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Abstract

The labeled factorizations of a positive integer n are obtained as a completion of

the set of ordered factorizations of n. This follows a new technique for generating

ordered factorizations found by extending a method for unordered factorizations

that relies on partitioning the multiset of prime factors of n. Our results include

explicit enumeration formulas and some combinatorial identities. It is proved that

labeled factorizations of n are equinumerous with the systems of complementing

subsets of {0, 1, . . . , n − 1}. We also give a new combinatorial interpretation of a

class of generalized Stirling numbers.

1 Ordered and labeled factorization

An ordered factorization of a positive integer n is a representation of n as an ordered
product of integers, each factor greater than 1. The set of ordered factorizations of n will
be denoted by F (n), and |F (n)| = f(n). For example, F (6) = {6, 2.3, 3.2}. So f(6) = 3.

Every integer n > 1 has a canonical factorization into prime numbers p1, p2, . . ., namely

n = pm1

1 pm2

2 . . . pmr

r , p1 < p2 < · · · < pr, mi > 0, 1 ≤ i ≤ r. (1)

The enumeration function f(n) does not depend on the size of n but on the exponents
mi. In particular we define

Ω(n) = m1 + m2 + · · · + mr, Ω(1) = 0.

Note that the form of (1) may sometimes suggest a formula for f(n). For instance,

• n = pm gives f(n) = 2m−1, the number of compositions of m.
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• n = p1p2 . . . pr gives f(n) =
r∑

k=1

k!S(r, k), the rth ordered Bell number; S(n, k) is the

Stirling number of the second kind.

A general formula for the number f(n, k) of ordered k-factorizations of n was found
in 1893 by MacMahon [9] (also [1, p. 59]):

f(n, k) =

k−1∑

i=0

(−1)i

(
k

i

) r∏

j=1

(
mj + k − i − 1

mj

)

. (2)

Thus f(n) = f(n, 1) + f(n, 2) + · · ·+ f(n, Ω(n)).
It will be useful to review some techniques for generating ordered factorizations. The

simplest approach is perhaps to obtain the set of unordered factorizations of n, and
replace each member by the permutations of its factors. Another method is provided by
the classical recurrence relation

f(1) = 1, f(n) =
∑

d|n
d<n

f(d). (3)

If a positive integer d divides n, denoted by d|n, then each element of F (d), d < n,
gives a unique element of F (n) by appending n/d. Thus if the proper divisors of n are
d1, d2, . . . , dτ(n)−1, then F (n) is given by

F (n) = F (d1)(n/d1) ∪ F (d2)(n/d2) ∪ . . . ∪ F (dτ(n)−1)(n/dτ(n)−1), (4)

where τ(n) is the number of positive integral divisors of n, and Sr = {s.r | s ∈ S}.
To motivate the next method, observe that the unordered factorizations of n may

be generated from the unique representation (1) of n expressed as a sequence of Ω(n)
factors. Denote this factorization by can(n). Indeed for each positive integer k ≤ Ω(n),
a k−factorization is obtained by distributing the factors in can(n) into k identical cells
without further restriction, replacing each cell by the product of its members, and ar-
ranging the factors in nondecreasing order. Lastly, a set of k−factorizations is obtained
by deleting repeated factorizations. This procedure will be referred to as the Factor

algorithm.
So Factor is tantamount to finding the distinct partitions of the multiset

{p1m1, . . . , prmr} into k blocks. Consequently the generation of ordered factorizations
can be viewed as a process of obtaining the ordered partitions of multisets, i.e., the dis-
tribution of objects of arbitrary specification into different cells so that no cell is empty.

The above techniques are known (see [6], [7]), but the following approach seems to be
new.

An instructive method of generating ordered factorizations is to iterate Factor by
replacing the factorization can(n) with the set FP (n) of permutations of can(n). Then
we notice that each element of F (n) is obtained by multiplying only adjacent factors
in a member of FP (n). This differs fundamentally from the construction of unordered

the electronic journal of combinatorics 16 (2009), #R50 2



factorizations which also employed non-adjacent pairings of factors. The procedure for
generating F (n) in this context is OrdFactor, which may be viewed as the union of the
applications of Factor to each member of FP (n) with the further restriction that only
adjacent factors are merged, but generally distinguishing factorizations that differ in the
ordering of their elements.

Thus we are led to the natural question of investigating the set X(n) of groupings
involving non-adjacent factors in members of FP (n)1. The purpose of this paper is to
study the function ff(n) = f(n)+x(n), which counts the full set FF (n) = F (n)∪X(n),
where x(n) = |X(n)|.

In this larger set the integers appearing in a factorization will be called atoms. All
atoms are now subscript-labeled, but the subscripts may be omitted from consecutively
labeled atoms when they are obvious. On the other hand, groupings/cells with a number
of labeled atoms will be referred to as factors of n. Factors will generally be enclosed in
parentheses, with the possible exception of factors having single atoms. So atoms and
factors are identical in F (n).

FF (n) will be called the set of labeled factorizations of n.
A possible characterization is the following:

(*) A labeled factorization of n corresponds to a partition of the set of elements
of the sequence of factors in an ordered prime factorization of n which
have been tagged with distinct labels.

The corresponding extension of OrdFactor for generating labeled factorizations is Lab-

Factor. This algorithm uses the following rule for elements of X(n): any sequence of
consecutively labeled atoms occurring in a factor may be replaced by the product of
the atoms (followed by a size-preserving, standard, relabeling of surviving labels in the
factorization, where the product is assumed to bear the smallest label in the sequence).

Example 1.1. The two levels of ordered factorization are illustrated with n = 12 and
n = 16, using LabFactor. (It is understood that a.b. · · · .z = ai.bi+1. · · · .zk for some
integers i, k, 1 ≤ i ≤ k.)

FP (12) = {2.2.3, 2.3.2, 3.2.2}
−→ {(2.2.3), (2.2).3, 2.(2.3), 2.2.3, (2.3.2), (2.3).2, 2.(3.2), 2.3.2, (3.2.2),

(3.2).2, 3.(2.2), 3.2.2}
−→ {12, 4.3, 2.6, 2.2.3, 12, 6.2, 2.6, 2.3.2, 12, 6.2, 3.4, 3.2.2}
−→ {12, 4.3, 2.6, 2.2.3, 6.2, 2.3.2, 3.4, 3.2.2} = F (12)
=⇒ f(12) = 8,

and

FP (12) = {21.22.33, 21.32.23, 31.22.23} −→ {(21.33).22, (21.23).32, (31.23).22} = X(12).

Hence ff(12) = f(12) + x(12) = 8 + 3 = 11.

1The non-adjacent groupings will not be replaced by their actual products in general.
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Similarly, FP (16) = {2.2.2.2} gives

F (16) = {16, 2.8, 4.4, 8.2, 2.2.4, 2.4.2, 4.2.2, 2.2.2.2} =⇒ f(16) = 8,

and

X(16) = {(21.23.24).22, (21.22.24).23, (21.23).(22.24), (21.24).(22.23),
(21.23).22.24, (21.24).22.23, 21.(22.24).23}

= {(21.43).22, (41.23).22, (21.23).(22.24), (21.23).42, (21.23).22.24,
(21.24).22.23, 21.(22.24).23}

=⇒ x(16) = 7.

Hence ff(16) = f(16) + x(16) = 8 + 7 = 15.

Note that LabFactor does not always return unique elements of X(n). For instance, it
gives (21.33.54).22, (21.53.34).22 ∈ X(60). However, by the rule for elements of X(n), both
factorizations are identical, uniquely with (21.153).22. Concise evolutionary procedures
are described in Section 2.

Proposition 1.2. (i) ff(pm) = B(m), where B(m) is the mth Bell number.

(ii) ff(p1p2 . . . pr) =
r∑

k=1

k!S(r, k)B(k − 1).

Proof. (i) This follows at once from the property (*). So x(pm) = B(m) − 2m−1.
(ii) This result is a special case of Corollary 2.7, below. �

In Section 2 we obtain enumeration formulas for ff(n) with some combinatorial iden-
tities. This is followed, in Section 3, with a brief discussion of permuted (or “ordered”)
labeled factorizations. In Section 4 we apply labeled factorizations to the enumeration of
systems of complementing subsets of {1, 2, . . . , n− 1} by giving a bijection. A further ap-
plication is obtained in Section 5 when the enumeration of a distinguished subset of X(n)
leads to a class of generalized Bell numbers. The final section discusses few properties
of the corresponding Stirling numbers, to be known as B-Stirling numbers of the second
kind. In particular we obtain an explicit connection between the B-Stirling numbers and
a class of enumeration functions studied by Carlitz in [5].

We will adopt the notational convention: if H(n) is a subset of FF (n), then H(n, k) is
the set of elements of H(n) having k factors (or k-factorizations), and the corresponding
small letters represent cardinalities of sets: h(n) = |H(n)|, h(n, k) = |H(n, k)|.

2 Enumeration formulas

ff(n) satisfies an analogous relation to (3).

Theorem 2.1. We have

ff(n) = 1 +
∑

d|n
1<d<n

Ω(d)
∑

k=1

kff(d, k).
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Proof. The proof is obtained by extending (4) to account for nonadjacent pairings of
atoms. By convention we set ff(1) = ff(1, 1) = 1. If d|n, 1 < d < n, then each
h ∈ FF (d) gives non-overlapping elements of FF (n) in two ways:
(i) by appending n/d;
(ii) by inserting n/d (bearing the label k + 1) into each of k − 1 factors of h ∈ FF (d, k),
excluding the factor whose last atom is labeled k, k ≥ 2.

The first case gives a total of ff(d), while the second case gives
Ω(d)∑

k=2

(k−1)ff(d, k) elements

of FF (n). Hence the number of contributions to ff(n) is

ff(d) +

Ω(d)
∑

k=2

(k − 1)ff(d, k) =

Ω(d)
∑

k=1

kff(d, k). (5)

�

Example 2.2. FF (16) is obtained via the relation of Theorem 2.1 as follows.

FF (16) = {1}16 ∪ {2}8 ∪ {4, 2.2}4 ∪ {8, 2.4, 4.2, (21.23).22, 2.2.2}2

= {16} ∪ {2.8} ∪ {4.4, 2.2.4, (21.43).22} ∪ {8.2, 2.4.2, (21.23).42, 4.2.2,

(41.23).22, (21.23).22.24, (21.23).(22.24), 2.2.2.2, (21.24).22.23, 21.(22.24).23}.

Remark 2.3. Theorem 2.1 gives ff(pm) = 1+
m−1∑

t=1

t∑

k=1

kff(pt, k). Thus, with the formula

ff(pt, k) = S(t, k) and Proposition 1.2(i), we obtain the following identity for the Bell
numbers:

B(m) = 1 +

m−1∑

t=1

t∑

k=1

kS(t, k). (6)

A direct proof follows by using the standard recurrence

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k), S(0, 0) = 1, S(1, 0) = 0, (7)

to show that
m−1∑

t=1

t∑

k=1

kS(t, k) =
m−1∑

t=1

(B(t + 1) − B(t)), which telescopes to B(m) − B(1).

Following Example 1.1, we note that X(n) can also be obtained from F (n); after all
FP (n) ⊆ F (n). Indeed a moment’s reflection shows that each v ∈ X(n, k) is the result
of merging the atoms of a unique w ∈ F (n, j), j > k, into k factors such that only
nonadjacent atoms in w belong to a factor (see for example X(16) in Example 1.1 or
2.2)). This observation motivates the following definitions.

Definition 2.4. A factorization v ∈ FF (n, k) is said to be induced by a partition π of
{1, 2, . . . , j} if v is obtained by merging the atoms of a member of F (n, j), j ≥ k, so that
only atoms bearing the labels in a block of π belong to a factor.
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For example, (21.43).22 is induced by {1, 3}{2} following operation on 21.22.43.

Definition 2.5. A partition π of {1, 2, . . . , n} will be called nonadjacent if no block of π
contains consecutive integers.

Let Λn,k denote the set of nonadjacent partitions of {1, 2, . . . , n} into k blocks. The
cardinality of Λn,k is known (see Brualdi [3]):

|Λn,k| = S(n − 1, k − 1), 1 ≤ k ≤ n. (8)

Theorem 2.6. We have

ff(1, 1) = 1, ff(n, k) =

Ω(n)
∑

j=k

f(n, j)S(j − 1, k − 1), n ≥ 2.

Proof. As already noted, each v ∈ X(n, k) is induced by the action of a nonadjacent
partition π ∈ Λ(j, k) on a factorization w ∈ F (n, j), j > k. Clearly v is uniquely
determined by the form of π and the ordering of w. It follows that for each k, the number
of contributions to X(n, k) is given exactly by the summation of |F (n, j)||Λ(j, k)| over
j, k + 1 ≤ j ≤ Ω(n). Hence we obtain

ff(n, k) = f(n, k) + x(n, k) = f(n, k) +

Ω(n)
∑

j=k+1

f(n, j)|Λ(j, k)|, (9)

which gives the desired result on applying Equation (8). �

Corollary 2.7. We have

ff(1) = 1, ff(n) =

Ω(n)
∑

j=1

f(n, j)B(j − 1), n ≥ 2.

Remark 2.8. Proposition 1.2(i) can be verified from Corollary 2.7 by using the formula
f(pm, j) =

(
m−1
j−1

)
to derive a recurrence relation for the Bell numbers.

Using Theorem 2.1 and Theorem 2.6, we obtain

Ω(d)
∑

k=1

kff(d, k) =

Ω(d)
∑

k=1

k

Ω(d)
∑

j=k

f(d, j)S(j − 1, k − 1) =

Ω(d)
∑

j=1

f(d, j)

Ω(d)
∑

k=1

kS(j − 1, k − 1),

which gives the following identity for any integer d > 0:

Ω(d)
∑

k=1

kff(d, k) =

Ω(d)
∑

j=1

f(d, j)B(j). (10)
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Hence we obtain another explicit result for ff(n):

ff(n) = 1 +
∑

d|n
d<n

Ω(d)
∑

j=1

f(d, j)B(j). (11)

Note that (9) gives x(n, k) =
Ω(n)∑

j=k+1

f(n, j)S(j − 1, k − 1). Thus with (11), we have two

further expressions for x(n) = ff(n) − f(n):

x(n) =

Ω(n)
∑

j=1

f(n, j)(B(j − 1) − 1) =
∑

d|n
d<n

Ω(d)
∑

j=1

f(d, j)(B(j) − 1).

Evaluation of (11) at n = pm gives an iterated recurrence for the Bell numbers:

B(m) = 1 +
m−1∑

t=1

t∑

j=1

(
t − 1

j − 1

)

B(j).

3 Permuted factorizations

We will call a set H of labeled factorizations permuted if for each p ∈ H , every factoriza-
tion obtained by permuting the factors of p, also belongs to H . A bar is placed over each
previous notation to distinguish corresponding enumerators of permuted labeled factor-
izations.

Since the factors of a labeled factorization are distinct (indeed each atom bears
a unique label), the number of permuted labeled k-factorizations of n is ff(n, k) =
k!ff(n, k). Hence the number ff(n) of all permuted labeled factorizations of n is given
by

ff(n) =

Ω(n)
∑

k=1

ff(n, k) =

Ω(n)
∑

k=1

k!

Ω(n)
∑

j=k

f(n, j)S(j − 1, k − 1).

That is,

ff(n) =

Ω(n)
∑

j=1

f(n, j)

j
∑

k=1

k!S(j − 1, k − 1). (12)

The sum
j∑

k=1

k!S(j−1, k−1) is almost an ordered Bell number. So, on using the notation

N∑

k=1

k!S(N, k) = BN , it can be shown that

N∑

k=1

k!S(N − 1, k − 1) =
1

2
(BN + BN−1), B0 = 1.
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Thus we have the alternative expression

ff(n) =
1

2

Ω(n)
∑

j=1

f(n, j)(Bj + Bj−1). (13)

Notice that now we have (cf. Proposition 1.2)

Proposition 3.1. (i) ff(pm) = Bm.

(ii) ff(p1p2 . . . pr) =
1

2

Ω(r)∑

j=1

j!S(r, j)(Bj + Bj−1)

Thus with (13) the following identity holds:

Bm =
1

2

m−1∑

j=0

(
m − 1

j

)

(Bj + Bj+1), m > 0.

The enumeration function ff(n) gives the new sequence (not presently in [11])

ff(n), n ≥ 1 : 1, 1, 1, 3, 1, 5, 1, 13, 3, 5, 1, 33, 1, 5, 5, 75, 1, 33, 1, 33, 5, 5, 1, 261, . . .

Another combinatorial interpretation of the numbers ff(n) is given in Section 4.

4 Application to systems complementing subsets

Let S = {S1, S2, . . .} be a collection of nonempty sets of nonnegative integers. Then S is
called a system of complementing subsets for (or a complementing system of subsets of)
T ⊂ {0, 1, 2, . . .} if every t ∈ T can be represented uniquely as t = s1 + s2 + · · · . with
si ∈ Si ∀ i. This may also be expressed as T = S1 ⊕ S2 ⊕ · · · , where ⊕ is the direct sum
symbol. If there is a positive integer k such that T = S1⊕· · ·⊕Sk, then S = {S1, . . . , Sk}
is called a complementing k-tuple (for T ). The set of all systems of complementing subsets
for T is denoted by CS(T ), and the set of complementing k-tuples by CS(k, T ).

In a fundamental paper de Bruijn [4] characterized the set CS(N), where N =
{0, 1, 2, . . .}, and provided a full analysis of all complementing pairs for N. The study
of systems of complementing subsets for Nn = {1, 2, . . . , n − 1}, and hence, enumera-
tion questions for systems of complementing subsets, were popularized by C. T. Long [8].
Among several other articles on the subject we mention [10] and [12].

The sequence ff(n), n ≥ 1, begins as follows:

1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 11, 1, 3, 3, 15, 1, 11, 1, 11, 3, 3, 1, 45, 2, 3, . . .

This is identical with sequence A104725 in Sloane’s database [11]: number of comple-
menting systems of subsets of {0, 1, ..., n − 1}.
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There is a natural one-to-one correspondence between the sets FF (n) and CS(Nn).
For example ff(4) = f(4) = 2 counts the complementing systems of {0, 1, 2, 3} namely
{{0, 1, 2, 3}} and {{0, 1}, {0, 2}}. The correspondence with FF (4) is

41 ↔ {{0, 1, 2, 3}}, 21.22 ↔ {{0, 1}{0, 2}}.

The general bijection is obtained by associating each g = g1g2 · · · gk ∈ F (n) with the
system

{{0, m0, 2m0, . . . , (g1 − 1)m0}, {0, m1, 2m1 . . . , (g2 − 1)m1},
. . . , {0, mk−1, 2mk−1 . . . , (gk − 1)mk−1}},

where m0 = 1, mi = g1g2 . . . gi, and each member of X(n) with a certain system containing
a subset different from the pattern {0, c, 2c, . . . , cr}, c, r ≥ 0.
For example g = (g1g3)g2g4g5 · · · gk ∈ X(n) maps to

{{0, m0, . . . , (g1 − 1)m0} ⊕ {0, m2, 2m2 . . . , (g3 − 1)m2}, {0, m1, 2m1 . . . , (g2 − 1)m1},
{0, m3, 2m3 . . . , (g4 − 1)m3}, . . . , {0, mk−1, 2mk−1 . . . , (gk − 1)mk−1}}.

As an illustration, the implication

21.22.33 ∈ F (12, 3) =⇒ (21.33).22 ∈ X(12, 2) (proof of Theorem 2.6)

corresponds to the complementing systems implication

{{0, 1}, {0, 2}, {0, 4, 8}} =⇒ {{0, 1} ⊕ {0, 4, 8}, {0, 2}} = {{0, 1, 4, 5, 8, 9}, {0, 2}}.

Indeed the process of merging the atoms of F (n, k) according to a partition of the
label set of the atoms (Definition 2.4) corresponds to de Bruijn’s original procedure of
degeneration of complementing systems (see [4, 10]). Thus if P ∈ FF (n) maps to U ∈
CS(Nn) under the bijection, the product of the atoms in each factor of P corresponds
to the cardinality of a component (member) of U . The fact that identical factors of P
bear different labels corresponds to the fact that components of U with equal cardinalities
contain different elements.

The full bijection between FF (12) and CS(N12) is shown in Table 1.
Finally, since the components of a complementing system are all distinct, we can isolate

ordered complementing systems. A complementing system with k components thus gives
rise to k! ordered systems. For example {{0, 1}, {0, 2}, {0, 4, 8}} ∈ CS(N12) gives the 6
systems

{{0, 1}, {0, 2}, {0, 4, 8}}, {{0, 1}, {0, 4, 8}, {0, 2}}, {{0, 2}, {0, 1}, {0, 4, 8}},
{{0, 2}, {0, 4, 8}, {0, 1}}, {{0, 4, 8}, {0, 1}, {0, 2}}, {{0, 4, 8}, {0, 2}, {0, 1}}.

In general the number cs(n) of ordered complementing systems of subsets of {1, . . . , n−1}
is given by cs(n) =

∑

k≥1

k!cs(n, k), where cs(n, k) = |CS(k, Nn)|. Since the above bijection

gives cs(n, k) = ff(n, k), we have,

cs(n) = ff(n) =

Ω(n)
∑

j=1

f(n, j)

j
∑

k=1

k!S(j − 1, k − 1). (14)
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Labeled Factorization of 12 Complementing System of {0, 1, . . . , 11}

121 {{0, 1, . . . , 11}}
21.62 {{0, 1}, {0, 2, 4, 6, 8, 10}}
61.22 {{0, 1, 2, 3, 4, 5}, {0, 6}}
31.42 {{0, 1, 2}, {0, 3, 6, 9}}
41.32 {{0, 1, 2, 3}, {0, 2, 4, 8}}

21.22.33 {{0, 1}, {0, 2}, {0, 4, 8}}
21.32.23 {{0, 1}, {0, 2, 4}, {0, 6}}
31.22.23 {{0, 1, 2}, {0, 3}, {0, 6}}

(21.33).22 {{0, 1, 4, 5, 8, 9}, {0, 2}}
(21.23).32 {{0, 1, 6, 7}, {0, 2, 4}}
(31.23).22 {{0, 1, 2, 6, 7, 8}, {0, 3}}

Table 1: The bijection between FF (12) and CS(N12).

5 Application to generalized Bell numbers

The enumeration of a subset of X(n) leads to a class of generalized Bell numbers. This
section and the next are devoted to the derivation and statement of their immediate
properties.

The following definition is obtained from the proof of Theorem 2.1.

Definition 5.1. Let d|n, d > 1, q ∈ FF (d) and let p ∈ FF (n) be derived from q as
described in the proof of Theorem 2.1. Then p is called A-generated (by q) if it is obtained
by appending n/d at the end of q, and B-generated otherwise.
A factorization of n is called nested if it is (A or B) generated by a member of X(d).

Thus a p ∈ FF (n, k) is A-generated if and only if it is derived from a member of
FF (d, k− 1). Equation (5) implies a decomposition of ff(n) into the numbers of A- and
B-generated factorizations.

Denote the set of nested factorizations of n by XX(n). Then the number of non-nested
factorizations of n is given by

ff(n) − xx(n) = f(n) +
∑

d|n
d<n

Ω(d)
∑

k=1

(k − 1)f(d, k) = 1 +
∑

d|n
d<n

Ω(d)
∑

k=1

kf(d, k). (15)

That is, besides the members of F (n), non-nested factorizations include all (first-level)
members of X(n) which are B-generated by elements of F (n). Consequently, using Equa-
tion (11), the number of nested factorizations of n is given by

xx(n) =
∑

d|n
d<n

Ω(d)
∑

k=1

f(d, k)(B(k) − k). (16)
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The following alternative form is more complicated than (16), but it marks the appearance
of a new2 class of generalized Bell numbers.

Theorem 5.2. The number of nested factorizations of n is given by

xx(n) =
∑

d|n

Ω(d)
∑

b=2

f(d, b)

Ω(n/d)
∑

j=2

f(n/d, j)B(j, b − 1),

where B(n, b) is a generalized Bell number, the composite B-Bell number of order b, b ≥ 1,
defined below.

The composite B-Bell numbers B(n, b) are defined in terms of the corresponding com-
posite B-Stirling numbers of the second kind, S(n, k, b), as follows

B(0, b) = 1, B(n, b) =

n∑

k=1

S(n, k, b), b ≥ 1, (17)

and the S(n, k, b) are given by

S(n, k, b) = S(n − 1, k − 1, b) + (k + b − 1)S(n − 1, k, b), n ≥ k, (18)

S(0, 0, b) = 1, S(n, 1, b) = bn, S(n, 0, b) = 0, n > 0.

The proof of Theorem 5.2 requires a formula on gozinta chains. Let d, n, be positive
integers such that d|n. Define a (d, n) gozinta chain of length ℓ as any increasing sequence
of ℓ integers d1, d2, . . . , dℓ, satisfying d = d1, dℓ = n and dj−1|dj, 2 ≤ j ≤ ℓ ≤ Ω(n) + 1.

Let G(d, n) denote the set of (d, n) gozinta chains. Then it is known (see [11, A034776])
that |G(1, n)| = f(n). On dividing through the members of G(d, n) by d we obtain
G(1, n/d). Thus |G(d, n)| = f(n/d).

It follows that the number ℓk(d, n) of (d, n) gozinta chains of length k is given by

ℓk(d, n) = f(n/d, k − 1). (19)

Proof of Theorem 5.2

Let d|n, d > 1, and let ℓd + 1, ℓd > 0, be the length of a fixed (d, n) gozinta chain,
d0, d1, . . . , dℓd

(d = d0, dℓd
= n).

Then clearly X(dℓd
) 6= ∅ whenever ℓd ≥ 1. In particular, XX(dℓd

) 6= ∅ if ℓd ≥ 2.
We follow the derivation of an element of XX(n, k), k ≥ b + 1, from some q ∈ F (d, b +
1), b > 0, through the sets X(dℓ), where X(dℓ) or XX(dℓ) is assumed to be at level ℓ,
and q is at level 0.
Observe that q = q0 B-generates b elements q1i ∈ X(d1, b + 1), 1 ≤ i ≤ b, at level
ℓ = 1 ≤ ℓd (by inserting d1/d). Each q1i in turn generates a q21 ∈ XX(d2, b + 2), and
b elements q2i ∈ XX(d2, b + 1), 2 ≤ i ≤ b + 1, at level ℓ = 2 ≤ ℓd. Subsequently, this

2“new” is used in the combinatorial sense since identical constructions of the numbers, up to linear

translations, are known, see Section 6.
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process of generation of all-nested factorizations is repeated by each q2j , 1 ≤ j ≤ b + b2,
at level ℓ = 3, and so forth, until level ℓ = ℓd.
There are exactly ℓ different factorization lengths at level ℓ ≥ 1 namely b+1, b+2, . . . , b+ℓ.
Assume that S(ℓ, b + k, b) = |XX(dℓ, b + k)|, ℓ ≥ 2, 1 ≤ k ≤ ℓ. Then we see that

S(ℓ + 1, b + k, b) = S(ℓ, b + k − 1, b) + (b + k − 1)S(ℓ, b + k, b), (20)

S(ℓ, b + 1, b) = bℓ, S(ℓ, b, b) = 0.

Indeed a (b + k)-factorization of dℓ+1 can be uniquely A-generated by a (b + k − 1)-
factorization of dℓ, or B-generated by a (b + k)-factorization of dℓ in b + k − 1 ways (by
inserting n/dℓ into b+k−1 possible factors excluding the factor whose last atom is labeled
b + k).

Note that since k > 0, Equation (20) holds under the transformation S(ℓ, b + k, b) 7→
S(ℓ, k, b).

Thus the number of elements of XX(n, b + k) contributed by q ∈ F (d, b + 1) via all
(d, n) gozinta chains of length j + 1 is

ℓj+1(d, n)S(j, k, b) = f(n/d, j)S(j, k, b), 2 ≤ j ≤ Ω(n/d),

where the equality follows from (19). Therefore the total number for all (d, n) gozinta
chains and all factorization lengths is

j
∑

k=1

Ω(n/d)
∑

j=2

f(n/d, j)S(j, k, b).

Hence the number of elements of XX(n) contributed by all members of F (d, b + 1) is

Ω(d)−1
∑

b=1

Ω(n/d)
∑

j=2

f(d, b + 1)f(n/d, j)

j
∑

k=1

S(j, k, b). (21)

Equation (20) is identical with the definition of the composite B-Stirling numbers
of the second kind given in (18). The desired result follows from (21) and Equation
(17). �

Example 5.3. If n = 32, then ff(n) = 52, x(n) = 36, xx(n) = 19. The 19 nested
factorizations are contributed by the following sets:

(1) F (4, 2) = {2.2} via the (4, 32) gozinta chains (4, 8, 32), (4, 16, 32), (4, 8, 16, 32), which
respectively give 2, 2, 5 elements of XX(32). For example, 2.2 and (4, 8, 32) give
21.22 → (21.23).22 → (21.23).(22.44), (21.23).22.44.

(2) F (8, 2) ∪ F (8, 3) = {2.4, 4.2, 2.2.2} via the (8, 32) gozinta chain (8, 16, 32). The
factorizations give 2, 2, 6 elements of XX(32) respectively. For example, 2.2.2 and
(8, 16, 32) give

21.22.23 → (21.24).22.23, 21.(22.24).23,
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and the latter factorizations give three elements each:

(21.24).22.23 → (21.24).(22.25).23, (21.24).22.(23.25), (21.24).22.23.25,

and so forth.

d Factorization b Gozinta ℓ k S(ℓ, k + b, b) B(ℓ, b)

d0 g1g2 1 (d0, d1) 1 1 1 1
(d0, d1, d2) 2 1 1

2 1 2
(d0, d1, d2, d3) 3 1 1

2 3
3 1 5

(d0, d1, d2, d3, d4) 4 1 1
2 7
3 6
4 1 15

d0 g1g2g3 2 (d0, d1) 1 1 2 2
(d0, d1, d2) 2 1 4

2 2 6
(d0, d1, d2, d3) 3 1 8

2 10
3 2 20

(d0, d1, d2, d3, d4) 4 1 16
2 38
3 18
4 2 74

Table 2: XX(n)-enumerating composite B-Stirling and B-Bell Numbers.

The connection with the composite B-Stirling numbers S(ℓ, k, b) ≡ S(ℓ, b+k, b) is shown in
Table 2 when the generating object has 2 or 3 factors. Recall that if d|n and F (d, b+1) 6= ∅,
then S(ℓ, k+b, b) counts the nested (b+k)-factorizations of n contributed by an element of
F (d, b + 1) through a (d, n) gozinta chain (d0, d1, . . . , dℓ), d = d0, dℓ = n, k = 1, 2, . . . , ℓ.

We conclude this section with an interesting identity.

Theorem 5.4. Given positive integers ℓ, b, k, 1 ≤ k ≤ ℓ, b > 0, then

S(ℓ, k + b, b) = b
k∑

j=1

S(ℓ − j, k + b, b − 1 + j) (22)
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Proof. Apply mathematical induction on the level ℓ. The assertion holds for ℓ = 1
since S(1, b + 1, b) = bS(0, b + 1, b) = bb0 = b. Assuming that it holds for each of
the levels 1, 2, . . . , ℓ, then it is easy to use Equation (20) and the hypothesis to prove
S(ℓ + 1, b + k, b) =

∑k
j=1 S(ℓ + 1 − j, b + k, b − 1 + j). Hence the result.

Remark 5.5. Theorem 5.4 gives a recursive method of obtaining the number of nested
(b+k)-factorizations at level ℓ from lower levels ℓ−1, ℓ−2, . . . . More generally, if Y (ℓ, b)
is the ordered multiset of factorization lengths b + k occurring at level ℓ, then (22) is
equivalent to the assertion

Y (ℓ, b) = b
ℓ⋃

j=1

Y (ℓ − j, b − 1 + j), where rY = (ry | y ∈ Y ).

The relation is best visualized with tree diagrams. Figure 1 shows one branch of Y (4, 2)
namely 1

2
Y (4, 2) = Y (3, 2) ∪ Y (2, 3) ∪ Y (1, 4) ∪ Y (0, 5) (cf. b = 2 in Table 2).

3

3

3 3 4

3 3 3 34 4 4 4 4 5

3 3 4 3 3 4 4 4 4 5 3 3 4 3 3 4 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 5 5 5 5 6
︸ ︷︷ ︸

Y (3,2)

︸ ︷︷ ︸

Y (2,3)

︸ ︷︷ ︸

Y (1,4)

︸︷︷︸

Y (0,5)

Figure 1: One branch of Y (4, 2) initially rooted at 3.

6 The B-Stirling numbers

The numbers S(n, k, b) (see Equation (18)) are referred to as “composite” because each is
a multiple of b. So we can divide by this common factor to obtain the reduced numbers.

Sb(n, k) =
1

b
S(n, k, b), Bb(0) = 1, Bb(n) =

n∑

k=1

Sb(n, k). (23)

The following theorem is then immediate from (18) and (23).

Theorem 6.1. Let n, k, b, be positive integers such that n ≥ k > 0. Then

Sb(n, k) = Sb(n − 1, k − 1) + (k + b − 1)Sb(n − 1, k),
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Sb(n, 1) = bn−1, Sb(n, 0) = δ0n,

where δij is the Kronecker delta.

Observe that S1(n, k) = S(n, k) and B1(n) = B(n).
The (reduced) generalized Stirling numbers Sb(n, k) will be called simply B-Stirling

numbers of the second kind of order b.
We state few striking properties of Sb(n, k) which flow from Theorem (6.1) as corollaries

below, omitting most standard-type results and proofs - these numbers are not entirely
new (see comments at the end of this section).

Corollary 6.2. We have

(i)
∑

n≥0

Sb(n, k)xn =
xk

(1 − bx)(1 − (b + 1)x) · · · (1 − (k + b − 1)x)
.

(ii)

Sb(n, k) =

k∑

j=1

(−1)k−j(b + j − 1)n−1

(j − 1)!(k − j)!
, 1 ≤ k ≤ n.

(iii)
Sb+1(n, k) = Sb(n, k) + kSb(n, k + 1).

Proof. Part (i) is a routine consequence of Theorem 6.1, Part (ii) is obtained from (i)
using partial fractions (see [13] for similar ideas), and Part (iii) may be verified with (ii).

�

Corollary 6.3. We have

∑

n≥0

Sb(n + 1, k)
xn

n!
=

ebx(ex − 1)k−1

(k − 1)!
. (24)

Sb(n, k) =

n−1∑

r=0

(
n − 1

r

)

S(r, k − 1)bn−r−1. (25)

Proof. Let Eb(k, x) =
∑

n≥0 Sb(n, k)xn/n!. Since E1(k, x) = (ex − 1)k/k!, we have
d
dx

E1(k, x) = ex(ex−1)k−1/(k−1)!, and since E2(k, x) = E1(k, x)+kE1(k+1, x) (Corollary
(6.2)(iii)), we obtain d

dx
E2(k, x) = e2x(ex −1)k−1/(k−1)!. So (24) follows by induction on

b. Equation (25) is the result of extracting the coefficients of x(n−1)/(n − 1)! from both
sides of (24). �

Lastly, Theorem 5.4 is restated as follows (apply S(ℓ, k + b, b) → S(ℓ, k, b) → bSb(ℓ, k),
see (23) ):
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Corollary 6.4. Let n, k, b, be positive integers such that n ≥ k. Then

Sb(n, k) =
k∑

j=1

(b − 1 + j)Sb−1+j(n − j, k + 1 − j).

The case b = 1 is noteworthy:

S(n, k) =
k∑

j=1

jSj(n − j, k + 1 − j). (26)

Remark 6.5. Notice that (26) and (25) constitute a form of inverse relations.

Remark 6.6. Let n, k, d be positive integers, n ≥ k. Then it can be verified that the
corresponding B-Stirling numbers of the first kind (unsigned) are the numbers sb(n, k),
defined as follows.

sb(n, k) = sb(n − 1, k − 1) + (n + b − 2)sb(n − 1, k),

sb(n, 1) =
(n + b − 2)!

(b − 1)!
, sb(n, 0) = 0.

However, we are presently unable to associate sb(n, k) with any combinatorial interpreta-
tions.

Two authors have previously given different constructions which turn out to be equiv-
alent to the B-Stirling numbers.

Carlitz [5] generalized ordinary partitions of {1, . . . , n} to λ-partitions, whereby some
of the elements are distributed among λ boxes, besides the blocks. The λ-partitions with
k blocks are enumerated by the weighted Stirling numbers, R(n, k, λ):

R(n + 1, k, λ) = R(n, k − 1, λ) + (k + λ)R(n, k, λ), (27)

R(n, 0, λ) = λn, R(0, k, λ) = δ0k.

By comparing (27) and Theorem 6.1, we find that R(n, k, λ) = Sλ(n + 1, k + 1).
The r-Stirling numbers,

{
n
k

}

r
, introduced by Broder [2], is founded on a simpler gen-

eralization of partitions. It answers the question: how many partitions, B1/ · · ·/Bk, of
{1, . . . , n} have the property that i ∈ Bi, i = 1, . . . , r?

{
n

k

}

r

=

{
n − 1

k − 1

}

r

+ k

{
n − 1

k

}

r

, (28)

{
r

k

}

r

= δrk,

{
n

k

}

r

= 0, n < r.

We easily deduce, from (28) and Theorem 6.1, that
{

n
k

}

r
= Sr(n − r + 1, k − r + 1).

Apart from Corollary 6.4, which seems to be new, equivalent formulations of the results
in this section, among several others, may be found in the papers of Carlitz and Broder.
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