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Abstract

Considering a connected graph G with diameter D, we say that it is k-walk-

regular, for a given integer k (0 ≤ k ≤ D), if the number of walks of length ℓ

between any pair of vertices only depends on the distance between them, provided
that this distance does not exceed k. Thus, for k = 0, this definition coincides with
that of walk-regular graph, where the number of cycles of length ℓ rooted at a given
vertex is a constant through all the graph. In the other extreme, for k = D, we get
one of the possible definitions for a graph to be distance-regular. In this paper we
show some algebraic characterizations of k-walk-regularity, which are based on the
so-called local spectrum and predistance polynomials of G.

1 Introduction

Distance-regular graphs with diameter D can be characterized by the invariance of the
number of walks of length ℓ ≥ 0 between vertices at a given distance i, 0 ≤ i ≤ D (see
e.g. Rowlinson [11]). Similarly, walk-regular graphs are characterized by the fact that the
number of closed walks of length ℓ ≥ 0 rooted at any given vertex is a constant (see e.g.
Godsil [8]). Based on these definitions, in this paper we introduce a generalization of both
distance-regularity and walk-regularity, which we call k-walk-regularity. In particular, we
present some algebraic characterizations of k-walk-regular graphs in terms of the so-called
local spectrum, which gives information of the graph when it is seen from a vertex, and
the predistance polynomials of G.
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project 2005SGR00256.
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We begin with some notation and basic results. Throughout this paper, G = (V, E)
denotes a simple, connected graph, with order n = |V | and adjacency matrix A. The
distance between two vertices u and v is denoted by dist(u, v), so that the eccentricity

of a vertex is ecc(u) = maxv∈V dist(u, v) and the diameter of the graph is D = D(G) =
maxu∈V ecc(u). The spectrum of G is denoted by

sp G = sp A = {λm0

0 , λm1

1 , . . . , λmd

d },

with different eigenvalues of G in decreasing order λ0 > λ1 > · · · > λd and the superscripts
stand for their multiplicities mi = m(λi). In particular, note that m0 = 1 (since G is
connected) and m0 + m1 + · · · + md = n. It is well-known that the diameter of G
satisfies D ≤ d (see, for instance, Biggs [1]). Then, a graph with D = d is said to have
spectrally maximum diameter. This assures the existence of two vertices at (spectrally
maximum) distance d. For a given ordering of the vertices of G, the vector space of linear
combinations (with real coefficients) of the vertices is identified with R

n, with canonical
basis {eu : u ∈ V }. Let Z =

∏d

i=0(x − λi) be the minimal polynomial of A. The vector
space Rd[x] of real polynomials of degree at most d is isomorphic to R[x]/(Z), and each
polynomial p ∈ Rd[x] operates on the vector w ∈ R

n by p(A)w. For every 0 ≤ k ≤ d, the
orthogonal projection of R

n onto Ek = Ker(A−λkI) is given by the polynomial of degree
d

Pk =
1

φk

d
∏

i=0

i6=k

(x − λi) =
(−1)k

πk

d
∏

i=0

i6=k

(x − λi),

where φk =
∏d

i=0,i6=k(λk − λi) and πk = |φk| are ‘moment-like’ parameters satisfying

d
∑

k=0

(−1)k λℓ
k

πk

=

{

0 if 0 ≤ ℓ < d,
1 if ℓ = d,

(just express xk in terms of the basis {P0, P1, . . . , Pd} and equate coefficients of degree d).
The matrices Ek = Pk(A) corresponding to these orthogonal projections are called the
(principal) idempotents of A. Then, the orthogonal decomposition of the unitary vector
eu, representing vertex u, is:

eu = z0
u + z1

u + · · · + zd
u , where zk

u = Pk(A)eu = Ekeu ∈ Ek. (1)

In particular, if ν = (νu)u∈V is an eigenvector of λ0, then z0
u = (eu,ν)

‖ν‖2 ν = νu

‖ν‖2 ν, where

(·, ·) stands for the standard Euclidean inner product.
The idempotents of A satisfy the following properties:

(a.1) EkEh =

{

Ek if k = h,
0 otherwise;

(a.2) AEk = λkEk;
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(a.3) p(A) =

d
∑

k=0

p(λk)Ek, for any polynomial p ∈ R[x].

In particular, taking p = 1 in (a.3), we have E0 + E1 + · · · + Ed = I (as expected,
since the sum of all orthogonal projections gives the original vector, see e.g. Godsil [8]).
Moreover, taking p = xℓ, each power of A can be expressed as a linear combination of
the idempotents Ek:

Aℓ =

d
∑

k=0

λℓ
kEk. (2)

From the decomposition (1), the u-local multiplicity of eigenvalue λk is defined as

mu(λk) = ‖zk
u‖

2 = (Ekeu, Ekeu) = (Ekeu, eu) = (Ek)uu,

(see Fiol and Garriga [5]), satisfying
∑d

k=0 mu(λk) = 1 and
∑

u∈V mu(λk) = mk, 0 ≤ k ≤
d.

In particular, we say that a (connected) graph G is spectrally regular when, for any
k = 0, 1, . . . , d, the u-local multiplicity of λk does not depend on the vertex u. Then, the
above equations imply that the (standard) multiplicity “splits” equitably among the n

vertices, giving mu(λk) = mk

n
. In particular, since mu(λ0) = ‖z0

u‖
2 = ν2

u

‖ν‖2 , the spectral

regularity implies the regularity of the graph because, in this case, mu(λ0) = 1
n

and

νu = ‖ν‖√
n

for all u, so that λ0 has a constant eigenvector, which is a characteristic property
of regular graphs.

Let a
(ℓ)
u = (Aℓ)uu denote the number of closed walks of length ℓ rooted at vertex u.

When the number a
(ℓ)
u only depends on ℓ, in which case we write a

(ℓ)
u = a(ℓ), the graph G

is called walk-regular (a concept introduced by Godsil and McKay in [9]). Notice that, as

a
(2)
u = δu, the degree of vertex u, every walk-regular graph is also regular.

In the context of walk-regular graphs, the following result was given by Fiol and
Garriga [4] and by Delorme and Tillich [3]:

Proposition 1.1 A connected graph G is spectrally regular if and only if it is walk-regular.

Consequently, from now on we will indistinctly say that a graph G is spectrally regular
or that it is walk-regular.

2 The predistance polynomials

From the spectrum of a given graph sp G = {λm0

0 , λm1

1 , . . . , λmd

d }, we consider the following
scalar product in Rd[x]:

〈p, q〉 =
1

n
tr(p(A)q(A)) =

1

n

d
∑

k=0

mkp(λk)q(λk). (3)
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Then, by using the Gram-Schmidt method and normalizing appropriately, it is immediate
to prove the existence and uniqueness of an orthogonal system of polynomials {pk}0≤k≤d

called predistance polynomials which, for any 0 ≤ h, k ≤ d, satisfy:

(b.1) degree(pk) = k;

(b.2) 〈ph, pk〉 = 0 if h 6= k;

(b.3) ‖pk‖
2 = pk(λ0).

Fiol and Garriga [5, 6] showed that such a system is unique and it is also characterized
by any of the two following conditions:

(c.1) p0 = 1, ak + bk + ck = λ0 for 0 ≤ k ≤ d,

where ak, bk and ck are the corresponding coefficients of the three-term recurrence

xpk = bk−1pk−1 + akpk + ck+1pk+1 (0 ≤ k ≤ d),

(that is, the Fourier coefficients of xpk in terms of pk−1, pk, and pk+1, respectively)
initiated with p−1 = 0 and p0 any non-zero constant.

(c.2) H =

d
∑

k=0

pk =
n

π0

d
∏

k=1

(x − λk) = n P0.

The reader familiar with the theory of distance-regular graphs will have already noted
that the predistance polynomials can be thought as a generalization of the so-called “dis-
tance polynomials”. Recall that, in a distance-regular graph G, such polynomials satisfy

pk(A) = Ak (0 ≤ k ≤ d),

where Ak stands for the adjacency matrix of the distance-k graph Gk (where two vertices
u and v are adjacent if and only if dist(u, v) = k in G), usually called the k-th distance

matrix of G (see, for instance, Brouwer, Cohen and Neumaier [2]). Also, recall that the
polynomial H in (c.2) is the Hoffman polynomial characterizing the regularity of G by
the condition H(A) = J , the all-1 matrix (see Hoffman [10]).

In our context, the predistance polynomials allow us to give another characterization
of walk-regularity (or spectral regularity), as it is shown in the following new result:

Proposition 2.1 Let G be a (connected) graph with adjacency matrix A having d +
1 distinct eigenvalues, and with predistance polynomials p0, p1, . . . , pd. Then, the two

following statements are equivalent:

(a) G is walk-regular.

(b) The matrices pk(A), 1 ≤ k ≤ d, have null diagonals.
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Proof. Assume first that (a) holds: if G is walk-regular, then the diagonal vector of Aℓ

is diag(Aℓ) = a(ℓ)j, with j being the all-1 vector. Taking the set C = {a(0), a(1), . . . , a(d)},
we introduce the following notation: Given a polynomial p =

∑d

i=0 αix
i, let p(C) =

∑d

i=0 αia
(i). Since (pk(A))uu = pk(C) for every vertex u, diag(pk(A)) = pk(C)j. But, for

1 ≤ k ≤ d, we have

0 = 〈pk, p0〉 =
1

n
tr(pk(A)) = pk(C),

so that diag(pk(A)) = 0.
Now suppose that (b) holds. Then, by using the expression

xℓ =
ℓ

∑

k=0

αℓkpk,

where αℓk are the Fourier coefficients of xℓ in terms of pk, we have

diag(Aℓ) =

ℓ
∑

k=0

αℓk diag(pk(A)) = αℓ0j.

Therefore, a
(ℓ)
u = αℓ0, which is independent of u and the graph is walk-regular. (Notice

that, since p0 = 1, αℓ0 = 〈xℓ,1〉
‖1‖2 = 1

n

∑d

k=0 mkλ
ℓ
k, as expected.) �

Note that property (b) is also satisfied in the case of distance-regularity, as pk(A) = Ak

and, for k > 0, (Ak)uu = dist(u, u) = 0 for any vertex u ∈ V .

3 k-Walk-regular graphs

The result given in Proposition 2.1 can be generalized if we consider the following new
definition. Let G be a (connected) graph with diameter D. For a given integer k,
0 ≤ k ≤ D, we say that G is k-walk-regular if the number of walks of length ℓ be-
tween vertices u and v, that is, a

(ℓ)
uv = (Aℓ)uv, only depends on the distance between u

and v, provided that dist(u, v) = i ≤ k. If this is the case, we write a
(ℓ)
uv = a

(ℓ)
i . Thus,

a 0-walk-regular graph is the same concept as a walk-regular graph. In the other ex-
treme, the distance-regular graphs correspond to the case of D-walk-regular graphs (see
e.g. Rowlinson [11]). Note that, obviously, if G is a k-walk-regular graph, then it is also
k′-walk-regular for any k′ ≤ k. This is consequent with the fact that a distance-regular
graph is also walk-regular. To illustrate our new definition, a family of graphs which are
1-walk-regular (but not k-walk-regular for k > 1) are the Cartesian products of cycles
Cm×Cm with m ≥ 5. In fact, notice that all these graphs are vertex- and edge-transitive.
For instance, C5 ×C5 has diameter D = 2, number of different eigenvalues d+ 1 = 6, and
sets C = {a

(ℓ)
0 }0≤ℓ≤5 = {1, 0, 4, 0, 36, 4} and W = {a

(ℓ)
1 }0≤ℓ≤5 = {0, 1, 0, 9, 1, 100}.

As in the case of walk-regularity, the concept of k-walk-regularity can also be seen as
the invariance of some entries of the idempotents. By analogy with local multiplicities,
which correspond to the diagonal of the matrix, Fiol, Garriga and Yebra [7] called these
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entries the crossed (uv-)local multiplicities of λh, and they were denoted by muv(λh). In
terms of the orthogonal projection of the canonical vectors eu, the crossed local multi-
plicities are obtained by the Euclidean products

muv(λh) = (Eh)uv = (Eheu, ev) = (Eheu, Ehev) = (zh
u, z

h
v) (u, v ∈ V ).

Now, for a given k, 0 ≤ k ≤ d, we say that graph G is k-spectrally regular when, for
any h = 0, 1, . . . , d, the crossed uv-local multiplicities of λh only depend on the distance
between u and v, provided that i = dist(u, v) ≤ k. In this case, we write muv(λh) = mih.

At this point, we are ready to give the following result (where “◦” stands for the Schur
or Hadamard—componentwise—product of matrices), relating the k-walk-regularity to
the k-spectral regularity and the matrices obtained from the predistance polynomials. In
the second case, these polynomials give the distance matrices, but only when we look
through a ‘window’ defined by the matrix Sk = A0 + A1 + · · · + Ak.

Theorem 3.1 Let G be a graph with adjacency matrix A having d+1 distinct eigenvalues,

and with predistance polynomials p0, p1, . . . , pd. Then, for a given integer k, 0 ≤ k ≤ D,

the three following statements are equivalent:

(a) G is k-walk-regular.

(b) G is k-spectrally regular.

(c) Sk ◦ pi(A) = Sk ◦ Ai for any 0 ≤ i ≤ d.

Proof. (a) ⇔ (b): The equivalence between (a) and (b) is proved as follows: From

Eq. (2), we now have that the number of walks a
(ℓ)
uv can be computed in terms of the

crossed uv-local multiplicities as

a(ℓ)
uv = (Aℓ)uv =

d
∑

h=0

muv(λh)λ
ℓ
h.

Then, if G is k-spectrally regular, this gives

a(ℓ)
uv =

1

n

d
∑

k=0

mihλ
ℓ
h,

for any u, v ∈ V such that dist(u, v) = i ≤ k, and ℓ ≥ 0. Therefore, a
(ℓ)
uv is independent of

u, v, provided that dist(u, v) = i ≤ k, and G is k-walk-regular. Conversely, suppose that G

is k-walk-regular and consider the set of numbers of (u, v)-walks W = {a
(0)
i , a

(1)
i , . . . , a

(d)
i },

where i = dist(u, v) ≤ k. Now, given a polynomial p =
∑d

j=0 αjx
j , we define p(W) =

∑d

j=0 αja
(j)
i . Then, we can obtain the crossed uv-local multiplicities as

muv(λh) = (Eh)uv = (Ph(A))uv = Ph(W), (4)

which turn out to be independent of u, v and G is k-spectrally regular.
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(a), (b) ⇒ (c): We want to prove that pi(A) = Ai if i ≤ k and, otherwise, Sk ◦pi(A) =

O, the all-0 matrix . Then, if G is k-walk-regular, there are constants a
(ℓ)
i , for any

0 ≤ i ≤ k and ℓ ≥ 0 satisfying

Aℓ =

k
∑

i=0

a
(ℓ)
i Ai (ℓ ≤ k),

where, clearly, a
(ℓ)
i = 0 when ℓ < i. As a matrix equation (writing only the terms with

ℓ ≤ k), we get

















I

A

A2

·
·

Ak

















=



















a
(0)
0

a
(1)
0 a

(1)
1

a
(2)
0 a

(2)
1 a

(2)
2

· · · ·
· · · · ·

a
(k)
0 a

(k)
1 · · · a

(k)
k



































I

A

A2

·
·

Ak

















,

where the lower triangular matrix T , with rows and columns indexed with the integers
0, 1 . . . , k, has entries (T )ℓi = a

(ℓ)
i . In particular, note that a

(0)
0 = a

(1)
1 = 1 and a

(1)
0 = 0.

Moreover, since a
(i)
i > 0 for all 0 ≤ i ≤ k, such a matrix has an inverse, which is also

a lower triangular matrix, and hence each Ai is a polynomial, say qi, of degree i in A.
These polynomials are orthogonal with respect to the scalar product (3) since

〈qi, qj〉 =
1

n
tr(qi(A)qj(A)) =

1

n
tr(AiAj) = 0 (i 6= j).

Moreover, as Aij = qi(A)j = qi(λ0)j, the number of vertices at distance i, 0 ≤ i ≤ k,
from a given vertex u is a constant through all the graph: ni = (A2

i )uu = qi(λ0) for every
u ∈ V . Thus,

‖qi‖
2 =

1

n
tr(q2

i (A)) =
1

n
tr(A2

i ) = qi(λ0)

and, therefore, the obtained polynomials are, in fact, the (pre)distance polynomials qi =
pi, 0 ≤ i ≤ k, as claimed. Let us now prove the second part of the statement: if j > k,
then pj(A)uv = 0 provided that dist(u, v) ≤ k. First, note that, from property (a.2) of
the idempotents, we have

(pi(A)Eh)uu = pi(λh)(Eh)uu = pi(λh)mu(λh) = pi(λh)
mh

n
(5)

for any 0 ≤ i ≤ k and 0 ≤ h ≤ d. But, if i = dist(u, v) ≤ k, we already know that
pi(A) = Ai and then,

(pi(A)Eh)uu = (AiEh)uu =
∑

v∈V

(Ai)uv(Eh)uv =
∑

v∈Γi(u)

muv(λh) = nimih, (6)
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where we have used the invariance of the crossed local multiplicities, muv(λh) = mih, and
the number of vertices at distance i(≤ k) from any given vertex, ni = pi(λ0). Equating
(5) and (6) we obtain:

mih =
mhpi(λh)

npi(λ0)
(0 ≤ i ≤ k, 0 ≤ h ≤ d). (7)

Using property (a.3) of the idempotents and the above values of the crossed multiplicities,
we finally get:

pj(A)uv =

d
∑

h=0

pj(λh)(Eh)uv =

d
∑

h=0

pj(λh)mih

=
1

npi(λ0)

d
∑

h=0

mhpj(λh)pi(λh) =
1

pi(λ0)
〈pj, pi〉 = 0 (j > k ≥ i).

(c) ⇒ (b): Conversely, assume that (c) holds and, for every h, 0 ≤ h ≤ d, consider the
expression of Ph =

∑d

j=0 βhjpj, where βhj is the Fourier coefficient of Ph in terms of pj .
Then, if dist(u, v) = i ≤ k,

muv(λh) = (Eh)uv =
d

∑

j=0

βhjpj(A)uv =
k

∑

j=0

βhj(Aj)uv +
d

∑

j=k+1

βhj(pj(A))uv = βhi.

Consequently, the crossed local multiplicities muv(λh) = βhi only depend on the dis-

tance dist(u, v) = i, and G is k-spectrally regular. (Notice that, βhi = mih = 〈Ph,pi〉
‖pi‖2 =

1
pi(λ0)n

∑d

j=0 mjPh(λj)pi(λj) = mhpi(λh)
npi(λ0)

, in concordance with (7).) �

Note that Propositions 1.1 and 2.1 can also be seen as corollaries of this theorem.
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