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Abstract

Let 1 (G) be the largest eigenvalue of a graph G and T, (n) be the r-partite
Turan graph of order n.

We prove that if G is a graph of order n with 4 (G) > u (T} (n)), then G contains
various large supergraphs of the complete graph of order r + 1, e.g., the complete
r-partite graph with all parts of size logn with an edge added to the first part.

We also give corresponding stability results.

Keywords: complete r-partite graph; stability, spectral Turdn’s theorem; largest
etgenvalue of a graph.

1 Introduction

This note is part of an ongoing project aiming to build extremal graph theory on spectral
basis, see, e.g., [3], [13, 18].

Let 1 (G) be the largest adjacency eigenvalue of a graph G and T,. (n) be the r-partite
Turdn graph of order n. The spectral Turdn theorem [15] implies that if G is a graph of
order n with u(G) > (7, (n)), then G contains a K, 1, the complete graph of order
r+ 1.

On the other hand, it is known (e.g., [2], [4], [9], [12]) that if e (G) > e (T} (n)), then
G contains large supergraphs of K, ;. It turns out that essentially the same results also
follow from the inequality u (G) > p (7, (n)) .

Recall first a family of graphs, studied initially by Erdds [7] and recently in [2]: an
r-joint of size t is the union of ¢ distinct r-cliques sharing an edge. Write js, (G) for
the maximum size of an r-joint in a graph G. Erdds [7], Theorem 3', showed that if G
is a graph of sufficiently large order n satisfying e (G) > e (T, (n)), then js,i1(G) >
n/ (10 (r 4 1))°0 Y
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Here is a explicit spectral analogue of this result.

Theorem 1 Letr > 2, n > r', and G be a graph of order n. If u (G) > u (T, (n)), then
jsr—i-l (G) > nr—l/,r,27"+4‘

Erdés [4] introduced yet another graph related to Turédn’s theorem: let Kf (sq,...,s,)
be the complete r-partite graph with parts of sizes s; > 2, s9,...,s,, with an edge added
to the first part. The extremal results about this graph given in [4] and [9] were recently
extended in [12] to:

Let r >2,2/Inn < ¢ < r=0+00+H) “and G be a graph of order n. If G has t, (n) +1
edges, then G contains a K ([clnn],..., [clnn], (nl—\/ﬂ) .

Here we give a similar spectral extremal result.

Theorem 2 Let r > 2, 2/Inn < ¢ < r= 0D gnd G be a graph of order n. If
1 (G) > p (T, (n)), then G contains a K ([clnn], ..., [clnn], [n!=Ve]).

As an easy consequence of Theorem 2 we obtain

Theorem 3 Let r > 2, ¢ = r~@H0+D) n > ¢ and G be a graph of order n. If
w(G) > p (T, (n)), then G contains a K (|[clnn],...,|[clnn]).

Theorems 1, 2, and 3 have corresponding stability results.

Theorem 4 Let r > 2,0 < b < 2706 n > 2 and G be a graph of order n. If
w(G) > (1 —1/r —b)n, then G satsisfies one of the conditions:

((Z) jST’-‘rl (G) > nr—l/r2r+5;

(b) G contains an induced r-partite subgraph Gq of order at least (1 — 461/3) n with
minimum degree § (Go) > (1 —1/r — 7b"/) n.

Theorem 5 Let r > 2, 2/Inn < ¢ < r~ @0+t /2 0 < b < 2719% 76 and G be a graph
of order n. If n(G) > (1 —1/r —b)n, then G satsisfies one of the conditions:

(a) G contains a K ([clnn],..., [clnn], [n!72Ve]);

(b) G contains an induced r-partite subgraph Gq of order at least (1 — 461/3) n with
minimum degree § (Go) > (1 —1/r — 7b"/3) n.

Theorem 6 Let r > 2, ¢ =r~ @0+t /2 0 < b < 279% 76 5 > e¥¢ and G be a graph
of order n. If u(G) > (1 — 1/r — b) n, then one of the following conditions holds:

(a) G contains a K\ (|clnn],...,|clnn]);

(b) G contains an induced r-partite subgraph Go of order at least (1 — 4b'/%) n with
minimum degree § (Go) > (1 —1/r — 76'3) n.
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Remarks

Obviously Theorems 1, 2, and 3 are tight since T,. (n) contains no (r + 1)-cliques.

Theorems 2, 3, 5, and 6 are essentially best possible since for every € > 0, choosing
randomly a graph G of order n with e¢(G) = [(1 —¢&)n?/2] edges we see that
w(G) > (1 —¢€)n, but G contains no Ks (clnn,clnn) for some ¢ > 0, independent
of n.

In Theorem 1, it is not known what is the best possible value of js,.1 (G), given G
is a graph of order n and p (G) > u (7, (n)).

Theorem 1 implies in turn spectral versions of other known results, like Theorem
3.8 1in [8]:

Every graph G of order n with u(G) > p (T, (n)) contains cn distinct (r+1)-
cliques sharing an r-clique, where ¢ > 0 is independent of n.

It is not difficult to show that if G is a graph of order n, then the inequality e (G) >
e (T, (n)) implies the inequality u (G) > u (T, (n)). Therefore, Theorems 1-6 imply
the corresponding nonspectral extremal results of [12] with narrower ranges of the
parameters.

The relations between ¢ and n in Theorems 2 and 5 need some explanation. First,
for fixed ¢, they show how large must be n so that the vertex classes of the required
K (s,...s,t) are nonempty. But also ¢ may depend on n, e.g., letting ¢ = 1/Inlnn,
the conclusion is meaningful for sufficiently large n.

Note that, in Theorems 2 and 5, if the conclusion holds for some ¢, it holds also for
0 < ¢ < ¢, provided n is sufficiently large, i.e., as n grows, we can find a larger and
more lopsided K (s,...s,t);

The stability conditions (b) in Theorems 4, 5, and 6 are stronger than the conditions
in the stability theorems of [6], [19] and [11]. Indeed, in all these theorems, condition
(b) implies that Gy is an induced, almost balanced, and almost complete r-partite
graph containing almost all the vertices of G}

The exponents 1 —y/c and 1 — 2/c in Theorems 2 and 5 are far from the best ones,
but are simple.

The next section contains notation and results needed to prove the theorems. The
proofs are presented in Section 3.

2

Preliminary results

Our notation follows [1]. Given a graph G, we write:
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V (G) for the vertex set of G and |G| for |V (G)|;

E (G) for the edge set of G and e (G) for |E (G)|;

d (u) for the degree of a vertex u;

0 (G) for the minimum degree of G;

k. (G) for the number of r-cliques of G

K, (s1,...,s,) for the complete r-partite graph with parts of sizes si, ..., s,.

The following facts play crucial roles in our proofs.

Fact 7 ([15], Theorem 1) Ewvery graph G of order n with i (G) > p (T, (n)) contains a
Kr-‘rl- ]

Fact 8 ([16], Theorem 5) Let 0 < a < 1/4, 0 < f < 1/2, 1/2—a/4 < v < 1,
K >0, n> (42K +4) /a*8, and G be a graph of order n. If

p(G) >yn—K/n and 6(G) < (y—a)n,

then G contains an induced subgraph H satisfying |H| > (1 — ) n and one of the condi-
tions:

(a) p(H) >~ (1+ pa/2) |H|;
(b) p(H) >~ |H| and 6 (H) > (v — ) [H]. 0

Fact 9 ([2], Lemma 6) Let r > 2 and G be graph a of order n. If G contains a K,
and 0(G) > (1=1/r = 1/r)n, then js.41 (G) > n"" "+, O

Fact 10 ([3], Theorem 2) Ifr > 2 and G is a graph of order n, then
w(G) 1\ r(r—1) /n\r+!
> (B0 g ) TRy
kT(G)_< n +7" r+1 <r>

U

Fact 11 ([3], Theorem 4) Let r > 2,0 < b < 2% 75 and G be a graph of order n.
If G contains no K,y and pu(G) > (1 —1/r —b) n, then G contains an induced r-partite
graph Gy satisfying |Go| > (1 = 3b"*) n and 6 (Go) > (1 — 1/r — 6b"/3) n. O

Fact 12 ([12], Theorem 6) Let r > 2, 2/Inn < ¢ < =07 and G be a graph
of order n. If G contains a K,y and § (G) > (1 —1/r —1/r*)n, then G contains a

K <Lclnnj,...,{clnnj, [nl—c"ﬂ), -
Fact 13 ([10], Theorem 1) Let r > 2, ¢"lnn > 1, and G be a graph of order n. If
k. (G) > cn”, then G contains a K, (s,...s,t) with s = |¢"Inn] and t > nl=¢ . 0
Fact 14 The number of edges of T, (n) satisfies 2e (T, (n)) > (1 — 1/r)n? — r/4. 0
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3 Proofs

Below we prove Theorems 1, 2, 4, and 5. We omit the proofs of Theorems 3 and 6 since
they are easy consequences of Theorems 2 and 5.
All proofs have similar simple structure and follow from the facts listed above.

Proof of Theorem 1

Let G be a graph of order n with p(G) > (7, (n)); thus, by Fact 7, G contains a
Ky, If
§(G)>(1—=rt=rn, (1)

then, by Fact 9, js,11 (G) > n"~!/r™™3, completing the proof.
Thus, we shall assume that (1) fails. Then, letting
a=1/r", B=1/2, y=1-1/r, K=r/4, (2)
we see that
6(G)<(y—a)n (3)
and also, in view of Fact 14,
1(G) > u (T, () = 26 (T () fn = (L= 1/r)n —rfdn = yn— K/n.  (4)

Given (2), (3) and (4), Fact 8 implies that, for n > 7', G contains an induced subgraph
H satisfying |H| > n/2 and one of the conditions:

(i) w(H) > (1=1/r+1/(4r")) |H[;
(ii) w(H) > (1 —1/r)|H| and § (H) > (1 — 1/r — 1/7%) |H] .

If condition (i) holds, Fact 10 gives

and so,
kr-l—l (H)
H*

r—1 1 -1 1 r—1
>_ - T
|H| — 2r+1r7"+3n — T2r+4n ’

T 1) b () 04

Jsri1(G) = jspy1 (H) 2 ( 2 ) ey > (

r(r+1)r(r—1) | |T_1 -
Art (r+ 1) rr+t — 4ypr+3

completing the proof.
If condition (7i) holds, then H contains a K,,q; thus, js,.i (H) > [H|"™" /r™3 by
Fact 9. To complete the proof, notice that

: : |]—‘[|7«_1 1 r—1 1 r—1
J8r+1(G) > jsra (H) > yr+3 = 27‘—1T7‘+3n > 7,2r+4n
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Proof of Theorem 2

Let G be a graph of order n with u(G) > u (7, (n)); thus, by Fact 7, G contains a
Koy I
§(G)> (1—1/r—1/r")n, (5)
then, by Fact 12, G contains a K© (Lc Inn|,...,[clnn], [nl_c’“g—‘) , completing the proof,
in view of cr® < /.
Thus, we shall assume that (5) fails. Then, letting
a=1/rt, B=1/2, y=1-1/r, K=r/4 (6)
we see that
6(G)<(vy—a)n (7)
and also, in view of Fact 14,
w(G) > p(T.(n) >2e(T,(n)/n>1=1/r)n—r1r/4n = yn — K/n. (8)

Given (6), (7) and (8), Fact 8 implies that, for n > !5 G contains an induced subgraph
H satisfying |H| > n/2 and one of the conditions:

(i) p(H) > (1= 1/r+1/ (4r%)) |H|;
(ii) o (H) > (1 — 1/7)|H| and &6 (H) > (1 — 1/r — 1/r) |H].

If condition (%) holds, Fact 10 gives

n(H) N\ r(r=1) ([HN™ _ r(r=1) ([H\™"
kyor (H) > (220 2T DI T ) (1
+1 (H) ( |H| r r+1 r drt(r+1) \ r
1 r+1 1 r+1 1/(r+1),,r+1
> or+3pr+4 (T+ 1)” > T2r+9n >c n :

1—er/(r+1)

Thus, by Fact 13, G contains a K, 1 (s,...,s,t) with s = [clnn| and t > n >

n'=Ve. Then, obviously, G' contains a K+ (Lc Inn|,...,|clnn], [nl_\/z-‘) , completing the

proof.

If condition (%i) holds, then H contains a K, ;; thus, by Fact 12, H contains a
K* <L201n|H|J oo [2en|H|], [|H|1—2”3D .
To complete the proof, note that 2cIn |H| > 2¢cIn§ > clnn and
1—2cr3 1 .
|H‘1—20r3 > <g> > §n1—2cr3 > nl—\/é'

O

Proof of Theorem 4 Let G be a graph of order n with p(G) > (1 —1/r —b)n. If
G contains no K., then condition (b) follows from Fact 11; thus we assume that G
contains a K, ;. If

§(G)> (1—1/r—1/r")n, (9)
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then Fact 9 implies condition (a).
Thus, we shall assume that (9) fails. Then, letting

a=1/r"-b, pB=4b/a, y=1—-1/r—b K=0, (10)
we easily see that
g2 1 @) <(r—a)n (11)
Irt—=b— 2 - ’
and
w(G)> (1 —=1/r=>b)n=r"yn. (12)

Given (10), (11) and (12), Theorem 8 implies that, for n > r?°, G contains an induced
subgraph H satisfying |H| > (1 — #) n and one of the conditions:

(i) p (H) > (1— 1/r) | H]

(i) u(H) > (1 —1/r —b)|H|and § (H) > (1 —1/r — 1/r*)|H].

If condition (%) holds, by Theorem 1 we have

, , |H|" L 4\t
841 (G) 2 jsr1 (H) 2 24 > (1-5) J2rd 1- 1ri—b 2r+a

. 1\ prt (17— 1\ n"~t  nprt
> 2 r2r+d = 2 r2r+4 > r2r+5’
implying condition (a) and completing the proof.
Suppose now that condition (i) holds. If H contains a K1, by Fact 9, we see that

|H|7‘—1 1 nr—l n?‘—l n?‘—l

3841 (G) 2 Jsri (H) 2 43 > (1-0) 43~ Qr—1,r3 © p2rts’

implying condition (a).
If H contains no K,.1, by Fact 11, H contains an induced r-partite subgraph H,
satisfying |Ho| > (1 — 3b'/%) |H| and 6 (Ho) > (1 — 6b/%) |H|. Now from

4b 4b

0= =5 = T =1/ 209

< 8r'h < b'/3,

we deduce that
|Ho| > (1—3b"%) |H| > (1-3b"%) (1 - B)n> (1—4b"*)n

and
5 (Ho) > (1= 60%) [H] > (1= 66"%) (1= )n> (1= 7).
Thus condition (b) holds, completing the proof. O

Proof of Theorem 5 Let G be a graph of order n with p(G) > (1 —1/r —b)n. If
G contains no K1, then condition (b) follows from Fact 11; thus we assume that G
contains a K, ;. If

§(G)> (1—1/r—1/r")n, (13)
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then Fact 12 implies condition (a).
Thus, we shall assume that (13) fails. Then, letting

a=1/r"—b, p=4b/a, y=1-1/r—b K =0, (14)
we easily see that
b= <3 SO <(r-a) (15)
T b2 =T
and
w(G) > (1—=1/r—=>b)n=nn. (16)

Given (14), (15) and (16), Theorem 8 implies that, for n > r?°, G contains an induced
subgraph H satisfying |H| > (1 — ) n and one of the conditions:

(1) p(H) > (1=1/r)[H]|;
(ii) p(H) > (1 —=1/r —b)|H| and 6 (H) > (1 —1/r — 1/r*)|H]|.
If condition (i) holds, Theorem 2 implies that H contains a

K <L2cln|HH o 2em|H| “H\I_MSD .

Now condition (a) follows in view of 2cIn |H| > 2¢cIn§ > clnn and

Y

_ n 1—2cr3 1 .
|H|1 2¢r? > <§> > §n1—2cr3 > nl—\/E

completing the proof.
Suppose now that condition (7i) holds. If H contains a K1, by Fact 12, H contains

’ K <L2cln|HH o 2em|H| ﬂH\l—?ﬂ) .

This implies condition (a) in view of 2cIn|[H| > 2cIn § > cInn and

_ n 1—2cr3 1 .
|H‘1 2¢r3 > <§> > §n1—2cr3 > nl—\/E'

If H contains no K, 1, the proof is completed as the proof of Theorem 4. O

Acknowledgement. Thanks are due to the referee for careful reading and useful re-
marks.
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