
A graph-theoretic method for choosing a spanning set

for a finite-dimensional vector space, with applications

to the Grossman-Larson-Wright module and the

Jacobian conjecture

Dan Singer
Department of Mathematics and Statistics

Minnesota State University, Mankato

dan.singer@mnsu.edu

Submitted: Dec 10, 2008; Accepted: Mar 23, 2009; Published: Mar 31, 2009

Mathematics Subject Classifications: 05C99, 05E99, 14R15, 15A03

Abstract

It is well known that a square zero pattern matrix guarantees non-singularity
if and only if it is permutationally equivalent to a triangular pattern with nonzero
diagonal entries. It is also well known that a nonnegative square pattern matrix
with positive main diagonal is sign nonsingular if and only if its associated digraph
does not have any directed cycles of even length. Any m × n matrix containing an
n × n sub-matrix with either of these forms will have full rank. We translate this
idea into a graph-theoretic method for finding a spanning set of vectors for a finite-
dimensional vector space from among a set of vectors generated combinatorially.
This method is particularly useful when there is no convenient ordering of vectors
and no upper bound to the dimensions of the vector spaces we are dealing with. We
use our method to prove three properties of the Grossman-Larson-Wright module
originally described by David Wright: M(3,∞)m = 0 for m ≥ 3, M(4, 3)m = 0 for
5 ≤ m ≤ 8, and M(4, 4)8 = 0. The first two properties yield combinatorial proofs of
special cases of the homogeneous symmetric reduction of the Jacobian conjecture.

1 Introduction

A classic problem in algebraic combinatorics is to show that the ring of symmetric func-
tions in n variables, Λn = Z[x1, . . . , xn]Sn , is generated by the elementary symmetric
functions e1, . . . , en, and that the latter are algebraically independent over Z. The proof,
as given in [8], is to define eλ = eλ1

eλ2
· · · for each descending partition λ = (λ1, λ2, . . . )
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with parts of size ≤ n, then observe that

eλ′ = mλ +
∑

µ

aλµmµ,

where λ′ is the conjugate partition, mλ is the monomial symmetric function, the aλµ are
non-negative integers, and the sum is taken over partitions µ which are later than λ in the
reverse lexicographic ordering. The crux of the proof is that there is a natural ordering
of the mλ’s and the eλ’s in which the corresponding coefficient matrix is unitriangular.
Since the monomial symmetric functions form a Z-basis for Λn, so do the eλ.

In this paper we describe a graph-theoretic method for finding a spanning set for a
finite-dimensional vector space V from among a set of vectors X generated combinato-
rially, when it is not readily apparent how to order X or a canonical spanning set of V
in a convenient way. The motivation for developing this technique is to make computa-
tions in the Grossman-Larson-Wright module which translate into algebraic statements
connected with the Jacobian conjecture. In Section 2 we describe the method, which
extends existing theorems on square zero and sign pattern matrices which guarantee non-
singularity to rectangular zero and sign pattern matrices which guarantee full rank. In
Section 3 we provide background information spelling out the connection between the
Grossman-Larson-Wright module and the homogeneous symmetric reduction of the Ja-
cobian conjecture. In Section 4 we apply our methods to prove three properties of the
Grossman-Larson-Wright module originally described by David Wright: M(3,∞)m = 0
for m ≥ 3, M(4, 3)m = 0 for 5 ≤ m ≤ 8, and M(4, 4)8 = 0. The first two properties yield
combinatorial proofs of special cases of the Jacobian conjecture.

2 The Graph Method

It is well known that a square zero pattern matrix guarantees non-singularity if and
only if it is permutationally equivalent to a triangular pattern with nonzero diagonal
entries: see ([6], Theorem 4.4). The row and column permutations which bring the matrix
into triangular form can be constructed from the edge-labeled digraph GA and the row
selection function r described in Definitions 2.1 and 2.3 below. It is also well known that a
nonnegative square pattern matrix with positive main diagonal is sign nonsingular if and
only if its associated digraph does not have any directed cycles of even length: see ([4],
Corollary 3.2.10, summarizing work of Bassett, Maybee and Quirk [3]). Theorem 2.11
and Corollary 2.12 generalize these results to rectangular zero and sign pattern matrices
which guarantee full rank. Corollary 2.13 describes a method for identifying a spanning
set in a finite-dimensional vector space based on these results.

Definition 2.1. Let A = (aij) be a real m × n matrix. The matrix A gives rise to
an edge-labeled digraph GA = (VA, EA), with vertex set VA = {v1, . . . , vn} and for all
(j, i, k) ∈ [n] × [m] × [n] a directed edge (vj , i, vk) from vj to vk labeled i if and only if
aijaik 6= 0.
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Example 2.2.

A =

















1 0 2 0
0 3 4 0
0 0 5 6
7 8 0 9
0 0 10 0
0 0 11 12

















GA = 24

3,4,64v  3v  

4

1

1,4 2,4

2v  1v  

3,61,2,3,5,6

4

Definition 2.3. Let A = (aij) be a real m×n matrix with no zero columns, and let GA be
the associated edge-labeled digraph as in Definition 2.1. For each column j ≤ n we define
Rj = {i ≤ m : aij 6= 0}. Since A has no zero columns, every set Rj is non-empty. Given
a row selection function r : VA → {1, . . . , m} which satisfies r(vj) ∈ Rj for all j ≤ n we
form the row selection subgraph Gr = (VA, Er) of GA with vertex set VA and edge set

Er = {(v, i, v′) ∈ EA : i = r(v)}.

Example 2.4. Let A and GA be as in Example 2.2. Let r be the row selection function
defined by r(v1) = 1, r(v2) = 2, r(v3) = 5, r(v4) = 4. Then

Gr =

1

5

24

44v  3v  

1

2

2v  1v  

4 .
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Definition 2.5. Let A = (aij) be a real m × n matrix and let GA be the associated
edge-labeled digraph as in Definition 2.1. Given a row subset selection function R : VA →
2{1,...,m} which satisfies R(vj) ⊆ Rj for all j ≤ n we form the row subset selection subgraph
GR = (VA, ER) of GA with vertex set VA and edge set

ER = {(v, i, v′) ∈ EA : i ∈ R(v)}.

Example 2.6. Let A and GA be as in Example 2.2. Let R be the row subset selection
defined by R(v1) = {1}, R(v2) = {2}, R(v3) = {5}, R(v4) = {3, 4}. Then

GR =

1

5

24

3,44v  3v  

1

2

2v  1v  

3

4 .

Definition 2.7. Let V be a vector space with finite spanning set X, let Y be a finite
collection of linear combinations of the vectors in X, and for each x ∈ X let

Y (x) = {y ∈ Y : x appears with non-zero coefficient in y}.

Then X and Y give rise to an edge-labeled digraph

G(X, Y ) = (X, E(X, Y ))

with vertex set X and for all (x, y, x′) ∈ X × Y ×X a directed edge (x, y, x′) from x to x′

labeled y if and only if y ∈ Y (x) ∩ Y (x′).

Example 2.8. Let V = R3, let X = {x1, x2, x3, x4} where

x1 = (1, 0, 0),

x2 = (0, 1, 0),

x3 = (1, 1, 0),

x4 = (1, 1, 1),

and let Y = {y1, y2, y3, y4, y5, y6} where

y1 = x1 + 2x3,

y2 = 3x2 + 4x3,

y3 = 5x3 + 6x4,

y4 = 7x1 + 8x2 + 9x4,

y5 = 10x3,

y6 = 11x3 + 12x4.
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Then

G(X, Y ) =

1 x  

x  3 x  4

x  2

, 4y  1y  y  2 y  4,

y  3 y  6,

4y  

,, 4y  3y  y  6,, y  y  ,, y  y  y  31 2 65

y  24y  
y  4y  1 .

Definition 2.9. Let V be a vector space with spanning set X, let Y be a finite collection
of linear combinations of the vectors in X, and let G(X, Y ) be the associated edge-labeled
digraph as in Definition 2.7. Given a linear combination subset function LC : X → 2Y

which satisfies LC(x) ⊆ Y (x) for all x ∈ X we form the linear combination subgraph
GLC(X, Y ) = (X, ELC(X, Y )) of G(X, Y ) with vertex set X and edge set

ELC(X, Y ) = {(x, y, x′) ∈ E(X, Y ) : y ∈ LC(x)}.

Example 2.10. Let V , X, Y , and G(X, Y ) be as in Example 2.8. Let LC be the linear
combination subset function defined by LC(x1) = {y1}, LC(x2) = {y2}, LC(x3) = {y5},
LC(x4) = {y3, y4}. Then

GLC(X, Y ) =

1 x  

x  3 x  4

x  2

1y  y  2

4y  y  5

y  24y  
y  4y  1

3y  

.

Theorem 2.11. Let A = (aij) be a m×n matrix over the reals with no zero columns, let
GA be the associated edge-labeled directed graph described in Definition 2.1, let

r : VA → {1, . . . , m}

be a row-selection function which satisfies r(vj) ∈ Rj for all j ≤ n, and let Gr be the row
selection subgraph of GA defined by r described in Definition 2.3.

(1) If Gr has no directed cycles of length ≥ 2 then A has n linearly independent rows.

(2) If Gr has no directed cycles of even length, and if A has no negative entries, then A
has n linearly independent rows.

In both cases, the rows chosen by the row-selection function r are linearly independent.
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Proof. First note that the hypotheses in statements (1) and (2) force r to be injective:
suppose r(vj) = r(vk) = i. Then aijaik 6= 0, hence the edges (vj , i, vk) and (vk, i, vj)
belong to Gr. Since there are no directed cycles of length 2 in Gr, we must have vj = vk.
Next, observe that permuting the rows of A results in permuting the edge labels of edges
in GA, with no impact on the rank of A or the isomorphism class of Gr. So we can
assume without loss of generality that r(vj) = j for 1 ≤ j ≤ n, reordering the rows of A if
necessary. This assumption implies that ajj 6= 0 for 1 ≤ j ≤ n, and allows us to say that
(vj , j, vk) ∈ Gr if and only if ajk 6= 0 for all j, k ≤ n. Let B be the matrix which consists
of the first n rows of A. Then

det(B) =
∑

σ∈Sn

sgn(σ)a(σ),

where
a(σ) = a1σ(1)a2σ(2) · · ·anσ(n).

Given a permutation σ which factors into a product of the disjoint cycles τ1, . . . , τk, we
have

a(σ) = a(τ1) · · ·a(τk).

The non-zero contributions to det(B) come from permutations σ = τ1 · · · τk in which
a(τi) 6= 0 for each cycle τi. Moreover, there is a one-to-one correspondence between cycle
permutations τ such that a(τ) 6= 0 and directed cycles in Gr: for a p-cycle τ , we have

a(τ) = ajτ(j)aτ(j)τ2(j) · · ·aτp−1(j)j 6= 0

if and only if

(vj , j, vτ(j)), (vτ(j), τ(j), vτ2(j)), ..., (vτp−1(j), τ
p−1(j), vj)

are edges in Gr. If Gr has no cycles of length ≥ 2 then the only permutation σ for
which a(σ) 6= 0 is the identity permutation, hence det(B) = a11 · · ·ann 6= 0. If Gr has no
directed cycles of even length then the sign of every permutation σ for which a(σ) 6= 0
is positive, and combined with the hypothesis that A has no negative entries this implies
that det(B) > 0. In either case, we conclude that B has linearly independent rows, hence
the row selection function r selects n linearly independent rows from A.

The row selection subgraph Gr can be used to show that an n×n matrix A is permu-
tationally equivalent to a lower triangular matrix with nonzero diagonal entries when A
falls into Case 1. Since Gr has no non-trivial directed cycles, it is possible to relabel the
vertices so that j > k whenever there is a directed edge from vj to a distinct vertex vk in
Gr. Having relabeled the vertices, relabel the edge labels so that r(vi) = i for each i. The
adjacency matrix of the relabeled Gr is lower triangular and permutationally equivalent
to A. More generally, the n rows of an m × n matrix A picked out by the row selection
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function form a submatrix which is permutationally equivalent to a lower triangular ma-
trix with nonzero diagonal entries when A falls into Case 1 of Theorem 2.11. Of course,
a computer can check for the existence of this submatrix in a reasonable amount of time
if the matrix is small enough, and by a simple algorithm which has nothing to do with
directed graphs, but the graph method may be more suitable for proving full rank if there
is no bound to the size of the matrices one is interested in and one has combinatorial
information about how the matrices are generated. We will see an example of this in
Section 4.

Corollary 2.12. Let A = (aij) be an m × n matrix over the reals with no zero columns,
let GA be the associated edge-labeled directed graph as in Definition 2.1, let

R : VA → 2{1,...,m}

be a row subset selection function which satisfies R(vj) ⊆ Rj and R(vj) 6= ∅ for all j ≤ n,
and let GR be the subgraph of GA defined by R as in Definition 2.5.

(1) If GR has no directed cycles of length ≥ 2 then A has n linearly independent rows.

(2) If GR has no directed cycles of even length, and if A has no negative entries, then A
has n linearly independent rows.

Proof. For each vertex v in GA let r(v) ∈ R(v) be chosen arbitrarily. This defines a valid
row-selection function r for GA, and Gr is a subgraph of GR. Therefore Gr falls into Case
1 or Case 2 of Theorem 2.11. Hence A has n linearly independent rows.

Corollary 2.13. Let V be a finite-dimensional real vector space with spanning set X =
{x1, . . . , xn}, let Y = {y1, . . . , ym} be a collection of linear combinations of the vectors in
X, let G(X, Y ) be the associated edge-labeled digraph as in Definition 2.7, let LC : X → 2Y

be a linear combination subset function which satisfies LC(x) ⊆ Y (x) and LC(x) 6= ∅ for
each x ∈ X, and let GLC(X, Y ) be the subgraph of G(X, Y ) defined by LC as in Definition
2.9.

(1) If GLC(X, Y ) has no directed cycles of length ≥ 2 then Y is a spanning set for V .

(2) If GLC(X, Y ) has no directed cycles of even length, and if every linear combination in
Y has nonnegative coefficients, then Y is a spanning set for V .

Proof. Let A be an m × n coefficient matrix which expresses Y in terms of X. Then GA

is isomorphic to G(X, Y ), with vertex vi in GA corresponding to vertex xi in G(X, Y ) and
labeled edge (vi, k, vj) in GA corresponding to labeled edge (xi, yk, xj) in G(X, Y ). The
linear combination subset function LC : X → 2Y gives rise to a valid row subset selection
function R : VA → 2{1,...,m} such that GR is isomorphic to GLC(X, Y ). By construction,
R(v) 6= ∅ for each v ∈ VA. The subgraph GR falls into Case 1 or Case 2 of Corollary
2.12, hence A has n linearly independent rows. These rows form an n × n submatrix of
A which is row-equivalent to the identity matrix, which implies that every x ∈ X can be
expressed as a linear combination of the vectors in Y . Hence Y spans V .
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3 A primer on the homogeneous symmetric reduc-

tion of the Jacobian conjecture and the Grossman-

Larson-Wright module

An algebraic analogue of the inverse function theorem states that if f1, . . . , fn are polyno-

mials in C[x1, . . . , xn] which satisfy fi(0, . . . , 0) = 0 for all i and det
(

∂fi

∂xj

)

(0, . . . , 0) 6= 0,

then there must exist formal power series g1, . . . , gn in C[[x1, . . . , xn]] which satisfy

fi(g1, . . . , gn) = gi(f1, . . . , fn) = xi

for all i.

Example 3.1. Let n = 1 and f1 = x1 − x2
1. Then g1 =

∑∞
k=1

(2k−2)!
(k−1)!k!

xk
1.

Example 3.2. Let n = 2 and
(

f1

f2

)

=

(

x1 − (x1 + ix2)
2

x2 − i(x1 + ix2)
2

)

.

Then
(

g1

g2

)

=

(

x1 + (x1 + ix2)
2

x2 + i(x1 + ix2)
2

)

.

The Jacobian conjecture (see [7]) is equivalent to the statement that if fi(0, . . . , 0) =

0 for all i and if det
(

∂fi

∂xj

)

∈ C∗ in the set-up above then the expressions g1, . . . , gn

are polynomials of finite degree. The polynomial f1 in Example 3.1 does not meet the
hypothesis of the Jacobian conjecture because ∂f1

∂x1
= 1 − 2x1 6∈ C∗, but the polynomials

f1 and f2 in Example 3.2 do because det
(

∂fi

∂xj

)

= 1 ∈ C∗.

There are a number of partial results relating to systems of n polynomials in n variables
in which fi = xi − hi for all i, where each hi is homogeneous of the same total degree
d ≥ 2. Under this scenario, det(∂f) ∈ C∗ implies (∂h)n = 0. This case is referred
to as Jn,[d]. The Jacobian conjecture is equivalent to Jn,[3] [1]. The formal inverse can
be expressed in terms of rooted trees. Wright surveyed tree-formula approaches to the
Jacobian conjecture in [10]. Singer proposed an alternative approach in terms of Catalan
trees [9]. Since the degree of a polynomial inverse can be as large as dn−1 in the context of
Jn,[d], and since the number of trees required grows exponentially with the degree of the
inverse, computer runtime and size limitations place severe restrictions on any brute-force
search for a solution using these methods.

The most promising approach to the Jacobian conjecture, from a combinatorial point
of view, seems to be the homogeneous symmetric reduction due to Michiel de Bondt and
Arno van den Essen [2]:
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Theorem 3.3. The Jacobian Conjecture is true if it holds for all polynomial maps F
having the form F = X −H with H homogeneous of degree d ≥ 2 and ∂H is a symmetric
matrix. H can be taken to be ∇P , where P is a homogeneous polynomial of degree d + 1.
In fact, it suffices to prove the case d = 3.

Example 3.2 was formed using P = 1
3
(x1 + ix2)

3. The formal inverse in the homo-
geneous symmetric reduction has a combinatorial expression in terms of unrooted trees
(Theorem 2.3 in [11]):

Theorem 3.4. Let F = X −∇P be a system of n polynomials in n variables and let G
be the inverse system of formal power series. Then G = X + ∇Q with

Q =
∑

T∈T

1

|Aut T |
QT,P ,

where T is the set of isomorphism classes of unrooted trees,

QT,P =
∑

l:E(T )→{1,...,n}

∏

v∈V (T )

Dadj(v)
P,

adj(v) is the set {e1, . . . , es} of edges adjacent to v, and

Dadj(v)
= Dl(e1) · · ·Dl(es)

is a product of formal partial differentiation operators.

In the context of Theorem 3.4, if P is homogeneous of degree d + 1 then

Q = Q(1) + Q(2) + Q(3) + · · ·

where

Q(m) =
∑

T∈Tm

1

|Aut T |
QT,P

and Tm is the set of isomorphism classes of unrooted trees with m vertices. Each Q(m) is
homogenous of degree m(d− 1) + 2. In order to prove that the inverse G is a polynomial
system, it suffices to show that Q(m) = 0 for all sufficiently large m. In fact, it suffices to
prove that

Q(M+1) = Q(M+2) = · · · = Q(2M) = 0

for some positive integer M (the Gap Theorem). This is a consequence of Zhao’s Formula
[13]:

Theorem 3.5. For m ≥ 1 let Q(m) be the homogeneous summand of degree m(d− 1) + 2
in the formula for the inverse of F = X −∇P , where P is homogeneous of degree d + 1.
Then Q(1) = P and for m ≥ 2,

Q(m) =
1

2(m − 1)

∑

k+l=m

k,l≥1

(

∇Q(k) · ∇Q(l)
)

.
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The hypotheses in the homogeneous symmetric reduction of the Jacobian conjecture
supply us with a large source of unrooted trees T for which the expression QT,P defined
in Theorem 3.4 is equal to zero. Let P ∈ C[X] be a polynomial in n variables which is
homogeneous of degree ≥ 3, let H = ∇P and F = X − H , and assume det(F ) ∈ C∗.
Then (∂H)n = (Hess P )n = 0. We make the following definitions, adapted from Wright
[11]:

Definition 3.6. Let e ≥ 1 be given. Then V (e) denotes the set of all tree isomorphism
classes which contain at least one vertex of degree > e.

Definition 3.7. Let r ≥ 2 be given. A naked r-chain in an unrooted tree T is a path of
the form v1 − v2 − · · · − vr in which degT (v1) ≤ 2, degT (vr) ≤ 2, and degT (vi) = 2 for
2 ≤ i ≤ r − 1. C(r) is the set of all unrooted tree isomorphism classes which contain a
naked r-chain.

Definition 3.8. Let P ∈ C[X] be a polynomial in n variables. The function ρP : T →
C[X] is defined by

ρP (T ) = QT,P =
∑

l:E(T )→{1,...,n}

∏

v∈V (T )

Dadj(v)
P

as in Theorem 3.4.

Wright proved ([11], Proposition 3.6 and Theorem 3.1 respectively)

Theorem 3.9. If P ∈ C[X] has degree e then ρP (V (e)) = 0.

Theorem 3.10. Let P ∈ C[X] with (Hess P )r = 0 for some r ≥ 1. If P is homogeneous
of degree ≥ 2 then ρP (C(r)) = 0.

The combinatorial program proposed by Wright in [11] is to lift questions related to
the homogeneous symmetric reduction of the Jacobian conjecture from the context of
differential operators acting on polynomials to that of the Grossman-Larson algebra of
rooted trees acting on the module of unrooted trees. The Grossman-Larson algebra H
is a vector space over Q consisting of all finite linear combinations of trees in Trt, the
set of all rooted tree isomorphism classes. Multiplication in H is defined as follows: Let
S, T ∈ Trt be given. If S has exactly one vertex, then S ·T = T . Otherwise, let S1, . . . , Sr

be the rooted subtrees of S adjacent to the root of S. Then

S · T =
∑

(v1,...,vr)∈V (T )r

(S1, . . . , Sr) (v1,...,vr)T ,
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where (S1, . . . , Sr) (v1,...,vr)T denotes the tree obtained by joining the root of Si to the
vertex vi in T by a new edge for 1 ≤ i ≤ r. This product is extended by distributivity to
all of H. For example,

(2 + 3 )2 = 4 + 12 + 9 + 36 + 18 + 18 .

For more information about the Grossman-Larson algebra, see [5].

The Grossman-Larson-Wright H-module M is a vector space over Q consisting of
all finite linear combinations of trees in T, the set of all unrooted tree isomorphism
classes. The action of H on M is defined using the same glueing operation as above, the
difference being that the product of a rooted tree with an unrooted tree produces a linear
combination of unrooted trees. For example,

· = 2 + 2 + 6 + 2 + 2 + 2 . (3.1)

All the axioms for a module over an associative Q-algebra are met by M over H.

The algebra H is graded: H =
⊕∞

m=0 Hm, where Hm is spanned by rooted trees with m
unrooted vertices. The module M is a graded H-module: M =

⊕∞
m=1 Mm, where Mm is

spanned over the rationals by unrooted trees with m vertices. We have HmMn ⊆ Mm+n

for all m ≥ 0 and n ≥ 1.

Wright defines the following H-submodules and quotient modules [11]:

Definition 3.11. Let e ≥ 1 and r ≥ 2 be given. Let V(e) ⊆ M denote the span of V (e)
over the rationals (see Definition 3.6). Let C(r) ⊆ M denote the span of all expressions of
the form S · T over the rationals, where S ∈ Trt and T ∈ C(r) (see Definition 3.7). Both
V(e) and C(r) are graded H-submodules of M. Let N (r, e) = V(e) + C(r). Let M(r, e)
denote the quotient module M/N (r, e). For each m ≥ 1 let M(r, e)m denote the image
of Mm in M(r, e).

The function ρP : T → C[X] described in Definition 3.8 can be extended by linearity
to a linear transformation ρP : M → C[X]. When P is homogeneous, ρP is a graded
H-module homomorphism in the following sense: Let C[D1, . . . , Dn] be the Q-algebra
of formal partial differentiation operators acting on the module C[x1, . . . , xn]. Given
a polynomial P ∈ C[x1, . . . , xn] which is homogenous of degree d + 1, let φP : H →
C[D1, . . . , Dn] be the mapping defined by

φP (S) =
∑

l:E(S)→{1,...,n}





∏

v∈V (S)−{root(S)}

Dadj(v)
P



 Dadj(root(S))
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for all S ∈ Trt and extended by linearity to all of H. Then φP is a Q-algebra homomor-
phism. Moreover,

ρP (xy) = φP (x)ρP (y) (3.2)

for all (x, y) ∈ H ×M and deg ρP (x) = m(d − 1) + 2 for all x ∈ Mm.

If P is homogeneous of degree e and (Hess P )r = 0, then Theorems 3.9 and 3.10
together with Equation 3.2 imply that

N (r, e) ⊆ ker ρP . (3.3)

Combining Equation 3.3 with Theorem 3.4 and the Gap Theorem, the link between the
homogeneous symmetric reduction of the Jacobian conjecture and the Grossman-Larson-
Wright module is summarized as follows:

Theorem 3.12. Let P ∈ C[x1, . . . , xn] be homogeneous of degree e ≥ 3 and satisfy
(Hess P )r = 0 for some r ≥ 1. Set F = X −∇P . If M(r, e)m = 0 for M + 1 ≤ m ≤ 2M
and some positive integer M then the formal inverse of F is a polynomial system.

4 Applying the graph-theoretic method to 3 exam-

ples in the Grossman-Larson-Wright module

Wright states without proof that M(3,∞)m = 0 for m ≥ 3 in ([11], Theorem 3.12). Our
proof of this in Theorem 4.3 below illustrates the use of Case 1 of Corollary 2.13. This
supplies a proof of Jn,[d] for all n and d ≥ 2 when ∂H is symmetric and (∂H)3 = 0.
Wright proves M(4, 3)m = 0 for 5 ≤ m ≤ 8 in ([11], Proposition 3.11). Our proof of this
in Theorem 4.4 below is different and provides a second example of Case 1 of Corollary
2.13. This supplies a proof of Jn,[2] for all n when ∂H is symmetric and (∂H)4 = 0.
Wright announces that M(4, 4)m = 0 for m = 8, 9, 10, 11, 12, 14 (but not 13!) in [11] by
a computer search, using a program written by Li-Yang Tan [12]. This does not quite
supply a proof of Jn,[3] for all n when ∂H is symmetric and (∂H)4 = 0, but Wright finds
a way to bridge the gap and complete the proof (see Theorem 3.19 and the paragraph
before it in [11]). We have duplicated his results for M(4, 4)m = 0 using Mathematica
and can attest to the computational complexity of this problem. We prove M(4, 4)8 = 0
in Theorem 4.5 below using Case 2 of Corollary 2.13.

Definition 4.1. Let Tm(r, e) denote the set of unrooted trees with m vertices, no naked
r-chains, and all vertex degrees ≤ e. Let Vm(r, e) ⊆ Mm be the span of Tm(r, e) over the
rationals. For each S ∈ Trt and T ∈ T we denote by [S ·T ]r,e the sum of the terms in S ·T
which contain no naked r-chains and have all vertex degrees ≤ e. For example, compare
Equation 3.1 with

[ · ]4,3 = 6 + 2 + 2 .
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We will abbreviate this notation to [S · T ] when convenient.

Lemma 4.2. Let m ≥ 1, r ≥ 2, e ≥ 3 be given. Set X = Tm(r, e) and

Y = {[S · T ]r,e : (S, T ) ∈ Trt × C(r), S · T ∈ Mm}.

Form the edge-labeled directed graph G(X, Y ) as in Definition 2.7. As in Definition 2.9,
let LC : X → 2Y be a linear combination subset function which satisfies LC(x) ⊆ Y (x)
and LC(x) 6= ∅ for each x ∈ X, and let GLC(X, Y ) be the subgraph of G(X, Y ) defined by
LC. If GLC(X, Y ) has no even directed cycles then M(r, e)m = 0.

Proof. Regarded as a collection of vectors in M, the set X spans Vm(r, e). The set Y is a
finite collection of vectors in Vm(r, e) with nonnegative coefficients of vectors in X. Hence
by Corollary 2.13, Y spans Vm(r, e). Since

[S · T ]r,e ≡ S · T ≡ 0 mod N (r, e)

for each [S · T ]r,e ∈ Y , this implies that X ⊆ N (r, e). Since the images of X in M(r, e)
span M(r, e)m, this in turn implies M(r, e)m = 0.

To illustrate the use of Lemma 4.2, here is a proof that M(3, 4)5 = 0: We have

X = { , },

Y = {[ · ]3,4, [ · ]3,4, [ · ]3,4, [ · ]3,4}.

The coefficient matrix for Y has rows indexed by Y , columns indexed by X:

1  0
6  1

.[ ]

[ . ]

2  0].[
. ][ 0  0

.

We will choose the linear combination subset function

LC( ) = {[ · ]3,4},

LC( ) = {[ · ]3,4}.
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With this choice we obtain GLC(X, Y ) with no non-trivial cycles:

[ . ]

[ . ]
.[ ]

.

Therefore Y spans T5(3, 4) and M(3, 4)5 = 0.

In the proof of Theorems 4.3 and 4.4 we refer to the diameter of an unrooted tree
and the height of a rooted tree. These are standard terms from graph theory. The
distance between two vertices u, v in a graph G is the minimal number of edges in a path
connecting u and v in G, and the diameter of G is the greatest distance between any of
pair of vertices in G. The height of a rooted tree S is the greatest distance between the
root vertex of S and any other vertex in S. The idea of the proof in Theorems 4.3 and
4.4 is to construct GLC(X, Y ) in such a way that it has two properties: (1) every directed
edge (x, y, x′) satisfies diameter(x) ≤ diameter(x′), and (2) any walk of sufficient length
along non-loop edges from any vertex x must encounter a vertex x′ of strictly greater
diameter. These two properties guarantee that there are no directed cycles of length ≥ 2
in the graph: if there were a non-trivial directed cycle through vertex x along non-loop
edges, then walking around the cycle starting from x we must eventually encounter a
vertex x′ of strictly larger diameter, and walking from x′ to x along the cycle we would
find that diameter(x) < diameter(x′) ≤ diameter(x), a contradiction.

Theorem 4.3. M(3,∞)m = 0 for m ≥ 3.

Proof. The statement M(3,∞)3 = 0 is trivially true. Fix m ≥ 4, r = 3, e = ∞. We
will apply Lemma 4.2. Let X = Tm(3,∞), the set of trees with m vertices and no
naked 3-chains. Trees in X fall into two disjoint categories. Trees in Category I have a
decomposition of the form

T =

...

S

p

,

where height(S) = diameter(T ) − 2 and p > 1. The remaining trees fall into Category II
and have a decomposition of the form

T =

S
j1

S ...

,

the electronic journal of combinatorics 16 (2009), #R43 14



where height(S1) = diameter(T ) − 3, j ≥ 2, and S1 has a maximal number of vertices.
We emphasize that a tree can fall into a category in more than one way. For example,
the tree

falls into Category I in three ways, and the tree

falls into Category II in two ways.

As in Lemma 4.2, let

Y = {[S · T ]3,∞ : (S, T ) ∈ Trt × C(3), S · T ∈ Mm}.

We will define a linear combination subset function LC : X → 2Y such that ∅ 6= LC(X) ⊆
Y (x) for each x ∈ X implicitly by specifying the edges (x, y, x′) in GLC(X, Y ), organized
by the category of x. The edges to strictly larger diameter trees have been suppressed for
simplicity in the following depiction of GLC(X, Y ):

...

S

p ...S

[ ]
p − 2

.
where p > 1

... SS

S

k1

... TT

...

S

p

,
[ ].

p > 1, |V(T  )| > |V(S  )|

S S...

1 j

2 j

1

1 1 .

Note that LC(T ) includes every bracketed product suggested by the figure above. For

example, since the tree belongs to Category II in two ways, we have

LC( ) =

},

}

][ .[ ].
,
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which generates the edges

. ][

.[ ]
other trees 

other trees 

.

Every edge (x, y, x′) in GLC(X, Y ) satisfies diameter(x) ≤ diameter(x′). Any walk of
length |X|+1 from a vertex x along non-loop edges must encounter a vertex x′ of strictly
greater diameter. Therefore GLC(X, Y ) has no cycles of length ≥ 2. By Lemma 4.2,
M(3,∞)m = 0.

Theorem 4.4. M(4, 3)m = 0 for 5 ≤ m ≤ 8.

Proof. The trees in
⋃8

m=5 Tm(4, 3) are labeled in [11] as follows:

2
A

2
B B

3 5
B

3
C C

5 6
C C

9

5
D

6
D

7
D D

10 11
D D

13
D

18 20
D

Fix m ∈ {5, 6, 7, 8}. Let X = Tm(4, 3), the set of trees with m vertices, no naked 4-chains,
and no vertices of degree > 3. The trees in X can be sorted into two disjoint categories.
Trees in Category I have a representation of the form

A

S,

the electronic journal of combinatorics 16 (2009), #R43 16



where A is a rooted tree of height 2, S is a rooted tree with height equal to diameter− 3,
the root of A has degree 2 in A, and S is maximal with respect to number of vertices.
The trees in Category I can be sorted into the disjoint subcategories

S , S , S .

The remaining trees fall into Category II and can be sorted into the disjoint subcategories

A B, A B, .

Here A represents a rooted subtree such that height(A) = diameter − 4.

Let
Y = {[S · T ]4,3 : (S, T ) ∈ Trt × C(4), S · T ∈ Mm}.

As before, we will define a linear combination subset function LC : X → 2Y such that
∅ 6= LC(X) ⊆ Y (x) for each x ∈ X implicitly by specifying the edges (x, y, x′), in
GLC(X, Y ), organized by the category of x. The edges to strictly larger diameter trees
have been suppressed for simplicity in the following depiction of GLC(X, Y ):

[ ].
S

S

[ ].
S

S

][ .

S S

S

SBA

B

A ][ .
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S ,

A ][

BA

.

S ,

B

S
,S

[ ].

As in the proof of Theorem 4.3, LC(T ) includes every bracketed product suggested
by the figure above. All edges (x, y, x′) in GLC(X, Y ) satisfy diameter(x) ≤ diameter(x′).
Since any walk in GLC(X, Y ) of the form x0 → x1 → x2 → x3 → x4 along non-loop edges
satisfies diameter(x0) < diameter(x4), GLC(X, Y ) has no directed cycles of length ≥ 2.
By Lemma 4.2, M(4, 3)m = 0.

Theorem 4.5. M(4, 4)8 = 0.

Proof. The trees in T8(4, 4) are labeled in [11] as follows:

5
D

6
D

7
D

8
D D

10 11
D D

12

D
13

D
14

D
15

D
18

D
19 20

D D
22

Let X = T8(4, 4) and

Y = {[S · T ]4,4 : (S, T ) ∈ Trt × C(4), S · T ∈ M8}.

Computer calculations show that if A is any coefficient matrix representing Y in terms
of X, then A does not have a 14 × 14 submatrix which is permutationally equivalent to
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a triangular matrix with non-zero diagonal entries. We will associate with each x ∈ X
a unique y = lc(x) ∈ Y such that x appears in the support of y, and in each case set
LC(x) = {lc(x)}:

lc(D5) = [ · ], lc(D6) = [ · ], lc(D7) = [���
���
���
��� · ],

lc(D8) = [ · ], lc(D10) = [ · ], lc(D11) = [ · ],

lc(D12) = [ · ], lc(D13) = [ · ], lc(D14) = [ · ],

lc(D15) = [ · ], lc(D18) = [ · ], lc(D19) = [ · ],

lc(D20) = [ · ], lc(D22) = [ · ].

Let Y0 be the set of the vectors described above. Let A0 be the zero-one matrix with
columns indexed by

{D5, D6, D7, D8, D10, D11, D12, D13, D14, D15, D18, D19, D20, D22},

rows indexed by

{lc(D5), lc(D6), lc(D7), lc(D8), lc(D10), lc(D11), lc(D12),

lc(D13), lc(D14), lc(D15), lc(D18), lc(D19), lc(D20), lc(D22},

and a 1 in row lc(Di), column Dj if and only if Dj appears in the support of lc(Di). For
example,

lc(D7) = [���
���
���
��� · ]4,4 = 2 + 1 = 2D5 + 1D7,
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therefore the third row of A0, corresponding to lc(D7), contains 1s in columns 1 and
3, corresponding to D5 and D7, and 0s elsewhere. These 1s can also be regarded as
representing the directed edges (D7, lc(D7), D5) and (D7, lc(D7), D7) in GLC(X, Y ). The
matrix A0 represents both the sign pattern of the coefficient matrix which represents Y0

in terms of X and the adjacency matrix of GLC(X, Y ). We have

A0 =

















































1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 1 1 1 1 0 1 0 1 1 1 0
0 1 0 0 1 0 0 1 1 0 1 0 1 0
0 1 0 1 1 1 1 0 1 0 1 1 1 1

















































.

There is exactly one non-trivial directed cycle in GLC(X, Y ), and it has odd length: the
sequence of labeled edges

(D6, lc(D6), D8), (D8, lc(D8), D13), (D13, lc(D13), D6).

Hence by Lemma 4.2, M(4, 4)8 = 0.

These examples raise several questions:

1. Is there a systematic way to categorize trees as we have done in Theorems 4.3 and 4.4
to prove that M(4, 4)m = 0 for other values of m using Corollary 2.13?

2. Does a sufficiently large value of m guarantee that we can find a spanning set Y ⊆
N (4, 4) for Vm(4, 4) with a corresponding GLC(X, Y ) digraph that contains no non-trivial
directed cycles?

3. For which other values of r, e, and m can we apply these methods?

4. In the proof of Lemma 4.2 we have used a basis X = Tm(r, e) for Vm(r, e) and have
found a spanning set Y for Vm(r, e), so we have not used the full force of Corollary 2.13,
which allows X to be a spanning set. Is there a way to use a spanning set X ⊆ N (r, e)
for Vm(r, e) to generate a spanning set Y ⊆ N (r + 1, e) for Vm′(r + 1, e)?

5. Are there other combinatorial problems that are solvable using these methods?
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