(1 − ρl)
, n = l.

Proof. In the process of calculating the Frobenius–Perron eigenfunction we will show that
its values are constant on the spheres of T

(l)
k . For simplicity, we set:

α =
µ

k + µ− 1
, β =

1

k + µ− 1

For any v
(l)
i there is a single vertex v

(l−1)
j that is adjacent to it. The equation ψP (l) = ψ

implies
βψ(v

(l−1)
j ) = ψ(v

(l)
i ) for each v

(l)
i ∼ v

(l−1)
j .

For a vertex v
(l−1)
j , using the previous equation,

βψ(v(l−2)
m ) + (k − 1)ψ(v

(l)
i ) = ψ(v

(l−1)
j ), v(l−2)

m ∼ v
(l−1)
j , v

(l)
i ∼ v

(l−1)
j .

That implies
βψ(v(l−2)

m ) = (1 − β(k − 1))ψ(v
(l−1)
j ).
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Solving for ψ(v
(l−1)
j ), we get

ψ(v
(l−1)
j ) =

1

µ
ψ(v(l−2)

m ).

Thus for two vertices in Sl−1 have a common neighbor in Sl−2 then ψ has the same value.
For the next step notice that

βψ(v(l−3)
n ) + (k − 1)αψ(v

(l−1)
j ) = ψ(v(l−2)

m ), v(l−3)
n ∼ v(l−2)

m , v
(l−1)
j ∼ v(l−2)

m .

As before simplifying,

ψ(v(l−2)
m ) =

1

µ
ψ(v(l−3)

n )

Continuing like that we get that

ψ(v(t)
m ) =

1

µ
ψ(v(t−1)

n ), v(t)
m ∼ v(t−1)

n , l − 2 ≤ t ≤ 2.

For the vertices of distance 1 from z,

1

k
ψ(z) + (k − 1)αψ(v

(2)
i ) = ψ(v

(1)
j ), v

(2)
i ∼ v

(1)
j .

Thus

1

k
ψ(z) =

(
1 − (k − 1)α

µ

)
ψ(v

(1)
j ) =⇒ ψ(v

(1)
j ) =

1

kα
ψ(z) =

k + µ− 1

µk
ψ(z)

Therefore ψ has the same value on S1 and thus ψ is constant on each sphere. Inductively,
we get that

ψl(v
(n)
i ) =






k + µ− 1

µnk
ψl(z), 1 ≤ n ≤ l − 1

1

µl−1k
ψl(z), n = l.

=






1 + ρ

µn−1k
ψl(z), 1 ≤ n ≤ l − 1

1

µl−1k
ψl(z), n = l.

Adding up all the terms:

∑

i,n

ψl(v
(n)
i ) =

(
µ+ k − 1

µ

l−2∑

i=0

ρi + ρl−1 + 1

)
ψl(z)

=

(
(ρ+ 1)(1 − ρl−1)

1 − ρ
+ ρl−1 + 1)

)
ψl(z)

=

(
2(1 − ρl)

1 − ρ

)
ψl(z)

So the normalization condition implies:

ψl(z) =
1 − ρ

2(1 − ρl)
,
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and the Frobenius–Perron vector is given by:

ψl(v
(n)
i ) =





1 − ρ

2(1 − ρl)
, n = 0

(1 + ρ)(1 − ρ)

2µn−1k(1 − ρl)
, 1 ≤ n ≤ l − 1

1 − ρ

2µl−1k(1 − ρl)
, n = l.

Remark 2.5. Notice that the limit, as l → ∞ of ψl(z) is non-zero if and only if ρ < 1.
That happens if and only if the random walk is positive recurrent ([6]). If this is the case,

ψ(z) = lim
l→∞

ψl(z) =
1 − ρ

2
.

Furthermore, taking limits as l → ∞, we get the following formula for a candidate for the
Frobenius–Perron vector for the homesick random walk on Tk:

ψl(v
(n)
i ) =





1 − ρ

2
, n = 0

(1 + ρ)(1 − ρ)

2µn−1k
, n ≥ 1.

A direct calculation shows that ψ is the Frobenius–Perron vector for Tk, when ρ < 1.

Let Ψl be the diagonal matrix with entries ψl(v
(n)
i ). Then, for two adjacent vertices,

Ψ
1/2
l PlΨ

−1/2(v
(n)
i , v

(n)
j ) =

Ψ
−1/2
l P ∗

l Ψ1/2(v
(n)
i , v

(n)
j ) =





1√
k(ρ + 1)

, (i, j) ∈ {(0, 1), (1, 0)},
1√

µ(ρ + 1)
, |i− j| = 1, 1 ≤ i, j ≤ l − 1,

1√
µ(ρ+ 1)

, (i, j) ∈ {(l, l − 1), (l − 1, l)}.

The combinatorial Laplacian on T
(l)
k is given by:

L(l)(v
(n)
i , v

(m)
j ) =





1, v
(n)
i = v

(m)
j ,

− 1√
k(ρ+ 1)

, (n,m) ∈ {(0, 1), (1, 0)},

− 1√
µ(ρ+ 1)

, |n−m| = 1, 1 ≤ n,m ≤ l − 1, v
(n)
i ∼ v

(m)
j

− 1√
µ(ρ+ 1)

, (n,m) ∈ {(l, l − 1), (l − 1, l)},

0, if the vertices are not adjacent.
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3 The spectrum of a graph and its coverings

We will show that there is a connection between the eigenvalues of a graph and a graph
that covers it, however to begin we establish a connection between the respective Perron
vectors. All the graphs are finite.

Proposition 3.1. Suppose G is a weighted directed graph with Perron vector φ and G̃ is
a covering of G with index m with respect to the mapping π. The Perron vector φ̃ of G̃
can be defined by

φ̃(x) =
φ(v)

|π−1(v)| , for each v = π(x).

Proof. It is enough to show that φ̃P̃ = φ̃, where P̃ is the transition probability matrix of
G̃. We make liberal use of Lemma 2.3. Suppose v ∈ V (G) and π(x) = v. Then

(φ̃P̃ )(x) =
∑

y∈ eG

φ̃(y)P̃ (y, x) =
∑

u∈V (G)

∑

y∈π−1(u)

φ̃(y)P̃ (y, x)

By substituting the values of φ̃ and P̃ , the last equation becomes

(φ̃P̃ )(x) =
∑

u∈V (G)

∑

y∈π−1(u)

φ(u)

|π−1(u)|
w(y, x)

dy
=

∑

u∈V (G)

φ(u)

|π−1(u)|
∑

y∈π−1(u)

|π−1(u)|
mdu

w(y, x)

By rearranging the terms we get that

(φ̃P̃ )(x) =
∑

u∈V (G)

φ(u)

mdu

∑

y∈π−1(u)

w(y, x) =
∑

u∈V (G)

φ(u)

mdu

m

|π−1(x)|w(u, v)

Using the definitions, once more

(φ̃P̃ )(x) =
1

|π−1(v)|
∑

u∈V (G)

φ(u)
w(u, v)

du
=

1

|π−1(v)|
∑

u∈V (G)

φ(u)P (u, v) =
1

|π−1(v)|φ(v)

Since φ is an eigenfunction, we get that:

(φ̃P̃ )(x) =
1

|π−1(v)|(φP )(v) =
1

|π−1(v)|φ(v) = mφ̃(x).

Thus φ̃, as defined in the statement of the Proposition, is the Perron vector of G̃.

When computing the spectrum of a graph it is sometimes convenient to consider har-
monic eigenfunctions. Let g denote an eigenfunction of L associated with the eigenvalue
λ then f = gΦ−1/2 is called the harmonic eigenfunction. In [2], it was shown that:

λf(v)φ(v) =
1

2

∑

u

(f(v) − f(u))(φ(u)P (u, v) + P (v, u)φ(v)), for each v ∈ V (G),

where f is a harmonic eigenfunction associated with the eigenvalue λ.
As in [3], using the above identity we get the following:

the electronic journal of combinatorics 16 (2009), #R31 10



Lemma 3.2. If G̃ is a covering of G, then an eigenvalue of G is an eigenvalue of G̃.

Proof. If G̃ is a covering of G with respect to the map π of index m, we can lift the
harmonic eigenfunction f of G (and the associated eigenvalue λ) to G̃ by defining, for

each vertex x in G̃, f(x) = f(v) where v = π(x). We then have

1

2

∑

y

(f(x) − f(y))(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x))

= 1
2

∑
y

(f(x) − f(y))
(
φ̃(y)w(y,x)

dy
+ w(x,y)

dx
φ̃(x)

)

= 1
2

∑
u

∑
z∈π−1(u)

(f(v) − f(u))
(

φ(u)
|π−1(u)|

w(z,x)
dz

+ w(x,z)
dx

φ(v)
|π−1(v)|

)

= 1
2

∑
u

(f(v) − f(u))

(
φ(u)

|π−1(u)|

∑
z∈π−1(u)

w(z,x)
dz

+ φ(v)
|π−1(v)|

∑
z∈π−1(u)

w(x,z)
dx

)

= 1
2

∑
u

(f(v) − f(u))

(
φ(u)

|π−1(u)|

∑
z∈π−1(u)

|π−1(u)|w(z,x)
mdu

+ φ(v)
|π−1(v)|

∑
z∈π−1(u)

|π−1(v)|w(x,z)
mdv

)

= 1
2

∑
u

(f(v) − f(u))

(
φ(u)
mdu

∑
z∈π−1(u)

w(z, x) + φ(v)
mdv

∑
z∈π−1(u)

w(x, z)

)

= 1
2

∑
u

(f(v) − f(u))
(

φ(u)
mdu

m
|π−1(v)|

w(u, v) + φ(v)
mdv

m
|π−1(v)|

w(v, u)
)

= 1
|π−1(v)|

1
2

∑
u

(f(v) − f(u))(φ(u)P (u, v) + P (v, u)φ(v))

= 1
|π−1(v)|

λf(v)φ(v) = λf(x)φ̃(x).

Following the line of argument in [3], we have the following:

Lemma 3.3. Suppose G̃ is a covering of G with respect to the mapping π of index m. If
a harmonic eigenfunction f of G̃, associated with an eigenvalue λ, has a nontrivial image
in G, then λ is also an eigenvalue for G.

Proof. For each x ∈ π−1(v),
∑

y

(f(x) − f(y))(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x)) = λf(x)φ̃(x).

By summing over x in π−1(v), we have
∑

x∈π−1(v)

∑

y

(f(x) − f(y))(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x)) = λ
∑

x∈π−1(v)

f(x)φ̃(x).

We define the induced mapping of f in G, denoted g : V (G) → R by

g(v) =
∑

x∈π−1(v)

f(x)φ̃(x)

φ(v)
=

1

|π−1(v)|
∑

x∈π−1(v)

f(x).
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It is clear from the definition of g that

λ
∑

x∈π−1(v)

f(x)φ̃(x) = λg(v)φ(v).

Now consider the following

1

2

∑

x∈π−1(v)

∑

y

(f(x) − f(y))(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x)). (1)

We break the sum into two parts:

(i)

1

2

∑

x∈π−1(v)

f(x)
∑

y

(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x))

=
1

2

∑

x∈π−1(v)

f(x)(φ̃(x) + φ̃(x))

=
∑

x∈π−1(v)

f(x)φ̃(x)

=
1

2
g(v)(φ(v) + φ(v))

=
1

2

∑

u

g(v)(φ(u)P (u, v) + P (v, u)φ(v)).

(ii)

1

2

∑

x∈π−1(v)

∑

y

f(y)(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x))

=
1

2

∑

u

∑

y∈π−1(u)

f(y)
∑

x∈π−1(v)

(φ̃(y)P̃ (y, x) + P̃ (x, y)φ̃(x))

=
1

2

∑

u

∑

y∈π−1(u)

f(y)
∑

x∈π−1(v)

(
φ(u)w(y, x)

|π−1(u)|dy
+
w(x, y)φ(v)

dx|π−1(v)|

)

=
1

2

∑

u

∑

y∈π−1(u)

f(y)



φ(u)

mdu

∑

x∈π−1(v)

w(y, x) +
φ(v)

mdv

∑

x∈π−1(v)

w(x, y)





=
1

2

∑

u

∑

y∈π−1(u)

f(y)

(
φ(u)w(u, v)

du|π−1(u)| +
φ(v)w(v, u)

dv|π−1(u)|

)

=
1

2

∑

u

g(u)(φ(u)P (u, v) + P (v, u)φ(v)).
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We can now write expression (1) as

1

2

∑

u

(g(v) − g(u))(φ(u)P (u, v) + P (v, u)φ(u)).

Hence,
1

2

∑

u

(g(v) − g(u))(φ(u)P (u, v) + P (v, u)φ(u)) = λg(v)φ(v).

If g is nontrivial, then λ is an eigenvalue of G.

Definition 3.4. A graph G̃ is a regular covering of G if for a fixed vertex v in V (G) and

for any vertex x of V (G̃), G̃ is a covering of G under a mapping πx which maps x into

v. If π−1
x is just x then G̃ is a strong regular covering. Further, a graph G is said to be

distance regular if G is a strong regular covering of a (weighted) path.

Remark 3.5. Strong regular coverings do not appear as often in weighted directed graphs.
The reason is that the definition requires some degree of homogeneity. Usually, this type
of homogeneity is lacking in the lazy random walks considered.

Lemma 3.6. Suppose G̃ is a strong regular covering of G. Then, G̃ and G have the same
eigenvalues.

Proof. For any nontrivial harmonic eigenfunction f of G̃ we can choose v to be a vertex
with nonzero value of f . The induced mapping of f in G has a nonzero value at v and
therefore is a nontrivial harmonic eigenfunction for G. From Lemma 3.3, we see that any
eigenvalue of G̃ is an eigenvalue of G. By Lemma 3.2, we conclude that G̃ and G have
the same eigenvalues.

3.1 Example - The k-regular Tree as a Cover

As in [3], we will realize Tk as a cover over a weighted ray. Let P+ be the weighted ray
with V (P+) = N and

w(i, j) =





1, if i = 0, j = 1,

kµ(k − 1)i−1

µ+ k − 1
, if i > 0, i− j = 1

k(k − 1)i

µ+ k − 1
, if i > 0, i− j = −1

As in [3],
π : Tk → P+, π(x) = d(x, z),

where the distance is the combinatorial distance in Tk. The fact that π is a combinatorial
cover of index 1 is proved as in [3].
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This means that some of the eigenvalues of the tree are the same as those of the path.
Thus we set out to determine the eigenvalues and eigenfunctions of the path.

First we must find the Laplacian of P+. To do that, let P (l) be truncated path with

V (P (l)) = {0, 1, . . . , l}

and all the weights as in P+ except that we set w(l, l − 1) = 1. We will calculate the
Laplacian of P (l) and then we will take l → ∞. The probability matrix is given by:

Pl =




0 1 0 · · ·
1

1+ρ
0 ρ

1+ρ
· · ·

0 1
1+ρ

0 ρ
1+ρ

...
. . .

. . .
. . .

...
0 · · · 0 1 0




The Frobenius–Perron vector satisfies

(φl(0), φl(1), φl(2), . . . , φl(l))Pl = (φl(0), φl(1), φl(2), . . . , φl(l))

Thus the vector φl satisfies:

φl(i) =

{
ρi−1(1 + ρ)φl(0), 1 ≤ i ≤ l − 1
ρl−1φl(0), i = l.

Φ
1
2
l PlΦ

− 1
2

l (i, j) = Φ
− 1

2
l P ∗

l Φ
1
2
l (i, j) =





1√
1 + ρ

, (i, j) = (0, 1), (1, 0)

√
ρ

1 + ρ
, |i− j| = 1, 2 ≤ i ≤ l − 2

√
ρ

1 + ρ
, (i, j) = (1, 2), (l − 1, l− 2)

√
ρ

1 + ρ
, (i, j) = (l − 1, l), (l, l − 1)

Hence,

L(l)(i, j) =






1, i = j

− 1√
1 + ρ

, (i, j) = (0, 1), (1, 0)

−
√
ρ

1 + ρ
, |i− j| = 1, 2 ≤ i ≤ l − 2

−
√
ρ

1 + ρ
, (i, j) = (1, 2), (l − 1, l − 2)

−
√

ρ

1 + ρ
, (i, j) = (l − 1, l), (l, l − 1)
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So if we set σ = 1 + ρ, then we get:

L(l)(i, j) =





1; i = j,

−
√

1

σ
; (i, j) = (0, 1) or (1, 0),

−
√
σ − 1

σ
; |i− j| = 1, 0 < i, j < l,

−
√
σ − 1

σ
; (i, j) = (l − 1, l) or (l, l − 1),

0; otherwise.

Note that this is exactly the same Laplacian as in [3] Section 5. Hence, the eigenvalues
of Ll are 0, 2 and

λn = 1 − 2
√
σ − 1

σ
cos

πn

l
= 1 − 2

√
µ(k − 1)

µ+ k − 1
cos

πn

l
, for n = 1, . . . , l − 1.

The eigenfunction φ0 associated with the eigenvalue 0 can be written as f0/‖f0‖ where

f0(0) = 1,

f0(p) =
√
σ(σ − 1)p−1, for 1 ≤ p ≤ l − 1,

f0(l) =
√

(σ − 1)l−1.

We now consider the eigenfunction φl which corresponds to the eigenvalue 2. In this case,
φl = fl/‖fl‖, where fl is defined as follows:

fl(0) = 1,

fl(p) = (−1)p
√
σ(σ − 1)p−1, for 1 ≤ p ≤ l − 1,

fl(l) = (−1)l
√

(σ − 1)l−1.

For each n ∈ {1, 2, . . . , l − 1} there is an eigenfunction φn associated with the eigenvalue
µn. We can write φn = fn/‖fn‖ where

fn(0) =

√
σ

σ − 1
sin

πn

l
,

fn(p) = sin
πn(p+ 1)

l
− 1

σ − 1
sin

πn(p− 1)

l
, for 1 ≤ p ≤ l − 1,

fn(l) =

√
σ

σ − 1
sin

πn

l
.
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For n = 1, . . . , l − 1,

‖fj‖2 =
lσ2

2(σ − 1)2

(
1 − 4(σ − 1)

σ2
cos2 nπ

l

)
.

The eigenfunction φn ∈ L2(P (l)
+ ) for n = 0, 1 . . . l.

Let L2(T
(l)
k ) be the L2-space generated by the vertices of T

(l)
k . Then

L2(T
(l)
k ) = V1⊕V2

where is the direct sum of eigenspaces of the Laplacian L(l) on T
(l)
k that contain eigen-

functions that not vanish at z. The second summand is its complementary subspace i.e.,
the subspace containing the eigenspaces that all eigenfunctions vanish at z. Let φ ∈ V1.
If sn demote the number of elements in the combinatorial sphere of radius n centered at
z, Lemma 3.3 implies that the function

g(n) =
1

sn

sn∑

j=1

φ(v
(n)
j )

is an eigenfunction in of L(l). But Lemma 2.4 implies that the values of φ at a vertex of
T

(l)
k depend only on the distance of the vertex from z. Thus the function g(n) = φ(v

(n)
j )

is an eigenfunction of L(l). Thus the eigenfunctions in V1 are lifts of the eigenfunctions of
the Laplacian L(l).

4 The heat kernel of a graph and its covering

We extend the definition of the heat kernel ([1]) to directed graphs. Given a weighted
directed graph G, the heat kernel ht is defined for t ≥ 0. It is the solution to the heat
equation:

∂ht

∂t
= −Lht, h0 = I.

Then ht can be expressed as

ht = e−tL =

∞∑

r=0

(−1)r t
rLr

r!
=
∑

i

e−λitPi

where Pi is the projection into the eigenspace corresponding to the eigenvalue λi of L. If
u, v are vertices of G, then

ht(u, v) =
∑

i

e−λitψi(u)ψi(v)

where ψi ranges over the orthonormal eigenfunctions of L ([1], [3]). The definition of the
Laplacian of the infinite graph implies that the heat kernel of the graph satisfies:

ht = lim
l→∞

h
(l)
t
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where h
(l)
t is the heat kernel on Bl(z).

For finite graphs, the eigenvalues of a graph G and G̃ a covering of G are related.
Therefore, it should be expected that their respective heat kernels are related. Indeed
they are as illustrated by the following lemmas, which are the directed analogues of the
results in [3]. Since the results and their proofs take place in finite balls around the
vertices, they can be extended to infinite graphs.

An r-walk on a graph is a sequence of vertices pr = (u0, u1, . . . , ur) so that (ui, ui+1)
is an edge. The weight of pr is defined as

ω(pr) =

r−1∏

i=0

(Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2)(ui, ui+1)

2

=
r−1∏

i=0

φ(ui)P (ui, ui+1) + φ(ui+1)P (ui+1, ui)

2
√
φ(ui)φ(ui+1)

.

Lemma 4.1. Suppose G̃ is a covering of G. Let h̃t and ht denote the heat kernels of G̃
and G, respectively. Then

∑

x∈π−1(u)

∑

y∈π−1(v)

h̃t(x, y) =
√

|π−1(u)||π−1(v)|ht(u, v).

Proof. A direct calculation shows that

ht(u, v) = e−t
∑

r

Sr(u, v)
tr

r!

where Sr is the sum of weights of all r-walks joining u and v. We want to show that the
total weights of the paths in G̃ lifted from pr (i.e. whose image in G is pr) is exactly the
weight of pr inGmultiplied by

√
|π−1(u0)||π−1(ur)|. Let pr−1 denote the walk u0, . . . , ur−1.

Suppose ur−1 6= ur. For each path p̃r−1 lifted from pr−1, its extensions to paths lifted from
pr has total weights

−w(p̃r−1)
∑

z∈π−1(ur)

φ̃(ũr−1)P̃ (ũr−1, z) + φ̃(z)P̃ (z, ũr−1)

2
√
φ̃(ũr−1)φ̃(z)

= −w(p̃r−1)
∑

z∈π−1(ur)

φ(ur−1)
|π−1(ur−1)|

P̃ (ũr−1, z) + φ(ur)
|π−1(ur)|

P̃ (z, ũr−1)

2
√

φ(ur−1)φ(ur)
|π−1(ur−1)||π−1(ur)|

=
−w(p̃r−1)

√
|π−1(ur−1)||π−1(ur)|

2
√

φ(ur−1)φ(ur)

∑

z∈π−1(ur)

(
φ(ur−1)

|π−1(ur−1)|
P̃ (ũr−1, z) +

φ(ur)

|π−1(ur)|
P̃ (z, ũr−1)

)

We will return later to the last expression and now consider the two sums contained
therein:
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(i)
∑

z∈π−1(ur)

φ(ur−1)

|π−1(ur−1)|
P̃ (ũr−1, z) =

φ(ur−1)

|π−1(ur−1)|
∑

z∈π−1(ur)

w(ũr−1, z)

dũr−1

=
φ(ur−1)

dur−1|π−1(ur−1)|
w(ur−1, ur)

=
φ(ur−1)

|π−1(ur−1)|
P (ur−1, ur).

(ii)
∑

z∈π−1(ur)

φ(ur)

|π−1(ur)|
P̃ (z, ũr−1) =

φ(ur)

|π−1(ur)|
∑

z∈π−1(ur)

w(z, ũr−1)

dz

=
φ(ur)

mdur

∑

z∈π−1(ur)

w(z, ũr−1)

=
φ(ur)

dur
|π−1(ur−1)|

w(ur, ur−1)

=
φ(ur)

|π−1(ur−1)|
P (ur, ur−1).

Returning to the expression from before with the sums simplified we have:

−w(p̃r−1)
√

|π−1(ur−1)||π−1(ur)|
2
√
φ(ur−1)φ(ur)

(
φ(ur−1)

|π−1(ur−1)|
P (ur−1, ur) +

φ(ur)

|π−1(ur−1)|
P (ur, ur−1)

)

= −w(p̃r−1)

√
|π−1(ur)|√
|π−1(ur−1)|

(
φ(ur−1)P (ur−1, ur) + φ(ur)P (ur, ur−1)

2
√
φ(ur−1)φ(ur)

)

By summing over all p̃r−1, we have

∑

x∈π−1(u)

∑

y∈π−1(v)

Sr(x, y) =
√

|π−1(u)||π−1(v)|Sr(u, v).

As a consequence of Lemma 4.1, we have

Corollary 4.2. Suppose G̃ is a strong regular covering of G. Let h̃t and ht denote the
heat kernels of G̃ and G respectively. For x ∈ π−1(u), we have

∑

y∈π−1(v)

h̃t(x, y) =

√
|π−1(v)|
|π−1(u)|ht(u, v).
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Corollary 4.3. Suppose G is a distance regular graph which is a covering of a path P
with vertices v0, . . . , vp where p = D(G), the diameter of G. Suppose G and P have heat
kernels h̃t and ht respectively. For any two vertices x and y in G with distance d(x, y) = r,
we have

h̃t =
√
|π−1(vr)|ht(v0, vr).

The following theorem is from [3]. The proof in the directed case follows exactly as in
the undirected case and is offered here for the sake of completeness.

Theorem 4.4. Suppose G̃ is a strong regular covering of G. Let v denote the vertex of G
with preimage in G̃ consisting of one vertex. Then any eigenvalue λ of G̃ has multiplicity

n
∑

i

f 2
i (v)

‖fi‖2
,

where n = |V (G̃)| and the fi’s span the eigenspace of λ in G. If the eigenvalue λ has

multiplicity 1 in G with eigenfunction f , then the multiplicity of λ in G̃ is

nf 2(v)

‖f‖2
.

Proof. Suppose G̃ has heat kernel h̃t and G has heat kernel ht. Since G̃ is a strong regular
covering of G, we have

Tr(h̃t) =
∑

x∈V ( eG)

h̃t(x, x) = nht(v, v) = n
∑

j

e−tλj
f 2

j (v)

‖fj‖2
.

Therefore, the multiplicity of λj in G̃ is exactly

nf 2
j

‖fj‖2

if the multiplicity of λ in G is 1. In general, the multiplicity of λ in G̃ is

n
∑

i

f 2
i (v)

‖fi‖2

where the fi’s span the eigenspace of λ in G.

4.1 The Heat Kernel of the k-regular Tree

Let Tk be an in Example 2.1 and P+ be as in Example 3.1. Using the calculations in

Example 3.1 and [3] we have that the heat kernel h
(l)
t of P (l) satisfies

h
(l)
t (0, 0) =

l−1∑

j=1

e−t(1− 2
√

σ−1
σ

cos jπ

l
) sin2 jπ

l

lσ
2(σ−1)

(
1 − 4(σ−1)

σ2 cos2 jπ
l

) +
1

‖f0‖2
+

1

‖fl‖2
.
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When l approaches infinity, the heat kernel ht of P+ satisfies:

ht(0, 0) =
2σ(σ − 1)

π

∫ π

0

e−t(1− 2
√

σ−1
σ

cos x) sin2 x

σ2 − 4(σ − 1) cos2 x
dx.

In general, for a ≥ 1, we have

ht(0, a) =
2
√
σ(σ − 1)

π

∫ π

0

e−t(1− 2
√

σ−1
σ

cos x) sin x[(σ − 1) sin(a + 1)x− sin(a− 1)x]

σ2 − 4(σ − 1) cos2 x
dx.

Let H
(l)
t denote the heat kernel of the subtree of Tk spanned by the l-ball centered at

z. We write
H

(l)
t = H

(l)
1,t +H

(l)
2,t

where H
(l)
i,t is the restriction to Vi, i = 1, 2. Remember that the eigenfunctions in V1 are

lifts of the eigenfunctions from P (l)
+ . Also, since V2 contains eigenfunctions that vanish at

z, we have that
H

(l)
t (z, v) = H

(l)
1,t(z, v).

As in [3], we have the following.

Theorem 4.5. With the above notation, Ht(z, v
(n)
i ) = H1,t(z, v

(n)
i ) and they are equal to

2

π(σ − 1)n/2−1

∫ π

0

e−t(1− 2
√

σ−1
σ

cos x) sin x [(σ − 1) sin(n+ 1)x− sin(n− 1)x]

σ2 − 4(σ − 1) cos2 x
dx.

For the term corresponding to V2, let v = (v
σ

(n)
i

) be an eigenvector of L(l), the Laplacian

on T
(l)
k , with vz = 0. Let λ be its eigenvalue. Then the equation vL(l) = λv implies (in

what follows we take sums with σ
(n−1)
j ∼ σ

(n)
i ):

∑
v

σ
(1)
i

= 0

v
σ

(1)
i

− 1√
µ(ρ+ 1)

∑

σ
(2)
j ∼σ

(1)
i

v
σ

(2)
j

= λv
σ

(1)
i

,

− 1√
µ(ρ+ 1)

v
σ

(n−1)
j

+ v
σ

(n)
i

− 1√
µ(ρ+ 1)

∑

σ
(n+1)
j ∼σ

(n)
i

v
σ

(n+1)
j

= λv
σ

(n)
i

, n < l − 1,

− 1√
µ(ρ + 1)

v
σ

(l−2)
j

+ v
σ

(l−1)
i

− 1√
µ(ρ+ 1)

∑

σ
(l)
j ∼σ

(l−1)
i

v
σ

(l)
j

= λv
σ

(l−1)
i

, n = l − 1,

− 1√
µ(ρ + 1)

v
σ

(l−1)
j

+ v
σ

(l)
i

= λv
σ

(l)
i

, n = l.

The last equation implies that, if σ
(l)
i and σ

(l)
j are adjacent to the same vertex, then

v
σ

(l)
i

= v
σ

(l)
j

. Also, each of the k-vertices σ
(n)
i determines a subtree with root z. There are

k such subtrees. It is clear from the form of the equations that:
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1. Each subtree determines exactly the same system. Thus we need to find the eigen-
values of the square matrix of side (k − 1)l−1 − 1, Λl with entries indexed by the
vertices in the subtree:

Λl(vσ
(n)
i

, v
σ

(m)
j

) =






1, σ
(n)
i = σ

(m)
j

β, 1 ≤ i, j ≤ l − 1, σ
(n)
i ∼ σ

(m)
j

γ, (i, j) ∈ {(l, l − 1), (l − 1, l)}σ(n)
i ∼ σ

(m)
j

0, otherwise

where

β = − 1√
µ(ρ+ 1)

, γ = − 1√
µ(ρ+ 1)

.

2. The connection between the solutions coming from dif and only iferent branches is
given by the fact that ∑

i∈S(n)

v
σ

(n)
i

= 0.

5 The Heat Kernel For the one-dimensional weighted

lattice graph

We consider the homesick random walk with parameter λ on the infinite path P (the
one-dimensional lattice) as in [6]. More precisely, V (P) = Z with base vertex 0. The
weights are defined as follows:

w(i, j) =





1

2
, i = 0, j = ±1,

1

µ+ 1
, i > 0, j = i + 1, or i < 0, j = i− 1

µ

µ+ 1
, i > 0, j = i− 1, or i < 0, j = i+ 1

0, otherwise

Let P+ be the infinite ray with V (P+) = N, base vertex 0 and the weights are defined as
follows:

w(i, j) =





1, i = 0, j = 1,

2

µ+ 1
, i > 0, j = i + 1

2µ

µ+ 1
, i > 0

0, otherwise.

It is a direct calculation to show that the map

π : V (P) → V (P+), π(i) = |i|
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is a covering map.
For any l > 0, let P (l) be the subgraph of P with vertex set V (P (l)) = {0,±1, . . . ,±l}.

The weights are the same as in P except that

w(−l,−l + 1) = w(l, l− 1) = 1.

Also, we define the subgraph P (l)
+ of P+ with the vertex set V (P (l)

+ ) = {0, 1, . . . , l}. Again,
the weights are the same as in P+ except that w(l, l − 1) = 2. Then the map π restricts

to a cover from P (l) to P (l)
+ . As in Example 3.1, the Laplacian of P (l)

+ is given by:

L(l)(i, j) =






1; i = j,

−
√

1

k
; (i, j) = (0, 1) or (1, 0),

−
√
k − 1

k
; |i− j|, 0 < i, j < l,

−
√
k − 1

k
; (i, j) = (l − 1, l) or (l, l − 1),

0; otherwise.

where k = µ+1
µ

. As in Example 3.1, the eigenvalues of L(l) are 0, 2 and

λn = 1 − 2
√
k − 1

k
cos

πn

l
= 1 − 2

√
µ

µ+ 1
cos

πn

l
, for n = 1, . . . , l − 1.

The eigenfunction φ0 associated with the eigenvalue 0 can be written as f0/‖f0‖ where

f0(0) = 1,

f0(p) =

√
µ+ 1

µp
, for 1 ≤ p ≤ l − 1,

f0(l) = 1√
µl−1

.

We now consider the eigenfunction φl which corresponds to the eigenvalue 2. In this case,
φl = fl/‖fl‖, where fl is defined as follows:

fl(0) = 1,

fl(p) = (−1)p

√
µ+ 1

µp
, for 1 ≤ p ≤ l − 1,

fl(l) = (−1)l 1√
µl−1

.
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For each n ∈ {1, 2, . . . , l − 1} there is an eigenfunction φn associated with the eigenvalue

λn. We can write φn = fn/‖fn‖ ∈ L2(P (l)
+ where

fn(0) =
√
µ+ 1 sin πn

l
,

fn(p) = sin πn(p+1)
l

− µ sin πn(p−1)
l

, for 1 ≤ p ≤ l − 1,

fn(l) =
√
µ(µ+ 1) sin πn

l
.

For n = 1, . . . , l − 1,

‖fj‖2 = l(µ+ 1)2

(
1 − 4µ

(µ+ 1)2
cos2 nπ

l

)
.

Therefore the heat kernel h
(l)
t of P

(l)
+ satisfies

h
(l)
t (0, 0) =

l−1∑

j=1

e−t(1−
2
√

µ

µ+1
cos jπ

l
) sin2 jπ

l
l(µ+1)

2
(1 − 4µ

(µ+1)2
cos2 jπ

l
)

+
1

‖f0‖2
+

1

‖fl‖2
.

Let H
(l)
t denote the heat kernel of P (l). Then, as in Example 4.1, H

(l)
t = H

(l)
1,t +H

(l)
1,t. Since

H
(l)
1,t(0, a) depends only on |a|, we have that

Proposition 5.1. For each a ∈ Z, the heat kernel Ht of the homesick random walk on
the infinite path satisfies

Ht(0, a) =
µ
√

2(µ+ 1)

π

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x) sin x

[
1

µ
sin(|a| + 1)x− sin(|a| − 1)x

]

µ2 + 2µ+ 1 − 4µ cos2 x
dx.

Furthermore, in this case Ht(0, a) = H1,t(0, a).

Let λ be an eigenvalue of L(l), the Laplacian on P (l), whose eigenfuctions φ vanish at
0. Direct calculations show that:

1. φ(−a) = −φ(a).

2. λ is an eigenvalue of the matrix

Λ(l)(i, j) =





1, if i = j,

− 1√
µ+ 1

, if i, j ∈ {−l,−(l − 1)}, i 6= j,

−
√
µ

µ+ 1
, if |i− j| = 1, and not in the last case,

0, otherwise

The substitution r = µ+1, gives the matrix in Section 5 in [3], except the difference
at the 2×2-block at the right low corner.
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Now the heat kernel of P (l) has two summands:

H
(l)
t (a, b) = H

(l)
1,t(a, b) +H

(l)
2,t(a, b),

where the first summand involves the eigenvalues of the Laplacian with eigenfunction
not vanishing at the vertex 0 and the second the eigenvalues with the corresponding
eigenfunction being zero at 0. There are l eigenvalues in the second summand, so there
are 2l+1 eigenvalues in the first summand. Since all the eigenvalues in the first summand
have multiplicity 1 and their eigenfunctions are their projections to the corresponding
eigenfunctions to P (l)

+ ,

H
(l)
1,t(a, b) = h

(l)
t (|a|, |b|).

As in Section 5 in [3], taking l → ∞:

H
(l)
1,t(a, b) = h

(l)
t (|a|, |b|) =

2µ2

π

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x)[sin((|a| + 1)x) − sin(|a| − 1)x][sin((|b| + 1)x) − sin(|b| − 1)x]

µ2 + 2µ+ 1 − 4µcos2x
dx.

For the calculations of H2,t(a, b), we use the calculations of Section 5 in [3], because as
l → ∞, the limit of Λ(l) and the Laplacian of the path which is covered by the (µ + 1)-
regular tree in [3] are the same (even though µ might not be an positive integer). Thus

H
(l)
2,t(a, b) =

2

π

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x)[sin((|a| + 1)x) − sin(|a| − 1)x][sin((|b| + 1)x) − sin(|b| − 1)x]

µ2 + 2µ+ 1 − 4µcos2x
dx

and the sign is positive if a and b have the same sign and negative otherwise.
Summarizing, we have the following

Theorem 5.2. For the homesick random walk with parameter µ on the infinite line, the
heat kernel Ht(a, b) satisfies:

1. If b = 0, then Ht(a, 0) is

µ
√

2(µ+ 1)

π

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x) sin x

[
1

µ
sin(a+ 1)x− sin(a− 1)x

]

µ2 + 2µ+ 1 − 4µ cos2 x
dx.

2. If both a and b are not 0, then Ht(a, b) is:

K

∫ π

0

e−t(1−
2
√

µ

µ+1
cos x)[sin((|a| + 1)x) − sin(|a| − 1)x][sin((|b| + 1)x) − sin(|b| − 1)x]

µ2 + 2µ+ 1 − 4µcos2x
dx,

where K = 2
π
(µ2 + ε) and ε = sign(a)·sign(b).
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