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Abstract

Let µ (G) be the largest eigenvalue of a graph G and Tr (n) be the r-partite
Turán graph of order n.

We prove that if G is a graph of order n with µ (G) > µ (Tr (n)) , then G contains
various large supergraphs of the complete graph of order r + 1, e.g., the complete
r-partite graph with all parts of size log n with an edge added to the first part.

We also give corresponding stability results.

Keywords: complete r-partite graph; stability, spectral Turán’s theorem; largest

eigenvalue of a graph.

1 Introduction

This note is part of an ongoing project aiming to build extremal graph theory on spectral
basis, see, e.g., [3], [13, 18].

Let µ (G) be the largest adjacency eigenvalue of a graph G and Tr (n) be the r-partite
Turán graph of order n. The spectral Turán theorem [15] implies that if G is a graph of
order n with µ (G) > µ (Tr (n)) , then G contains a Kr+1, the complete graph of order
r + 1.

On the other hand, it is known (e.g., [2], [4], [9], [12]) that if e (G) > e (Tr (n)) , then
G contains large supergraphs of Kr+1. It turns out that essentially the same results also
follow from the inequality µ (G) > µ (Tr (n)) .

Recall first a family of graphs, studied initially by Erdős [7] and recently in [2]: an
r-joint of size t is the union of t distinct r-cliques sharing an edge. Write jsr (G) for
the maximum size of an r-joint in a graph G. Erdős [7], Theorem 3′, showed that if G
is a graph of sufficiently large order n satisfying e (G) > e (Tr (n)), then jsr+1 (G) >

nr−1/ (10 (r + 1))6(r+1) .
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Here is a explicit spectral analogue of this result.

Theorem 1 Let r ≥ 2, n > r15, and G be a graph of order n. If µ (G) > µ (Tr (n)) , then
jsr+1 (G) > nr−1/r2r+4.

Erdős [4] introduced yet another graph related to Turán’s theorem: let K+
r (s1, . . . , sr)

be the complete r-partite graph with parts of sizes s1 ≥ 2, s2, . . . , sr, with an edge added
to the first part. The extremal results about this graph given in [4] and [9] were recently
extended in [12] to:

Let r ≥ 2, 2/ lnn ≤ c ≤ r−(r+7)(r+1), and G be a graph of order n. If G has tr (n) + 1
edges, then G contains a K+

r

(

⌊c lnn⌋ , . . . , ⌊c ln n⌋ ,
⌈

n1−
√

c
⌉)

.

Here we give a similar spectral extremal result.

Theorem 2 Let r ≥ 2, 2/ lnn ≤ c ≤ r−(2r+9)(r+1), and G be a graph of order n. If
µ (G) > µ (Tr (n)) , then G contains a K+

r

(

⌊c lnn⌋ , . . . , ⌊c ln n⌋ ,
⌈

n1−
√

c
⌉)

.

As an easy consequence of Theorem 2 we obtain

Theorem 3 Let r ≥ 2, c = r−(2r+9)(r+1), n ≥ e2/c, and G be a graph of order n. If
µ (G) > µ (Tr (n)) , then G contains a K+

r (⌊c ln n⌋ , . . . , ⌊c lnn⌋) .

Theorems 1, 2, and 3 have corresponding stability results.

Theorem 4 Let r ≥ 2, 0 < b < 2−10r−6, n ≥ r20, and G be a graph of order n. If
µ (G) > (1 − 1/r − b) n, then G satsisfies one of the conditions:

(a) jsr+1 (G) > nr−1/r2r+5;
(b) G contains an induced r-partite subgraph G0 of order at least

(

1 − 4b1/3
)

n with

minimum degree δ (G0) >
(

1 − 1/r − 7b1/3
)

n.

Theorem 5 Let r ≥ 2, 2/ lnn ≤ c ≤ r−(2r+9)(r+1)/2, 0 < b < 2−10r−6, and G be a graph
of order n. If µ (G) > (1 − 1/r − b) n, then G satsisfies one of the conditions:

(a) G contains a K+
r

(

⌊c lnn⌋ , . . . , ⌊c ln n⌋ ,
⌈

n1−2
√

c
⌉)

;

(b) G contains an induced r-partite subgraph G0 of order at least
(

1 − 4b1/3
)

n with

minimum degree δ (G0) >
(

1 − 1/r − 7b1/3
)

n.

Theorem 6 Let r ≥ 2, c = r−(2r+9)(r+1)/2, 0 < b < 2−10r−6, n ≥ e2/c, and G be a graph
of order n. If µ (G) > (1 − 1/r − b) n, then one of the following conditions holds:

(a) G contains a K+
r (⌊c ln n⌋ , . . . , ⌊c lnn⌋) ;

(b) G contains an induced r-partite subgraph G0 of order at least
(

1 − 4b1/3
)

n with

minimum degree δ (G0) >
(

1 − 1/r − 7b1/3
)

n.
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Remarks

- Obviously Theorems 1, 2, and 3 are tight since Tr (n) contains no (r + 1)-cliques.

- Theorems 2, 3, 5, and 6 are essentially best possible since for every ε > 0, choosing
randomly a graph G of order n with e (G) = ⌈(1 − ε)n2/2⌉ edges we see that
µ (G) > (1 − ε)n, but G contains no K2 (c lnn, c ln n) for some c > 0, independent
of n.

- In Theorem 1, it is not known what is the best possible value of jsr+1 (G) , given G
is a graph of order n and µ (G) > µ (Tr (n)) .

- Theorem 1 implies in turn spectral versions of other known results, like Theorem
3.8 in [8]:

Every graph G of order n with µ (G) > µ (Tr (n)) contains cn distinct (r + 1)-
cliques sharing an r-clique, where c > 0 is independent of n.

- It is not difficult to show that if G is a graph of order n, then the inequality e (G) >
e (Tr (n)) implies the inequality µ (G) > µ (Tr (n)) . Therefore, Theorems 1-6 imply
the corresponding nonspectral extremal results of [12] with narrower ranges of the
parameters.

- The relations between c and n in Theorems 2 and 5 need some explanation. First,
for fixed c, they show how large must be n so that the vertex classes of the required
K+

r (s, . . . s, t) are nonempty. But also c may depend on n, e.g., letting c = 1/ ln ln n,
the conclusion is meaningful for sufficiently large n.

- Note that, in Theorems 2 and 5, if the conclusion holds for some c, it holds also for
0 < c′ < c, provided n is sufficiently large, i.e., as n grows, we can find a larger and
more lopsided K+

r (s, . . . s, t) ;

- The stability conditions (b) in Theorems 4, 5, and 6 are stronger than the conditions
in the stability theorems of [6], [19] and [11]. Indeed, in all these theorems, condition
(b) implies that G0 is an induced, almost balanced, and almost complete r-partite
graph containing almost all the vertices of G;

- The exponents 1−√
c and 1− 2

√
c in Theorems 2 and 5 are far from the best ones,

but are simple.

The next section contains notation and results needed to prove the theorems. The
proofs are presented in Section 3.

2 Preliminary results

Our notation follows [1]. Given a graph G, we write:
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- V (G) for the vertex set of G and |G| for |V (G)| ;
- E (G) for the edge set of G and e (G) for |E (G)| ;
- d (u) for the degree of a vertex u;
- δ (G) for the minimum degree of G;
- kr (G) for the number of r-cliques of G;
- Kr (s1, . . . , sr) for the complete r-partite graph with parts of sizes s1, . . . , sr.

The following facts play crucial roles in our proofs.

Fact 7 ([15], Theorem 1) Every graph G of order n with µ (G) > µ (Tr (n)) contains a
Kr+1. �

Fact 8 ([16], Theorem 5) Let 0 < α ≤ 1/4, 0 < β ≤ 1/2, 1/2 − α/4 ≤ γ < 1,
K ≥ 0, n ≥ (42K + 4) /α2β, and G be a graph of order n. If

µ (G) > γn − K/n and δ (G) ≤ (γ − α)n,

then G contains an induced subgraph H satisfying |H| ≥ (1 − β)n and one of the condi-
tions:

(a) µ (H) > γ (1 + βα/2) |H| ;
(b) µ (H) > γ |H| and δ (H) > (γ − α) |H| . �

Fact 9 ([2], Lemma 6) Let r ≥ 2 and G be graph a of order n. If G contains a Kr+1

and δ (G) > (1 − 1/r − 1/r4)n, then jsr+1 (G) > nr−1/rr+3. �

Fact 10 ([3], Theorem 2) If r ≥ 2 and G is a graph of order n, then

kr (G) ≥
(

µ (G)

n
− 1 +

1

r

)

r (r − 1)

r + 1

(n

r

)r+1

.

�

Fact 11 ([3], Theorem 4) Let r ≥ 2, 0 ≤ b ≤ 2−10r−6, and G be a graph of order n.
If G contains no Kr+1 and µ (G) ≥ (1 − 1/r − b) n, then G contains an induced r-partite
graph G0 satisfying |G0| ≥

(

1 − 3b1/3
)

n and δ (G0) >
(

1 − 1/r − 6b1/3
)

n. �

Fact 12 ([12], Theorem 6) Let r ≥ 2, 2/ lnn ≤ c ≤ r−(r+8)r, and G be a graph
of order n. If G contains a Kr+1 and δ (G) > (1 − 1/r − 1/r4) n, then G contains a

K+
r

(

⌊c lnn⌋ , . . . , ⌊c lnn⌋ ,
⌈

n1−cr3
⌉)

. �

Fact 13 ([10], Theorem 1) Let r ≥ 2, cr ln n ≥ 1, and G be a graph of order n. If
kr (G) ≥ cnr, then G contains a Kr (s, . . . s, t) with s = ⌊cr ln n⌋ and t > n1−cr−1

. �

Fact 14 The number of edges of Tr (n) satisfies 2e (Tr (n)) ≥ (1 − 1/r)n2 − r/4. �
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3 Proofs

Below we prove Theorems 1, 2, 4, and 5. We omit the proofs of Theorems 3 and 6 since
they are easy consequences of Theorems 2 and 5.

All proofs have similar simple structure and follow from the facts listed above.

Proof of Theorem 1

Let G be a graph of order n with µ (G) > µ (Tr (n)) ; thus, by Fact 7, G contains a
Kr+1. If

δ (G) >
(

1 − r−1 − r−4
)

n, (1)

then, by Fact 9, jsr+1 (G) > nr−1/rr+3, completing the proof.
Thus, we shall assume that (1) fails. Then, letting

α = 1/r4, β = 1/2, γ = 1 − 1/r, K = r/4, (2)

we see that
δ (G) ≤ (γ − α)n (3)

and also, in view of Fact 14,

µ (G) > µ (Tr (n)) ≥ 2e (Tr (n)) /n ≥ (1 − 1/r)n − r/4n = γn − K/n. (4)

Given (2), (3) and (4), Fact 8 implies that, for n ≥ r15, G contains an induced subgraph
H satisfying |H| ≥ n/2 and one of the conditions:

(i) µ (H) > (1 − 1/r + 1/ (4r4)) |H| ;
(ii) µ (H) > (1 − 1/r) |H| and δ (H) > (1 − 1/r − 1/r4) |H| .
If condition (i) holds, Fact 10 gives

kr+1 (H) >

(

µ (H)

|H| − 1 − 1

r

)

r (r − 1)

r + 1

( |H|
r

)r+1

>
r (r − 1)

4r4 (r + 1)

( |H|
r

)r+1

,

and so,

jsr+1 (G) ≥ jsr+1 (H) ≥
(

r + 1

2

)

kr+1 (H)

e (H)
> r (r + 1)

kr+1 (H)

|H|2

>
r (r + 1) r (r − 1)

4r4 (r + 1) rr+1
|H|r−1 ≥ 1

4rr+3
|H|r−1 ≥ 1

2r+1rr+3
nr−1 ≥ 1

r2r+4
nr−1,

completing the proof.
If condition (ii) holds, then H contains a Kr+1; thus, jsr+1 (H) > |H|r−1 /rr+3 by

Fact 9. To complete the proof, notice that

jsr+1 (G) > jsr+1 (H) >
|H|r−1

rr+3
≥ 1

2r−1rr+3
nr−1 >

1

r2r+4
nr−1.

2
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Proof of Theorem 2

Let G be a graph of order n with µ (G) > µ (Tr (n)) ; thus, by Fact 7, G contains a
Kr+1. If

δ (G) >
(

1 − 1/r − 1/r4
)

n, (5)

then, by Fact 12, G contains a K+
r

(

⌊c lnn⌋ , . . . , ⌊c ln n⌋ ,
⌈

n1−cr3
⌉)

, completing the proof,

in view of cr3 <
√

c.
Thus, we shall assume that (5) fails. Then, letting

α = 1/r4, β = 1/2, γ = 1 − 1/r, K = r/4, (6)

we see that
δ (G) ≤ (γ − α)n (7)

and also, in view of Fact 14,

µ (G) > µ (Tr (n)) ≥ 2e (Tr (n)) /n ≥ (1 − 1/r)n − r/4n = γn − K/n. (8)

Given (6), (7) and (8), Fact 8 implies that, for n > r15, G contains an induced subgraph
H satisfying |H| ≥ n/2 and one of the conditions:

(i) µ (H) > (1 − 1/r + 1/ (4r4)) |H| ;
(ii) µ (H) > (1 − 1/r) |H| and δ (H) > (1 − 1/r − 1/r4) |H| .
If condition (i) holds, Fact 10 gives

kr+1 (H) >

(

µ (H)

|H| − 1 − 1

r

)

r (r − 1)

r + 1

( |H|
r

)r+1

>
r (r − 1)

4r4 (r + 1)

( |H|
r

)r+1

>
1

2r+3rr+4 (r + 1)
nr+1 >

1

r2r+9
nr+1 ≥ c1/(r+1)nr+1.

Thus, by Fact 13, G contains a Kr+1 (s, . . . , s, t) with s = ⌊c lnn⌋ and t > n1−cr/(r+1)
>

n1−
√

c. Then, obviously, G contains a K+
r

(

⌊c lnn⌋ , . . . , ⌊c ln n⌋ ,
⌈

n1−
√

c
⌉)

, completing the
proof.

If condition (ii) holds, then H contains a Kr+1; thus, by Fact 12, H contains a

K+
r

(

⌊2c ln |H|⌋ , . . . , ⌊2c ln |H|⌋ ,
⌈

|H|1−2cr3
⌉)

.

To complete the proof, note that 2c ln |H| ≥ 2c ln n
2

> c lnn and

|H|1−2cr3 ≥
(n

2

)1−2cr3

≥ 1

2
n1−2cr3

> n1−
√

c.

2

Proof of Theorem 4 Let G be a graph of order n with µ (G) > (1 − 1/r − b) n. If
G contains no Kr+1, then condition (b) follows from Fact 11; thus we assume that G
contains a Kr+1. If

δ (G) >
(

1 − 1/r − 1/r4
)

n, (9)
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then Fact 9 implies condition (a).
Thus, we shall assume that (9) fails. Then, letting

α = 1/r4 − b, β = 4b/α, γ = 1 − 1/r − b, K = 0, (10)

we easily see that

β =
4b

1/r4 − b
≤ 1

2
, δ (G) ≤ (γ − α)n, (11)

and
µ (G) > (1 − 1/r − b) n = γn. (12)

Given (10), (11) and (12), Theorem 8 implies that, for n ≥ r20, G contains an induced
subgraph H satisfying |H| ≥ (1 − β)n and one of the conditions:

(i) µ (H) > (1 − 1/r) |H| ;
(ii) µ (H) > (1 − 1/r − b) |H| and δ (H) > (1 − 1/r − 1/r4) |H| .
If condition (i) holds, by Theorem 1 we have

jsr+1 (G) ≥ jsr+1 (H) ≥ |H|r−1

r2r+4
≥ (1 − β)r−1 nr−1

r2r+4
=

(

1 − 4b

1/r4 − b

)r−1
nr−1

r2r+4

>

(

1 − 1

r2

)r−1
nr−1

r2r+4
≥

(

1 − r − 1

r2

)

nr−1

r2r+4
>

nr−1

r2r+5
,

implying condition (a) and completing the proof.
Suppose now that condition (ii) holds. If H contains a Kr+1, by Fact 9, we see that

jsr+1 (G) ≥ jsr+1 (H) ≥ |H|r−1

rr+3
≥ (1 − β)r−1 nr−1

rr+3
>

nr−1

2r−1rr+3
>

nr−1

r2r+5
,

implying condition (a).
If H contains no Kr+1, by Fact 11, H contains an induced r-partite subgraph H0

satisfying |H0| >
(

1 − 3b1/3
)

|H| and δ (H0) >
(

1 − 6b1/3
)

|H| . Now from

β =
4b

1/r4 − b
≤ 4b

1/r4 − 1/ (210r6)
≤ 8r4b < b1/3,

we deduce that

|H0| ≥
(

1 − 3b1/3
)

|H| ≥
(

1 − 3b1/3
)

(1 − β)n >
(

1 − 4b1/3
)

n

and
δ (H0) ≥

(

1 − 6b1/3
)

|H| ≥
(

1 − 6b1/3
)

(1 − β)n >
(

1 − 7b1/3
)

n.

Thus condition (b) holds, completing the proof. 2

Proof of Theorem 5 Let G be a graph of order n with µ (G) > (1 − 1/r − b) n. If
G contains no Kr+1, then condition (b) follows from Fact 11; thus we assume that G
contains a Kr+1. If

δ (G) >
(

1 − 1/r − 1/r4
)

n, (13)
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then Fact 12 implies condition (a).
Thus, we shall assume that (13) fails. Then, letting

α = 1/r4 − b, β = 4b/α, γ = 1 − 1/r − b, K = 0, (14)

we easily see that

β =
4b

1/r4 − b
≤ 1

2
, δ (G) ≤ (γ − α)n, (15)

and
µ (G) > (1 − 1/r − b) n = γn. (16)

Given (14), (15) and (16), Theorem 8 implies that, for n ≥ r20, G contains an induced
subgraph H satisfying |H| ≥ (1 − β)n and one of the conditions:

(i) µ (H) > (1 − 1/r) |H| ;
(ii) µ (H) > (1 − 1/r − b) |H| and δ (H) > (1 − 1/r − 1/r4) |H| .
If condition (i) holds, Theorem 2 implies that H contains a

K+
r

(

⌊2c ln |H|⌋ , . . . , ⌊2c ln |H|⌋ ,
⌈

|H|1−2cr3
⌉)

.

Now condition (a) follows in view of 2c ln |H| ≥ 2c ln n
2

> c lnn and

|H|1−2cr3 ≥
(n

2

)1−2cr3

≥ 1

2
n1−2cr3

> n1−
√

c,

completing the proof.
Suppose now that condition (ii) holds. If H contains a Kr+1, by Fact 12, H contains

a
K+

r

(

⌊2c ln |H|⌋ , . . . , ⌊2c ln |H|⌋ ,
⌈

|H|1−2cr3
⌉)

.

This implies condition (a) in view of 2c ln |H| ≥ 2c ln n
2

> c ln n and

|H|1−2cr3 ≥
(n

2

)1−2cr3

≥ 1

2
n1−2cr3

> n1−
√

c.

If H contains no Kr+1, the proof is completed as the proof of Theorem 4. 2

Acknowledgement. Thanks are due to the referee for careful reading and useful re-
marks.
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