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Abstract

We show that the number of quivers in the mutation class of a quiver of Dynkin
type Dn is given by

∑
d|n φ(n/d)

(
2d
d

)
/(2n) for n ≥ 5. To obtain this formula, we

give a correspondence between the quivers in the mutation class and certain rooted
trees.

Introduction

Quiver mutation is an important ingredient in the definition of cluster algebras [FZ1]. It
is an operation on quivers, which induces an equivalence relation on the set of quivers.
The mutation class M of a quiver Q consists of all quivers mutation equivalent to Q.
If Q is a Dynkin quiver, then M is finite. In [T] an excplicit formula for |M| is given
for Dynkin type An. Here we give an explicit formula for the number of quivers in the
mutation class of a quiver of Dynkin type Dn. The formula is given by

d(n) =

{ ∑
d|n φ(n/d)

(
2d

d

)
/(2n) if n ≥ 5,

6 if n = 4,

where φ is the Euler function.
The proof for this formula consists of two parts. The first part shows that the mutation

class of type Dn is in 1–1 correspondence with the triangulations (with tagged edges) of
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a punctured n-gon, up to rotation and inversion of tags. This is a generalization of the
method used in [T] to count the number of elements in the mutation class of quivers of
Dynkin type An. Here we are strongly using the ideas in [FST] and [S].

In the second part we count the number of (equivalence classes of) triangulations of
a punctured n-gon, by describing an explicit correspondence to a certain class of rooted
trees. A tree in this class is constructed by taking a family of full binary trees T1, . . . , Ts

such that the total number of leaves is n, and then adding a node S and an edge from
this node to the root of Ti for each i, such that S becomes a root (Figure 21 displays all
such trees for n = 5).

When these rooted trees are considered up to rotation at the root, they are in 1–
1 correspondence with the above mentioned equivalence classes of triangulations of the
punctured n-gon. To count these rooted trees we use a simple adaption of a known formula
found in [I] and [St, exercise 7.112 b].

We also point out a mutation operation on these rooted trees, corresponding to the
other mutation operations involved (on triangulations and on quivers).

Our formula and the bijection to triangulations of the punctured n-gon were presented
at the ICRA in Torun, August 2007 [T2].

After completing our work, we learnt about the paper [GLZ]. They also generalize the
methods in [T] to prove the bijection from the mutation class of Dn to triangulations of
the punctured n-gon. However, their method of counting triangulations is very different
from ours. They use the classification of quivers of mutation type Dn, recently given in
[V]. The authors of [GLZ] end up with a very different formula than ours. In particular,
their formula is not explicit, and it seems they get a different output than we get, e.g. for
n = 6.

We are grateful to Hugh Thomas for several useful discussions and for the idea of
making use of binary trees as an alternative to rooted planar trees. We would also like to
thank Dagfinn Vatne for useful discussions.

1 Quiver mutation

Let Q be a quiver with no multiple arrows, no loops and no oriented cycles of length two.
Mutation of Q at the vertex k gives a quiver Q′ obtained from Q in the following way.

1. Add a vertex k∗.

2. If there is a path i → k → j, then if there is an arrow from j to i, remove this
arrow. If there is no arrow from j to i, add an arrow from i to j.

3. For any vertex i replace all arrows from i to k with arrows from k∗ to i, and replace
all arrows from k to i with arrows from i to k∗.

4. Remove the vertex k.
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It is easy to see that mutating Q twice at k gives Q. We say that two quivers Q and
Q′ are mutation equivalent if Q′ can be obtained from Q by a finite number of mutations.
The mutation class of Q consists of all quivers mutation equivalent to Q. Figure 1 gives
all quivers in the mutation class of D4, up to isomorphism.
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Figure 1: The mutation class of D4.

It is know from [FZ3] that the mutation class of a Dynkin quiver Q is finite. An
explicit formula for the number of equivalence classes in the mutation class of any quiver
of type An was given in [T].

The Catalan number C(i) can be defined as the number of triangulations of an i+2-gon
with i − 1 diagonals. It is given by

C(i) =
1

i + 1

(
2i

i

)
.

The number of equivalence classes in the mutation class of any quiver of type An is
then given by the formula [T]

a(n) = C(n + 1)/(n + 3) + C((n + 1)/2)/2 + (2/3)C(n/3)

where the second term is omitted if (n + 1)/2 is not an integer and the third term is
omitted if n/3 is not an integer. This formula counts the triangulations of the disk with
n diagonals [B].

2 Cluster-tilted algebras

The cluster category was defined independently in [BMRRT] for the general case and in
[CCS] for the An case. Let Db(mod H) be the bounded derived category of the finitely
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generated modules over a finite dimensional hereditary algebra H over a field K. In
[BMRRT] the cluster category was defined as the orbit category C = Db(mod H)/τ−1[1],
where τ is the Auslander-Reiten translation and [1] the suspension functor. The cluster-
tilted algebras are the algebras of the form Γ = EndC(T )op, where T is a cluster-tilting
object in C (see [BMR1]). In this paper we will mostly consider the case where the
underlying graph of the quiver of H is of Dynkin type D.

If Γ = EndC(T )op for a cluster-tilting object T in C, and C is the cluster category of a
path algebra of type Dn, then we say that Γ is of type Dn.

Let Q be a quiver of a cluster-tilted algebra Γ. From [BMR2] it is known that if Q′

is obtained from Q by a finite number of mutations, then there is a cluster-tilted algebra
Γ′ with quiver Q′. Moreover, Γ is of finite representation type if and only if Γ′ is of
finite representation type [BMR1]. We also have that Γ is of type Dn if and only if Γ′

is of type Dn. It is well known that we can obtain all orientations of a Dynkin quiver
by reflections, and hence all orientations of a Dynkin quiver are mutation equivalent.
From [BMR3, BIRS] we know that a cluster-tilted algebra is up to isomorphism uniquely
determined by its quiver (see also [CCS2]).

It follows from this that the number of non-isomorphic cluster-tilted algebras of type
Dn is equal to the number of equivalence classes in the mutation class of any quiver with
underlying graph Dn.

3 Category of diagonals of a regular n + 3-gon

In [CCS] Caldero, Chapoton and Schiffler considered regular polygons with n+3 vertices
and triangulations of such polygons. A diagonal is a straight line between two non-
adjacent vertices on the border of the polygon, and a triangulation is a maximal set of
diagonals which do not cross. A triangulation of an (n + 3)-gon consists of exactly n
diagonals. In [CCS] the category of diagonals of such polygons was defined, and it was
shown to be equivalent to the cluster category, as defined in Section 2, in the An case.
It was also shown that a cluster-tilting object in the cluster category C corresponds to a
triangulation of the regular (n+3)-gon in the An case. In [T] it was shown that there is a
bijection between isomorphism classes of cluster-tilted algebras of type An (or equivalently
isomorphism classes of quivers in the mutation class of any quiver with underlying graph
An) and triangulations of the disk with n diagonals (i.e. triangulations of the regular
(n + 3)-gon up to rotation).

For any triangulation of the regular (n+3)-gon we can define a quiver with n vertices
in the following way. The vertices are the midpoints of the diagonals. There is an
arrow between i and j if the corresponding diagonals bound a common triangle. The
orientation is i → j if the diagonal corresponding to j can be obtained from the diagonal
corresponding to i by rotating anticlockwise about their common vertex. It is also known
from [CCS] that all quivers obtained in this way are quivers of cluster-tilted algebras of
type An. This means that we can define a function γn from the mutation class of An to
the set of all triangulations of the regular (n + 3)-gon. There is an induced function γ̃n
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from the mutation class of An to the set of all triangulations of the disk with n diagonals.
It was shown in [T] that γ̃n is a bijection.
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Figure 2: A triangulation ∆ of the regular 8-gon and the corresponding quiver γ5(∆) of
type A5.

4 Category of diagonals of a punctured regular n-gon

In this paper we will consider the Dn case and we will first recall some results and notions
from [S] and [FST].

Let Pn be a regular polygon with n vertices and one puncture in the center. Diagonals
(or edges) will be homotopy classes of paths between two vertices on the border of the
polygon. We follow the definitions from [S].

Let δa,b be an oriented path between two vertices a 6= b on the border of Pn in
counterclockwise direction, such that δa,b does not run through the same point twice.
Also let δa,a be the path that runs from a to a, i.e. around the polygon exactly one time.
We define |δa,b| to be the number of vertices on the path δa,b, including a and b.

An edge is a triple (a, α, b) where a and b are vertices on the border of the polygon and
α is an oriented path from a to b lying in the interior of Pn and that is homotopic to δa,b.
Furthermore, the path should not cross itself and |δa,b| ≥ 3. Two edges are equivalent if
they start in the same vertex, end in the same vertex and are homotopic.

Let E be the set of equivalence classes of edges, and denote by Ma,b the equivalence
class of edges in E going from a to b. In [S] the set of tagged edges is defined as follows.

{M ǫ
a,b|Ma,b ∈ E, ǫ ∈ {−1, 1} with ǫ = 1 if a 6= b}

From now on tagged edges will be called diagonals. Diagonals starting and ending in
the same vertex a will be represented as lines between the puncture and the vertex a.
Diagonals with ǫ = −1 will be drawn with a tag on it. In some cases we will draw them
as loops.
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The crossing number e(M ǫ
a,b, N

ǫ′

c,d) is the minimal number of intersection of represen-

tations of M ǫ
a,b and N ǫ′

c,d in the interior of the punctured polygon. When a = b and c = d,

we let the crossing number be 1 if a 6= c and ǫ 6= ǫ′ and 0 otherwise. If e(M ǫ
a,b, N

ǫ′

c,d) = 0,

we say that M ǫ
a,b and N ǫ′

c,d do not cross.
Now we can define a triangulation of the punctured n-gon, which is a maximal set

of non-crossing diagonals. Any such set will have n elements [S]. See some examples of
triangulations of the punctures 6-gon in Figure 3.

Figure 3: Examples of triangulations of the punctured 6-gon.

[S] defines a category which is equivalent to the cluster catecory in the Dn case in
the following way. The objects are direct sums of diagonals (tagged edges), and the
morphism space from α to β is spanned by sequences of elementary moves modulo the
mesh-relations. The equivalence between this category C and the cluster category in the
Dn case was proved in [S]. Furthermore we have the following important results:

• dim Ext1
C(α, β) is equal to the crossing number of α and β.

• A cluster-tilting object corresponds to a triangulation.

• The Auslander-Reiten translation of a diagonal from a to b is given by clockwise
rotation of the diagonal if a 6= b. If a = b the AR-translation is given by clockwise
rotation and inverting the tag.

Let Tn be the set of all triangulations of Pn, and let ∆ be an element in Tn. We can
assign to ∆ a quiver in the following way (see [FST]). Just as in the An case, the vertices
are the midpoints of the diagonals. There is an arrow between i and j if the corresponding
diagonals bound a common triangle. The orientation is i → j if the diagonal corresponding
to j can be obtained from the diagonal corresponding to i by rotating anticlockwise about
their common vertex. In the case when there are two diagonals α and α′ between the
puncture and the same vertex on the border, both adjacent to a diagonal β and a border
edge δ, we consider the triangle with edges α, β and δ separately from the triangle with
edges α′, β and δ, when thinking of α and α′ as loops around the puncture. If we end up
with an oriented cycle of length 2, delete both arrows in the cycle. See some examples in
Figure 4.
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Figure 4: Some examples of triangulations and corresponding quiver.

Let Mn be the mutation class of Dn, i.e. all quivers obtained by repeated mutations
from Dn, up to isomorphisms of quivers. We can define a function ǫn : Tn → Mn, where
we set ǫn(∆) = Q∆ for any triangulation in Tn. It is known that Q∆ is a quiver of Dynkin
type Dn and that all quiver of type D can be obtained this way, hence ǫ is surjective.

We can define a mutation operation on a triangulation. If α is a diagonal in a trian-
gulation, then mutation at α is defined as replacing α with another diagonal such that we
obtain a new triangulation. This can be done in one and only one way. It is known that
mutation of quivers commutes with mutation of triangulations under ǫ (see [S, FST]).

5 Bijection between the mutation class of a quiver

of type Dn and triangulations up to rotation and

inverting tags

Here we adapt the methods and ideas of [T] to obtain a bijection between the mutation
class of a quiver of type Dn and the set of triangulations of a punctured n-gon up to
rotations and inversion of tags. See also [GLZ].

We say that a diagonal from a to b is close to the border if |δ(a, b)| = 3. For a
quiver Q∆ corresponding to a triangulation ∆, we will always denote by vα the vertex
in Q∆ corresponding to the diagonal α. From now on we let n ≥ 5. Let us denote
by Sn the triangulation of Pn shown in Figure 5. Note that this triangulation and the
triangulation Sn with all tags inverted are the only triangulations that correspond to the
quiver consisting of the oriented cycle of length n, Qn.

Lemma 5.1 Let ∆ be a triangulation of Pn, with ∆ 6= Sn. Then there exists a diagonal

in ∆ which is close to the border.

Proof: Let ∆ be a triangulation of Pn. If ∆ is not Sn, then there is at least one diagonal
α which connects two vertices on the border. See Figure 6.

Consider the non-punctured surface B determined by this diagonal. If α is not close
to the border, there exist a diagonal that divides the surface B into two smaller surfaces.
By induction, there exists a diagonal close to the border.
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Figure 5: Triangulation Rn corresponding to the quiver consisting of the oriented cycle
of length n.

�
�
�
�

α

Α

Β

Figure 6: The diagonal α divides the polygon into a punctured and a non-punctured
surface.

Lemma 5.2 If a diagonal α of a triangulation ∆ is close to the border, then the corre-

sponding vertex vα in ǫn(∆) = Q∆ is either a source, a sink or lies on an oriented cycle

of length 3.

Proof: Suppose α is a diagonal close to the border. We have to consider the eight cases
shown in Figure 7. In the first picture in Figure 7, α corresponds to a source since no
other vertex except vβ can be adjacent to vα, or else the corresponding diagonal would
cross β. In the second picture α corresponds to a sink. In picture three, four, five and
six, there are arrows between vα, vβ and vβ′ , and in the last two pictures, there are arrows
between vα, vβ and vγ , so vα lies on an oriented cycle of length 3.

Let ∆ be a triangulation of Pn and let α be a diagonal close to the border. We define
a triangulation ∆/α of Pn obtained from ∆ by letting α be a border edge and leaving all
the other diagonals unchanged. We write ∆/α for the new triangulation obtained and we
say that we factor out α. See Figure 8. Note that this operation is well-defined for each
case in Figure 7.
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Figure 7: See the proof of Lemma 5.2

α

Figure 8: Factoring out a diagonal close to the border.

Lemma 5.3 Let ∆ be a triangulation of Pn, with ∆ 6= Sn and let ǫn(∆) = Q∆ be the

corresponding quiver. If α is a diagonal close to the border in ∆, then the quiver Q∆/vα

obtained from Q∆ by factoring out the vertex vα is connected and of type Dn−1. Further-

more, we have that ǫn−1(∆/α) = Q∆/vα, when α is close to the border.

Proof: By Lemma 5.2 we have that Q∆/vα is connected. It is also straightforward to
verify that ǫn−1(∆/α) = Q∆/vα for each case, and hence Q∆/vα is of type Dn−1 since
∆/α is a triangulation of Pn−1.

Now we describe what happens when we factor out a vertex corresponding to a diagonal
not close to the border. We need to consider two cases. We first deal with the case when
α is a diagonal not going between the puncture and the border.

Lemma 5.4 Let ∆ be a triangulation and ǫn(∆) = Q∆. If we factor out a vertex in

Q∆ corresponding to a diagonal that is not close to the border and that is not a diagonal

between the puncture and the border, then the resulting quiver is disconnected.
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Proof: Let α be a diagonal not close to the border and not between the puncture and
the border. Then the diagonal divides Pn into two surfaces A and B. See Figure 6. Let
β be a diagonal in A and β ′ a diagonal in B. If β and β ′ would determine a common
triangle, the third diagonal would cross α, hence there is no arrow between the subquiver
determined by A and the subquiver determined by B, except those passing through vα.
It follows that factoring out vα disconnects the quiver.

Let ∆ be a triangulation of Pn and let α be a diagonal between the puncture and a
vertex bi on the border of the polygon. We want to understand the effect of factoring
out vα (see Figure 9). In Pn, create a new vertex c between bi−1 and bi and a new vertex
d between bi and bi+1, such that we obtain a (n + 2)-polygon. Let all diagonals that
started in bi now start in d and all diagonals ending in bi now end in c. Remove the
diagonal α and identify the puncture with the vertex bi. If there were two diagonals
between the puncture and bi, remove both and draw a diagonal from c to d. Leave all the
other diagonals unchanged. We will see that this is a triangulation of the non-punctured
(n + 2)-polygon in the next lemma.

b

b b

b

i

i+1i−2

i−1

b

b

bi

i+1

i−1

c

d

bi−2

α

b

b

bi

i+1

i−1

c

d

bi−2

α

i−1

b

b b

b

i

i+1i−2

Figure 9: Factoring out a diagonal from the puncture to the border.

Recall that γn is the function from the set of all triangulations of the regular (n+3)-gon
to the mutation class of An, defined in Section 2. We have the following.

Lemma 5.5 Let ∆ be a triangulation and ǫn(∆) = Q∆. If α is a diagonal between the

puncture and the border, then the quiver Q∆/vα obtained from Q∆ by factoring out vα is

connected and of type An−1. Furthermore, we have that γn+2(∆/α) = Q∆/vα when α is a

diagonal between the puncture and a vertex on the border.
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Proof: It is clear that ∆/α has n − 1 diagonals and that no diagonals cross. This means
that the new triangulation is a triangulation of the (n + 2) polygon without a puncture.
We want to show that all triangles are preserved by factoring out a diagonal as described
above and hence we will have that γn+2(∆/α) = Q∆/vα, and that Q∆/vα is of type An−1.

First suppose that there is only one diagonal from the puncture to the vertex bi (see
Figure 9). Then it is easy to see that all triangles are preserved. Next, suppose there
are two diagonals α and β from the puncture to bi. In this case we add a new diagonal
β ′ between bi−1 and bi+1 and remove α and β. Then the diagonals bounding a common
triangle with β before factoring out α will bound a common triangle with β ′ after factoring
out α.

Summarizing, we get the following Proposition.

Proposition 5.6 Let ∆ be a triangulation and let ǫn(∆) = Q∆ be the corresponding

quiver. Then ǫn−1(∆/α) = Q∆/vα is of type Dn−1 if and only if the corresponding diagonal

α is close to the border.

Proof: From Lemma 5.3, we have that if α is close to the border, then Q∆/vα is of type
Dn−1. If α is not close to the border, we have by Lemma 5.4 and Lemma 5.5 that Q∆/vα

is either disconnected or of type An−1.
If ∆ is a triangulation of Pn, we want to add a diagonal α and a vertex on the polygon

such that α is a diagonal close to the border and such that ∆ ∪ α is a triangulation of
Pn+1. Consider any border edge m on Pn. We consider the eight different cases for the
triangle containing m, as shown in Figure 10. We can define the extension at m for each
case. See Figure 7 for the corresponding extensions.

β

m

m

β m

β

β m

β

β

m β

β

m

β

β

m

β

β

m
β

β

Figure 10: Extension at m.

For a given diagonal β, there are at most three ways to extend the polygon with a
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diagonal α such that α is adjacent to β. These extensions give non-isomorphic quivers,
except when the triangulation is Sn.

Combining Lemma 5.1 and Lemma 5.3, we get that for a quiver Q which is not
Qn, there always exist a vertex v such that Q′ obtained from Q by factoring out v is
connected and a quiver of a cluster-tilted algebra of type D. Furthermore, such a vertex
must correspond to a diagonal close to the border in any triangulation ∆ such that
ǫn(∆) = Q∆.

For a triangulation ∆ of Pn, let us denote by ∆(i) the triangulation obtained from
∆ by rotating i steps in the clockwise direction. Also denote by ∆−1 the triangulation
obtained from ∆ by inverting all tags. We define an equivalence relation on Tn where
we let ∆ ∼ ∆(i) for all i and ∆−1 ∼ ∆. We define a new function ǫ̃n : (Tn/∼) → Mn

induced from ǫn. This is well-defined, and since ǫn is a surjection, we also have that ǫ̃n is
a surjection. We actually have the following.

Theorem 5.7 The function ǫ̃n : (Tn/∼) → Mn is bijective for all n ≥ 5.

Proof: We already know that ǫ̃n is surjective.
Suppose ǫ̃n(∆) = ǫ̃n(∆′). We want to show that ∆ = ∆′ in (Tn/∼) using induction.
It is straightforward to check that ǫ̃5 : (T5/∼) → M5 is injective. Suppose ǫ̃n−1 :

(Tn−1/∼) → Mn−1 is injective. Let α be a diagonal close to the border in ∆, with image
vα in Q, where Q is a representative for ǫ̃n(∆). Then the diagonal α′ in ∆′ corresponding to
vα in Q is also close to the border by Proposition 5.6. We have ǫ̃n−1(∆/α) = ǫ̃n−1(∆

′/α′) =
Q/vα, and hence by hypothesis, ∆/α = ∆′/α′ in (Tn/∼).

We can obtain ∆ and ∆′ from ∆/α = ∆′/α′ by extending the polygon at some border
edge. Fix a diagonal β in ∆ such that vα and vβ are adjacent. This can be done since
Q is connected. Let β ′ be the diagonal in ∆′ corresponding to vβ. By the above there
are at most three ways to extend ∆/α such that the new diagonal is adjacent to β. It is
clear that these extensions will be mapped by ǫ̃n to non-isomorphic quivers. Also there
are at most three ways to extend ∆′/α′ such that the new diagonal is adjacent to β ′, and
all these extensions are mapped to non-isomorphic quivers, thus ∆ = ∆′ in (Tn/∼).

Corollary 5.8 The number d(n) of elements in the mutation class of any quiver of type

Dn is equal to the number of triangulations of the punctured regular n polygon up to

rotations and inverting all tags.

6 Equivalences on the cluster category in the Dn case

Since the Auslander-Reiten translation τ is an equivalence, it is clear that if T is a
cluster-tilting object in C, then the cluster-tilted algebras EndC(T )op and EndC(τT )op

are isomorphic. We know that τ corresponds to rotation of diagonals. In [T] it was
proven that if T and T ′ are cluster-tilting objects in C, then the cluster-tilted algebras
EndC(T )op and EndC(T

′)op are isomorphic if and only if T ′ = τ iT for an i ∈ Z in the An

case.
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Let α be a diagonal (indecomposable object in C). If α is a diagonal between the
puncture and the border, let α−1 denote the diagonal α with inverted tag. We define

µα =

{
α−1 if α is a diagonal between the puncture and the border,

α otherwise.

If α is not a diagonal between the puncture and the border, then clearly τnα = α.
Now, let α be a diagonal between the puncture and the border. Suppose n is even. Then
it is clear from combinatorial reasons that τnα = α and that τ iα 6= α−1 for any i. If n is
odd, then τnα = α−1 and hence τn = µ. See Figure 11 for an example of an AR-quiver
in the D5 case.

Theorem 6.1 Let T and T ′ be cluster-tilting objects in C. Then the cluster-tilted algebras

EndC(T )op and EndC(T
′)op are isomorphic if and only if T ′ = µiτ jT i, j ∈ Z.

Proof: Let ∆ be a triangulation corresponding to T and ∆′ a triangulation corresponding
to T ′. If T ′ 6≃ τ iT for any i, then ∆′ is not obtained from ∆ by a rotation. If T ′ 6≃ µT ,
then ∆ 6= ∆−1. It then follows from Theorem 5.7 that EndC(T )op is not isomorphic to
EndC(T

′)op.
It is clear that µ is an equivalence on the cluster category, since µ2 = id.
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Figure 11: AR quiver for the cluster category in the D5 case.

7 The number of triangulations of punctured poly-

gons

In this section we want to find an explicit formula for the number of triangulations of
punctured polygons up to rotation and tags. Let Bn be the set of equivalence classes of
trees such that

• any full subtree not including the root is binary and every inner node has either two
or no children,
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• there are exactly n leaves and

• two trees are equivalent if one can be obtained from the other by rotating at the
root.

As before, let T5/∼ be the set of triangulations of the punctured n-gon, where rotations
and inverting tags gives equivalent triangulations. In this section we will draw certain
tagged edges as loops. If there are two diagonals between the puncture and the same
vertex, we will draw one diagonal as a loop. See Figure 12.

��
��

��������������

Figure 12: Drawing tagged edges as loops

We define a function σ : Tn/∼→ Bn by assigning to a triangulation a tree. Let ∆ be
a triangulation. We let σ(∆) be the tree obtained in the following way. Draw an edge
between two triangles E and E ′ if they are adjacent and their common diagonal is not a
diagonal between the puncture and the border. Note that a loop in this case is not an
edge between the puncture and the border. When a triangle E contains one or two border
edges, also draw one or two edges from the vertex to the outside of the polygon, crossing
the border edges. These will be the leaf edges. Then identify the vertices adjacent to the
puncture to be the root in the tree. See Figure 13 for some examples.

It is clear that σ is a well-defined function. Our aim is to show that σ is a bijection.
Let the tree Rn be the tree consisting of exactly n edges from the root, as shown in

Figure 14. Note that this is the unique tree which is the image of the triangulation Sn.
Now we want to define a function λ : Bn → Tn/∼ and we will see that this is the

inverse of σ.
Given a tree T with n leaves, we will here describe λ(T ). We know that an inner edge

of a tree (an edge not going to a leaf) corresponds to a diagonal α not going between the
puncture and the border.

Suppose α is an inner edge of T . Let T ′ be the full subtree of T with root ending in
α. If T ′ has n leaves, we draw a segment of a polygon consisting of n border edges. See
Figure 15. Suppose the subtree to the left of the root in T ′ has r ≥ 2 leaves. Then we
draw a diagonal β from v1 to vr+1. If r + 1 6= n we draw a diagonal δ from vr+1 to vn+1.
We can continue like this with β and δ until we made a complete triangulation of the
segment of the polygon, by induction.

Now, suppose T has k edges from the root, namely t1, t2, ..., tk. Suppose the full subtree
with root ending in ti has di leaves. Then

∑
i di = n. Draw a punctured polygon with n
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Figure 13: Triangulation and corresponding tree.
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Figure 14: The tree Rn consisting of exactly n edges from the root.
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Figure 15

border edges and draw k diagonals between the puncture and vertices on the border such
that each segment has di border edges in anticlockwise direction.

For each segment defined by ti, apply the procedure described above to obtain a
triangulation of the segment. See Figure 16.
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Figure 16

It is clear from the construction that λ is the inverse of σ, so we have the following.

Theorem 7.1 σ : Tn → Bn is a bijection.

The number of rooted planar trees with n + 1 nodes where rotating at the root gives
equivalent trees, is given by the formula

∑

d|n

φ(n/d)

(
2d

d

)
/(2n)
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n d(n)
3 4
4 6
5 26
6 80
7 246

n d(n)
8 810
9 2704
10 9252
11 32066
12 112720

Table 1: Some values of d(n).

where φ is the Euler function (see [I] and the references given there and exercise 7.112 b
in [St]).

The number of planar trees with n + 1 nodes and the number of planar binary trees
with n + 1 leaves are both given by the n’th Catalan number. It follows that the number
of elements in Bn is given by the above formula.

Corollary 7.2 The number d(n) of elements in the mutation class of any quiver of type

Dn is given by:

d(n) =

{ ∑
d|n φ(n/d)

(
2d

d

)
/(2n) if n ≥ 5,

6 if n = 4,

where φ is the Euler function.

We proved this for n ≥ 5 and for n = 4 the number is 6. See Figure 1 for all quivers
in the mutation class of D4. See Table 1 for some values of d(n).

8 Mutation of trees

We want to define a mutation operation on the elements in B, and we want this to
commute with mutation of triangulations. Mutating a triangulation at a given diagonal
is defined as removing this diagonal and replacing it with another one to obtain a new
triangulation. This can be done in one and only one way.

Let ∆ be a triangulation in Tn and let σ(∆) = T be the corresponding tree. An inner
edge of T corresponds to a diagonal in ∆ not going from the puncture to the border,
since the edges crosses these diagonals when we construct T from ∆. However, when
we construct T from ∆, no edges in T crosses a diagonal between the puncture and the
border. To define mutation on T corresponding to mutating at a diagonal α between the
puncture and the border, we instead define mutation at two adjacent edges from the root
in T , namely the two edges from the root in T separated by α.

1. Let v1 be an edge from the root in T . The mutation of T at v1 is a new tree obtained
in the following way. Remove the edge v1. Identify the root of the full subtree of T
ending in v1 with the root in T . See the first picture in Figure 17.
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2. Let x and y be two adjacent edges from the root of T . The mutation of T at x
and y is a new tree obtained in the following way. Disconnect the full subtree of T
containing x and y. Add an edge v1 from the root and connect the subtree to the
end of v1. See the second picture in Figure 17.

3. Let v be an inner edge not going from the root or to a leaf. The mutation of T
at v is a new tree obtained in the following way. Suppose v is an edge from the
nodes r to t, going down in the tree. Let x be the other edge starting in r, and let y
and z be the two edges starting in t. See the third and fourth picture in Figure 17.
Suppose x goes to the left from r and v goes to the right, as in the third picture.
Disconnect the full subtree with t as a root. Remove the edge v and identify r with
t. Disconnect the full subtree T ′ containing x and y. Create a new vertex v′ starting
in r and identify the root of T ′ with the node ending in v′. See the third picture in
Figure 17. If x goes to the right from r and v goes to the left, we define mutation
at v in a similar way as shown in the fourth picture.

We claim that mutation of a tree as defined above commutes with mutation of trian-
gulations. We leave the details of the proof to the reader.

Proposition 8.1 Mutation of trees commutes with mutations of triangulations and quiv-

ers.

Sketch of proof:

For mutation of type 3, we mutate at a diagonal not going between the puncture and
the border, so we are in the situation shown in Figure 18. We see that mutation of trees
commutes with mutation of triangulations.

For mutation of type 1 and 2 we have to consider the three cases shown in Figure 19.
In these cases we also see that mutation as defined above commutes with mutation of
triangulations.

Figure 20 and 21 shows the mutations of type 1 and 2 for both triangulations and trees
in the D5 case. Note that mutation of type 2 adds an edge from the root, or equivalently
replaces a diagonal not between the puncture and the border with a diagonal between the
puncture and the border. Mutation of type 1 is the opposite operation. This defines a
tree of mutations as shown in Figure 20 and 21, where going down in the tree corresponds
to mutatation of type 1 and going up in the tree corresponds to mutation of type 2. If
we drew arrows for mutations of type 3, the arrows would go to trees (or triangulations)
in the same level in the tree of mutations. It is easy to see that this holds in general for
any n.
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Figure 17: Mutation of a tree.
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Figure 18: Mutation of triangulations and trees commute. See proof of Proposition 8.1.
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Figure 19: Mutation of triangulations and trees commutes. See proof of Proposition 8.1.
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Figure 20: All triangulations of type D5.

the electronic journal of combinatorics 16 (2009), #R49 21



Figure 21: All trees of type D5.
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