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Abstract

We consider the next random process for generating a maximal H-free graph:
Given a fixed graph H and an integer n, start by taking a uniformly random per-
mutation of the edges of the complete n-vertex graph Kn. Then, traverse the edges
of Kn according to the order imposed by the permutation and add each traversed
edge to an (initially empty) evolving n-vertex graph - unless its addition creates a
copy of H. The result of this process is a maximal H-free graph Mn(H). Our main
result is a new lower bound on the expected number of edges in Mn(H), for H that
is regular, strictly 2-balanced. As a corollary, we obtain new lower bounds for Turán
numbers of complete, balanced bipartite graphs. Namely, for fixed r ≥ 5, we show
that ex(n,Kr,r) = Ω(n2−2/(r+1)(ln lnn)1/(r2−1)). This improves an old lower bound
of Erdős and Spencer.

Our result relies on giving a non-trivial lower bound on the probability that a
given edge is included in Mn(H), conditioned on the event that the edge is traversed
relatively (but not trivially) early during the process.

1 Introduction

Consider the next random process for generating a maximal H-free graph. Given n ∈ N

and a graph H, assign every edge f of the complete n-vertex graph Kn a birthtime β(f),
distributed uniformly at random in the interval [0, 1]. (Note that with probability 1 the
birthtimes are distinct and so β is a permutation.) Now start with the empty n-vertex
graph and iteratively add edges to it as follows. Traverse the edges of Kn in order of their
birthtimes, starting with the edge whose birthtime is smallest, and add each traversed
edge to the evolving graph, unless its addition creates a copy of H. When all edges of
Kn have been exhausted, the process ends. Denote by Mn(H) the graph which is the
result of the above process. The main concern in this paper is bounding from below the
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expected number of edges of Mn(H), which is denoted by e(Mn(H)). We always think of
H as being fixed and of n as going to ∞. To be able to state our results, we need a few
definitions. For a graph H, let vH and eH denote, respectively, the number of vertices and
edges in H. Say that a graph H is strictly 2-balanced if vH , eH ≥ 3 and for every F ( H
with vF ≥ 3, (eH − 1)/(vH − 2) > (eF − 1)/(vF − 2). Examples of strictly 2-balanced
graphs include the r-cycle Cr, the complete r-vertex graph Kr, the complete bipartite
graph Kr−1,r−1 and the (r − 1)-dimensional cube, for all r ≥ 3. Note that all of these
examples are of graphs which are regular. Our main result follows.

Theorem 1.1. Let H be a regular, strictly 2-balanced graph. Then

E[e(Mn(H))] = Ω
(

n2−(vH−2)/(eH−1)(ln ln n)1/(eH−1)
)

.

Before discussing what was previously known about e(Mn(H)), we state an immediate
consequence of Theorem 1.1 in extremal graph theory. Let ex(n, H) be the largest integer
m such that there exists an H-free graph over n vertices and m edges. For the case
where H = Kr,r, Kővári, Sós and Turán proved that for fixed r, ex(n, Kr,r) = O(n2−1/r).
For r ∈ {2, 3} this upper bound is known to be tight, by explicit constructions, due
to Erdős, Rényi and Sós [4] and Brown [3]. Since ex(n, K4,4) ≥ ex(n, K3,3), one has
that ex(n, K4,4) = Ω(n2−1/3). For fixed r ≥ 5, Erdős and Spencer [5] used a simple
application of the probabilistic method to prove ex(n, Kr,r) = Ω(n2−2/(r+1)). Now note
that Theorem 1.1 implies a lower bound for ex(n, H) for every regular, strictly 2-balanced
graph. Hence, since Kr,r is regular and strictly 2-balanced, we obtain the next lower bound
on ex(n, Kr,r) which improves asymptotically the lower bound of Erdős and Spencer for
r ≥ 5.

Theorem 1.2. For all r ≥ 5, ex(n, Kr,r) = Ω
(

n2−2/(r+1)(ln ln n)1/(r2−1)
)

.

1.1 Previous bounds on e(Mn(H))

The first to investigate the number of edges in Mn(H) were Ruciński and Wormald [10],
who considered the case where H = K1,r+1 is a star with r + 1 edges. In that case, it was
shown than with probability approaching 1 as n goes to infinity, Mn(H) is an extremal
H-free graph (that is, every vertex in Mn(H) has degree exactly r, except perhaps for
at most one vertex whose degree is r − 1). Erdős, Suen and Winkler [6] showed that
with probability that goes to 1 as n goes to ∞, e(Mn(K3)) = Ω(n3/2). Bollobás and
Riordan [2] considered the case of H ∈ {K4, C4}, and showed that with probability that
goes to 1 as n goes to ∞, e(Mn(K4)) = Ω(n8/5) and e(Mn(C4)) = Ω(n4/3). Osthus and
Taraz [9] generalized these bounds for every strictly 2-balanced graph H, showing that
with probability that goes to 1 as n goes to ∞, e(Mn(H)) = Ω(n2−(vH−2)/(eH−1)). Note
that the above lower bounds trivially imply similar lower bounds on the expectation of
e(Mn(H)). It is worth mentioning that all of the above lower bounds on the expectation
of e(Mn(H)) can be derived using standard correlation inequalities.

The first non-trivial lower bound on the expectation of e(Mn(H)) for some graph H
that contains a cycle was given by Spencer [12]. Spencer showed that for every constant

the electronic journal of combinatorics 16 (2009), #R4 2



a there exists n0 = n0(a) such that for every n ≥ n0, E[e(Mn(K3))] ≥ an3/2. In the same
paper, Spencer conjectured that E[e(Mn(K3))] = Θ(n3/2(lnn)1/2). Recently, Bohman [1]
resolved Spencer’s conjecture, showing that indeed E[e(Mn(K3))] = Θ(n3/2(ln n)1/2).
Bohman also proved a lower bound of Ω(n8/5(ln n)1/5) for the expected number of edges
in Mn(K4). In fact, Bohman’s lower bounds hold with probability that goes to 1 as n
goes to ∞. We discuss Bohman’s argument and compare it to ours below.

As for upper bounds: The currently best upper bound on the expectation of e(Mn(H)),
for H that is strictly 2-balanced over at least 4 vertices is, by a result of Osthus and
Taraz [9], at most O(n2−(vH−2)/(eH−1)(ln n)1/(∆H−1)), where ∆H denotes the maximum
degree of H.

1.2 Overview of the proof of Theorem 1.1

Let H be a regular, strictly 2-balanced graph. We would like to analyse the random process
generating Mn(H). In order to do this–and the reason will soon be apparent–it would
be convenient for us to think slightly differently about the definition of β. Let G(n, ρ)
be the standard Erdős-Rényi random graph, which is defined by keeping every edge of
Kn with probability ρ, independently of the other edges. Then an alternative, equivalent
definition of β is this: For every edge f ∈ G(n, ρ) assign uniformly at random a birthtime
β(f) ∈ [0, ρ], and for every edge f ∈ Kn \G(n, ρ) assign uniformly at random a birthtime
β(f) ∈ (ρ, 1]. Clearly, in this definition, every edge f ∈ Kn is assigned a uniformly
random birthtime β(f) ∈ [0, 1] and so this new definition is equivalent to the original
definition of β. Note that G(n, ρ) denotes here the set of edges in Kn whose birthtime is
at most ρ. The main advantage of this new view of β is that in order to analyse the event
{f ∈ Mn(H) | β(f) < ρ′} for some ρ′ ≤ ρ, it is enough to consider only the distribution of
the birthtimes of edges of G(n, ρ). Hopefully, for our choice of ρ, G(n, ρ) will be structured
enough so that we could take advantage of the structures appearing in it and use them
to find a non-trivial lower bound on the probability of {f ∈ Mn(H) | β(f) < ρ′}. This is
the basic idea of the proof. We next describe, informally, what structures in G(n, ρ) we
hope to take advantage of in order to prove Theorem 1.1.

For an edge f ∈ Kn, let Λ(f, ρ) be the set of all G ⊆ G(n, ρ)\{f} such that G∪{f} is
isomorphic to H. Fix an edge f ∈ Kn and let ρ′ ≤ ρ. Assume that the event {β(f) < ρ′}
occurs. Suppose now that we want to estimate the probability of the event {f ∈ Mn(H)},
which, by linearity of expectation, is essentially what we need to do in order to prove
Theorem 1.1. We seek a sufficient condition for the event {f ∈ Mn(H)}. One such trivial
event is this: Say that f survives-trivially if for every graph G ∈ Λ(f, ρ) there exists an
edge g ∈ G such that {β(g) > β(f)} occurs. Clearly if f survives-trivially then we have
{f ∈ Mn(H)}. We can improve this simple sufficient condition as follows. Say that an
edge g doesn’t survive if there exists G′ ∈ Λ(g, ρ) such that for every edge g′ ∈ G′ we have
{β(g′) < β(g)} and g′ survives-trivially. Note that if g doesn’t survive then {g /∈ Mn(H)}
occurs. Now say that f survives if for every graph G ∈ Λ(f, ρ) there exists an edge g ∈ G
such that either {β(g) > β(f)} or g doesn’t survive. Then the event that f survives
implies {f ∈ Mn(H)}.
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Observe that the event that f survives was defined above using an underlying tree-like
structure of constant depth, in which the root is f , the set of children of any non-leaf
edge g is Λ(g, ρ) and for any G ∈ Λ(g, ρ), the set of children of G is simply the set of
edges in G. Using the same idea as in the previous paragraph, we could have defined the
event that f survives using an underlying tree-like structure which is much deeper than
the constant depth tree-like structure that was used above. Intuitively, the deeper this
tree-like structure is – the better the chances are for f to survive. Therefore, we would be
interested in defining the event that f survives using a rather deep underlying tree-like
structure. We will then be interested in lower bounding the probability that f survives.

Now, in order to analyse the event that f survives, it would be useful if the underlying
tree-like structure T is good in the following sence: Every edge that appears in T appears
exactly once†. The advantage of T being good is that for many of the edges that appear in
T , the events that these edges survive or doesn’t survive are pairwise independent. This
property can be used to analyse recursively the event that f survives. Hence, it would be
very helpful if we can show that T is good with high probability. Showing this is a key
ingredient of our proof.

Given the informal discussion above, the proof of Theorem 1.1 looks very roughly as
follows. At the first part of the proof we consider the graph G(n, ρ) for a relatively large
ρ, and show that for a fixed edge f ∈ Kn, with probability that approaches 1 as n goes to
∞, we can associate with f a tree T which is similar to the tree-like structure described
above and which is both good and deep. Then, the second part has this structure: We
assume first that {β(f) < ρ′} occurs for some suitably chosen ρ′ ≤ ρ. We also assume that
the tree T that is associated with f is good and deep, which occurs with high probability.
Then, we associate with f and T an event which is essentially the event that f survives,
as described informally above, and argue that this event implies {f ∈ Mn(H)}. Lastly, we
give an explicit lower bound on the probability of the event that we have associated with
f and T . This will give us a lower bound on the probability of {f ∈ Mn(H)} conditioned
on {β(f) < ρ′}. For our choice of ρ′, this will imply Theorem 1.1.

1.2.1 Comparison with previous work

The basic idea that we have outlined in the overview above was used already by Erdős,
Suen and Winkler [6] and by Spencer [12] for the case H = K3. (Their results have been
mentioned above.) In [6], the authors have analyzed the event that an edge f survives-
trivially, as described above, and considered implicitly the graph G(n, 1). This elementary
argument gives a reasonable lower bound on the probability of {f ∈ Mn(K3) | β(f) <
an−1/2}, for small constant a (e.g., a = 1). In [12] the graph G(n, 1) was again considered
implicitly, but a more general event – essentially the event that an edge f survives, with
an underlying tree-like structure of constant depth – was analyzed; Using this, Spencer

†In this informal discussion, we cannot hope that T would be good, since for example, f appears as
an edge in some G′ ∈ Λ(g, ρ) for some g ∈ G ∈ Λ(f, ρ). We will define in Section 2 the tree T slightly
differently, so that this situation is avoided, while still maintaining that if f survives then {f ∈ Mn(H)}
occurs. Yet, for the purpose of communicating the idea of the proof, it would be useful to assume that
T could be good.
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was able to give a lower bound on the probability of {f ∈ Mn(K3) | β(f) < an−1/2}, for
a being arbitrary large, but constant independent of n. As we have discussed above, we
consider explicitly the graph G(n, ρ) and we do that for some suitably chosen ρ < 1. This
is the key to our improvement. For example, for the case of H = K3, this enables us
to give a non-trivial lower bound on the probability of {f ∈ Mn(K3) | β(f) < an−1/2},
for a = b(ln n)1/24c. Moreover, our arguments apply for every other regular, strictly
2-balanced graph.

1.2.2 Comparison with Bohman’s argument

As stated above, Bohman [1] have proved stronger bounds than those given in Theo-
rem 1.1, for the case where H ∈ {K3, K4}. To do this, Bohman uses the differential
equation method. The basic argument, applied for the case H = K3, can be described as
follows. First, a collection of random variables that evolve throughout the random process
is introduced and tracked throughout the evolution of Mn(K3). This collection includes,
for example, the random variable Oi, which denotes the set of edges that have not yet
been traversed by the process, and which can be added to the current graph without
forming a triangle, after exactly i edges have been added to the evolving graph. Now,
at certain times during the process (i.e., at those times in which new edges are added to
the evolving graph), Bohman expresses the expected change in the values of the random
variables in the collection, using the same set of random variables. This allows one to
express the random variables in the collection using the solution to an autonomous system
of ordinary differential equations. The main technical effort in Bohman’s work then shows
that the random variables in the collection are tightly concentrated around the trajectory
given by the solution to this system. The particular solution to the system then implies
that with high probability OI is still large for I := n3/2(ln n)1/2/32. This gives Bohman’s
lower bound on the expected number of edges in Mn(K3).

We remark that Bohman’s argument probably can be used to analyse the random
process generating Mn(H) for H /∈ {K3, K4}, and this can most likely lead to stronger
lower bounds than those given in Theorem 1.1. In comparison with Bohman’s argument,
our argument is more direct in the sence that it considers a single edge and estimates
directly the probability of it being included in Mn(H). We remark that our argument can
be strengthened and generalized in the following way for the case H = K3. One can use
our basic argument so as to give an asymptotically tight expression for the probability
that a fixed triangle-free graph F is included in Mn(K3), conditioned on the event that
the edges of F all have birthtimes which are relatively, but not trivially small. This, in
turn, can be used to tackle the following question, which is left open even after Bohman’s
breakthrough. Suppose we trim the random process generating Mn(K3) right after every
edge whose birthtime is less than cn−1/2 has been traversed, where c = (ln n)1/24. That is,
let us consider the trimmed graph Mn(K3)∩{f : β(f) < cn−1/2}. We may ask what is the
number of paths of length 2 in the trimmed graph. Bohman’s argument does not answer
this question, but rather places an upper bound of

(

n
2

)

· (ln n)2 on that number. Yet,
the above-mentioned strengthening and generalization together with the second moment
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method can be used to show that the number of paths of length 2 in the trimmed graph
is concentrated around

(

n
2

)

· ln c. Similarly, one can prove concentration results for the
number of small cycles in the trimmed graph.

1.3 Organization of the paper

In Section 2 we give the basic definitions we use throughout the paper and in particular, we
give the formal definition of what we have referred to above as a good tree-like structure.
We also state in Section 2 the two main lemmas we prove throughout the paper and argue
that these lemmas imply the validity of Theorem 1.1. The two main lemmas are proved
in Sections 3 and 4 and these two sections correspond to the two parts of the proof that
were sketched at Section 1.2.

1.4 Basic notation and conventions

We use Kn to denote the complete graph over the vertex set [n] := {1, 2, . . . , n}. We
set [0] := ∅. We use f, g, g′ to denote edges of Kn and F, G, G′ to denote subgraphs of
Kn or subgraphs of any other fixed graph. Throughout the paper, the hidden constants
in the big-O and big-Omega notation, are either absolute constants or depend only on
an underlying fixed graph H which should be understood from the context. If x = x(n)
and y = y(n) are functions of n, we write y = o(x) if y/x goes to 0 as n goes to ∞ and
y = ω(x) if y/x goes to ∞ as n goes to ∞.

2 Main lemmas and proof of Theorem 1.1

In this section we give the overall structure of the proof of Theorem 1.1, including the
required basic definitions and two key lemmas–whose validity imply the theorem. We
fix once and for the rest of this paper a regular, strictly 2-balanced graph H and prove
Theorem 1.1 for that specific H. We always think of n as being sufficiently large, and
define the following functions of n.

Definition 1. Define

k = k(n) := n(ln n)−1/2

,

ρ = ρ(n) := kn−(vH−2)/(eH−1),

c = c(n) := b(ln n)1/(8eH )c, and

D = D(n) := 2b(ln n)1/4c + 1.

In order to prove Theorem 1.1, we will show that for our fixed graph H, and for every
edge f ∈ Kn,

Pr
[

f ∈ Mn(H)
∣

∣

∣
β(f) < cn−(vH−2)/(eH−1)

]

= Ω

(

(ln c)1/(eH−1)

c

)

. (1)
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Note that (1) implies Theorem 1.1: Since Pr[β(f) < cn−(vH−2)/(eH−1)] = cn−(vH−2)/(eH−1),
it follows from (1) that for all f ∈ Kn, Pr[f ∈ Mn(H)] = Ω(n−(vH−2)/(eH−1)(ln c)1/(eH−1)).
Using the fact that ln c = Ω(ln ln n) and using linearity of expectation, this last bound
implies Theorem 1.1. It thus remains to prove (1). The rest of this section is devoted to
outlining the proof of (1).

Recall that for an edge f ∈ Kn, we define Λ(f, ρ) to be the set of all G ⊆ G(n, ρ)\{f}
such that G ∪ {f} is isomorphic to H. We now set up to define what we have referred to
in the introduction as a good tree-like structure.

A rooted tree T is a directed tree with a distinguished node, called the root, which is
connected by a directed path to any other node in T . If u is a node in T then the set
of nodes that are adjacent‡ to u in T is denoted by ΓT (u). The height of a node u in a
rooted tree T is the length of the longest path from u to a leaf. The height of a rooted
tree is the height of its root. We shall consider labeled (rooted) trees. If u is a node in a
labeled tree T , we denote by LT (u) the label of the node u in T .

Definition 2 (Tf,d). Let f ∈ Kn and d ∈ N. We define inductively a labeled, rooted tree
Tf,d of height 2d. The nodes at even distance from the root will be labeled with edges of
Kn. The nodes at odd distance from the root will be labeled with subgraphs of Kn.

• Tf,1:

– The root v0 of Tf,1 is labeled with the edge f .

– For every subgraph G1 ∈ Λ(f, ρ): Set a new node u1 which is adjacent to v0

and whose label is G1; Furthermore, for each edge g ∈ G1 set a new node v1

which is adjacent to u1 and whose label is g.

• Tf,d, d ≥ 2: We construct the tree Tf,d by adding new nodes to T = Tf,d−1 as follows.
Let (v0, u1, v1, . . . , ud−1, vd−1) be a directed path in Tf,d−1 from the root v0 to a leaf
vd−1. Let gd−1 = LT (vd−1) and gd−2 = LT (vd−2). For every subgraph Gd ∈ Λ(gd−1, ρ)
such that gd−2 /∈ Gd do: Set a new node ud which is adjacent to vd−1 and whose label
is Gd; Furthermore, for each edge gd ∈ Gd set a new node vd which is adjacent to
ud and whose label is gd.

Definition 3 (good tree). Let f ∈ Kn and d ∈ N. Consider the tree T = Tf,d and let
v0 denote the root of T . We say that T is good if the following three properties hold:

P1 If G is the label of a node u at odd distance from v0 then G ∩ {f} = ∅.

P2 If G, G′ are the labels of two distinct nodes at odd distance from v0 then G∩G′ = ∅.

P3 If g is the label of a non-leaf node v at even distance from v0 then |ΓT (v)| =
|Λ(g, ρ)| − O(1).

‡We say that node v is adjacent to node u in a given directed graph, if there is a directed edge from
u to v.

the electronic journal of combinatorics 16 (2009), #R4 7



Recall the definition of ρ and note that the expected size of Λ(g, ρ) is λkeH−1, where
λ = λ′(1−o(1)) and λ′ ≤ 1 depends only on H. (This follows from the fact that for every
edge g ∈ Kn, the cardinality of Λ(g, 1) is between

(

n−2
vH−2

)

and (vH − 2)!
(

n−2
vH−2

)

, and from

the fact that for every G ∈ Λ(g, 1), the probability of {G ∈ Λ(g, ρ)} is ρeH−1.) Define the
event E1 to be the event that for every edge g ∈ Kn,

λkeH−1 − keH/2−1/3/2 ≤ |Λ(g, ρ)| ≤ λkeH−1 + keH/2−1/3/2.

For an edge f ∈ Kn, let E2(f) be the event that Tf,D is good. The next lemma is proved
in Section 3.

Lemma 2.1. For every edge f ∈ Kn,

Pr[E2(f) ∩ E1] = 1 − o(1).

Assuming that the event E2(f) ∩ E1 occurs, the tree Tf,D is exactly what we have
referred to informally in the introduction as a good tree-like structure. Assuming that
such a structure exists in G(n, ρ), we derive in Section 4 a lower bound on the probability
of {f ∈ Mn(H)}, conditioned on {β(f) < cn−(vH−2)/(eH−1)}. Formally, we prove the next
lemma.

Lemma 2.2. For every edge f ∈ Kn,

Pr
[

f ∈ Mn(H)
∣

∣

∣
E2(f) ∩ E1, β(f) < cn−(vH−2)/(eH−1)

]

= Ω

(

(ln c)1/(eH−1)

c

)

.

Trivially, Lemmas 2.1 and 2.2 imply (1) and hence Theorem 1.1. Therefore, in order
to prove Theorem 1.1, it remains to prove these two lemmas.

3 Proof of Lemma 2.1

The proof is divided to two parts. In the first part, given at Section 3.1, we lower bound
the probability of the event E1. In the second part we lower bound the probability of the
event E2(f). Since these two lower bounds would be shown to be 1 − o(1), Lemma 2.1
will follow.

3.1 Bounding Pr[E1]

In this subsection we show that the probability of the event E1 is 1− o(1). In order to do
this, since there are at most n2 edges in Kn, it suffices to fix an edge g ∈ Kn and show
that the following two equalities hold:

Pr
[

|Λ(g, ρ)| ≥ λkeH−1 − keH/2−1/3/2
]

= 1 − n−ω(1), (2)

Pr
[

|Λ(g, ρ)| ≤ λkeH−1 + keH/2−1/3/2
]

= 1 − n−ω(1). (3)

Throughout this section we will use several times the following fact.
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Fact 3.1. There exists a constant εH > 0, that depends only on H, such that the following
holds for all sufficiently large n: If F ( H and vF ≥ 3 then

nvH−vF ρeH−eF ≤ n−εH .

Proof. Fix F ( H with vF ≥ 3. Since H is strictly 2-balanced, we have that (eF −1)(vH −
2)/(eH − 1) < vF − 2. Hence, there exists a constant ε′H > 0 such that n−vF +2ρ−eF +1 =
n−vF +2+(eF−1)(vH−2)/(eH−1)+o(1) ≤ n−ε′H+o(1) (here we have also used the fact that k =
no(1)). We also note that nvH−2ρeH−1 = keH−1 = no(1). Therefore, nvH−vF ρeH−eF =
nvH−2−vF +2ρeH−1−eF +1 ≤ n−ε′H+o(1). To complete the proof, take the subgraph F ( H
with vF ≥ 3 which minimizes ε′H above, and for that particular ε′H , take εH = ε′H/2. �

We prove (2) and (3) in Sections 3.1.1 and 3.1.2, respectively.

3.1.1 The lower tail

For G ∈ Λ(g, 1), let XG be the indicator random variable for the event {G ⊆ G(n, ρ)}. Let
X =

∑

G∈Λ(g,1) XG. Then |Λ(g, ρ)| = X and E[X] = λkeH−1. Let ∆ =
∑

G,G′ E[XG ∩ XG′ ]

where the sum ranges over all ordered pairs G, G′ ∈ Λ(g, 1) with G∩G′ 6= ∅ (this includes
the pairs G, G′ with G = G′). Then from Janson [8] we have that for every 0 ≤ t ≤ E[X] ,

Pr[X ≤ E[X] − t] ≤ exp
(

− t2

2∆

)

. (4)

We now bound ∆ from above. In order to do this, first note that for every F ⊆ H and for
every G ∈ Λ(g, 1), the number of subgraphs G′ ∈ Λ(g, 1) such that (G∪ {g})∩ (G′ ∪{g})
is isomorphic to F is at most O(nvH−vF ). Also, the number of subgraphs G ∈ Λ(g, 1) is
trivially at most nvH−2. Hence, denoting by

∑

F the sum over all F ⊆ H with vF ≥ 3, the
number of pairs G, G′ which contribute to ∆ is at most

∑

F O(n2vH−vF−2). For every pair
G, G′ as above, if (G∪{g})∩(G′∪{g}) is isomorphic to F then E[XG ∩ XG′] = ρ2eH−eF−1.
Hence

∆ ≤
∑

F

O(n2vH−vF−2ρ2eH−eF−1) =
∑

F

O(n2vH−4−vF +2ρ2eH−2−eF +1)

= k2(eH−1)
∑

F

O(n−vF +2ρ−eF +1). (5)

Now if F ( H and vF ≥ 3 then by the fact that H is strictly 2-balanced we have
n−vF +2ρ−eF +1 ≤ n−ε′H+o(1) for some ε′H > 0 that depends only on H (see the proof of
Fact 3.1). If F on the other hand satisfies F = H, then n−vF +2ρ−eF +1 = k−(eH−1). Hence,
we can further upper bound (5) by O(keH−1). This upper bound on ∆ can be used with (4)
to show that

Pr[X ≥ E[X] − keH/2−1/3/2] ≥ 1 − exp
(

− Ω
(

k1/3
)

)

.

This gives us (2).
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3.1.2 The upper tail

We are interested in giving a lower bound on the probability of the event that |Λ(g, ρ)| ≤
λkeH−1 + keH/2−1/3/2. The technique we use is due to Spencer [11]. Let G be the graph
over the vertex set Λ(g, ρ) and whose edge set consists of all pairs of distinct vertices
G, G′ ∈ Λ(g, ρ) such that G ∩ G′ 6= ∅. Let W1 be the size of the maximum independent
set in G. Let W2 be the size of the maximum induced matching in G. Let W3 be the
maximum degree of G. Then by a simple argument, one gets that the number of vertices
in G, which is |Λ(g, ρ)|, is at most W1 + 2W2W3. (Indeed, we can partition the set of
vertices of G to those that are adjacent to a vertex in some fixed induced matching of
largest size, and to those that are not. The first part of the partition trivially has size
at most 2W2W3. The second part of the partition is an independent set and so has size
at most W1.) Hence, in order to prove (3), it is enough to show that W1 and W2W3 are
sufficiently small with probability 1 − n−ω(1). Specifically we will show the following:

Pr[W1 ≥ λkeH−1 + keH/2−1/3/3] ≤ n−ω(1), (6)

Pr[W2 ≥ ln n] ≤ n−ω(1), (7)

Pr[W3 ≥ ln n] ≤ n−ω(1). (8)

Note that by the argument above, (6–8) imply via the union bound that with probability
1 − n−ω(1), |Λ(g, ρ)| ≤ λkeH−1 + keH/2−1/3/2, so it remains to prove (6–8).

We start by proving (8). Since there are at most nvH−2 subgraphs in Λ(g, 1), it is
enough to fix G ∈ Λ(g, 1) and prove that, with probability 1 − n−ω(1), either G is not a
vertex in G, or G has degree less than ln n in G. So let us fix G ∈ Λ(g, 1). For t ≥ 0, we
say that a sequence S = (Gj)

t
j=0 of subgraphs Gj ∈ Λ(g, 1) is a (G, t)-star, if G0 = G and

if for every j ≥ 1 the following two conditions hold: (i) G0 ∩ Gj 6= ∅, and (ii) Gj has an
edge which do not belong to any Gj′, j ′ < j. We say that G(n, ρ) contains a (G, t)-star S
and write {S ⊆ G(n, ρ)} for that event, if for every subgraph Gj ∈ S, Gj ⊆ G(n, ρ). We
first observe that if no (G, t)-star is contained in G(n, ρ), then either G is not a vertex of
G, or the degree of G in G is at most O(teH). Indeed, if t = 0 then clearly G is not a vertex
in G; So assume t ≥ 1 and and let S be a maximal (G, t′)-star that is contained in G(n, ρ)
(here maximal means that G(n, ρ) contains no (G, t′ +1)-star). Then by maximality of S,
any vertex that is adjacent to G in G is either in the sequence S, or is fully contained in
E(S), where E(S) denotes the set of all edges of the subgraphs in S. Since |E(S)| = O(t),
it then follows trivially that the number of vertices adjacent to G in G is at most O(teH).
Hence, in order to prove (8) it remains to show that with probability 1 − n−ω(1), G(n, ρ)
contains no (G, bln ln nc)-star, say. For brevity, below we assume that ln ln n is an integer.

Let Zt denote the number of (G, t)-stars that are contained in G(n, ρ), where G is the
subgraph fixed above. Since the probability that G(n, ρ) contains a (G, t)-star is at most
E[Zt] , it is enough to show that for t = ln ln n, E[Zt] is upper bounded by n−ω(1). Denote
by Start the set of all (G, t)-stars. For S = (Gj)

t−1
j=0 ∈ Start−1, denote by Et(S) the set of
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all Gt ∈ Λ(g, 1) such that (S, Gt) := (Gj)
t
j=0 ∈ Start. Then for t ≥ 1,

E[Zt] =
∑

S∈Start

Pr[S ⊆ G(n, ρ)]

=
∑

S∈Start−1

Pr[S ⊆ G(n, ρ)] ·
∑

Gt∈Et(S)

Pr[Gt ⊆ G(n, ρ) |S ⊆ G(n, ρ)].

Take t ∈ [ln ln n] and fix S ∈ Start−1. Note that the number of subgraphs Gt ∈ Et(S) such
that (Gt ∪ {g})∩ (E(S)∪ {g}) is isomorphic to F ⊆ H is at most O(nvH−vF tvH−2), which
for our choice of t is at most nvH−vF +o(1). Moreover, for such subgraphs Gt, we have that
the probability of {Gt ⊆ G(n, ρ) |S ⊆ G(n, ρ)} is exactly ρeH−eF . Also note that for every
Gt ∈ Et(S), (Gt ∪ {g})∩ (E(S)∪ {g}) is isomorphic to some F ( H with vF ≥ 3. Hence,
letting

∑

F be the sum over all F ( H with vF ≥ 3, we have for our choice of t that there
exists εH > 0 such that:

∑

Gt∈Et(S)

Pr[Gt ⊆ G(n, ρ) |S ⊆ G(n, ρ)] ≤
∑

F

O(nvH−vF +o(1)ρeH−eF ) ≤ n−εH+o(1),

where the last inequality is from Fact 3.1. Hence for t ∈ [ln ln n],

E[Zt] ≤ E[Zt−1] · n−εH+o(1). (9)

As there is only one (G, 0)-star, E[Z0] ≤ 1. Hence we conclude from (9) that E[Zt] ≤
n−(εH−o(1))t for all t ∈ [ln ln n]. Thus, for t = ln ln n, E[Zt] = n−ω(1). This concludes the
proof of (8).

Next we prove (7). Let Yt denote the number of induced matchings of size t in G. Since
the expectation of Yt is an upper bound on the probability that there exists an induced
matching of size t in G, in order to prove (7) it is enough to show that for t = bln nc,
E[Yt] = n−ω(1). Let G∗ be the graph whose vertex set is Λ(g, 1) and whose edge set consists
of all pairs of distinct vertices G, G′ such that G∩G′ 6= ∅. Let Matcht be the collection of all
induced matchings of size t in G∗. For M ∈ Matcht−1, let Et(M) denote the set of all edges
(Gt, G

′
t) in G∗ such that M ∪{(Gt, G

′
t)} ∈ Matcht. The number of edges (Gt, G

′
t) ∈ Et(M)

such that (Gt ∪ {g}) ∩ (G′
t ∪ {g}) is isomorphic to F ⊆ H is at most O(n2vH−2−vF );

Moreover, for such an edge (Gt, G
′
t), the probability of the event {Gt, G

′
t ⊆ G(n, ρ)} is

ρ2eH−1−eF , even conditioning on the event {G, G′ ⊆ G(n, ρ) : (G, G′) ∈ M}. Trivially, for
an edge (Gt, G

′
t) ∈ Et(M), we have that (Gt ∪ {g})∩ (G′

t ∪ {g}) is isomorphic to a proper
subgraph F of H over at least 3 vertices. Thus, if

∑

F is the sum over all F ( H with
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vF ≥ 3, we have for t ≥ 1,

E[Yt] =
∑

M∈Matcht

Pr
[

G, G′ ⊆ G(n, ρ) : (G, G′) ∈ M
]

≤
∑

M∈Matcht−1

Pr
[

G, G′ ⊆ G(n, ρ) : (G, G′) ∈ M
]

·

∑

(Gt,G′

t)∈Et(M)

Pr
[

Gt, G
′
t ⊆ G(n, ρ)

∣

∣

∣
G, G′ ⊆ G(n, ρ) : (G, G′) ∈ M

]

≤ E[Yt−1] ·
∑

F

O(n2vH−2−vF ρ2eH−1−eF ) ≤ E[Yt−1] · n−εH+o(1), (10)

where the last inequality follows from the fact that nvH−2ρeH−1 = keH−1 = no(1) and from
Fact 3.1, so εH > 0 depends only on H. Since trivially E[Y0] = 1, from (10) we can
conclude that E[Yt] = n−ω(1), for t = bln nc. This gives us (7).

Lastly, we prove (6). For this we use the next tail bound due to Spencer [11] (See
also [7], Lemma 2.46). If X denotes the number of vertices in G then

Pr[W1 ≥ E[X] + t] ≤ exp

(

− t2

2(E[X] + t/3)

)

. (11)

Using the fact that E[X] = λkeH−1, taking t = keH/2−1/3/3, using the fact that k1/3 =
ω(lnn), we can conclude from (11) the validity of (6).

3.2 Bounding Pr[E2(f)]

For the rest of this section we fix an edge f ∈ Kn. We show that E2(f) occurs with
probability 1 − o(1).

Definition 4 (bad sequence). Let S = (G1, G2, . . . , Gd) be a sequence of subgraphs of
Kn with 2 ≤ d ≤ 2D. We say that S is a bad sequence if the following three items hold
simultaneously:

1. For all j ∈ [d], Gj ∈ Λ(g, 1) for some edge g ∈ {f} ∪ ⋃

i<j Gi.

2. For all j ∈ [d − 1], Gj shares exactly 2 vertices and 0 edges with {f} ∪ ⋃

i<j Gi.

3. Gd shares at least 3 vertices and at most eH − 2 edges with {f} ∪ ⋃

i<d Gi.

For a bad sequence S = (G1, G2, . . . , Gd), write {S ⊆ G(n, ρ)} for the event that for
every j ∈ [d], {Gj ⊆ G(n, ρ)} occurs. Let E3 be the event that for all bad sequences S,
{S ⊆ G(n, ρ)} does not occur. The next two propositions imply the required lower bound
of 1 − o(1) on the probability of E2(f), by first showing that E3 implies E2(f) and then
showing that the probability of E3 is 1 − o(1).

Proposition 3.2. E3 implies E2(f).
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Proof. Assume E3 occurs. Then for every bad sequence S, {S ⊆ G(n, ρ)} does not occur.
To prove the assertion in the proposition, we need to show that the tree Tf,D defined in
Definition 2 is a good tree. To do this, we need to show that Tf,D satisfies properties P1,
P2 and P3, as given in Definition 3. We start the proof by showing, using the following
claim, the Tf,D satisfies property P1 (and part of property P2).

Claim 3.3. For d ∈ [D], let P = (v0, u1, v1, . . . , ud−1, vd−1, ud, vd) be a directed path in
Tf,d from the root v0 to a leaf vd. Let Gj be the label of node uj and let gj be the label
of node vj (so that g0 = f). Then (i) Gd ∩ {f} = ∅, and (ii) Gd ∩ Gi = ∅, for every
0 ≤ i ≤ d − 1.

Proof. The proof is by induction on d. Clearly, the claim is valid for d = 1, as by
definition, any subgraph in Λ(f, ρ) does not contain the edge f . Let d ≥ 2, d ∈ [D] and
assume the claim holds for d − 1. We prove the claim for d. Let S = (G1, G2, . . . , Gd)
be the sequence of the labels of the nodes ui, i ∈ [d], along the path P . Assume for the
sake of contradiction that Gd shares some edge with {f} ∪ ⋃

i<d Gi. We shall reach a
contradiction by showing that either S is a bad sequence (this contradicts the occurrence
of E3), or P is not a directed path in Tf,d.

Note first that from the induction hypothesis we have that for every j ∈ [d − 1],
Gj shares no edge with {f} ∪ ⋃

i<j Gi. We claim that this implies also that for every
j ∈ [d − 1], Gj shares exactly 2 vertices with {f} ∪ ⋃

i<j Gi. Indeed, for d = 2 this claim
is true by definition. If the claim is not true for d ≥ 3 then we have for some j ∈ [d − 1],
j ≥ 2, that (G1, G2, . . . , Gj) is a bad sequence, contradicting E3.

Now, by assumption, Gd shares some edge with {f} ∪ ⋃

i<d Gi. If we also have that
Gd shares at most eH − 2 edges with {f} ∪ ⋃

i<d Gi then by the observation made in the
previous paragraph we are done, since this implies that S is a bad sequence. Therefore, we
can assume for the rest of the proof that Gd shares all of its eH−1 edges with {f}∪⋃

i<d Gi.
We shall reach a contradiction by showing that P is not a directed path in Tf,d.

Write gd−1 = {a, b} and gd−2 = {x, y} and recall that Gd−1 ∈ Λ(gd−2, ρ) and Gd ∈
Λ(gd−1, ρ). Observe that gd−2 6= gd−1. Hence, we may assume without loss of generality
that a /∈ {x, y}. Note that a is a vertex of both Gd and Gd−1. Now, a key observation
is that any edge in Gd that is adjacent to a must belong also to Gd−1, for otherwise, the
subgraph Gd−1 will share 3 vertices (x, y and a) with {f}∪⋃

i<d−1 Gi–and that contradicts
the fact established above. More generally and for the same reason, if a′ /∈ {x, y} is a
vertex of both Gd and Gd−1, then any edge adjacent to a′ in Gd must also belong to Gd−1.
With that key observation at hand, we conclude the proof by reaching a contradiction for
every possible choice for the graph H.

Suppose first that H = K3. Without loss of generality, we have b = x. Now, since any
edge that is adjacent to a in Gd must also be an edge in Gd−1, it follows that {a, y} is an
edge in Gd. Therefore, {a, b = x, y} is the set of vertices of Gd and so gd−2 = {x, y} is
an edge in Gd. But, by Definition 2, this contradicts the assumption that P is a directed
path in Tf,d.

To reach a contradiction for other regular, strictly 2-balanced graphs, we need the
following fact.

the electronic journal of combinatorics 16 (2009), #R4 13



Fact 3.4. Let H be a regular, strictly 2-balanced graph with vH ≥ 4. Let {x, y} be an edge
in H and let a, a′ /∈ {x, y} be two distinct vertices in H. Then there is a path from a to
a′ in H that avoids the vertices {x, y}.

Proof. Assume for the sake of contradiction that there exist two distinct vertices a, a′ /∈
{x, y} such that every path in H from a to a′, if there exists any, must go through a vertex
in {x, y}. This implies that we can write H as the union of two graphs, H1 and H2, that
share only the edge {x, y} and the vertices x and y, and such that a is a vertex in H1 and
a′ is a vertex in H2. Note that vH1 , vH2 ≥ 3 and that H1 and H2 are proper subgraphs of
H. Without loss of generality, we assume that (eH1 − 1)/(vH1 − 2) ≥ (eH2 − 1)/(vH2 − 2).
Now, by the fact that H = H1 ∪ H2 is strictly 2-balanced, we have (eH − 1)/(vH − 2) >
(eH1 − 1)/(vH1 − 2). Therefore, from the last two inequalities we deduce that

(eH1 − 1)(vH − 2) < (vH1 − 2)(eH − 1), and

−(eH1 − 1)(vH2 − 2) ≤ −(vH1 − 2)(eH2 − 1).

Hence,

(eH1 − 1)(vH − vH2) < (vH1 − 2)(eH − eH2).

Applying the facts that vH = vH1 + vH2 − 2 and eH = eH1 + eH2 − 1 to the last inequality,
we get (eH1 − 1)(vH1 − 2) < (vH1 − 2)(eH1 − 1), which is a clear contradiction. �

Suppose now that H is regular, strictly 2-balanced and vH ≥ 4. We use Fact 3.4 in
order to generalize the argument for K3 given above. Define G+

d := Gd ∪ {gd−1}. We
will show below that Gd−1 ⊆ G+

d . Since H is regular, this implies that gd−2 ∈ G+
d . Since

G+
d = Gd ∪ {gd−1} and gd−1 6= gd−2 it then follows that gd−2 ∈ Gd. This, by Definition 2,

contradicts the assumption that P is a directed path in Tf,d. It thus remains to show
Gd−1 ⊆ G+

d . Since every edge in Gd−1 is adjacent to some vertex a′ /∈ {x, y}, it is enough
to show that for every vertex a′ /∈ {x, y} of Gd−1, any edge adjacent to a′ in Gd−1 is an
edge in G+

d .
Let a′ /∈ {x, y} be an arbitrary vertex of Gd−1. By Fact 3.4 there exists in Gd−1 a path

(a0 = a, a1, a2, . . . , al = a′) of length l ≥ 0 from a to a′, that avoids the vertices {x, y}.
We first claim that ai is a vertex of G+

d for every 0 ≤ i ≤ l. Indeed, the claim is trivially
true for i = 0, as a0 = a is a vertex of Gd ⊂ G+

d . Assume that for 0 ≤ i − 1 < l, ai−1 is
a vertex of G+

d . Note that in that case, ai−1 is a vertex of both Gd and Gd−1 and that
ai−1 /∈ {x, y}. Then by the key observation made above, every edge that is adjacent to
ai−1 in Gd is an edge in Gd−1. Also, we have gd−1 ∈ Gd−1. Therefore, every edge that is
adjacent to ai−1 in G+

d is an edge in Gd−1. This, together with the facts that H is regular
and ai−1 /∈ {x, y} implies that every edge that is adjacent to ai−1 in Gd−1 is an edge in
G+

d . Therefore, since {ai−1, ai} is an edge in Gd−1, we get as needed that ai is a vertex of
G+

d .
Now that we have found that a′ is a vertex of both G+

d and Gd−1, using the fact
that a′ /∈ {x, y}, we again have by the key observation above that every edge that is
adjacent to a′ in Gd is an edge in Gd−1. Since gd−1 ∈ Gd−1 we thus have that every edge
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that is adjacent to a′ in G+
d is an edge in Gd−1. Therefore, by regularity of H and since

a′ /∈ {x, y}, we have that every edge that is adjacent to a′ in Gd−1 is an edge in G+
d . This

completes the proof of the claim. �

Claim 3.3 gives us property P1 (and part of property P2). We now prove that prop-
erty P2 holds as well.

Claim 3.5. For any d ∈ [D], property P2 holds for Tf,d.

Proof. The proof is by induction on d. To see that property P2 holds for the base case,
d = 1, let (v0, u1) and (v0, u

′
1) be two different paths in Tf,1 so that u1 6= u′

1. Let G1 and
G2 be the labels of the nodes u1 and u′

1, and assume for the sake of contradiction that
G1∩G2 6= ∅. Then clearly G2 shares an edge with {f}∪G1. Since G1 and G2 are distinct
subgraphs (or else u1 = u′

1), and using the fact that G2 ∈ Λ(f, ρ) and so G2 ∩ {f} = ∅,
we also have that G2 shares at most eH − 2 edges with {f} ∪ G1. Hence, by definition,
(G1, G2) is a bad sequence. This contradicts E3 and so property P2 holds for Tf,1.

Let d ∈ [D], d ≥ 2 and assume the claim holds for d − 1. We prove that P2 holds for
Tf,d. Let P = (v0, u1, v1, . . . , vd−1, ud, vd) be a path in Tf,d from the root v0 to a leaf. For
j ∈ [d], let Gj be the label of the node uj. Note that by the induction hypothesis and by
Claim 3.3, in order to prove the claim for Tf,d, it suffices to show that Gd does not share
an edge with the label of any node u /∈ {u1, u2, . . . , ud} in Tf,d, where u is at odd distance
from v0. Assume for the sake of contradiction that for some vi, 0 ≤ i ≤ d − 1, and some
l ≥ 1, there exists a path P ′ = (vi, u

′
1, v

′
1, . . . , v

′
l−1, u

′
l, v

′
l) in Tf,d such that u1 6= u′

1 (and so
u′

l /∈ {u1, u2, . . . , ud}) and yet the labels of ud and u′
l have a non-empty intersection. We

will reach a contradiction by constructing a bad sequence from the labels along the paths
P and P ′.

For j ∈ [l], let G′
j be the label of node u′

j. We note that by assumption, |Gd ∩G′
l| ≥ 1.

We assume for simplicity that l is minimal, in the sense that |Gd ∩ G′
j| = 0 for every

1 ≤ j ≤ l− 1, or else we can shorten the path P ′ so as to satisfy this assumption and still
construct a bad sequence and get a contradiction. We consider two cases:

• Assume v′
l is a node in Tf,d−1 so that P ′ is a path in Tf,d−1. Define S to be the

sequence which is the concatenation of (G1, G2, . . . , Gd−1) with (G′
1, G

′
2, . . . , G

′
l).

For convenience, rewrite S = (F1, F2, . . . , Fl+d−1) (here F1 = G1 and Fl+d−1 = G′
l).

From the induction hypothesis and claim 3.3 we have that for every j ∈ [l + d− 1],
Fj shares no edge with {f} ∪ ⋃

i<j Fi. From this, together with the occurrence of
E3 we get that for all j ∈ [l +d− 1], Fj shares exactly 2 vertices with {f}∪⋃

i<j Fi.

We now claim that the sequence S ′ = (F1, F2, . . . , Fl+d−1, Gd) is a bad sequence.
First note that by the minimality of l, Gd shares no edge with

⋃

i<l G
′
i. Also, by

Claim 3.3, Gd shares no edge with {f} ∪ ⋃

i<d Gi. In contrast, by assumption,
Gd shares at least one edge with G′

l. Note that S ′ contains at most 2D subgraphs.
Hence, to demonstrate that S ′ is a bad sequence and get a contradiction it is enough
to show that Gd shares at most eH − 2 edges with G′

l.

If Gd shares eH − 1 edges with G′
l then Gd = G′

l. In that case, since H is regular,
we would have that the label of the node vd−1 is the same as the label of the node
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v′
l−1. But since clearly vd−1 6= v′

l−1 (indeed, the distance of vd−1 from v0 is strictly
larger than the distance of v′

l−1 from v0), this violates either property P2 of Tf,d−1

which holds by the induction hypothesis, or property P1 which we have already
established. Hence Gd shares at most eH − 2 edges with G′

l and we conclude that
S ′ is a bad sequence, a contradiction to E3.

• Assume v′
l is a leaf in Tf,d. Define the sequence S = (F1, F2, . . . , Fl+d−1) as in the

previous item. From the induction hypothesis, Claim 3.3 and from the previous
item we have that for every j ∈ [l+d−1], Fj shares no edge with {f}∪⋃

i<j Fi. By
the occurrence of E3 we then have that for every j ∈ [l + d − 1], Fj shares exactly
2 vertices with {f} ∪ ⋃

i<j Fi.

Define S ′ = (F1, F2, . . . , Fl+d−1, Gd) as in the previous item. We again claim that
S ′ is a bad sequence. To verify this claim, first note that by Claim 3.3, Gd shares
no no edge with {f} ∪ ⋃

i<d Gi. By the minimality of l, Gd shares no edge with
⋃

i<l G
′
i. Also, there are at most 2D subgraphs in S ′ and by assumption, Gd shares

some edge with G′
l. Hence, to conclude that S ′ is a bad sequence, it is enough to

show that Gd shares at most eH − 2 edges with G′
l. We have two cases.

1. Suppose vd−1 = v′
l−1. Since ud 6= u′

l we have by definition that Gd shares at
most eH − 2 edges with G′

l.

2. Suppose vd−1 6= v′
l−1. If Gd shares all eH − 1 edges with G′

l then since H is
regular, we have that the labels of vd−1 and v′

l−1 are the same. This in turn
implies that the parents of vd−1 and vl−1 are distinct and their labels share an
edge. This is a contradiction to the induction hypothesis. Hence, as needed,
Gd shares at most eH − 2 edges with G′

l.

We conclude that property P2 holds for Tf,d. �

To conclude the proof we argue that property P3 holds. Let (v0, u1, v1, . . . , vd−1, ud, vd)
be a path in Tf,D, starting from the root v0. Let Gj be the label of node uj and let gj

be the label of node vj. We need to show that the number of nodes adjacent to vd−1 in
Tf,D is |Λ(gd−1, ρ)| − O(1). The claim is trivially true for d = 1, since any subgraph in
Λ(f, ρ) is a label of a node adjacent to the root of Tf,D. For d ≥ 2, we recall that by
definition, the nodes that are adjacent to vd−1 in Tf,D are those nodes whose labels are in
{Gd ∈ Λ(gd−1, ρ) : gd−2 /∈ Gd}. Reflecting on the proof of Claim 3.3, we see that assuming
E3, if gd−2 ∈ Gd ∈ Λ(gd−1, ρ), then the set of vertices of Gd is the same as that of Gd−1.
This immediately implies that |{Gd ∈ Λ(gd−1, ρ) : gd−2 ∈ Gd}| = O(1). This gives us
property P3. With that, we conclude the proof. �

Proposition 3.6. Pr[E3] = 1 − o(1).

Proof. Let Z be the random variable counting the number of bad sequences S for which
{S ⊆ G(n, ρ)} occurs. Since the probability that {S ⊆ G(n, ρ)} occurs for some bad
sequence S is at most E[Z] , showing that E[Z] = o(1) would imply the proposition.

the electronic journal of combinatorics 16 (2009), #R4 16



For d ≥ 2, let Seqd denote the collection of all bad sequences of length d. Then

E[Z] =
∑

2≤d≤2D

∑

Sd∈Seqd

Pr
[

Sd ⊆ G(n, ρ)
]

. (12)

Below we show that for every d satisfying 2 ≤ d ≤ 2D,

∑

Sd∈Seqd

Pr
[

Sd ⊆ G(n, ρ)
]

≤ n−εH+o(1), (13)

where εH > 0 is the constant provided in Fact 3.1. From (12) and (13) and since 2D =
no(1), we get that E[Z] ≤ n−εH+o(1) = o(1) as required. Hence it remains to prove (13).

Fix for the rest of the proof d satisfying 2 ≤ d ≤ 2D. In order to prove (13), it
would be convenient to partition the set Seqd to two parts and then upper bound the sum
in (13) for each of the two parts of the partition. Let Seqd,1 be the set of all sequences
S = (Gi)

d
i=1 ∈ Seqd for which Gd shares no edge (and at least 3 vertices) with {f}∪⋃

i<d Gi.
Let Seqd,2 be the set of all sequences S = (Gi)

d
i=1 ∈ Seqd for which Gd shares at least 1

edge (and at most eH −2 edges) with {f}∪⋃

i<d Gi. It would be useful to further classify
those members of Seqd,2 as follows. Suppose that S = (Gi)

d
i=1 ∈ Seqd,2. Let g be the

unique edge in {f} ∪ ⋃

i<d Gi such that Gd ∈ Λ(g, 1). (The edge g is unique, since H is
regular.) Define

HS := {g} ∪
(

Gd ∩
(

{f} ∪
⋃

i<d

Gi

)

)

.

Then we say that S is an F -type if HS is isomorphic to F . Note that if S is an F -type
then F is a proper subgraph of H with vF ≥ 3. We are now ready to upper bound the
sum in (13) for the two parts of the partition of Seqd.

We start by giving an upper bound on the sum in (13) when the sum ranges over
all S ∈ Seqd,1. First, we upper bound the size of Seqd,1. To do so, we construct a bad
sequence S = (Gi)

d
i=1 ∈ Seqd,1 iteratively. Assume we have already chosen the first j − 1

subgraphs in S for j ∈ [d − 1]. We count the number of choices for Gj: There are O(d)
possible choices for an edge g ∈ {f} ∪ ⋃

i<j Gi for which Gj is in Λ(g, 1); There are at

most nvH−2 choices for the vertices of Gj; There are O(1) choices for the edges of Gj

given that we have already fixed its vH vertices. In total, the number of choices for Gj

is at most O(d · nvH−2) = nvH−2+O((ln ln n)/ ln n). Assume we have already chosen the first
d − 1 subgraphs in S. We count the number of choices for Gd: There are O(d) possible
choices for an edge g ∈ {f} ∪ ⋃

i<d Gi for which Gd is in Λ(g, 1); There are at most
O(nvH−3 · dvH) choices for the vertices of Gd, which follows from the fact that Gd shares
at least 3 vertices with {f} ∪ ⋃

i<d Gi; There are O(1) choices for the edges of Gd, given
that we have fixed the vH vertices of Gd. In total, the number of choices for Gd is at
most O(d ·nvH−3 ·dvH ) = nvH−3+o(1). From the above we conclude that the number of bad
sequences S ∈ Seqd,1 is at most nd(vH−2)−1+o(1). Now, it is easy to see that if S ∈ Seqd,1

then the probability of {S ⊆ G(n, ρ)} is ρd(eH−1). Thus, recalling Definition 1, we conclude
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that
∑

S∈Seqd,1

Pr
[

S ⊆ G(n, ρ)
]

≤ nd(vH−2)−1+o(1)ρd(eH−1)

≤ kd(eH−1)n−1+o(1)

= n−1+o(1). (14)

We now upper bound the sum in (13) when the sum ranges over all S ∈ Seqd,2. We
first upper bound the number of F -type bad sequences S ∈ Seqd,2, for some F ( H,
vF ≥ 3. As before, we construct such a bad sequence S = (Gi)

d
i=1 iteratively. Assume we

have already chosen the first j − 1 subgraphs in S, for j ∈ [d − 1]. Then the number of
choices for Gj is, as before, nvH−2+O((ln ln n)/ ln n). Assume we have already chosen the first
d − 1 subgraphs in S. We count the number of choices for Gd: There are O(d) choices
for an edge g ∈ {f} ∪ ⋃

i<d Gi such that Gd ∈ Λ(g, 1); There are at most O(nvH−vF · dvF )
choices for the vertices of Gd; There are O(1) choices for the edges of Gd, given that
we have fixed its edges. In total, the number of choices for Gd is O(d · nvH−vF · dvF ) =
nvH−vF +o(1). Hence, we conclude that the number of F -type bad sequences S ∈ Seqd,2 is

n(d−1)(vH−2)+vH−vF +o(1). For such a sequence S, it can be verified that the probability of
{S ⊆ G(n, ρ)} is ρ(d−1)(eH−1)+eH−eF . Hence, taking

∑

F to be the sum over all F ( H
with vF ≥ 3 and using Fact 3.1, we have

∑

S∈Seqd,2

Pr
[

S ⊆ G(n, ρ)
]

≤
∑

F

n(d−1)(vH−2)+vH−vF +o(1)ρ(d−1)(eH−1)+eH−eF

≤
∑

F

k(d−1)(eH−1)n−εH+o(1)

=
∑

F

n−εH+o(1). (15)

Since
∑

F 1 = O(1), we conclude from (14) and (15) the validity of (13). This completes
the proof. �

4 Proof of Lemma 2.2

In order to prove Lemma 2.2, let us fix an edge f ∈ Kn and assume everywhere throughout
the section that E2(f)∩E1 occurs. Hence, we may fix once and for the rest of this section
the good tree T = Tf,D which is guaranteed to exist by the occurrence of E2(f). It now
suffices to lower bound the probability of {f ∈ Mn(H) | β(f) < cn−(vH−2)/(eH−1)}. It is
extremely important to note, and we use this fact implicitly throughout this section, that
for every edge g that appears as a label of a non-root node at even height in T , the
probability of the event {β(g) < ρ′}, for ρ′ ≤ ρ, is ρ′/ρ. This is true since for such an edge
g we already condition on the event {g ∈ G(n, ρ)} and so β(g) is uniformly distributed in
[0, ρ]. Therefore, for example, if g is a label of a non-root node at even height in T , then
the probability of {β(g) < cn−(vH−2)/(eH−1)} is c/k.
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A useful convention we use throughout this section is this: Every two distinct nodes
in the good tree T have distinct labels and so, for the rest of this section we will refer to
the nodes of T by their labels. We also recall and introduce some useful notation. First
recall that for every node u in T , ΓT (u) denotes the set of nodes adjacent to u in T . For
simplicity, we shall replace ΓT (u) with Γ(u) when no confusion arises. Recall also that
the tree T has height 2D. If g is a node at height 2d in T , we denote by Tg,d the subtree
of T that is rooted at g. Lastly, if B ⊆ [0, 1]n is any event, we denote by B the event
[0, 1]n \ B.

The overall structure of the proof of Lemma 2.2 is this: First, in the next few para-
graphs, conditioning on {β(f) < cn−(vH−2)/(eH−1)}, we reduce the problem of lower bound-
ing the probability of {f ∈ Mn(H)} to the problem of lower bounding the probability of a
certain event, B(Tf,D) (to be defined shortly), which we define using the tree Tf,D. We are

then left with the task of estimating the probability of B(Tf,D), a task being performed
in Sections 4.1 and 4.2.

Definition 5. Let g be a node in T at height 2d and let Tg,d be the subtree of T rooted at
g. Define

B(Tg,d) :=

{ ∅ if d = 0,

∃G′ ∈ Γ(g). ∀g′ ∈ G′. {β(g′) < β(g)} ∩ B(Tg′,d−1) if 1 ≤ d ≤ D.

Proposition 4.1. Let g be a non-leaf node in T at height 2d and let Tg,d be the subtree
of T rooted at g. If d is even then B(Tg,d) implies {g /∈ Mn(H)}.
Proof. The proof is by induction on d. Since g is a non-leaf and d is even, we start with
the case d = 2 (so the distance from g to any leaf of Tg,d is 4). Assume B(Tg,2) occurs.
Then by Definition 5 there exists a graph G′ ∈ Γ(g) for which the following two events
occur: (i) for every g′ ∈ G′, {β(g′) < β(g)}, and (ii) for every g′ ∈ G′, B(Tg′,1) occurs.
Now observe that in order to conclude that {g /∈ Mn(H)} occurs, it suffices to show that
{G′ ⊆ Mn(H)} occurs. To show the occurrence of the last event, it suffices to show that
for every edge g′ ∈ G′ and for every graph G′′ ∈ Λ(g′, ρ), there exists an edge g′′ ∈ G′′

whose birthtime β(g′′) is larger than β(g′). Let us fix g′ ∈ G′ and G′′ ∈ Λ(g′, ρ). We have
two cases. If G′′ ∈ Γ(g′) then by the fact that B(Tg′,1) occurs, we have indeed that there
exists an edge g′′ ∈ G′′ such that β(g′′) > β(g′) (here we have used the fact that with
probability 1, β(g′′) 6= β(g′)). If on the other hand G′′ /∈ Γ(g′) then by definition of T ,
g ∈ G′′. Then, by item (i) above, we have that for some g′′ ∈ G′′, β(g′′) = β(g) > β(g′).
We thus conclude that {g /∈ Mn(H)} occurs.

Assume the proposition is valid for d − 2. We prove it for d, so assume that B(Tg,d)
occurs. This implies by Definition 5 that there exists a graph G′ ∈ Γ(g) for which the
following two events occur: (i) for every g ′ ∈ G′, {β(g′) < β(g)}, and (ii) for every
g′ ∈ G′, B(Tg′,d−1) occurs. As before, to prove the proposition it suffices to show that
{G′ ⊆ Mn(H)} occurs. The occurrence of this last event can be proved if we show that for
every edge g′ ∈ G′ and for every graph G′′ ∈ Λ(g′, ρ), there exists an edge g′′ ∈ G′′ such
that either β(g′′) > β(g′) or g′′ /∈ Mn(H). Fix g′ ∈ G′ and G′′ ∈ Λ(g′, ρ). As before, we
have two cases. Suppose first that G′′ ∈ Γ(g′). Then there exists an edge g′′ ∈ G′′ such that
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either β(g′′) > β(g′) or B(Tg′′,d−2) occurs. This implies by the induction hypothesis that
either β(g′′) > β(g′) or g′′ /∈ Mn(H), as required. The second case is that of G′′ /∈ Γ(g′).
Similarly to the base case, this implies that there exists an edge g ′′ ∈ G′′ (specifically
g′′ = g) such that β(g′′) > β(g′). Hence {g /∈ Mn(H)} occurs. �

Recall Definition 1 and note that D is odd. Hence, from Definition 5 and Propo-
sition 4.1, it follows that, conditioning on {β(f) < cn−(vH−2)/(eH−1)}, B(Tf,D) implies
{f ∈ Mn(H)}. (Indeed, note that Γ(f) = Λ(f, ρ) by definition.) Hence, we get that the
probability of {f ∈ Mn(H) | β(f) < cn−(vH−2)/(eH−1)} is lower bounded by

Pr
[

B(Tf,D)
∣

∣

∣
β(f) < cn−(vH−2)/(eH−1)

]

. (16)

In the two subsections below we lower bound (16). Specifically, we show that

Pr
[

B(Tf,D)
∣

∣

∣
β(f) < cn−(vH−2)/(eH−1)

]

= Ω

(

(ln c)1/(eH−1)

c

)

, (17)

which, given the discussion above, proves Lemma 2.2. In order to prove (17) it would
be convenient to first restrict ourselves to the following special case. Consider the tree
RTf,d which is obtained from Tf,d as follows: For every non-leaf node g at even height
in Tf,d, remove an arbitrary subset of the subtrees rooted at the nodes adjacent to g, so
that the outdegree of g becomes bλkeH−1c − bkeH/2−1/3c exactly. Note that this can be
done, as we assume that E1 occurs. For a node g at height 2d in RT := RTf,D, we denote
by RTg,d the subtree of RT that is rooted at g. Given this definition the task of lower
bounding (16) is now divided to two parts. In the first part (Section 4.1), we prove (17)
for the special case that Tf,D is replaced with RTf,D. In the second part (Section 4.2), we

show that asymptotically, the probability of {B(Tf,D) | β(f) < cn−(vH−2)/(eH−1)} is equal

to the probability of {B(RTf,D) | β(f) < cn−(vH−2)/(eH−1)}. Combining these two parts,
we will conclude the validity of (17) and so also the validity of Lemma 2.2.

4.1 Analyzing B(RT )

For x < y, let pd(x, y) be the probability of B(RTf,d) conditioned on {xn−(vH−2)/(eH−1) ≤
β(f) < yn−(vH−2)/(eH−1)}. The main result in this subsection follows.

Lemma 4.2. pD(0, c) = Ω
(

(ln c)1/(eH−1)

c

)

.

To prove Lemma 4.2, we begin with the following proposition.

Proposition 4.3. For 0 < x ≤ c and n sufficiently large, pD(0, x) ≥ pD−1(0, x)− 2−D+1.

Proof. Define

Gi :=







{

G1 ∈ ΓRT (f) : ∀g1 ∈ G1. β(g1) < cn−(vH−2)/(eH−1)
}

if i = 1,
⋃

gi−1∈Gi−1∈Gi−1

{

Gi ∈ ΓRT (gi−1) : ∀gi ∈ Gi. β(gi) < β(gi−1)
}

if 2 ≤ i ≤ d.
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By inspecting Definition 5, one sees that conditioned on {β(f) < xn−(vH−2)/(eH−1)},
B(RTf,D−1) implies B(RTf,D)∪ {GD−1 6= ∅}. Hence pD−1(0, x) ≤ pD(0, x) + Pr[GD−1 6= ∅]
and so it suffices to prove that Pr[GD−1 6= ∅] ≤ 2−D+1. For that, we show that the
expected size of GD−1 is at most 2−D+1.

To estimate the expected size of GD−1, we first give an upper bound on the probability
that a given subgraph GD−1 is included in the set GD−1. For that, let us consider the
unique path (f = g0, G1, g1, . . . , gD−2, GD−1) from the root of RTf,D to GD−1. Then G1

is included in G1 if and only if β(g) < cn−(vH−2)/(eH−1) for every g ∈ G1. For j ≥ 2,
Gj is included in Gj if and only if Gi is included in Gi for every i < j and in addition,
β(g) < β(gj−1) for every g ∈ Gj. Now, the probability of {G1 ∈ G1} is exactly (c/k)eH−1.
Given G1 ∈ G1, we have that g1 is uniformly distributed in [0, cn−(vH−2)/(eH−1)). Moreover,
for j ≥ 2, given that Gj ∈ Gj, we have that gj is uniformly distributed in [0, β(gj−1)).
Hence, it follows that

Pr[GD−1 ∈ GD−1] =

∫ 1

0

. . .

∫ 1

0

( c

k

)eH−1

·
D−1
∏

j=2

( c

k
·

j−1
∏

i=1

xi

)eH−1

dx1 dx2 . . . dxD−2

=
c(eH−1)(D−1)

k(eH−1)(D−1)
· 1
∏D−2

i=1 (i(eH − 1) + 1)

<
c(eH−1)(D−1)

k(eH−1)(D−1)(D − 1)!
, (18)

where the inequality follows from eH ≥ 3. Since there are no more than (eHλkeH−1)D−1

nodes at distance 2(D − 1) − 1 from the root of RT , we deduce from (18) that the
expected number of nodes in GD−1 is at most (eHλceH−1)D−1/((D−1)!). Since (D−1)! ≥
((D−1)/3)D−1 and since D−1 ≥ 6eHλceH−1 for n sufficiently large, the expected number
of nodes in GD−1 is at most

(3eHλceH−1)D−1

(D − 1)D−1
≤ (3eHλceH−1)D−1

(6eHλceH−1)D−1
= 2−D+1,

as required. This completes the proof. �

We also need the following fact.

Proposition 4.4. Let x < y. Then pd(0, x) ≥ pd(0, y) and pd(0, x) ≥ pd(x, y).

Proof. Since pd(0, y) is the weighted average of pd(0, x) and pd(x, y), it is enough to show
that pd(0, x) ≥ pd(x, y). Take any birthtime function β under which B(RTf,d) occurs,
with xn−(vH−2)/(eH−1) ≤ β(f) < yn−(vH−2)/(eH−1). Now alter β(f) so that we have β(f) <
xn−(vH−2)/(eH−1). It is easy to check given Definition 5 that B(RTf,d) occurs even after
the above alteration of β. This implies that pd(0, x) ≥ pd(x, y). �

We now turn to lower bound pD(0, c). Let g ∈ G ∈ ΓRT (f). Condition on the
occurrence of {in−(vH−2)/(eH−1) ≤ β(f) < (i + 1)n−(vH−2)/(eH−1)} for some i ∈ [c − 1].
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Under that condition we have Pr[β(g) < β(f)] ≤ (i + 1)/k. If we further condition on
{β(g) < β(f)} then we have by Proposition 4.4 (and the fact that RTg,D−1 is isomorphic

to Tf,D−1) that the probability of B(RTg,D−1) is upper bounded by pD−1(0, i). From these
observations, using Definition 5 and the fact that RTf,D is a subtree of the good tree Tf,D,
we get that for all i ∈ [c − 1],

pD(i, i + 1) ≥
(

1 −
(

(i + 1) · pD−1(0, i)

k

)eH−1)bλkeH−1c−bkeH/2−1/3c

.

Hence, by Proposition 4.3 we get

pD(0, c) ≥ 1

c

c−1
∑

i=dc/2e

pD(i, i + 1)

≥ 1

c

c−1
∑

i=dc/2e

(

1 −
(

(i + 1) · pD−1(0, i)

k

)eH−1)bλkeH−1c−bkeH/2−1/3c

≥ 1

c

c−1
∑

i=dc/2e

(

1 −
(

(i + 1) · (pD(0, i) + 2−D+1)

k

)eH−1)bλkeH−1c−bkeH /2−1/3c

. (19)

Define

τ(i) =
((100λ)−1 ln i)1/(eH−1)

i + 1
− 2−D+1.

We have two cases. First assume that pD(0, i) ≥ τ(i) for some integer i, dc/2e ≤ i ≤ c−1.
In that case the proof is complete, since by Proposition 4.4, we get

pD(0, c) ≥ pD(0, dc/2e)
2

≥ pD(0, i)

2
≥ τ(i)

2
= Ω

((ln c)1/(eH−1)

c

)

.

Next, assume that pD(0, i) < τ(i) for all integers i, dc/2e ≤ i ≤ c − 1. In that case, by
replacing pD(0, i) with τ(i) in the sum above, we get

pD(0, c) ≥ 1

c

c−1
∑

i=dc/2e

(

1 − ln i

100λkeH−1

)λkeH−1

= Ω
((ln c)1/(eH−1)

c

)

.

Note that Lemma 4.2 gives the validity of (17) for the case where Tf,D is replaced with

RTf,D. In the next subsection we show that asymptotically, the probability of B(Tf,D)
conditioned on {β(f) < cn−(vH−2)/(eH−1)} is equal to pD(0, c). This will prove (17) and
hence also Lemma 2.2.

4.2 On B(RT ) versus B(T )

For x < y and for a node g at height 2d in T , let qg,d(x, y) be the probability of B(Tg,d)
conditioned on {xn−(vH−2)/(eH−1) ≤ β(g) < yn−(vH−2)/(eH−1)}. The main result in this
subsection follows.
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Lemma 4.5. (1 − o(1)) · pD(0, c) ≤ qf,D(0, c) ≤ (1 + o(1)) · pD(0, c).

Note that Lemma 4.5 together with Lemma 4.2 implies (17), which in turn implies
Lemma 2.2. We begin the proof of Lemma 4.5 by giving a few useful definitions which
we use throughout the proof.

Definition 6.

• Define for every integer d ≤ D,

εd :=
(128eHc)2deH

keH/2−2/3
.

• Fix δ > 0 which satisfies the following: (i) δ ≤ k−20eH , (ii) δ1/4 = o(εd · pd(0, c))
for all d ∈ [D], (iii) (1 − (2δ1/4/k)eH−1)2keH−1 ≥ 1 − εd/2 for all d ∈ [D], and
(iv) 1/

√
δ ∈ N.

• Define J := {
√

δ,
√

δ + δ,
√

δ + 2δ, . . . , c − 2δ, c − δ}.
Proposition 4.6. Let g be a node at height 2d in T , 0 ≤ d ≤ D. Assume that for all
j ∈ J ,

(1 − εd/2) · pd(j, j + δ) ≤ qg,d(j, j + δ) ≤ (1 + εd/2) · pd(j, j + δ).

Then for all j ∈ J ∪ {c},

(1 − εd) · pd(0, j) ≤ qg,d(0, j) ≤ (1 + εd) · pd(0, j).

Proof. First note that the conclusion in the proposition is trivially true for d = 0, since
qg,d(0, j) = pd(0, j) = 1 for all j ∈ J ∪ {c}. Hence, we may assume that d ≥ 1.

Fix j ∈ J ∪ {c}. Assume first that j >
√

δ + δ1/4. Trivially we have:

pd(0, j) = O
(

√
δ

j

)

+
δ

j
·

∑

j′∈J :j′<j

pd(j
′, j ′ + δ),

qg,d(0, j) = O
(

√
δ

j

)

+
δ

j
·

∑

j′∈J :j′<j

qg,d(j
′, j ′ + δ).

Since j >
√

δ + δ1/4 we have
√

δ/j ≤ δ1/4. By definition, δ1/4 = o(εd · pd(0, c)). By
Proposition 4.4 and since j ≤ c, we have pd(0, c) ≤ pd(0, j). Therefore,

√
δ/j ≤ δ1/4 =

o(εd · pd(0, j)). This, it can be verified, together with the two equalities above and with
the assumptions given in the proposition, implies the validity of the claim for j.

Next, assume j ≤
√

δ + δ1/4. Crudely, qg,d(0, j) is lower bounded by the probability of
the event that for every G ∈ ΓT (g) there is an edge g′ ∈ G with {β(g′) > β(g)}. Hence,
since |ΓT (g)| ≤ 2keH−1 and by definition of δ,

qg,d(0, j) ≥
(

1 −
(2δ1/4

k

)eH−1)2keH−1

≥ 1 − εd/2.
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Trivially, pd(0, j) ≤ 1. Hence, it follows that qg,d(0, j) is lower bounded by (1−εd)·pd(0, j),
as required. The argument for the upper bound is similar. Trivially, qg,d(0, j) ≤ 1. Also,
by an argument similar to the one used above, pd(0, j) ≥ 1− εd/2. Hence, one can verify
that indeed qg,d(0, j) ≤ (1 + εd) · pd(0, j). Thus, the claim is valid for all j ∈ J ∪ {c}. �

The following proposition, when combined with Proposition 4.6, implies Lemma 4.5.

Proposition 4.7. Let g be a node at height 2d in T , 0 ≤ d ≤ D. Then for all j ∈ J ,

(1 − εd/2) · pd(j, j + δ) ≤ qg,d(j, j + δ) ≤ (1 + εd/2) · pd(j, j + δ).

The rest of the paper is dedicated for the proof of Proposition 4.7. We collect some
useful facts:

Claim 4.8. Let g be a node at height 2d in T , 1 ≤ d ≤ D. Then for all j ∈ J ,

(1) qg,d(j, j + δ) ≤ ∏

G∈ΓT (g)

(

1 − ∏

g′∈G

j·qg′,d−1(0,j)

k

)

.

(2) qg,d(j, j + δ) ≥ (1 − εd−1) ·
∏

G∈ΓT (g)

(

1 − ∏

g′∈G

j·qg′,d−1(0,j)

k

)

.

(3) pd(j, j + δ) ≥ (1 + εd−1)
−1 ·

(

1 −
( j·pd−1(0,j)

k

)eH−1)|ΓRT (f)|
.

(4) pd(j, j + δ) ≤
(

1 −
( j·pd−1(0,j)

k

)eH−1
)|ΓRT (f)|.

Proof. (1) Condition on {jn−(vH−2)/(eH−1) ≤ β(g) < (j + δ)n−(vH−2)/(eH−1)} and fix
g′ ∈ G ∈ ΓT (g). Given the definition of B(Tg,d) and the fact that T is a good tree,

it is enough to verify that the probability of the event {β(g ′) < β(g)}∩B(Tg′,d−1) is
at least j · qg′,d−1(0, j)/k. Indeed, the event in question is implied by the occurrence

of {β(g′) < jn−(vH−2)/(eH−1)} ∩ B(Tg′,d−1).

(2) Let E1 be the event that for all G ∈ ΓT (g), it does not hold that for all g′ ∈
G, both {β(g′) < jn−(vH−2)/(eH−1)} and B(RTg′,d−1) occur. Let E2 be the event
that for all g′ ∈ G ∈ ΓT (g), β(g′) is not in the interval [jn−(vH−2)/(eH−1), (j +
δ)n−(vH−2)/(eH−1)). It is easy to verify that qg,d(j, j + δ) ≥ Pr[E1 ∩E2]. Now, we have

Pr[E1] =
∏

G∈ΓT (g)

(

1 − ∏

g′∈G

j·qg′,d−1(0,j)

k

)

. Given E1, every edge g′ ∈ G ∈ ΓT (g)

either satisfies β(g′) < jn−(vH−2)/(eH−1) or else, β(g′) is uniformly distributed in
the interval [jn−(vH−2)/(eH−1), kn−(vH−2)/(eH−1)]. Hence, since the number of choices
for g′ ∈ G ∈ ΓT (g) is at most 2λeHkeH−1, for n sufficiently large, Pr[E2 | E1] ≥
(1 − 2δ/k)2λeHkeH−1

which is at least 1 − εd−1 by the choice of δ. This proves the
claim.

(3) The proof is similar to the proof of Claim 4.8 (2).

(4) The proof is similar to the proof of Claim 4.8 (1).
�
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We continue with the proof of Proposition 4.7, which is by induction on d. The base
case, d = 0 is trivially true, since qg,0(j, j + δ) = p0(j, j + δ) = 1 for all j ∈ J . Fix d ∈ [D],
assume that the proposition holds for d − 1 and let j ∈ J . In the argument that follows,
we use implicitly the fact that for y > 1, exp(−1/(y − 1)) < 1 − 1/y < exp(−1/y).

By Claim 4.8 (1), the induction hypothesis and Proposition 4.6 and by the occurrence
of E1 we have

qg,d(j, j + δ) ≤
∏

G∈ΓT (g)

(

1 −
∏

g′∈G

j · qg′,d−1(0, j)

k

)

≤
∏

G∈ΓT (g)

(

1 −
∏

g′∈G

(1 − εd−1) · j · pd−1(0, j)

k

)

≤
(

1 −
((1 − εd−1) · j · pd−1(0, j)

k

)eH−1)bλkeH−1c−bkeH/2−1/3c

= (∗).

Using Claim 4.8 (3) we can further upper bound (∗) as follows:

(∗) ≤
(

1 −
(j · pd−1(0, j)

k

)eH−1)(bλkeH−1c−bkeH /2−1/3c)(1−2eHεd−1)

≤
(

1 −
(j · pd−1(0, j)

k

)eH−1)bλkeH−1c−bkeH/2−1/3c−2eHεd−1λkeH−1

≤ (1 + εd−1) · pd(j, j + δ) ·
(

1 −
( j

k

)eH−1)−2eHεd−1λkeH−1

≤ (1 + εd/2) · pd(j, j + δ).

Now, by Claim 4.8 (2), the induction hypothesis and Proposition 4.6 and by the occurrence
of E1 we have

qg,d(j, j + δ) ≥ (1 − εd−1) ·
∏

G∈ΓT (g)

(

1 −
∏

g′∈G

j · qg′,d−1(0, j)

k

)

≥ (1 − εd−1) ·
∏

G∈ΓT (g)

(

1 −
∏

g′∈G

(1 + εd−1) · j · pd−1(0, j)

k

)

≥ (1 − εd−1) ·
(

1 −
((1 + εd−1) · j · pd−1(0, j)

k

)eH−1)λkeH−1+keH/2−1/3

= (∗∗).

One can now use Claim 4.8 (4) to further lower bound (∗∗) as follows:

(∗∗) ≥ (1 − εd−1) ·
(

1 −
(j · pd−1(0, j)

k

)eH−1)(λkeH−1+keH/2−1/3)(1+2eHεd−1)

≥ (1 − εd−1) ·
(

1 −
(j · pd−1(0, j)

k

)eH−1)bλkeH−1c−bkeH/2−1/3c+8eHεd−1λkeH−1

≥ (1 − εd−1) · pd(j, j + δ) ·
(

1 −
( j

k

)eH−1)8eHεd−1λkeH−1

≥ (1 − εd/2) · pd(j, j + δ).

This completes the proof of Proposition 4.7.
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