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Abstract

A conjecture of Grone and Merris states that for any graph G, its Laplacian
spectrum, Λ(G), is majorized by its conjugate degree sequence, D∗(G). That con-
jecture prompts an investigation of the relationship between Λ(G) and D∗(G), and
Merris has characterized the graphs G for which the multisets Λ(G) and D∗(G) are
equal. In this paper, we provide a constructive characterization of the graphs G for
which Λ(G) and D∗(G) share all but two elements.

1 Introduction

Let G be a simple, undirected graph on n vertices labeled 1, . . . , n. The Laplacian matrix
for G, which we denote by L(G) is the matrix given by L(G) = D − A, where A is
the (0, 1) adjacency matrix of G, and where D is the diagonal matrix of vertex degrees.
Evidently L(G) is a symmetric matrix, and it is not difficult to determine that it is positive
semi-definite, with the all ones vector, 1, as a null vector. In fact it turns out that the
nullity of L(G) coincides with the number of connected components of G. For these, and
other properties of Laplacian matrices, we refer the reader to the surveys [10] and [13]. As
can be seen from those two surveys, there is a wealth of literature on Laplacian matrices
for graphs, much of it focusing on the interplay between the combinatorial properties of
graphs and the eigenvalue and eigenvector properties of their corresponding Laplacian
matrices.

Suppose that a graph G on n vertices has degree sequence δ ≡ d1 ≤ . . . ≤ dn ≡ ∆, and
Laplacian eigenvalues 0 = λ1 ≤ . . . ≤ λn. For each j = 1, . . . , n, we set d∗

j = |{i|di ≥ j}|;
evidently d∗

1 ≥ d∗
2 ≥ . . . ≥ d∗

n, and d∗
j = 0 if either j < δ or j > ∆. The entire sequence

d∗
1, . . . , d

∗
n is known as the conjugate degree sequence of G. Henceforth, we let Λ(G) and

D∗(G) denote the multisets consisting of the Laplacian eigenvalues of G, and the conjugate
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degree sequence of G, respectively. In the interests of clarity, we will occasionally write
λi(G) or d∗

j(G) to emphasize the dependence on G of a particular eigenvalue or element
of the conjugate degree sequence.

Recall that given two vectors of real numbers, both listed in nonincreasing order,
x = [ x1, . . . , xn ] and y = [ y1, . . . , yn ] we say that x majorizes y, and write x � y,

if we have
∑k

i=1 xi ≥
∑k

i=1 yi for each k = 1, . . . , n − 1, and
∑n

i=1 xi =
∑n

i=1 yi. A result
attributed to Horn, and also to Schur, asserts that x � y if and only if there is a symmetric
matrix of order n with spectrum x1, . . . , xn and diagonal entries y1, . . . , yn. From that fact,
Grone and Merris [4] observe that the Laplacian spectrum for a graph majorizes its degree
sequence. Further, in that paper they also conjecture that the conjugate degree sequence
for a graph, in turn, majorizes its Laplacian spectrum. That conjecture has come to
be known as the Grone-Merris conjecture, and it has been verified for several classes of
graphs; see [1] and [14], for example.

In view of the Grone-Merris conjecture, it is natural to further explore the relationship
between D∗(G) and Λ(G). Indeed in [9], Merris does exactly that, characterizing the
graphs G such that D∗(G) = Λ(G). It turns out that the class of graphs for which the
Laplacian spectrum and the conjugate degree sequence coincide is exactly the class of
threshold graphs – i.e., those graphs having no induced subgraphs equal to either P4, C4,
or 2K2. We note that Laplacian matrices for threshold graphs (which are referred to as
degree maximal graphs in [9]) have been discussed from a variety of perspectives; see [2],
[5] and [8] for a sampling of results of that type.

In this paper, we pursue a line of inquiry that is inspired by [9] by looking at graphs for
which D∗(G) and Λ(G) share a large number of elements. In order that we can be more
precise, we introduce some terminology. Given a graph G on n vertices, we say that Λ(G)
and D∗(G) agree in k places if there is a multiset S of cardinality k and indices i1, . . . , in−k

and j1, . . . , jn−k such that Λ(G) = S ∪ {λi1 , . . . , λin−k
}, D∗(G) = S ∪ {d∗

j1
, . . . , d∗

jn−k
},

where {λi1, . . . , λin−k
} ∩ {d∗

j1
, . . . , d∗

jn−k
} = ∅. Observe that if that condition holds, then

necessarily
∑n−k

p=1 λip =
∑n−k

q=1 d∗
jq

. For a graph G on n vertices, we thus see that D∗(G)
and Λ(G) agree in n places if and only if G is a threshold graph; further, it is not difficult
to see that D∗(G) and Λ(G) cannot agree in n− 1 places. In this paper, we deal with the
case that D∗(G) and Λ(G) agree in n − 2 places. Henceforth, we say that the graph G is
a near threshold graph (or NT graph for short) if Λ(G) and D∗(G) agree in n − 2 places.
We note in passing that it straightforward to show that a graph G is an NT graph if and
only if its complement, G, is an NT graph.

Example 1.1 Of the graphs on 4 vertices, the only ones that are not threshold graphs
are C4, P4, and 2K2. Observe that Λ(C4) = {0, 2(2), 4}, D∗(C4) = {4(2), 0(2)}, Λ(P4) =
{0, 2−

√
2, 2, 2+

√
2}, D∗(P4) = {4, 2, 0(2)}, and Λ(2K2) = {0(2), 2(2)}, D∗(2K2) = {4, 0(3)}

(here, as elsewhere we use a superscript in parentheses to denote the multiplicity of an
element in a multiset). Thus we find that each of C4, P4 and 2K2 is an NT graph.

In sections 2 and 3, we provide a constructive characterization of the class of NT
graphs. Throughout, we will assume familiarity with basic results and techniques from
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graph theory and matrix theory. We refer the reader to [12] and [6] respectively for
background in those areas.

2 The disconnected case

Suppose that G is a graph on n vertices, m of which are isolated. Then G can be written
as G = H ∪ Om, where Om denotes the empty graph on m vertices. It follows that
Λ(G) = Λ(H) ∪ {0(m)}, while D∗(G) = D∗(H) ∪ {0(m)}. In this setting, we see that G is
an NT graph if and only if H is an NT graph. We summarize this as the following.

Proposition 2.1 Let G be a graph on n vertices m isolated vertices. Then G is an NT
graph if and only if G = H ∪ Om, where H is an NT graph on n − m vertices.

Our next result with be useful in the sequel.

Lemma 2.2 Suppose that G is a disconnected graph with no isolated vertices, say G =
∪m

i=1Hi, where each Hi is a connected graph on ni vertices, and where n1 ≥ . . . ≥ nm ≥ 2.
If G is an NT graph, then m = 2 and n2 = 2, so that G = H1 ∪ K2.

Proof: We have 0 as an eigenvalue of G of multiplicity m, while 0 = d∗
n1

= d∗
n1+1 = . . . =

d∗
∑m

i=1
ni

, so that D∗(G) contains 0 with multiplicity at least 1 +
∑m

i=2 ni. Since there are

indices i1, i2, j1, j2 such that λi1 + λi2 = d∗
j1

+ d∗
j2

, and {λi1, λi2} ∩ {d∗
j1

+ d∗
j2
} = ∅, we

find that at most one of d∗
j1

, d∗
j2

is zero. Hence
∑m

i=2 ni ≤ m. Consequently, we have
0 ≤ ∑m

i=2(ni − 2) ≤ m − 2m + 2 = 2 − m. We find that necessarily m = 2 and n2 = 2,
from which the conclusion follows. 2

Recall that a vertex of a graph G is dominant if it is adjacent to all other vertices
of G. Recall also that for two graphs G1, G2, their join, denoted G1 ∨ G2, is the graph
formed from the union of G1 and G2 by adding all possible edges between vertices in G1

and vertices in G2. Here is the main result of this section.

Theorem 2.3 Suppose that G is a disconnected graph on n ≥ 4 vertices, with no isolated
vertices. Then G is an NT graph if and only if one of the following holds:
a) G = H ∪ K2, where H is a connected threshold graph;
b) G = (K2∨H0)∪K2, where H0 is an NT graph with no isolated vertices and no dominant
vertices.

Proof: First we suppose that G is a disconnected NT graph with no isolated vertices.
From Lemma 2.2 we find that necessarily G = H ∪K2 for some connected graph H on at
least two vertices. In particular, Λ(G) = {0, 2} ∪ Λ(H), d∗

1(G) = n, d∗
n−1(G) = d∗

n(G) = 0,
and d∗

i (G) = d∗
i (H), i = 2, . . . , n − 2. Since the eigenvalues of G are bounded above by

n − 2, we find that n /∈ Λ(G); note also that 0 has multiplicity at least 3 in D∗(G) and
multiplicity 2 in Λ(G). Since G is an NT graph, it follows that there is a multiset S
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of cardinality n − 2, and indices i1, i2 such that Λ(G) = S ∪ {λi1, λi2}, and D∗(G) =
S ∪ {0, n}. Indeed, it must be the case that S = {0, d∗

2(H), d∗
3(H), . . . , d∗

n−2(H)}. Further,
since trace(L(G)) =

∑n
i=1 d∗

i (G), we find that λi1 + λi2 = n.
Taking λi1 ≤ λi2 , and recalling that λi2 ≤ n− 2, we find that for some 2 ≤ x ≤ n

2
, the

ordered pair (λi1, λi2) coincides with (x, n−x). Since S has exactly two zeros, we see that
necessarily d∗

n−3(G) = d∗
n−3(H) must be positive, so that H has at least one dominant

vertex.
Suppose first that (λi1 , λi2) = (2, n − 2). Then we have both Λ(G) = Λ(H) ∪ {0, 2}

and Λ(G) = {0, d∗
2(H), d∗

3(H), . . . , d∗
n−2(H)} ∪ {2, n − 2}. We then deduce that Λ(H) =

{n − 2, d∗
2(H), d∗

3(H), . . . , d∗
n−2(H)} = D∗(H). Consequently, we find that H must be a

connected threshold graph, so that condition a) is satisfied.
Next, suppose that (λi1 , λi2) = (x, n − x) for some 2 < x ≤ n

2
. Note that the smallest

positive element of D∗(G) is d∗
n−3(G); since 2 ∈ S, it now follows that d∗

n−3(H) ≤ 2. As
H has a dominant vertex, we find that either d∗

n−3(H) = 1 or d∗
n−3(H) = 2.

If d∗
n−3(H) = 1 then necessarily 1 ∈ Λ(H) as well. It follows that H can be written as

H = K1 ∨ (H1 ∪ . . . ∪ Hℓ) for some ℓ ≥ 2, where each Hi is a connected graph (possibly
consisting of just a single vertex). For each i = 1, . . . , ℓ, let mi be the number of vertices
in Hi; note that

∑ℓ
i=1 mi = n − 3. Without loss of generality, we take m1 ≥ . . . ≥ mℓ.

Note that, apart from the dominant vertex in H , the degree of any other vertex of H is
at most m1, and that m1 = n − 3 −∑ℓ

i=2 mi ≤ n − 3− (ℓ − 1) = n − ℓ − 2. In particular,
we find that d∗

n−ℓ−1(H) = 1, and hence that d∗
j(H) = 1, for j = n − ℓ − 1, . . . , n − 3.

From the structure of H , we find that 1 is an eigenvalue of H of multiplicity ℓ − 1 (and
hence 1 is an eigenvalue of G with the same multiplicity). Consequently, we find that
d∗

n−ℓ−2(H) > 1, and since 2 is an eigenvalue of G, we deduce that in fact d∗
n−ℓ−2(H) = 2.

From the fact that m1 ≤ n − ℓ − 2, we find that mi = 1, i = 2, . . . , ℓ, and that H1

can be written as K1 ∨ H0 for some graph H0 on n − ℓ − 3 vertices, where H0 does
not have a dominant vertex. Thus we find that H can be written as H = K1 ∨ ((K1 ∨
H0) ∪ Oℓ−1). We may now write D∗(G) and Λ(G) in terms of D∗(H0) and Λ(H0) as
follows: D∗(G) = {0(3), 1(ℓ−1), 2, d∗

1(H0) + 2, . . . , d∗
n−ℓ−5(H0) + 2, n − ℓ − 1, n}; Λ(G) =

{0(2), 1(ℓ−1), 2, λ2(H0) + 2, . . . , λn−ℓ−3(H0) + 2, n− ℓ− 1, n− 2}. If G is an NT graph, then
it must be the case that the multisets A = {0, d∗

1(H0) + 2, . . . , d∗
n−ℓ−5(H0) + 2, n} and

B = {λ2(H0)+2, . . . , λn−ℓ−3(H0)+2, n−2} have the property that |A\B| = |B \A| = 2.
Since 0, n /∈ B, and n − 2 /∈ A, it now follows that (λi1, λi2) = (2, n − 2), contrary to
assumption.

Next, we consider the case that (λi1, λi2) = (x, n − x) for some 2 < x ≤ n
2

and that
d∗

n−3(H) = 2. Thus we find that H = K2 ∨ H0 for some graph H0 with no dominant
vertices. Then we may write Λ(G) and D∗(G) as follows: Λ(G) = {0(2), 2, λ2(H0) +
2, . . . , λn−4(H0)+2, (n−2)(2)}; D∗(G) = {0(3), d∗

1(H0)+2, . . . , d∗
n−5(H0)+2, n−2, n}. Since

G is an NT graph, we thus find that there are indices i1, i2 such that 2 < λi1(H0) + 2 ≤
λi2(H0) + 2 < n− 2, λi1(H0) + 2 + λi2(H0) + 2 = n, and {d∗

1(H0) + 2, . . . , d∗
n−5(H0) + 2} =

{2, λ2(H0)+2, . . . , λn−4(H0)+2, n−2}\{λi1(H0)+2, λi2(H0)+2}. Observe that since H0 has
no dominant vertices, d∗

n−5(H0) + 2 = 2; it must also be the case that d∗
1(H0)+ 2 = n− 2,

from which we conclude that H0 has no isolated vertices. Consequently, we find that
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D∗(H0) and Λ(H0) agree in n − 6 places, so that H0 is an NT graph with no isolated
vertices and no dominant vertices. Thus condition b) holds.

Finally, it is straightforward to determine that if either of a) or b) holds, then G must
be an NT graph. 2

We close this section with two examples.

Example 2.4 We now illustrate the construction of Theorem 2.3 a). Let G = K1,3 ∪K2;
note that Λ(G) = {0(2), 1(2), 2, 4}, while D∗(G) = {0(3), 1(2), 6}. Letting S = {0(2), 1(2)},
we have Λ(G) = S ∪ {2, 4} and D∗(G) = {0, 6}.

Example 2.5 Here we illustrate the construction of Theorem 2.3 b). Consider the graph
G = (K2 ∨ P4) ∪ K2. We have Λ(G) = {0(2), 2, 4 −

√
2, 4, 4 +

√
2, 6(2)}, while D∗(G) =

{0(3), 2, 4, 6(2), 8}. Letting S = {0(2), 2, 4, 6(2)}, we see that Λ(G) = S ∪ {4−
√

2, 4 +
√

2},
and D∗(G) = S ∪ {0, 8}.

3 The connected case

Suppose that G is a connected NT graph on n vertices with maximum degree ∆. We have
d∗

∆ > 0 and d∗
∆+1 = 0, . . . , d∗

n = 0, so that the sequence D∗(G) contains exactly n−∆ zeros.
Since G is connected, Λ(G) contains exactly one zero. Thus, the set S = Λ(G) ∩ D∗(G)
contains at most one zero and at least n−∆− 1 zeros, so that necessarily n−∆− 1 ≤ 1.
Hence, ∆ ≥ n − 2.

Our next result deals with the possibility that ∆ = n − 1.

Proposition 3.1 Let G be a graph on n vertices having m ≥ 1 vertices of degree n − 1.
Then G is an NT graph if and only if G = Km ∨ H, where H is an NT graph on n − m
vertices.

Proof: Since G has m vertices of degree n − 1, we find that G has m isolated vertices.
The conclusion now follows by appealing to Proposition 2.1, and the fact that G is an NT
graph if and only if G is an NT graph. 2

A graph G on n vertices that has n as an eigenvalue with multiplicity m can be written
as a join of m+1 graphs of smaller order; see [11] for further information on the Laplacian
spectrum of a join of graphs.

The following result provides some useful information.

Lemma 3.2 Suppose that G is a connected NT graph on n ≥ 4 vertices with maximum
degree n − 2 and minimum degree δ. Then there are distinct indices i1, i2 such that
λi1 + λi2 = n, Λ(G) \ {λi1, λi2} = D∗(G) \ {0, n}, and {λi1 , λi2} ∩ {0, n} = ∅.

the electronic journal of combinatorics 16 (2009), #R42 5



Proof: First, note that since G is connected, it has exactly one zero eigenvalue. Since the
maximum degree is n − 2, we find that D∗(G) contains at least two zero elements. Since
G is an NT graph, it then follows that there are distinct indices i1, i2 and another index j1

such that λi1+λi2 = 0+d∗
j1

, Λ(G)\{λi1 , λi2} = D∗(G)\{0, d∗
j1
}, and {λi1, λi2}∩{0, d∗

j1
} = ∅.

We claim that d∗
j1

= n.
We have d∗

i = n, i = 1, . . . , δ, and d∗
δ+1 < n. Since G is an NT graph, it must then

have n as an eigenvalue of multiplicity δ− 1 or δ. If the multiplicity of n as an eigenvalue
of G is δ, then G can be written as a join of δ + 1 graphs, say G = H1 ∨ . . .∨Hδ+1. Since
the minimum degree of G is δ, it follows that at most one of the graphs H1, . . . , Hδ+1, say
H1, has more than one vertex. In that case, we can write G = H1 ∨Kδ, which contradicts
the hypothesis that G has maximum degree n − 2.

We conclude that G has n as an eigenvalue of multiplicity δ− 1, from which it follows
that d∗

j1
= n. 2

Next, we describe the structure of connected NT graphs with minimum degree 2 and
no dominant vertices.

Theorem 3.3 Let G be a connected graph on n ≥ 4 vertices with minimum degree δ ≥ 2
and maximum degree n − 2. Then G is an NT graph if and only if one of the following
holds:
a) G = G1 ∨ O2 for some disconnected threshold graph G1 on n − 2 vertices;
b) there is a NT graph H on n − 4 vertices with no isolated vertices and no dominant
vertices such that G = (O2 ∪ H) ∨ O2.

Proof: Suppose that G is an NT graph. Since δ ≥ 2, it follows that n is an eigenvalue
of G of multiplicity at least δ − 1. Consequently G is a disconnected graph. Further,
since the maximum degree of G is n−2, we see that G has no isolated vertices. Applying
Theorem 2.3 to G, we find that G is an NT graph only if either G = H ∪K2, where H is
a connected threshold graph, or G = (K2 ∨ H0) ∪ K2, where H0 is an NT graph with no
isolated vertices and no dominant vertices. The constructions a) and b) for G now follows
upon noting that G is an NT graph only if G is an NT graph.

The converse is straightforward. 2

The next lemma identifies some of the spectral structure for NT graphs.

Lemma 3.4 Suppose that G is a connected NT graph on n ≥ 4 vertices with minimum
degree 1 and maximum degree n − 2. Then 1 < λ2 < 2, n − 1 < λn < n, λ2 + λn = n, and
for each i = 1, 3, 4, . . . , n − 1, we have λi = d∗

n−i+1.

Proof: From the hypotheses on the minimum and maximum degrees, we find that d∗
1 =

n, d∗
n−1 = 0, d∗

n = 0, d∗
2 ≤ n − 1 and d∗

n−2 ≥ 1.
We claim that n is not an eigenvalue of G. To see this, suppose to the contrary that n

is an eigenvalue. Then G can be written as a join, say G = H1 ∨H2. Since the minimum
degree of G is 1, we see that one of H1 and H2 consists of a single vertex. But in that

the electronic journal of combinatorics 16 (2009), #R42 6



case, G must have a vertex of degree n − 1, contrary to the hypothesis. Hence n is not
an eigenvalue of G.

It now follows from the claim, and the fact that D∗(G) contains two zeros while Λ(G)
contains only one zero, that there are indices i, j such that λi + λj = n, D∗(G) \ {0, n} =
Λ(G) \ {λi, λj}, and {0, n} ∩ {λi, λj} = ∅. A result in [7] asserts that for any connected
graph H with a cut vertex, we have λ2(H) ≤ 1, with equality if and only if H has a
dominant vertex. From the fact that the minimum degree of G is 1 and there is no vertex
of degree n − 1, we thus find that 0 < λ2(G) < 1. Also, we have n > λn(G) > n − 2 + 1,
the rightmost strict inequality following from the fact that for a connected graph with
maximum degree ∆, λn(G) ≥ ∆ + 1, with equality only if ∆ = n − 1 (see [4]). Hence
λ2(G) and λn(G) are non-integer eigenvalues of G, and the conclusion now follows. 2

Henceforth we consider a connected NT graph G on n vertices with minimum degree
1, maximum degree n − 2, p vertices of degree 1 and q vertices of degree n − 2. The
following lemma describes some of the structure for such a graph.

Lemma 3.5 Let G be a connected NT graph on n ≥ 4 vertices with minimum degree 1,
maximum degree n − 2, p vertices of degree 1 and q vertices of degree n − 2.
a) If G has two or more pendant vertices with a common neighbour, then q = 1.
b) If p ≥ 3, then q = 1.
c) If p = 2, then either q = 1 or G = P4.

Proof: We begin by noting that since G has p pendant vertices, we have d∗
2 = n−p = λn−1,

and since G has q vertices of degree n − 2, we have d∗
n−2 = q = λ3.

a) If G has two pendant vertices with a common neighbour, it follows readily that 1 is
an eigenvalue for G. Since λ1 = 0, λ2 < 1, and all remaining eigenvalues, save for λn, are
integers, it follows that in fact λ3 = 1. Hence q = 1.
b) Note that each vertex of degree n − 2 is non-adjacent to at most one pendant vertex.
Hence, if p ≥ 3 then some vertex of degree n− 2 is adjacent to at least p− 1 ≥ 2 vertices,
and so from a) we find that q = 1.
c) Suppose that p = 2. If q ≥ 2, then from a), the two pendant vertices cannot have a
common neighbour. In particular, since each vertex of degree n − 2 is not adjacent to at
most one of the pendant vertices, we find that there can be at most two such vertices of
degree n − 2. Thus we conclude that q = 1 or q = 2.

Suppose that we are in the case that q = 2. As above, we see that the two pendant
vertices are adjacent to different vertices of degree n − 2. If n = 4, we find that G = P4,
as desired. Suppose now that n ≥ 5. It follows that the Laplacian matrix for G can be
written as

L =

















1 0 −1 0 0T

0 1 0 −1 0T

−1 0 n − 2 −1 −1T

0 −1 −1 n − 2 −1T

0 0 −1 −1 L̂ + 2I

















,
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where L̂ is the Laplacian matrix for the subgraph of G induced by deleting the vertices
of degree 1 and the vertices of degree n− 2. By considering eigenvectors of L of the form
















a
a
b
b
c1

















and

















a
−a
b
−b
0

















, we find that the eigenvalues of the following two matrices are also

eigenvalues of L:

M1 =







1 −1 0
−1 n − 3 −(n − 4)
0 −2 2





 , M2 =

[

1 −1
−1 n − 1

]

.

The eigenvalues of M1 are 0, n±
√

n2−4n
2

, while those of M2 are n±
√

n2−4n+8
2

. In particular,

since n ≥ 5, L must have an eigenvalue n−
√

n2−4n+8
2

in the interval (1, 2), and another

eigenvalue n−
√

n2−4n
2

in the interval (2, 3), thus contradicting Lemma 3.4. We conclude
that n must be 4 and G must be P4. 2

Our next two lemmas rule out certain structures in an NT graph.

Lemma 3.6 Let G be a connected graph G on n ≥ 4 vertices with minimum degree 1,
maximum degree n− 2, p vertices of degree 1 and q vertices of degree n− 2. Suppose that
q = 1, p ≥ 2 and that one of the pendant vertices is not adjacent to the vertex of degree
n − 2. Then G is not an NT graph.

Proof: Suppose, to the contrary, that G is an NT graph. We label the vertex of degree
n−2 by u. Suppose that the single pendant vertex not adjacent to u is adjacent to vertex
w. Let C1, . . . , Cr denote the connected components at u that do not consist of a single
vertex; see Figure 1.

C2

C1

Cr−1

Cr

p−1

...

...

u

Figure 1: Connected components at u
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Note that d∗
1 = n, d∗

2 = n − p and d∗
n−2 = 1. Let L be the Laplacian matrix for G. For

each i = 1, . . . , r, denote the spectral radius of the principal submatrix of L corresponding
to the vertices of Ci by ρ(L(Ci)). Applying interlacing (to the submatrix of L formed
by deleting the row and column corresponding to u), we find that n − p = λn−1(G) ≤
1 + max{ρ(L(Ci))|i = 1, . . . , r} ≤ 1 + max{|Ci||i = 1, . . . , r}. In particular, some Ci

contains at least n − p − 1 vertices. Thus we find that r = 1 and that |C1| = n − p (for
if r ≥ 2, then necessarily r = 2 and |C1| = n − p − 1, and then there are p + 1 pendant
vertices, contrary to assumption).

If we have n− p = 2, then we see that G is the ‘broom’ depicted in Figure 2, which is
readily determined not to be an NT graph. We suppose henceforth that n − p ≥ 3.

...

Figure 2: The broom

Denote the pendant vertex adjacent to w by v, and let L̃ denote the Laplacian matrix
for the connected graph C1 \ {v}. Then L(G) can be written as

L =











I −1 0 0
−1T n − 2 −1T 0

0 −1 I + L̃ + eweT
w −ew

0 0 −eT
w 1











.

(Here vertex v corresponds to the last row and column of L, and ew has a single 1 in the
position corresponding to vertex w.) It follows that

rank(L − I) = rank





















0 −1 0 0
−1 n − 3 −1T 0

0 −1 L̃ + eweT
w −ew

0 0 −ew 0





















=

rank





















0 −1 0 0
−1 0 −0T 0

0 0 L̃ + eweT
w −ew

0 0 −eT
w 0





















= 2 + rank

([

L̃ + eweT
w −ew

−eT
w 0

])

.

Note that if

[

L̃ + eweT
w −ew

−eT
w 0

] [

x
y

]

= 0, then L̃x = yew, eT
wx = 0, and hence

xT L̃x = 0. Since C1 \{v} is connected, it follows that x is a multiple of 1. As eT
wx = 0, we

see that x = 0, and hence y = 0. We conclude that rank(L − I) = 2 + n− p, so that 1 is
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an eigenvalue of L of multiplicity p−2. Hence we have d∗
n−2 = 1, d∗

n−3 = 1, . . . , d∗
n−p+1 = 1

and d∗
n−p ≥ 2. In particular, we must have p ≥ 3.

Observe that if a 6= u, w is a vertex of G, then the degree of a is at most n − p − 1.
Hence d∗

n−p ≤ 2, so that in fact d∗
n−p = 2, and w has degree n− p. Let Ĝ be the subgraph

of G formed by deleting u, w, and all pendant vertices. Then we may write

L =

















I −1 0 0 0
−1T n − 2 −1T −1 0

0 −1 L(Ĝ) + 2I −1 0
0 −1 −1T n − p −1
0 0 0 −1 1

















,

so that the eigenvalues of L are: λ(Ĝ) + 2 for each eigenvalue λ(Ĝ) with an eigenvector
orthogonal to 1, 1(p−2), and the eigenvalues of the matrix

M =

















1 −1 0 0 0
−(p − 1) n − 2 −(n − p − 2) −1 0

0 −1 2 −1 0
0 −1 −(n − p − 2) n − p −1
0 0 0 −1 1

















.

Recall that L has n − p and 2 as eigenvalues. Note that

(n − p)I − M =

















n − p − 1 1 0 0 0
(p − 1) 2 − p (n − p − 2) 1 0

0 1 n − p − 2 1 0
0 1 (n − p − 2) 0 1
0 0 0 1 n − p − 1

















.

This last is row equivalent to

















n − p − 1 1 0 0 0
(p − 1) 1 − p 0 0 0

0 0 0 1 −1
0 1 (n − p − 2) 0 1
0 0 0 0 n − p

















, and a straight-

forward determinant computation shows that this last matrix is nonsingular. We conclude
that n − p − 2 must be an eigenvalue of L(Ĝ), so that Ĝ is a join.

Note also that 2I −M =

















1 1 0 0 0
(p − 1) 4 − n (n − p − 2) 1 0

0 1 0 1 0
0 1 (n − p − 2) p + 2 − n 1
0 0 0 1 1

















, which is row

and column equivalent to the matrix
















1 0 0 0 0
(p − 1) 5 − n − p (n − p − 2) 1 0

0 1 0 1 0
0 0 (n − p − 2) p − n 1
0 0 0 0 1

















.
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It now follows that det(2I − M) = (n − p − 2)(2n − 4) > 0. Thus 2 is not an eigenvalue
of M , so we find that L(Ĝ) must have a null vector that is orthogonal to 1. We conclude
then that Ĝ is disconnected. Hence Ĝ is both disconnected and a join of graphs, a
contradiction.

Consequently, G cannot be an NT graph. 2

Lemma 3.7 Suppose that G is a connected graph G on n ≥ 4 vertices with minimum
degree 1, maximum degree n − 2, p = 1 vertex of degree 1 and q vertices of degree n − 2.
Suppose that the pendant vertex is adjacent to a vertex u of degree n − 2. Then G is not
an NT graph.

Proof: Suppose first that q ≥ 2. Consider G, which has minimum degree 1, maximum
degree n−2, and q pendant vertices. From Theorem 2.3, any disconnected NT graph has
maximum degree at most n− 3, so if G is not connected, then it is not an NT graph, and
hence neither is G. In the case that G is connected, note that necessarily in G, there is a
pendant vertex u is not adjacent to the unique vertex of degree n− 2. By Lemma 3.6, G
is not an NT graph, and hence neither is G.

It remains only to consider the case that q = 1. Suppose to the contrary that G is an
NT graph. We have d∗

1 = n, d∗
2 = n − 1, d∗

n−2 = 1 so in particular, 1 is an eigenvalue. Let

w be the vertex of G not adjacent to u. Let L̃ be the Laplacian matrix for the subgraph
G̃ induced by deleting the pendant vertex and u. We have

L =







1 −1 0T

−1 n − 2 −1T + ew

0 −1 + ew L̃ + I − eweT
w





 .

Suppose that the vector







a
b
x





 is an eigenvector corresponding to the eigenvalue 1. We

then find from the eigenequation that b = 0 and eT
wx = 0 (the latter since a+b+1T x = 0),

and hence L̃x = 0. Since L̃ has a null vector orthogonal to ew, we conclude that G̃ is
disconnected, say with r ≥ 2 components, C1, . . . , Cr, each necessarily having at least two
vertices (since p = 1). Further, it follows that the multiplicity of 1 as an eigenvalue of L
is the same as the number of linearly independent null vectors for L̃ that are orthogonal
to ew; that number is r − 1. As a result, we have d∗

n−2 = 1, d∗
n−3 = 1, . . . , d∗

n−r = 1,
and d∗

n−r−1 ≥ 2. Note that any vertex in Ci has degree at most 1 + |Ci| − 1 = |Ci| =
n − 2 −∑

j 6=i |Cj| ≤ n − 2 − 2(r − 1) = n − 2r. As n − 2r < n − r − 1, it follows that
d∗

n−r−1 = 1, a contradiction.
We conclude then that G cannot be an NT graph. 2

Our next two results describe certain constructions that yield NT graphs.
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Proposition 3.8 Let G be a connected graph G on n ≥ 4 vertices with minimum degree
1, maximum degree n − 2, p vertices of degree 1 and q vertices of degree n − 2. Suppose
that q = 1, p ≥ 2 and all of the pendant vertices are adjacent to the vertex of degree n− 2,
which we denote by u. Then G is an NT graph if and only if n is even, and G is the graph
NT1(n) depicted in Figure 3.

1(n)NT NT2(n)

...

...

...

...(n−2)/2

(n−2)/2

(n−2)/2

(n−2)/2

Figure 3: Two NT graphs

Proof: Suppose that G is an NT graph, and denote the connected components at u that
have at least two vertices by C1, . . . , Cr. Applying interlacing to the principal submatrix
of L(G) obtained by deleting the row and column corresponding to u, we have λn−1 =
d∗

2 = n − p ≤ 1 + max{ρ(L(Ci))|i = 1, . . . , r} ≤ 1 + max{|Ci||i = 1, . . . , r} ≤ n − p. It
follows that r = 1, |C1| = n − p − 1, and ρ(L(C1)) = n − p − 1. Hence C1 is a join, say
of l ≥ 2 graphs G1, . . . , Gl, each of which is either disconnected, or consists of a single
vertex, and where the unique vertex, say w, of G that is not adjacent to u is in Gl. Set
G0 = ∨l−1

i=1Gi, and suppose that |Gl| = nl.
We write L as

L =













Ip −1 0 0
−1T n − 2 −1T −1T + eT

w

0 −1 L(G0) + (nl + 1)I −J
0 −1 + ew −J L(Gl) + (n − p − nl)I − eweT

w













.

By considering eigenvectors of the form













x
0
0
0













,













0
0
y
0













, where each of x and y sums to
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0, and eigenvectors of the form













a1
b
c1
d













, it follows that the eigenvalues of L consist of

1(p−1), λ + nl + 1 for each eigenvalue λ of G0 with an eigenvector orthogonal to 1, as well
as the eigenvalues of the matrix

M =











1 −1 0 0T

−p n − 2 −(n − p − 1 − nl) −1T + eT
w

0 −1 nl + 1 −1T

0 −1 + ew −(n − p − 1 − nl)1 L(Gl) + (n − p − nl)I − eweT
w











.

Note that (n − p)I − M is row equivalent to











n − p − 1 1 0 0T

p 1 − p 0 −eT
w

0 1 n − p − 1 − nl 1T

0 −ew 0 nlI − L(Gl) − J + eweT
w











;

it follows that n − p is an eigenvalue of M if and only if the matrix

M̃ =







n − p − 1 1 0T

p 1 − p −eT
w

0 −ew (nlI − L(Gl) − J + eweT
w)







is singular. If it happens that nl = 1, it is readily established that M̃ is nonsingular.

Suppose that nl ≥ 2 and that M̃







a
b
x





 = 0. Then b = −a(n − p − 1), so that

pa + (p − 1)(n − p − 1)a = eT
wx and a(n − p − 1)ew + (nlI − L(Gl) − J + eweT

w)x = 0.
Thus, xT (nlI − L(Gl) − J + eweT

w)x + a(n − p − 1)(pa + (p − 1)(n − p − 1)a) = 0.
Noting that nlI − L(Gl) − J + eweT

w is a positive semidefinite matrix, we have a = 0 and
xT (nlI − L(Gl) − J + eweT

w)x = 0. But nlI − L(Gl) − J is the Laplacian matrix for Gl,
which is connected. Hence, x must be 0, and we conclude that M̃ is nonsingular.

Consequently, the multiplicity of n−p as an eigenvalue of L coincides with the number
of linearly independent eigenvectors of G0 that are orthogonal to 1 and correspond to the
eigenvalue n−p−1−nl of G0. That multiplicity is l−2. Hence we have d∗

2 = n−p, d∗
3 =

n − p, . . . , d∗
l−1 = n − p, d∗

l ≤ n − p − 1.
Observe that each vertex in G0∪ (Gl \{w}) has degree (in G) at least l, as does vertex

u. Thus d∗
l ≥ n− p− 1, and we find that in fact d∗

l must equal n− p− 1. Hence, vertex w
has degree at most l− 1, which happens only if each of G1, . . . , Gl−1 is an isolated vertex,
and vertex w is isolated in Gl. Write Gl = Ĝ ∪ {w}. Suppose that n − p − l − 1 ≥ 1. We
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have

L =

















I −1 0 0 0
−1T n − 2 −1T −1T 0

0 −1 (n − p)I − J −J −1

0 −1 −J L(Ĝ) + lI 0
0 0 −1T 0 l − 1

















;

we find that each eigenvalue of the matrix

M0 =

















1 −1 0 0 0
−p n − 2 −(l − 1) −(n − p − l − 1) 0
0 −1 n − p − l + 1 −(n − p − l − 1) −1
0 −1 −(l − 1) l 0
0 0 −(l − 1) 0 l − 1

















is necessarily an eigenvalue of L. Uninteresting computations reveal that det((n − p)I −
M0) = −p(n−p)(l−1) < 0, while det((n−p−1)I −M0) = p(n−p− l−1)(n−p−1)2 > 0.
Hence M0 has a noninteger eigenvalue in the interval (n− p− 1, n− p), and thus so does
L, a contradiction. We conclude then that n − p − l − 1 = 0.

Thus we have

L =











I −1 0 0
−1T n − 2 −1T 0

0 −1 (n − p)I − J −1

0 0 −1T n − p − 2











;

as above, each eigenvalue of the matrix

M1 =











1 −1 0 0
−p n − 2 −(n − p − 2) 0
0 −1 2 −1
0 0 −(n − p − 2) n − p − 2











is necessarily an eigenvalue of L. We find that det(zI −M1) = z((z − 1)(z − (n− 2))(z −
(n + p)) − p(n− p− 2) − p(z − (n − p))). Since the graph G is an NT graph, we see that
d∗

l = n − p − 1 must be an eigenvalue of M1, which occurs only if p = n−2
2

. In that case,
the graph G is readily seen to be the same as NT1(n) in Figure 3.

Conversely, if G = NT1(n), a direct computation reveals it to be an NT graph. 2

Proposition 3.9 Let G be a connected graph G on n ≥ 4 vertices with minimum degree
1, maximum degree n−2, p = 1 vertex of degree 1 and q vertices of degree n−2. Suppose
that the pendant vertex is not adjacent to any vertex of degree n − 2. Then G is an NT
graph if and only if n is even, and G is the graph NT2(n) depicted in Figure 3.
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Proof: Suppose that G is an NT graph. Observe that if q = 1, then by Lemma 3.7, G is
not an NT graph. Hence, G itself is not an NT graph. Consequently, it must be the case
that q ≥ 2.

We may write the corresponding Laplacian matrix as

L =







(n − 1)I − J −J 0

−J L(Ĝ) + qI + eje
T
j −ej

0T −eT
j 1





 ,

where Ĝ is the subgraph of G induced by the vertices of degrees in [2, n − 3]. (Here we
have taken the last row and column to correspond to the pendant vertex, and we take j
to be the vertex adjacent to the pendant vertex.) The eigenvalues of L are (n − 1)(q−1),
along with those of the matrix

M =







(n − q − 1) −1T 0

−q1 L(Ĝ) + qI + eje
T
j −ej

0T −eT
j 1





 .

Since d∗
n−2 = q < n−1, we see that M−qI must be singular. Let







a
x
b





 be a corresponding

null vector. Then (n−2q−1)a = 1T x, L(Ĝ)x+(eT
j x)ej−bej−aq1 = 0, and (1−q)b = eT

j x.

Hence L(Ĝ)x = aq1 + bqej ; considering 1T L(Ĝ)x = 0 now shows that b = −a(n − q − 1).

It now follows that xT L(Ĝ)x = qa2(n − 2q − 1 − (q − 1)(n − q − 1)2).
Since q ≥ 2, we have n − 2q − 1 − (q − 1)(n − q − 1)2 < 0, so that necessarily

a = 0, b = 0, 1Tx = 0, eT
j x = 0 and L(Ĝ)x = 0. Hence, Ĝ is disconnected, with say

c ≥ 2 components, and the multiplicity of q as an eigenvalue of L is thus equal to the
dimension of the subspace of null vectors of L(Ĝ) that are orthogonal to both 1 and ej .
Evidently, that dimension is c − 2. Consequently, d∗

n−2 = q, d∗
n−3 = q, . . . , d∗

n−c+1 = q,

and d∗
n−c ≥ q + 1. Write Ĝ = G1 ∪ . . . ∪ Gc, with |Gi| = ni, i = 1, . . . , c. Note that

n1 + . . . + nc = n − q − 1. Without loss of generality, we take the pendant vertex to be
adjacent to j ∈ Gc. Note that for each vertex in Gi that is distinct from j, the degree is
at most q + ni − 1 = n − 2 −∑

l 6=i nl ≤ n − c − 1; similarly, the degree of vertex j is at
most q + nc ≤ n − c. It now follows that d∗

n−c ≥ q + 1 only if nl = 1, l = 1, . . . , c − 1, and
in addition, vertex j is adjacent to every other vertex in Gc.

Suppose that n − q − c − 1 ≥ 1. Then we have

L =

















(n − 1)I − J −J −J −1 0
−J qI 0 0 0
−J 0 Lc + (q + 1)I −1 0
−1T 0 −1T n − c −1
0T 0 0T −1 1

















,

where Lc is the Laplacian matrix for the subgraph induced by Gc \ {j}. It follows that L
has eigenvalues (n − 1)(q−1), q(c−2), and λ + q + 1 for each eigenvalue λ of Lc orthogonal
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to 1, as well as the eigenvalues of the matrix

M =

















n − q − 1 −(c − 1) −(n − q − c − 1) −1 0
−q q 0 0 0
−q 0 q + 1 −1 0
−q 0 −(n − q − c − 1) n − c −1
0 0 0 −1 1

















.

We find that det(qI − M) = −q2(c − 1), while det((q + 1)I − M) = q(q + 1)(n − q −
c − 1)(n − q − 1). Hence L has a noninteger eigenvalue in the open interval (q, q + 1), a
contradiction.

Consequently, it must be the case that n − q − c − 1 = 0, and that

L =













(n − 1)I − J −J −1 0
−J qI 0 0
−1T 0T q + 1 −1
0T 0 −1 1













.

Since d∗
q+1 = q + 1, we see that G is an NT graph only if q + 1 is an eigenvalue of L.

This last holds only if det





















n − 2q − 2 −(n − q − 2) −1 0
−q −1 0 0
−q 0 0 −1
0 0 −1 −q





















= 0, i.e. only if

(q + 1)(n − 2q − 2) = 0. Thus q = n−2
2

, and G is the same as NT2(n) in Figure 3.
The converse is straightforward. 2

Remark 3.10 Observe that for each even integer n ≥ 4, the graphs NT1(n) and NT2(n)
of Figure 3 are related via complementation. Note also that in the special case that n = 4,
both graphs coincide with P4.

Let Γ0 =
{H ∪ K2|H is a connected threshold graph} ∪
{H ∨ O2|H is a disconnected threshold graph} ∪
{NT1(2n)|n ∈ IN} ∪ {NT2(2n)|n ∈ IN}.

For each k ∈ IN, let

Γk = {(G ∨ K2) ∪ K2|H ∈ Γk−1} ∪ {(G ∪ O2) ∨ O2|H ∈ Γk−1}.

Here is one of the main results of this section.

Theorem 3.11 A graph G is an NT graph with no isolated vertices and no dominant
vertices if and only if G ∈ ∪k≥0Γk.
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Proof: Suppose that G is an NT graph on n ≥ 4 vertices with minimum degree δ and
maximum degree ∆. We claim that G ∈ Γk for some k ≥ 0. In order to establish the
claim, we proceed by induction on n, and note that the case n = 4 is readily established.

If G is not connected, then by Theorem 2.3, either G = H ∪ K2 for some connected
threshold graph H , or G = (K2 ∨ H0) ∪ K2 for some NT graph H0 with no dominant or
isolated vertices. In the former case, G ∈ Γ0; in the latter case, we find from the induction
hypothesis that H0 ∈ Γk for some k, so that necessarily G ∈ Γk+1.

Suppose next that G is connected. From our discussion at the beginning of this section,
it follows that ∆ = n − 2. If δ ≥ 2, we find from Theorem 3.3 that either G = G1 ∨ O2

for some disconnected threshold graph, or G = (O2 ∪H)∨O2 for some NT graph with no
dominant or isolated vertices. Hence, either G ∈ Γ0, or (applying the induction hypothesis
to H) G ∈ Γk for some k ∈ IN. Finally, we suppose that δ = 1. In that case, it follows
from Lemmas 3.5,3.6 and 3.7, as well as Propositions 3.8 and 3.9, that n is even, and G
is either NT1(n) or NT2(n).

Conversely, a straightforward proof by induction on k shows that for each k ≥ 0, every
graph in Γk is an NT graph. 2

The following results are immediate from Propositions 2.1 and 3.1.

Corollary 3.12 A graph G is an NT graph with an isolated vertex if and only if G has
the form G = (H ∨ Km1

) ∪ Om2
for some m1 ≥ 0, m2 ≥ 1 and some H ∈ ∪k≥0Γk.

Corollary 3.13 A graph G is an NT graph with a dominant vertex if and only if G has
the form G = (H ∪ Om1

) ∨ Km2
for some m1 ≥ 0, m2 ≥ 1 and some H ∈ ∪k≥0Γk.

4 Commentary and consequences

In this section, we provide some ancillary results and discussion on NT graphs.
Recall that a graph is Laplacian integral if its Laplacian spectrum consists entirely of

integers. In light of the fact that an NT graph has at most two noninteger eigenvalues, it
is natural to discuss the class of Laplacian integral NT graphs. The following classes of
graphs are central to that discussion.

Let C0 = {H ∪ K2|H is a connected threshold graph}∪
{H ∨ O2|H is a disconnected threshold graph}. For each k ∈ IN, let

Ck = {(G ∨ K2) ∪ K2|H ∈ Ck−1} ∪ {(G ∪ O2) ∨ O2|H ∈ Ck−1}.

The proof of the following result is parallel to that of Theorem 3.11, Corollary 3.12
and Corollary 3.13, and is omitted.

Theorem 4.1 a) A graph G is a Laplacian integral NT graph with no isolated vertex and
no dominant vertex if and only if G ∈ ∪k≥0Ck.
b) A graph G is a Laplacian integral NT graph with an isolated vertex if and only if G
has the form G = (H ∨ Km1

) ∪ Om2
for some m1 ≥ 0, m2 ≥ 1 and some H ∈ ∪k≥0Ck.
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c) A graph G is an NT graph with a dominant vertex if and only if G has the form
G = (H ∪ Om1

) ∨ Km2
for some m1 ≥ 0, m2 ≥ 1 and some H ∈ ∪k≥0Ck.

Recall that the threshold graphs can be characterized in two different ways: as the
graphs G such that Λ(G) = D∗(G), and also as the graphs having no induced subgraphs
equal to P4, C4, or 2K2. In light of that fact, it is natural to wonder whether the property
of being an NT graph also places a restriction on the presence of subgraphs equal to one
of P4, C4, or 2K2. The following example addresses that question.

Example 4.2 Observe that each of C4, 2K2 and P4 is an example of an NT graph. Fur-
ther, appealing to Theorem 3.3, we find that (O2∪2K2)∨O2 contains both C4 and 2K2 as
induced subgraphs, while (O2 ∪ P4) ∨ O2 contains both C4 and P4 as induced subgraphs.
Further, (K2 ∨ P4) ∪ K2 contains both P4 and 2K2 as induced subgraphs. Finally we
also note that (O2 ∪ (K2 ∨ P4) ∪ K2)) ∨ O2 contains each of P4, C4, and 2K2 as induced
subgraphs. Hence, we see that an NT graph may contain as induced subgraphs either
one, two or all three of the graphs P4, C4, and 2K2.

In view of our discussion of the Grone-Merris conjecture in Section 1, the following
result is a natural one.

Theorem 4.3 If G is any NT graph, then D∗(G) � Λ(G).

Proof: We will show by induction on k that for each k ≥ 0 and each G ∈ Γk, D
∗(G) � Λ(G).

Throughout the proof, we will use the fact that if D∗(G) � Λ(G) for some graph G, then
necessarily D∗(G) � Λ(G).

Suppose that k = 0. Observe that for G = NT1(n), we have d∗
n(G) = n > λn(G) =

n+
√

n2−4n+8
2

, λn−i+1 = d∗
i , i = 2, . . . , n − 2, λ2 = n−

√
n2−4n+8

2
, and λ1 = d∗

n−1 = d∗
n = 0.

It follows readily then that D∗(NT1(n)) � Λ(NT1(n)). As NT2(n) = NT1(n), we find
that D∗(NT1(n)) � Λ(NT1(n)) as well. Similarly, for a connected threshold graph H
on n − 2 vertices, let G = H ∪ K2. Then Λ(G) = {0(2), d∗

1(H), . . . , d∗
n−2(H), 2}, while

D∗(G) = {n, d∗
2(H), . . . , d∗

n−2(H), 0(2)}, and it follows that D∗(G) � Λ(G). Considering
G, we find also that for any disconnected threshold graph H, D∗(H ∨ O2) � Λ(H ∨ O2).
Hence, each graph in Γ0 has the desired property.

Next, suppose that we have an NT graph H ∈ Γk on n − 4 vertices with no domi-
nant vertex and no isolated vertex, and consider the graph G = (K2 ∨ H) ∪ K2. Then
Λ(G) = {(n − 2)(2), λn−4(H) + 2, λn−5(H) + 2, . . . , λ2(H) + 2, 2, 0(2)}, while D∗(G) =
{n, n− 2, d∗

1(H) + 2, d∗
2(H) + 2, . . . , d∗

n−5(H) + 2, 0(3)}. From the induction hypothesis ap-
plied to H , it now follows that D∗(G) � Λ(G), and hence that D∗(G) � Λ(G) as well.
We then deduce that each graph in Γk+1 satisfies the desired majorization inequality. 2

Remark 4.4 As note in section 1, we have x � y for vectors x and y if and only if there
is a symmetric matrix, M(x, y) say, with spectrum x and diagonal y. Adopting that view-
point, we see the main result of [9] characterizes the graphs G such that M(D∗(G), Λ(G))
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can be taken to be a diagonal matrix. In a similar manner, we see that if G is an NT
graph on n vertices, then M(D∗(G), Λ(G)) can be taken to be a direct sum of one 2 × 2
block, and (n − 2) 1 × 1 blocks.

We conclude this paper with some open problems, and suggestions for future research.
1. Is there a characterization of NT graphs in terms of forbidden subgraphs? In view of
Example 4.2, if such a characterization exists, it must involve subgraphs on more than
four vertices.
2. Characterize, construct, or describe the graphs G such that the symmetric matrix
M(D∗(G), Λ(G)) of Remark 4.4 can be taken to be a direct sum of 1 × 1 and 2 × 2
matrices. In order to make the problem more tractable, it may be helpful to restrict the
number of 2 × 2 blocks.
3. Characterize, construct, or describe the graphs G on n vertices such that D∗(G) and
Λ(G) agree in n − 3 places.
4. Consider problems 2 and 3 above, but impose the additional constraint that the graphs
under consideration are Laplacian integral.
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