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Abstract

We enumerate derangements with descents in prescribed positions. A generating
function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial
proof of this result, and derive several explicit formulas. To this end, we consider
fixed point λ-coloured permutations, which are easily enumerated. Several formulae
regarding these numbers are given, as well as a generalisation of Euler’s difference
tables. We also prove that except in a trivial special case, if a permutation π is chosen
uniformly among all permutations on n elements, the events that π has descents in
a set S of positions, and that π is a derangement, are positively correlated.

In a permutation π ∈ Sn, a descent is a position i such that πi > πi+1, and an ascent

is a position where πi < πi+1. A fixed point is a position i where πi = i. If πi > i, then i
is called an excedance, while if πi < i, i is a deficiency. Richard Stanley [10] conjectured
that permutations in S2n with descents at and only at odd positions (commonly known
as alternating permutations) and n fixed points are equinumerous with permutations in
Sn without fixed points, commonly known as derangements.

The conjecture was given a bijective proof by Chapman and Williams in 2007 [1]. The
solution is quite straightforward: If π ∈ S2n is an alternating permutation and F ⊆ [2n]
is the set of fixed points with |F | = n, then removing the fixed points gives a permutation
τ in S[2n]\F without fixed points, and π can be easily reconstructed from τ .

For instance, removing the fixed points in π = 326451 gives τ = 361 or τ = 231 if we
reduce it to S3. To recover π, we note that the fixed points in the first two descents must
be at the respective second positions, 2 and 4, since both τ1 and τ2 are excedances, that
is above the fixed point diagonal τi = i. On the other hand, since τ3 < 3, the fixed point
in the third descent comes in its first position, 5. With this information, we immediately
recover π.
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Alternating permutations are permutations which fall in and only in blocks of length
two. A natural generalisation comes by considering permutations which fall in blocks of
lengths a1, a2, . . . , ak and have k fixed points (this is obviously the maximum number of
fixed points, since each descending block can have at most one). These permutations are
in bijection with derangements which descend in blocks of length a1−1, a2−1, . . . , ak −1,
and possibly also between them, a fact which was proved by Guo-Niu Han and Guoce Xin
[8].

In this article we compute the number of derangements which have descents in pre-
scribed blocks and possibly also between them. A generating function was given by Han
and Xin using a representation theory argument. We start by computing the generating
function using simple combinatorial arguments (Section 2), and then proceed to extract
a closed formula in Section 3.

Interestingly, this formula, which is a combination of factorials, can also be written as
the same combination of an infinite family of other numbers, including the derangement
numbers. We give a combinatorial interpretation of these families as the number of fixed

point λ-coloured permutations.
For a uniformly chosen permutation, the events that it is a derangement and that its

descent set is included in a given set are not independent. We prove that except for the
permutations of odd length with no ascents, these events are positively correlated. In
fact, we prove that the number of permutations which are fixed point free when sorted
decreasingly in each block is larger when there are few and large blocks, compared to
many small blocks. The precise statement is found in Section 7.

Finally, in Section 8, we generalise some results concerning Euler’s difference triangles
from [9] to fixed point λ-coloured permutations, using a new combinatorial interpretation.
This interpretation is in line with the rest of this article, counting permutations having an
initial descending segment and λ-coloured fixed points to the right of the initial segment.
In addition, we also derive a relation between difference triangles with different values of
λ.

There are many papers devoted to counting permutations with prescribed descent sets
and fixed points, see for instance [5, 7] and references therein. More recent related papers
include [4], where Corteel et al. considered the distribution of descents and major index
over permutations without descents on the last i positions, and [2], where Chow considers
the problem of enumerating the involutions with prescribed descent set.

1 Definitions and examples

Let [i, j] = {i, i + 1, . . . , j} and [n] = [1, n]. We think of [n] as being decomposed into
blocks of lengths a1, . . . , ak, and we will consider permutations that decrease within these
blocks. The permutations are allowed to decrease or increase in the breaks between the
blocks.

Consider a sequence a = (a1, a2, . . . , ak) of nonnegative integers, with
∑

i ai = n, and

let cj =
∑j

i=1 ai. Let Aj be the j:th block of a, that is the set Aj = [cj−1 + 1, cj] ⊆ [n].
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Throughout the paper, k will denote the number of blocks in a given composition.
We let Sa ⊆ Sn be the set of permutations that have descents at every place within the
blocks, and may or may not have descents in the breaks between the blocks. In particular
Sn = S(1,1,...,1).

Example 1.1. If n = 6 and a = (4,2), then we consider permutations that are decreasing

in positions 1–4 and in positions 5–6. Such a permutation is uniquely determined by the

partition of the numbers 1–6 into these blocks, so the total number of such permutations

is
(

6

4, 2

)

= 15.

Of these 15 permutations, those that are derangements are

6543|21

6542|31

6541|32

6521|43

5421|63

5321|64

4321|65

We define D(a) to be the subset of Sa consisting of derangements, and our objective
is to enumerate this set. For simplicity, we also define Dn = D(1, . . . ,1).

For every composition a of n, there is a natural map Φa : Sn → Sa, given by simply
sorting the entries in each block in decreasing order. For example, if σ = 25134, we have
Φ(3,2)(σ) = 52143. Clearly each fiber of this map has a1! . . . ak! elements.

The following maps on permutations will be used frequently in the paper.

Definition 1.1. For σ ∈ Sn, let φj,k(σ) = τ1 . . . τj−1kτj . . . τn, where

τi =

{

σi if σi < k
σi + 1 if σi ≥ k

Similarly, let ψj(σ) = τ1 . . . τj−1τj+1 . . . τn where

τi =

{

σi if σi < σj;

σi − 1 if σi > σj.

Thus, φj,k inserts the element k at position j, increasing elements larger than k by one
and shifting elements to the right of position j one step further to the right. The map ψj

removes the element at position j, decreasing larger elements by one and shifting those
to its right one step left.

We will often use the map φj = φj,j which inserts a fixed point at position j. The
generalisations to a set F of fixed points to be inserted or removed are denoted φF (σ)
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and ψF (σ), inserting elements in increasing order and removing them in decreasing order.
The maps φ and ψ are perhaps most obvious in terms of permutation matrices. For
a permutation σ ∈ Sn, we get φj,k(σ) by adding a new row below the k:th one, a new
column before the j:th one, and an entry at their intersection. Similarly, ψj(σ) is obtained
by deleting the j:th column and the σj :th row.

Example 1.2. We illustrate by showing some permutation matrices. For π = 21 and

F = {1,3}, we get

r

r

π

r

r

rd

φ3,2(π)

rd

r

rd

r

φF (π)

rd

r

rd

ψ4 ◦ φF (π)

where inserted points are labeled with an extra circle.

2 A generating function

Guo-Niu Han and Guoce Xin gave a generating function for D(a) ([8], Theorem 9). In
fact they proved this generating function for another set of permutations, equinumerous
to D(a) by ([8], Theorem 1). What they proved was the following:

Theorem 2.1. The number |D(a)| is the coefficient of xa1

1 · · ·xak

k in the expansion of

1

(1 + x1) · · · (1 + xk)(1 − x1 − · · · − xk)
.

The proof uses scalar products of symmetric functions. We give a more direct proof,
with a combinatorial flavour. The proof uses the following definition, and the bijective
result of Lemma 2.2.

Definition 2.1. We denote by Dj(a) the set of permutations in Sa that have no fixed

points in blocks A1, . . . , Aj. Thus, D(a) = Dk(a).
Moreover, let D∗

j (a) be the set of permutations in Sa that have no fixed points in the

first j − 1 blocks, but have a fixed point in Aj.

Lemma 2.2. There is a bijection between Dj(a1, . . . ,ak) and

D∗
j (a1, . . . ,aj−1,aj + 1,aj+1, . . . ,ak).

Proof. Let σ = σ1 . . . σn be a permutation in Dj(a1, . . . ,ak), and consider the block Aj =
{p, p+1, . . . ,q}. Then there is an index r such that σp . . . σr−1 are excedances, and σr . . . σq

are deficiencies.
Now φr(σ) is a permutation of [n+ 1]. It is easy to see that

φr(σ) ∈ S(a1,...,aj−1,aj+1,aj+1,...,ak).
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All the fixed points of σ are shifted one step to the right, and one new is added in the
j:th block, so

φ(σ) ∈ D∗
j (a1, . . . ,aj−1,aj + 1,aj+1, . . . ,ak).

We see that ψr(φr(σ)) = σ, so the map σ 7→ φr(σ) is a bijection.

We now obtain a generating function for |D(a)|, with a purely combinatorial proof. In
fact, we even strengthen the result to give generating functions for |Dj(a)|, j = 0, . . . , k.
Theorem 2.1 then follows by letting j = k.

Theorem 2.3. The number |Dj(a)| is the coefficient of xa1

1 · · ·xak

k in the expansion of

1

(1 + x1) · · · (1 + xj)(1 − x1 − · · · − xk)
. (1)

Proof. Let Fj(x) be the generating function for |Dj(a)|, so that |Dj(a1, . . . ,ak)| is the
coefficient for xa1

1 · · ·xak

k in Fj(x). We want to show that Fj(x) is given by (1).
By definition, |D0(a)| = |Sa|. But a permutation in Sa is uniquely determined by

the set of a1 numbers in the first block, the set of a2 numbers in the second, etc. So
|D0| is the multinomial coefficient

(

n

a1,a2,...,ak

)

. This is also the coefficient of xa1

1 · · ·xak

k in

the expansion of 1 + (
∑

xi) + (
∑

xi)
2 + · · · , since any such term must come from the

(
∑

xi)
n-term. Thus,

F0(x) = 1 +
(

∑

xi

)

+
(

∑

xi

)2

+ · · · =
1

(1 − x1 − · · · − xk)
.

Note that for any j, Dj−1(a) = Dj(a) ∪ D∗
j (a), and the two latter sets are disjoint.

Indeed, a permutation in Dj−1 either does or does not have a fixed point in the j:th block.
Hence by Lemma 2.2, we have the identity

|Dj−1(a)| = |Dj(a)| + |Dj(a1, . . . ,aj−1,aj − 1,aj+1, . . . ,ak)|.

This holds also if aj = 0, if the last term is interpreted as 0 in that case.
In terms of generating functions, this gives the recursion Fj−1(x) = (1 + xj)Fj(x).

Hence F0(x) = Fj(x)
∏

i≤j(1 + xi). Thus,

Fj(x) =
F0(x)

(1 + x1) · · · (1 + xj)
=

1 + (
∑

xi) + (
∑

xi)
2 + · · ·

(1 + x1) · · · (1 + xj)
,

and |Dj(a)| is the coefficient for xa1

1 · · ·xak

k in the expansion of Fj .

Proof of Theorem 2.1. The set of derangements in Sa is just D(a) = Dk(a). Letting
j = k in Theorem 2.3 gives the generating function for |D(a)|.
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3 An explicit enumeration

It is not hard to explicitly calculate the numbers |D(a)| from here. We will use x
a as

shorthand for
∏

i x
ai

i .
Every term x

a in the expansion of F (x) is obtained by choosing xbi

i from the factor

1

1 + xi

=
∑

j≥0

(−xi)
j,

for some 0 ≤ bi ≤ ai. This gives us a coefficient of (−1)
P

bi. For each choice of b1, . . . , bk
we should multiply by x

a−b from the factor

1

(1 − x1 − · · · − xk)
= 1 +

(

∑

xi

)

+
(

∑

xi

)2

+ · · · .

But every occurence of x
a−b in this expression comes from the term (

∑

xi)
n−

P

bj .
Thus the coefficient of x

a−b is the multinomial coefficient
(

n−
∑

bj
a1 − b1, . . . ,ak − bk

)

=
(n−

∑

bj)!

(a1 − b1)! · · · (ak − bk)!
.

Now since |D(a)| is the coefficient of x
a in Fk(x), we conclude that

|D(a)| =
∑

0≤b≤a

(−1)
P

bj
(n−

∑

bj)!

(a1 − b1)! · · · (ak − bk)!
(2)

=
1

∏

i ai!

∑

0≤b≤a

(−1)
P

bj

(

n−
∑

bj

)

!
∏

i

(

ai

bi

)

bi!. (3)

While the expression (3) seems a bit more involved than necessary, it turns out to gener-
alise in a nice way.

4 Fixed point coloured permutations

A fixed point coloured permutation in λ colours, or a fixed point λ-coloured permutation, is
a permutation where we require each fixed point to take one of λ colours. More formally
it is a pair (π, C) with π ∈ Sn and C : Fπ → [λ], where Fπ is the set of fixed points
of π. When there can be no confusion, we denote the coloured permutation (π, C) by
π. Thus, fixed point 1-coloured permutatations are simply ordinary permutations and
fixed point 0-coloured permutations are derangements. The set of fixed point λ-coloured
permutations on n elements is denoted S

λ
n.

For the number of λ-fixed point coloured permutations on n elements, we use the
notation |Sλ

n| = fλ(n), the λ-factorial of n. Of course, we have f0(n) = Dn and f1(n) = n!.
Clearly,

fλ(n) =
∑

π∈Sn

λfix(π),
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where fix(π) is the number of fixed points in π, and we use this formula as the definition
of fλ(n) for λ 6∈ N.

Lemma 4.1. For ν, λ ∈ C and n ∈ N, we have

fν(n) =
∑

j

(

n

j

)

fλ(n− j) · (ν − λ)j .

Proof. It suffices to show this for ν, λ, n ∈ N, since the identity is polynomial in ν and λ,
so if it holds on N × N it must hold on all of C × C.

We divide the proof into three parts. First, assume ν = λ. Then all terms in the sum
vanish except for j = 0, when we get fν(n) = fλ(n).

Secondly, assuming ν > λ, we let j denote the number of fixed points in π ∈ S
ν
n which

are coloured with colours from [λ + 1, ν]. These fixed points can be chosen in
(

n

j

)

ways,

there are fλ(n− j) ways to permute and colour the remaning elements, and the colours of
the high coloured fixed points can be chosen in (ν − λ)j ways. Thus, the equality holds.

Finally, assuming ν < λ, we prescribe j fixed points in π ∈ S
λ
n which only get to

choose their colours from [ν + 1, λ]. These fixed points can be chosen in
(

n

j

)

ways, the

remaining elements can be permuted in fλ(n− j) ways and the chosen fixed points can be
coloured in (λ−ν)j ways, so by the principle of inclusion-exclusion, the equality holds.

With λ = 1 and replacing ν by λ, we find that

fλ(n) = n!

(

1 +
(λ− 1)

1!
+

(λ− 1)2

2!
+ · · ·+

(λ− 1)n

n!

)

= n! expn(λ− 1). (4)

Here we use expn to denote the truncated series expansion of the exponential function. In
fact, limn→∞ n!e(λ−1)−fλ(n) = 0 for all λ ∈ C, although we cannot in general approximate
fλ(n) by the nearest integer of n!eλ−1 as for derangements.

The formula (4) also shows that

fλ(n) = nfλ(n− 1) + (λ− 1)n, fλ(0) = 1 (5)

which generalises the well known recursions |Dn| = n|Dn−1| + (−1)n and n! = n(n− 1)!.

5 Enumerating D(a) using fixed point coloured per-

mutations

An immediate consequence of (4) is that the λ-factorial satisfies the following rule for
differentiation, which is similar to the rule for differentiating powers of λ:

d

dλ
fλ (n) = n · fλ (n− 1) . (6)
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Regarding n as the cardinality of a set X, the differentiation rule (6) translates to

d

dλ
fλ (|X|) =

∑

x∈X

fλ (|X r {x}|) . (7)

Products of λ-factorials can of course be differentiated by the product formula. This
implies that if X1, . . .Xk are disjoint sets, then

d

dλ

∏

i

fλ (|Xi|) =
∑

x∈∪Xj

∏

i

fλ (|Xi r {x}|) .

Now consider the expression

∑

B⊆[n]

(−1)|B|fλ (|[n] r B|)
k

∏

i

fλ (|Ai ∩ B|) . (8)

This is obtained from the right-hand side of (3) by deleting the factor 1/
∏

i ai! and
replacing the other factorials by λ-factorials. For λ = 1, (8) is therefore |Φ−1

a
(D(a))|, the

number of permutations that, when sorted in decreasing order within the blocks, have no
fixed points. We want to show that (8) is independent of λ. The derivative of (8) is, by
the rule (7) of differentiation,

∑

B⊆[n]

(−1)|B|
n

∑

x=1

fλ (|[n] r B r {x}|)

k
∏

i=1

fλ (|(Ai ∩B) r {x}|) . (9)

Here each product of λ-factorials occurs once with x ∈ B and once with x /∈ B.
Because of the sign (−1)|B|, these terms cancel. Therefore (9) is identically zero, which
means that (8) is independent of λ. Hence we have proven the following theorem:

Theorem 5.1. For any λ ∈ C, the identity

∣

∣Φ−1
a

(D(a))
∣

∣ =
∑

0≤b≤a

(−1)
P

bj · fλ

(

n−
∑

bj

)

∏

i

(

ai

bi

)

· fλ (bi) (10)

holds.

A particularly interesting special case is when we put λ = 0. In this case, f0(n) = Dn,
so

|D(a)| =
1

∏

i ai!

∑

0≤b≤a

(−1)
P

bjDn−
P

bj

∏

i

(

ai

bi

)

Dbi
. (11)

This equation has some advantages over (3). It has a clear main term, the one with b = 0.
Moreover, since D1 = 0, the number of terms does not increase if blocks of length 1 are
added.
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6 A recursive proof of Theorem 5.1

We will now proceed by proving Theorem 5.1 in a more explicit way. This proof will use
the sorting operator Φa and our notion of fixed point coloured permutations, and will not
need to assume the case λ = 1 to be known. First we need some new terminology.

Definition 6.1. We let D̂j(a) ⊆ Sa denote the set of permutations in Sa that have a

fixed point in Aj, but that have no fixed points in any other block.

The proof of Lemma 2.2 goes through basically unchanged, when we allow no fixed
points in Aj+1, . . . , Ak:

Lemma 6.1. There is a bijection between D(a1, . . . ,ak) and

D̂ℓ(a1, . . . ,aℓ−1,aℓ + 1,aℓ+1, . . . ,ak).

We now have the machinery needed to give a second proof of Theorem 5.1.

Proof of Theorem 5.1. It suffices to show this for λ = 1,2, . . . , since for given a, the
expression is just a polynomial in λ, which is constant on the positive integers, and hence
constant. So assume λ is a positive integer.

In the case where a = (1, . . . ,1), Φ is the identity, and (10) can be written

|D(a)| =
∑

(−1)j

(

n

j

)

fλ (n− j) · λj,

where we have made the substitution j =
∑

bi. This is true by letting ν = 0 in Lemma
4.1. We will proceed by induction to show that (10) holds for any composition a.

Suppose it holds for the compositions a
′ = (a1, . . . ,aℓ−1, 1, . . . , 1, aℓ+1, . . . , ak) (with

aℓ ones in the middle) and a
′′ = (a1, . . . ,aℓ−1, aℓ − 1, aℓ+1, . . . , ak). We will prove that it

holds for a = (a1, . . . ,ak).
First, we enumerate the disjoint union Φ−1

a
(D(a)) ∪ Φ−1

a
(D̂ℓ(a)). This is just the set

of permutations that, when sorted, have no fixed points except possibly in Aℓ. Sort these
decreasingly in all blocks except Aℓ (which means that we apply Φ

a
′ to them). Then we

enumerate them according to the number t of fixed points in Aℓ. Note that Aℓ splits into
several blocks Aα, one for each non-fixed point. We let p denote the sum of the bα:s for
these blocks, which gives

∏

fλ(bα) = λp.

If we let b range over k-tuples (b1, . . . , bk) and b̂ℓ range over the (k − 1)-tuples
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(b1, . . . , bℓ−1,bℓ+1, . . . ,bk), we use the induction hypothesis to get

|Φ−1
a (D(a))| + |Φ−1

a (D̂ℓ(a))|

=
∑

b̂ℓ

(−1)
P

i6=ℓ bi





∏

i6=ℓ

(

ai

bi

)

fλ(bi)





∑

t

(

aℓ

t

)

∑

p

(

aℓ − t

p

)

(−1)p · fλ

(

n − t −
∑

i6=ℓ

bi − p
)

λp

=
∑

b̂ℓ

(−1)
P

i6=ℓ bi





∏

i6=ℓ

(

ai

bi

)

fλ(bi)





∑

bℓ

∑

p

fλ

(

n −
∑

i6=ℓ

bi − bℓ

)

(−1)pλp

(

aℓ

bℓ − p

)(

aℓ − bℓ + p

p

)

=
∑

b̂ℓ

(−1)
P

i6=ℓ bi





∏

i6=ℓ

(

ai

bi

)

fλ(bi)





∑

bℓ

∑

p

fλ

(

n −
∑

i6=ℓ

bi − bℓ

)

(−1)pλp

(

aℓ

bℓ

)(

bℓ

p

)

=
∑

b̂ℓ

(−1)
P

i6=ℓ bi





∏

i6=ℓ

(

ai

bi

)

fλ(bi)





∑

bℓ

(−1)bℓfλ

(

n −
∑

i6=ℓ

bi − bℓ

)

(

aℓ

bℓ

)

(λ − 1)bℓ

=
∑

b

(−1)
P

bi





∏

i6=ℓ

(

ai

bi

)

fλ(bi)



 fλ

(

n −
∑

bi

)

(

aℓ

bℓ

)

(λ − 1)bℓ .

This expression makes sense, as the binomial coefficients become zero unless 0 ≤ b ≤ a.
On the other hand, by Lemma 6.1 and the induction hypothesis,

|Φ−1
a

(D̂ℓ(a))| =
∏

ai! · |D̂ℓ(a)| =
∏

ai! · |D(a′′)| = aℓ · |Φ
−1
a′′ (D(a′′))|

= aℓ ·
∑

b

(−1)
P

bi

(

aℓ − 1

bℓ

)

fλ(bℓ) · fλ

(

n− 1 −
∑

bi

)

∏

i6=l

(

ai

bi

)

fλ(bi).

Noting that aℓ

(

aℓ−1
bℓ

)

= (bℓ + 1)
(

aℓ

bℓ+1

)

, we shift the parameter bℓ by one, and get

|Φ−1
a

(D̂ℓ(a))| = −
∑

b

(−1)
P

bi

(

aℓ

bℓ

)

bℓ · fλ(bℓ − 1) · fλ

(

n−
∑

bi

)

∏

i6=l

(

ai

bi

)

fλ(bi).

Thus we can write

|Φ−1
a

(D(a))| =
∑

b

(−1)
P

bi

(

aℓ

bℓ

)

(λ− 1)bℓfλ

(

n−
∑

bi
)

∏

i6=l

(

ai

bi

)

fλ(bi) − |Φ−1
a

(D̂ℓ(a))|

=
∑

b

(−1)
P

bifλ

(

n−
∑

bi
)

(

aℓ

bℓ

)

(

(λ− 1)bℓ + bℓ · fλ (bℓ − 1)
)

∏

i6=l

(

ai

bi

)

fλ(bi)

=
∑

b

(−1)
P

bifλ

(

n−
∑

bi
)

∏

i

((

ai

bi

)

fλ(bi)

)

.
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We also note that Theorem 5.1 can be used to enumerate permutations in Sa with µ
allowed fixed point colours, and even µi fixed point colours in block Ai.

Corollary 6.2. For any λ ∈ C and natural numbers µi, 1 ≤ i ≤ k, the number of

permutations (π, C) where π ∈ Sa and (j ∈ Ai, π(j) = j) ⇒ C(j) ∈ [µi] is given by

∑

0≤c≤1

∑

0≤b≤a−c

(−1)
P

bjfλ

(

∑

aj −
∑

cj −
∑

bj

)

∏

i

(

ai − ci
bi

)

fλ(bi) · µ
ci

i .

Proof. The numbers ci are one if Ai contains a fixed point and zero otherwise. We may
remove these fixed points and consider a fixed point free permutation, enumerated above.
We then reinsert the fixed points and colour them in every allowed combination.

7 A correlation result

Taking a permutation at random in Sn, the chances are about 1/e that it is fixed point
free, since there are n!expn(−1) fixed point free permutations in Sn. Moreover, there are
n!/a! permutations in Sa.

If belonging to Sa and being fixed point free were two independent events, we would
have n!expn(−1) permutations in Φ−1(D(a)). This is not the case, although the leading
term in (11) is this very number. The following theorem implies, in particular, that belong-
ing to Sa and being fixed point free are almost always positively correlated events. The
sole exception is when a is a single block of odd length, in which case every permutation
gets a fixed point when sorted.

For two compositions a and b of n, we say that a ≥ b if, when sorted decreasingly,
∑

i≤j ai ≥
∑

i≤j bi for all j.

Theorem 7.1. If a ≥ b and a is not a single block of odd size, then

|Φ−1
a

(D(a))| ≥ |Φ−1
b

(D(b))|.

Theorem 7.1 implies that, with only the trivial exception, the proportion of derange-
ments among permutations with descending blocks a is minimal when a = (1,1, . . . ,1),
that is, when there are no prescribed descents.

The theorem will follow from a series of lemmata. The main point is proving that
shifting any position from a smaller block to a larger one almost never decreases the
number |Φ−1

a
(D(a))|. Equivalently, for fixed a3, . . . ak, and a = a1 + a2 fixed, the function

|Φ−1(D(a))| is unimodal in a1 (with the trivial exception).
Let F (a1, a2, s) be the number of linear orders of the union of a−s elements in [a1+a2]

(regardless which) and [a+ 1, a+ s], such that if these are sorted decreasingly in [a1, a2],
there is no fixed point. For instance, F (3, 0, 1) = 2 · 3!, counting all ways to scramble 431
and 432, since 421 has a fixed point.

The reason for counting these orders is that given s elements from [a+ 1, n] and a− s
elements from [a] in blocks a1 and a2, the number of ways to put the remaining elements
in the remaining positions does not depend on a1 and a2, but only on a.
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We also define the function G(a1, a2, s) as the sum over m of the number of permuta-
tions in S(a1−m,a2−(s−m),m,s−m) such that there are no fixed points in the first two blocks.
The relation to F (a1, a2, s) is the following.

Lemma 7.2. We have

F (a1, a2, s) = a1!a2!G(a1, a2, s).

Proof. F (a1, a2, s) gives a1!a2! orders for every way to sort the elements in two decreasing
blocks of lengths a1 and a2. But then the initial m elements in the block a1 will be larger
than a and can hence not produce a fixed point, as for the first s − m elements of the
block a2. Thus, we could equally well take four decreasing sequences from [a] of lengths
(m, a1 −m, s −m, a2 − (s −m)), not bothering about fixed points in the first and third
block. The statement follows by rearranging the blocks.

Lemma 7.3. We have

G(a1, a2, s) =
∑

b1,b2≥0

(−1)b1+b2

(

a1 + a2 − b1 − b2
s

)(

a1 + a2 − b1 − b2
a1 − b1

)

.

Proof. Using Theorem 2.3 with j = 2, we immediately get

G(a1, a2, s) =
∑

m,b1,b2

(−1)b1+b2

(

a1 + a2 − b1 − b2
m, s−m, a1 −m− b1, a2 − (s−m) − b2

)

=
∑

b1,b2

(−1)b1+b2

(

a1 + a2 − b1 − b2
s

)

∑

m

(

s

m

)(

a1 + a2 − s− b1 − b2
a1 −m− b1

)

=
∑

b1,b2

(−1)b1+b2

(

a1 + a2 − b1 − b2
s

)(

a1 + a2 − b1 − b2
a1 − b1

)

,

where all sums are taken over the nonnegative integers.

We now wish to establish a recurrence, which by induction will show that the sequence
F (a1,a − a1,s) is unimodal with respect to a1. We start by computing neccessary base
cases.

Lemma 7.4. If a1 is odd, we have G(a1, 0, 0) = 0 and if a1 is even, G(a1, 0, 0) = 1. For

all a1 we have G(a1, 0, a1) = 1. Moreover, G(a1, 1, 0) = a1/2 for even a1 and G(a1, 2, 0) =
((a1 + 1)/2)2 for odd a1.

Proof. The first assertion follows from the fact that permutations without ascents have
a fixed point if and only they have an odd number of elements. It is also clear that
G(a1, 0, a1) = 1, since we allow fixed points in the last two parts.

A permutation π ∈ S(a1,1) is determined by its last element, and if a1 is even, it is easy
to see that π is fixed point free iff a1/2 < πa1+1 ≤ a1. Hence we get G(a1, 1, 0) = a1/2.
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Further, for any a1 > 1 we get

G(a1, 2, 0) =
1

2

a1
∑

b1=0

(−1)b1
(

(a1 − b1)
2 + (a1 − b1) + 2

)

=
a2

1 + a1 + 2

2
+

1

2

a1
∑

b1=1

(−1)b1
(

(a1 − b1)
2 + (a1 − b1) + 2

)

=
a2

1 + a1 + 2

2
−G(a1 − 1, 2, 0),

which for odd a1 gives, by induction and G(1, 2, 0) = 1 = (2/2)2,

G(a1, 2, 0) =
a2

1 + a1 + 2

2
−

(a1 − 1)2 + (a1 − 1) + 2

2
+G(a1 − 2, 2, 0)

= a1 +G(a1 − 2, 2, 0) = a1 +

(

a1 − 1

2

)2

=

(

a1 + 1

2

)2

.

The case s = 0 has to be treated separately. We start with proving unimodality for
this case, in the two following lemmas.

Lemma 7.5. For a1, a2 ≥ 1 and s = 0 we have

G(a1, a2, 0) = G(a1 − 1, a2, 0) +G(a1, a2 − 1, 0) + (−1)a1+a2 .

Proof. When s = 0, Lemma 7.3 reduces to

G(a1, a2, 0) =
∑

b1,b2≥0

(−1)b1+b2

(

a1 + a2 − b1 − b2
a1 − b1

)

,

which gives

G(a1 − 1, a2, 0) +G(a1, a2 − 1, 0)

=
∑

b1,b2≥0

(−1)b1+b2

[(

a1 − 1 + a2 − b1 − b2
a1 − 1 − b1

)

+

(

a1 + a2 − 1 − b1 − b2
a1 − b1

)]

=
∑

b1,b2≥0

(−1)b1+b2

(

a1 + a2 − b1 − b2
a1 − b1

)

− (−1)a1+a2 .

The last term corresponds to b1 = a1, b2 = a2, which gives a term in the second sum but
not in the first one.

Lemma 7.6. For a1 ≥ a2 ≥ 1 and s = 0 we have

F (a1 + 1, a2 − 1, 0) ≥ F (a1, a2, 0),

unless a1 is even and a2 = 1.

the electronic journal of combinatorics 16 (2009), #R32 13



Proof. We wish to show that F (a1 + 1, a2 − 1, 0) − F (a1, a2, 0) ≥ 0. For a2 = 1, this is
clearly true for odd a1, but not for even a1. More generally, we get by Lemma 7.5 that

F (a1 + 1, a2 − 1, 0) − F (a1, a2, 0) = (a1 + 1)F (a1, a2 − 1, 0) + (a2 − 1)F (a1 + 1, a2 − 2, 0)

− a1F (a1 − 1, a2, 0) − a2F (a1, a2 − 1, 0)

= a1(F (a1, a2 − 1, s) − F (a1 − 1, a2, s))

+ (a2 − 1)(F (a1 + 1, a2 − 2, s) − F (a1, a2 − 1, s)),

(12)

which is non-negative by induction for a2 ≥ 3, and for a2 = 2 with odd a1. Thus, what
remains is the case a2 = 2 with even a1. Equation (12) then specialises to

F (a1 + 1, 1, 0) − F (a1, 2, 0) = (a1 − 1)F (a1, 1, 0) − a1F (a1 − 1, 2, 0)

= (a1 − 1)a1!
a1

2
− a1(a1 − 1)!

(a1

2

)2

= a1!
a1

4
(2a1 − 2 − a1) = a1!

a1

4
(a1 − 2),

which is non-negative for a1 ≥ 2.

We can now proceed with the case s ≥ 1.

Lemma 7.7. For a1 ≥ 1, a2 ≥ 0 and s ≥ 1 we have

G(a1, a2, s) = G(a1 − 1, a2, s)+G(a1 − 1, a2, s− 1)+G(a1, a2 − 1, s)+G(a1, a2 − 1, s− 1).

Proof. By Lemma 7.3, and writing ci = ai − bi, we get

G(a1 − 1, a2, s) +G(a1 − 1, a2, s− 1) +G(a1, a2 − 1, s) +G(a1, a2 − 1, s− 1)

=
∑

0≤b

(−1)b1+b2

[(

c1 + c2 − 1

s

)

+

(

c1 + c2 − 1

s− 1

)] [(

c1 + c2 − 1

c1 − 1

)

+

(

c1 + c2 − 1

c1

)]

=
∑

0≤b

(−1)b1+b2

(

c1 + c2
s

)(

c1 + c2
c1

)

= G(a1, a2, s).

Lemma 7.8. For a1 ≥ a2 ≥ 0 and s ≥ 1 we have

F (a1 + 1, a2 − 1, s) ≥ F (a1, a2, s).

Proof. The previous lemma translates to

F (a1, a2, s)= a1(F (a1−1, a2, s)+F (a1−1, a2, s−1))+a2(F (a1, a2−1, s)+F (a1, a2−1, s−1)).

Thus, with H(a1, a2, s) = F (a1, a2, s) + F (a1, a2, s− 1) for shorthand, we get

F (a1 + 1, a2 − 1, s) − F (a1, a2, s) = (a1 + 1)H(a1, a2 − 1, s) + (a2 − 1)H(a1 + 1, a2 − 2, s)

− a1H(a1 − 1, a2, s) − a2H(a1, a2 − 1, s)

= a1(H(a1, a2 − 1, s) −H(a1 − 1, a2, s))

+ (a2 − 1)(H(a1 + 1, a2 − 2, s) −H(a1, a2 − 1, s)),

which is non-negative by induction.
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Proof of Theorem 7.1. Ignoring the case with only one block of odd length, fix a choice of
s elements from [a + 1,n] to be placed in the first two blocks. We have shown that more
of these permutations become derangements when sorted in (a1 +1, a2−1,a′), than when
sorted in (a1,a2,a

′). Summing over all such choices of s elements, we get that

|Φ−1
(a1+1,a2−1,a′)(D(a1 + 1,a2 − 1,a′))| ≥ |Φ−1

(a1,a2,a′)(D(a1,a2,a
′))|,

when a1 ≥ a2 ≥ 1, unless (a1,a2,a
′) = (2m,1,0).

Since |D(a)| is invariant under reordering the blocks, it follows that |Φ−1
a
D(a)| in-

creases when moving positions from smaller to larger blocks. This completes the proof of
Theorem 7.1.

8 Euler’s difference tables fixed point coloured

Leonard Euler introduced the integer table (ek
n)0≤k≤n by defining en

n = n! and ek−1
n =

ek
n − ek−1

n−1 for 1 ≤ k ≤ n. Apparently, he never gave a combinatorial interpretation, but
a simple one was given in [6]. Indeed, ek

n gives the number of permutations π ∈ Sn such
that there are no fixed points on the last n− k positions. Thus, e0n = Dn. A q-analogue
of the same result was given in [3].

It is clear from the recurrence that k! divides ek
n. Thus, we can define the integers

dk
n = ek

n/k!. These have recently been studied by Fanja Rakotondrajao [9], and the combi-
natorial interpretation of dk

n given there was that they count the number of permutations
π ∈ Sn such that there are no fixed points on the last n− k positions and such that the
first k elements are all in different cycles.

We will now generalise these integer tables to any number λ of fixed point colours,
give a combinatorial interpretation that is more in line with the context of this article,
and bijectively prove the generalised versions of the relations in [9].

Let ek
n(λ) be defined by en

n(λ) = n! and ek−1
n (λ) = ek

n(λ) + (λ − 1)ek−1
n−1(λ). Then, a

natural combinatorial interpretation for non-negative integer λ is that ek
n(λ) count the

number of permutations π ∈ Sn such that fixed points on the last n − k positions may
be coloured in any one of λ colours.

Similarly, we can define dk
n(λ) = ek

n(λ)/k! and interpret these numbers as counting
the number of permutations π ∈ S(k,1,1,...,1) ⊆ Sn such that fixed points on the last
n − k positions may be coloured in any one of λ colours. The set of these permutations
is denoted Dk

n(λ). Thus, our intepretation for λ = 0 states that apart from forbidding
fixed points at the end, we also demand that the first k elements are in descending order.
Equivalently, we could have considered permutations ending with k−1 ascents and having
λ fixed point colours in the first n− k positions, to be closer to the setting in [4].

There are a couple of relations that we can prove bijectively with this interpretation,
generalising the results with λ = 0 from [9]. In our proofs, we will use the following
conventions. If λ is a positive integer, and (π,C) is a permutation with a colouring of
some of its fixed points, we will call the colour 1 the default colour. Fixed points i with
C(i) > 1 will be called essential fixed points.
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When fixed points are deleted and inserted using the maps φF+i and ψF , they keep
their colour. So for example, if 2 is coloured red in π = 321, then so is the fixed point 3
in φF+1 ◦ ψF (π) = 213. Fixed points that are inserted but not explicitly coloured, will be
assumed to have the default colour.

Proposition 8.1. For integers 1 ≤ k ≤ n and λ ∈ C we have

dk−1
n (λ) = kdk

n(λ) + (λ− 1)dk−1
n−1(λ).

Proof. Assume λ ≥ 1 is an integer. The left hand side counts the elements in Dk−1
n (λ)

and the right hand side the elements in
(

[k] ×Dk
n(λ)

)

∪
(

[2, λ] ×Dk−1
n−1(λ)

)

. We will give

a bijection θ :
(

[k] ×Dk
n(λ)

)

∪
(

[2, λ] ×Dk−1
n−1(λ)

)

→ Dk−1
n (λ), thereby proving these sets

to be equinumerous.
For (π, C) ∈ Dk

n(λ), j ∈ [k], let θ(j, π) = φk,πj
◦ ψj(π), which takes out πj and inserts

it at position k. For π ∈ Dk−1
n−1(λ), c ∈ [2, λ], let θ(c, π) = φk(π) and C(k) = c, that is

we insert an essential fixed point k, coloured c. Now, θ is clearly invertible, and thus a
bijection. Since dk

n(λ) is a polynomial in λ and the equation holds for all integer λ ≥ 1, it
clearly holds for all λ ∈ C.

Proposition 8.2. For integers 0 ≤ k ≤ n− 1 and λ ∈ C we have

dk
n(λ) = ndk

n−1(λ) + (λ− 1)dk−1
n−2(λ).

Proof. Assume λ ≥ 1 is an integer. We seek a bijection
η :

(

[n] ×Dk
n−1(λ)

)

∪
(

[2, λ] ×Dk−1
n−2(λ)

)

→ Dk
n(λ), thereby proving these sets to be equinu-

merous.
For (π, C) ∈ Dk

n−1(λ), j ∈ [n], let Fj = {i ∈ Fπ|C(i) > 1, i < j} be the essential fixed
points in π less than j. Then, η(j, π) = φF ◦ φk+1,j−|F | ◦ ψF (π), which inserts the element
j as soon as possible after position k, without disturbing the essential fixed points. This
accounts for all (π, C) ∈ Dk

n(λ) where the segment of essential fixed points starting at
k + 1 is either empty or is followed by an element above or on the diagonal.

To map to the rest, we take (π, C) ∈ Dk−1
n−2(λ) and let F = {j ∈ Fπ|C(j) > 1} be the

essential fixed points in π. Further, let F + 2 = {f + 2|f ∈ F} and let m be the last
element in ψ[k+1,n](π), the reduced permutation of the first k elements in π. For c ∈ [2, λ],
we set η(c, π) = φF+2 ◦ φk+1 ◦ φk+1,m ◦ Φ(k,1,...,1) ◦ ψF (π) and C(k + 1) = c. In words, we
insert a fixed point k + 1 with a non-default colour c, a smaller number m at position
k + 2, and sort πk into the initial decreasing sequence, while maintaining the positions
of the fixed points, relative to the right border of the permutation. The map may look
anything but injective since we use Φ(k,1,...,1), but since m is deducable from η(c, π), the
map really is injective. This gives all (π, C) ∈ Dk

n(λ) where the segment of essential fixed
points starting at k + 1 is followed by an element below the diagonal. Hence, we are
done.

Proposition 8.3. For integers 0 ≤ k ≤ n− 1 and λ ∈ C we have

dk
n(λ) = (n + (λ− 1)) dk

n−1(λ) − (λ− 1) (n− k − 1) dk
n−2(λ).
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Proof. Assume λ ≥ 1 is an integer. We will give a map

ζ1 :
(

({(j, 1)|j ∈ [n]} ∪ {(k + 1, c)|c ∈ [2, λ]}) ×Dk
n−1(λ)

)

→ Dk
n(λ)

which is surjective, but give some permutations twice. These permutations will also be
given once by

ζ2 :
(

[2, λ] × [k + 2, n] ×Dk
n−2(λ)

)

→ Dk
n(λ),

thereby proving the proposition.
For π ∈ Dk

n−1(λ), let Fj = {i ∈ Fπ|C(i) > 1, i < j} be the essential fixed points
less than j in π. Then, ζ1(j, c, π) = φFj

◦ φk+1,j−|Fj| ◦ ψFj
(π), which inserts the element

j as soon as possible after position k, without disturbing the coloured fixed points. If
j = k + 1, we let C(k + 1) = c.

The permutations given twice are those where the segment F of essential fixed points
starting at k + 1 is non-empty, and followed by an element above or on the diagonal.
For π ∈ Dk

n−2(λ), these are given by applying ζ2(c, j, π) = φF ◦ φk+2,j ◦ φk+1 ◦ ψF (π) and
C(k+ 1) = c, that is we insert a fixed point k+ 1 with a non-default colour c followed by
a default coloured element j larger than k + 1.

Example 8.1. We consider the set D2
4(2), using bold face for the second colour. In the

table below, we give the permutations which are in bijection with those in D2
4(2) via θ and

η, and those being mapped there by ζ1. At the star, both (4, 1, 213) and (3, 2, 213) are

mapped to 2134 by ζ1, as is (2, 4, 21) by ζ2.

D2
4(2) θ η ζ1 D2

4(2) θ η ζ1
2134 (1, 3214) (3, 213) (3, 1, 213) 4123 (2, 4213) (2, 312) (2, 1, 312)
2134 (2, 213) (4, 213) ⋆ 4132 (2, 4312) (3, 312) (3, 1, 312)
2134 (1, 3214) (3, 213) (3, 1, 213) 4132 (2, 312) (2, 12) (3, 2, 312)
2134 (2, 213) (2, 12) (3, 2, 213) 4213 (3, 4213) (1, 312) (1, 1, 312)
2143 (1, 4213) (4, 213) (4, 1, 213) 4231 (2, 4321) (3, 321) (3, 1, 321)
3124 (2, 3214) (2, 213) (2, 1, 213) 4231 (2, 321) (2, 21) (3, 2, 321)
3124 (2, 3214) (2, 213) (2, 1, 213) 4312 (3, 4312) (1, 321) (1, 1, 321)
3142 (1, 4312) (4, 312) (4, 1, 312) 4321 (3, 4321) (2, 321) (2, 1, 321)
3214 (3, 3214) (1, 213) (1, 1, 213)
3214 (3, 3214) (1, 213) (1, 1, 213)
3241 (1, 4321) (4, 321) (4, 1, 321)

To further examplify the trickiest parts, consider η(1, 542361) for k = 4 and n = 8.
Keeping only the first k elements in 542361 we get 4312 and thus m = 2. Returning

to 542361, we sort the first k elements into 543261, insert m at position k + 1, giving

6543261, and then the fixed point k + 1 with colour 2, giving 76435281. For the inverse

procedure, remove 5 and m = 2, giving 543261, and then move the element at position

k −m+ 1 = 3 to position k = 4.
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These formulae allow us to once again deduce the recursion (5) for the λ-factorials.
Using Proposition 8.3 extended to k = −1 and d−1

−1(λ) = 1, we get by induction d−1
n =

(λ− 1)d−1
n−1 and hence d−1

n = (λ− 1)n+1. Thus, by Proposition 8.2 we have fλ(n) = d0
n =

nd0
n−1 + (λ − 1)n = nfλ(n − 1) + (λ − 1)n. We can also use Proposition 8.3 to obtain,

using (5),

fλ (n) = (n+ λ− 1)fλ (n− 1) − (λ− 1)(n− 1)fλ (n− 2)

= (n− 1) (fλ (n− 1) + fλ (n− 2)) + λ (fλ (n− 1) − (n− 1)fλ (n− 2))

= (n− 1) (fλ (n− 1) + fλ (n− 2)) + λ(λ− 1)n−1,

which specialises to the well-known

Dn = (n− 1)(Dn−1 +Dn−2)

and
n! = (n− 1)

(

(n− 1)! + (n− 2)!
)

.

We close this section by noting that Lemma 4.1 can be generalised to dk
n(λ) as follows.

The proof is completely analogous.

Proposition 8.4. For ν, λ ∈ C and 0 ≤ k ≤ n ∈ N, we have

dk
n(ν) =

∑

j

(

n− k

j

)

dk
n−j(λ)(ν − λ)j.

9 Open problems

While many of our results have been shown bijectively, there are a few that still seek their
combinatorial explanation. The most obvious are these.

Problem 9.1. Give a combinatorial proof, using the principle of inclusion-exclusion, of

Theorem 5.1.

Problem 9.2. Give a bijection f : Sn → Sn such that π ∈ D(a1, a2, . . . ak) ⇒ f(π) ∈
D(a1 + 1, a2 − 1, a3, . . . , ak) whenever a1 ≥ a2 and a 6= (2m, 1).

We would also like the rearrangement of blocks in D(a) to get a simple description.

Problem 9.3. For any (a1, . . . , ak) and any σ ∈ Sk, give a simple bijection

f : D(a1, . . . , ak) → D(aσ1
, . . . , aσk

).

Instead of specifying descents, we could specify spots where the permutation must
not descend. This would add some new features to the problem, as ascending blocks can
contain several fixed points, whereas descending blocks can only contain one.

Problem 9.4. Given a composition a, find the number of derangements that ascend

within the blocks.
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