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Abstract

The importance of Pfaffian orientations stems from the fact that if a graphG is Pfaffian,
then the number of perfect matchings ofG (as well as other related problems) can be com-
puted in polynomial time. Although there are many equivalent conditions for the existence
of a Pfaffian orientation of a graph, this property is not well-characterized. The problem is
that no polynomial algorithm is known for checking whether or not a given orientation of a
graph is Pfaffian. Similarly, we do not know whether this property of an undirected graph
that it has a Pfaffian orientation is in NP. It is well known that the enumerationproblem
of perfect matchings for general graphs is NP-hard. L. Lovász pointed out that it makes
sense not only to seek good upper and lower bounds of the number of perfect matchings
for general graphs, but also to seek special classes for which the problem can be solved
exactly. For a simple graphG and a cycleCn with n vertices (or a pathPn with n vertices),
we defineCn (or Pn)×G as the Cartesian product of graphsCn (or Pn) andG. In the present
paper, we construct Pfaffian orientations of graphsC4 × G, P4 × G andP3 × G, whereG
is a non bipartite graph with a unique cycle, and obtain the explicit formulas in terms of

eigenvalues of the skew adjacency matrix of
−→
G to enumerate their perfect matchings by

Pfaffian approach, where
−→
G is an arbitrary orientation ofG.

1. Introduction

The theory of Pfaffian orientations of graphs had been introduced by the physicists M. E.
Fisher, P. W. Kasteleyn, and H. N. V. Temperley. The importance of Pfaffian orientations stems
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from the fact that if a graphG is Pfaffian, then the number of perfect matchings ofG (as well as
other related problems) can be computed in polynomial time.

P. W. Kasteleyn gave a polynomial time algorithm for computing the number of perfect
matchings in planar graphs using Pfaffian method and extended his approach to toroidal grids
in [6] and [8]. Litte [9] generalized P. W. Kasteleyn’s work and proved that if a bipartite graph
G contains no subdivision ofK3,3, thenG has a Pfaffian orientation. Furthermore, Fischer and
Little [3] proved that a graph has a Pfaffian orientation under which every cycle of even length
is clockwise odd if and only if the graph contains no subgraphwhich is, after the contraction
of at most one cycle of odd length, an even subdivision ofK2,3. McCuaig [11], and McCuaig,
Robertson et al [12], and Robertson, Seymour et al [15] founda polynomial-time algorithm to
determine whether a bipartite graph has a Pfaffian orientation respectively. In spite of there are
many equivalent conditions for the existence of a Pfaffian orientation of a graph, this property
is not well-characterized. The problem is that no polynomial algorithm is known for checking
whether or not a given orientation of a graphG is Pfaffian. We do not even know whether
this property is in NP. (It is trivially in co-NP; to prove that a given orientation is non-Pfaffian,
it suffices to exhibit two perfect matchings with different signs.) similarly, we do not know
whether the property of an undirected graph that it has a Pfaffian orientation is in NP.

The number of perfect matchings is an important topologicalindex which has been ap-
plied for estimation of the resonant energy and totalπ−electron energy and calculation of paul-
ing bond order (see [4], [13], [16]). Enumeration problem for perfect matchings in general
graphs(even in bipartite graph) is NP-hard. L. Lovász [10]pointed out that it makes sense
not only to seek good upper and lower bounds of the number of perfect matchings for general
graphs, but also to seek special classes for which the problem can be solved exactly. So far,
many mathematicians, physicists and chemists have focusedmost of their attention on the enu-
meration problem for perfect matchings (see [2], [3], [5], [14], [15]).

First, we repeat some standard definitions. A graphG is a pairV(G) andE(G), whereV(G)
is a finite set of vertices andE(G) is a set of unordered pairsxy of vertices called edges. We say
that the edgexy is incident withx, y and thatx, y are adjacent and are called the ends of the edge
xy. All graphs in this paper are simple graphs which are finite, do not have loops or multiple
edges. A graphH is a subgraph ofG if V(H) ⊆ V(G) andE(H) ⊆ E(G). A spanning subgraph
of G is a subgraphH with V(H) = V(G). For a nonempty subsetV ′ of V(G), a subgraph ofG
is called induced subgraph induced byV ′ if its vertex set isV ′ and edge set is the set of those
edges ofG that have both ends inV ′. A k-path denoted byx0x1 . . . xk is the graph with distinct
verticesx0, x1, . . . , xk and edgesxi−1xi, i = 1, 2, . . . , k, wherex0, xk are called its ends. Ak-cycle
is obtained from a (k − 1)-path by adding the edge between the two endsx0, xk−1. We say that
k is the length of thek-path andk-cycle. A path and a cycle withn vertices are denoted byPn

andCn respectively. A graph is connected if any two vertices are joined by a path. A bipartite
graph is one whose vertex set can be partitioned into two disjoint subsetsX andY, so that each
edge has one end inX and one end inY; such a partition (X, Y) is called a bipartition of the
graph. A graph is bipartite if and only if each cycle of it has even length. A tree is a connected
acyclic graph. Clearly, a tree is bipartite. A perfect matching of a simple graphG is a set of
vertex-disjoint edges that are collectively incident to all vertices. A cycleC of G is said to be
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nice if G − C contains a perfect matching, whereG − C denotes the induced subgraph ofG
obtained fromG by deleting the vertices ofC. If C is a nice cycle of a spanning subgraph ofG,

thenC is also a nice cycle ofG. Let
−→
G denote an orientation ofG which is obtained fromG by

specifying, for each edge, an orientation on its ends. IfC is an even undirected cycle in
−→
G, we

shall sayC is evenly oriented if it has an even number of edges oriented in the direction of the

routing. OtherwiseC is oddly oriented. An orientation
−→
G is Pfaffian if every nice cycle ofG is

oddly oriented in
−→
G. A graphG is Pfaffian if it has a Pfaffian orientation.

For V(G) = {v1, v2, . . . , vn}, the skew adjacency matrix of
−→
G, denoted byA(

−→
G), is defined as

follows:

A(
−→
G) = (ai j)n×n, where ai j =



1 if (vi, v j) ∈ E(
−→
G),

−1 if (v j, vi) ∈ E(
−→
G),

0 otherwise.

Let
←−
G be the reverse orientation of

−→
G such thatA(

←−
G) = −A(

−→
G).

The cartesian product of two graphsG andH denoted byG × H is the graph with vertex set
V(G) × V(H) such that (x, u) and (y, v) are adjacent iff eitherx = y andu andv are adjacent in
H, or u = v andx andy are adjacent inG. For bipartite graphs, Yan and Zhang in [18] studied
the enumeration of perfect matchings for these Cartesian product of graphsC4 × T , P4 × T
andP3 × T , whereT is a tree. In the present paper, we construct Pfaffian orientations of some
Cartesian product of graphs which are non-bipartite and obtain explicit formulas to enumerate
their perfect matchings by Pfaffian approach as follows.
(1) φ(C4 ×G) =

∏
λ∈λ(−→G)

(2− λ2); (2) φ(P4 ×G) =
∏

λ∈λ∗(−→G)

(1− 3λ2
+ λ4);

(3) If G has a perfect matching, thenφ(P3 × G) =
∏

λ∈λ∗(−→G)

(2− λ2) andφ(C4 × G) = φ(P3 × G)2,

whereG is a non-bipartite graph with a unique cycle,
−→
G is an arbitrary orientation ofG, λ(

−→
G)

is the set of all eigenvalues ofA(
−→
G) andλ∗(

−→
G) is the set of those non-negative imaginary part

eigenvalues ofA(
−→
G).

2. Pfaffian orientation

Theorem 2.1 [10]. Let G be any simple graph with even number of vertices, and
−→
G be an ori-

entation of G. Then the following three properties are equivalent:

(1)
−→
G is a Pfaffian orientation.

(2) Every nice cycle in G is oddly oriented relative to
−→
G.

(3) If G has a perfect matching, then for some perfect matching F, every F-alternating cycle is

oddly oriented relative to
−→
G.

For a simple graphG with V(G) = {v1, v2, . . . , vn}, let G1 andG2 be two copies ofG
with V(G1) = {v′1, v′2, . . . , v′n} andV(G2) = {v′′1 , v′′2 , . . . , v′′n } respectively, wherev′i in G1 andv′′i
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in G2 are corresponding tovi in G (i = 1, 2, · · · , n). Adding the edgesv′iv
′′
i (i = 1, 2, · · · , n)

betweenG1 andG2, the resulting graph isP2 × G with vertex setV(G1) ∪ V(G2) and edge set

E(G1) ∪ E(G2) ∪ {v′iv′′i | i = 1, 2, · · · , n}. If
−→
G is an orientation ofG, then we denote the orien-

tation of P2 × G by (P2 ×
−→
G)e which is defined as follows: the orientation ofG1 (the left half

of P2 × G) is the same as
−→
G and that ofG2 (the right half ofP2 × G) is the same as

←−
G, and the

orientations of edgesv′iv
′′
i (i = 1, 2, · · · , n) are fromv′i to v′′i (see Figure 1).

( )b G ( )c P G2( )a G

Figure 1.

Lemma 2.2 [17]. Let G be a simple graph. If
−→
G is an orientation of G under which every cycle

of even length is oddly oriented in
−→
G, then the orientation (P2 ×

−→
G)e is a Pfaffian orientation of

P2 ×G.
Lemma 2.3 [18]. Suppose G is a tree with V(G) = {v1, v2, . . . , vn}. Then every cycle C of P2×G
is a nice cycle and can be written as:

v′i1v
′
i2 . . . v

′
imv′′imv′′im−1

. . . v′′i2v
′′
i1v
′
i1, (1)

where i1, i2, . . . , im ∈ {1, 2, . . . , n}.
Lemma 2.4. If G is a tree with V(G) = {v1, v2, . . . , vn}, then any two paths Pv′i−v′′j

and Pv′j−v′′i
for

i , j must intersect each other in P2 ×G, i, j ∈ {1, 2, . . . , n}.
Proof. We prove this assertion by contradiction. If there exist twodisjoint pathsPv′i−v′′j

and
Pv′j−v′′i

for i , j in P2 ×G, then there is a cycle ofP2 ×G that consists ofPv′i−v′′j
, v′′j v′j, Pv′j−v′′i

and
v′′i v′i , which has the following form:

v′i . . . . . . v
′′
j v′j . . . . . . v

′′
i v′i . (2)

In the other hand, by Lemma 2.3, every cycle ofP2×G has the form (1) in Lemma 2.3. It is clear
that the cycle form (2) is distinct from the cycle form (1), a contradiction. The assertion holds.❏

In order to formulate our main results, it is necessary to introduce further terminology.
SupposeG is a non-bipartite graph with a unique cycle. For convenience, letC∗ denote the

unique odd cycle ofG with length 2k + 1, and label the vertices ofG asv1, v2, . . . , v2k+1, . . . , vn

such thatC∗ = v1v2 . . . v2k+1v1(see Figure 2(a)). InP2 × G(see Figure 2(b)), let the cyclesC∗i
in Gi(i=1, 2) be corresponding to the cycleC∗ in G. For E′ ⊆ E(G), G − E′ denotes the graph
obtained fromG by deleting the edges inE′. If E′ = {e} we writeG − e instead ofG − {e}. A
path with endss andt is denoted byPs−t.
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Figure 2.

Theorem 2.5. If G is a non-bipartite graph with a unique cycle, then every even cycle of P2×G
is a nice cycle of it.
Proof. We only need to prove the case thatG is a connected graph. SupposeC̃ is an even cycle
in P2 × G, andE′ = {v′1v′2k+1, v

′′
1 v′′2k+1}. If C̃ contains no edge ofE′, thenC̃ is an even cycle of

P2 × (G − v1v2k+1) (see Figure 2(c)) which is a spanning subgraph ofP2 ×G. SinceG − v1v2k+1

is a tree,̃C is a nice cycle ofP2× (G− v1v2k+1) by Lemma 2.3. Thus̃C is a nice cycle ofP2×G.

If C̃ contains exactly one edge ofE′, without loss of generality, we assume thatC̃ contains
the edgev′1v′2k+1. SinceG − v1v2k+1 is a tree, it is bipartite. If (V1,V2) is its a bipartition, then
P2×(G−v1v2k+1) is a bipartite graph with a bipartition (V ′1∪V ′′2 ,V

′
2∪V ′′1 ), where bothV ′i andV ′′i

are corresponding toVi, i = 1, 2. Furthermore, there exists a 2k-pathv′1v′2 . . . v
′
iv
′
i+1 . . . v

′
2kv
′
2k+1,

so the two verticesv′1, v′2k+1 belong to the same partitioned subset. HenceC̃ − v′1v′2k+1 is a path
Pv′1−v′2k+1

of P2 × (G − v1v2k+1) which always has even length. Thus the length ofC̃ is odd, a
contradiction.

If C̃ contains both edges ofE′, then C̃ − E′ consists of two disjoint pathsPv′1−v′′1
and

Pv′2k+1−v′′2k+1
of P2 × (G − v1v2k+1). Otherwise, there are two disjoint pathsPv′1−v′′2k+1

andPv′2k+1−v′′1
which contradicts to Lemma 2.4. By application of Lemma 2.3,we havePv′1−v′′1

= v′1v′′1 or
v′1v′i1 . . . v

′
is
v′′is
. . . v′′i1v

′′
1 , and Pv′2k+1−v′′2k+1

= v′2k+1v′′2K+1 or v′2k+1v′j1 . . . v
′
jt
v′′it . . . v

′′
j1

v′′2k+1 respectively.

Thus,{v′lv′′l | 1 6 l 6 n, v′l < V(C̃)} is a perfect matching ofG− C̃. ThereforeC̃ is a nice cycle.❏

By Theorem 2.5, the following corollary is immediate.
Corollary 2.6. Every even cycle of P2 × C2k+1 is a nice cycle of it.

SupposeG is a non-bipartite graph with a unique cycle and
−→
G is an arbitrary orientation of

G. By Lemma 2.2, the orientation (P2×
−→
G)e is a Pfaffian orientation ofP2×G. Hence every nice

cycle in (P2×
−→
G)e is oddly oriented by Theorem 2.1. By Theorem 2.5, the orientation (P2×

−→
G)e

is an orientation ofP2 ×G under which every even cycle ofP2 ×G is oddly oriented. Now we

apply Lemma 2.2 withG replaced byP2 ×G, then (P2 × (P2 ×
−→
G)e)e is a Pfaffian orientation of

P2×(P2×G). SinceP2×P2 = C4, we use (C4×
−→
G)e instead of (P2×(P2×

−→
G)e)e for convenience.

Figure 3 illustrates the orientation procedure.
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( ) (a P G2 ) ( ) (b C G4 )
e e

Figure 3.

For G with V(G) = {v1, v2, . . . , vn}, take m copies ofG, denoted byGi with V(Gi) =

{v(i)
1 , v

(i)
2 , . . . , v

(i)
n }, i = 1, 2, . . . ,m. Pm × G is the graph with vertex set

m⋃
j=1

V(Gi) and edge set

m⋃
j=1

E(Gi) ∪ {v(i)
j v(i+1)

j |1 6 j 6 n, 1 6 i 6 m − 1}. Let
−→
G be an orientation ofG. We define the

orientation ofGi in Pm ×G to be the same as
−→
G if i is odd,

←−
G otherwise, and the orientations of

edgesv(i)
j v(i+1)

j in Pm × G to be fromv(i)
j to v(i+1)

j (1 6 j 6 n, 1 6 i 6 m − 1). The orientation of

Pm ×G defined as above is denoted by (Pm ×
−→
G)e. The processes of the orientations (P3 ×

−→
G)e

and (P4 ×
−→
G)e are shown in Figure 4.

( ) (a P G3 ) ( ) (b P G4 )
e e

Figure 4.

SinceP4×G is a spanning subgraph ofC4×G, every nice cycle inP4×G is also a nice cycle

in C4 ×G. Noting that (P4 ×
−→
G)e is the orientation (C4 ×

−→
G)e restricted inP4 ×G and (C4 ×

−→
G)e

is a Pfaffian orientation, we obtain that every nice cycle inP4 × G is oddly oriented relative to

(P4 ×
−→
G)e. Then we get the following theorem immediately.

Theorem 2.7. Let G be a non-bipartite graph with a unique cycle, and
−→
G be an arbitrary

orientation of G. Then the orientations (C4×
−→
G)e of C4×G and (P4×

−→
G)e of P4×G are Pfaffian

orientations.
Theorem 2.8. Let G be a non-bipartite graph with a unique cycle, and

−→
G be an arbitrary

orientation of G. If G has a perfect matching, then (P3×
−→
G)e is a Pfaffian orientation of P3×G.

Proof. SinceG has a perfect matching, it is clear thatP3 ×G has a perfect matching. Suppose
C is an arbitrary nice cycle ofP3 ×G andM1 is a perfect matching ofP3 ×G − C. Let M2 be a
perfect matching ofG4 in P4×G. ClearlyM1∪M2 is a perfect matching ofP4×G −C. So that

every nice cycle inP3 ×G is also a nice cycle inP4 ×G. Moreover, (P3 ×
−→
G)e is the orientation

(P4 ×
−→
G)e restricted inP3 ×G, and (P4 ×

−→
G)e is a Pfaffian orientation by Theorem 2.7, so every

nice cycle inP3 × G is oddly oriented relative to (P3 ×
−→
G)e. By Theorem 2.1, (P3 ×

−→
G)e is a

Pfaffian orientation. ❏
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3. Enumeration of perfect matchings

If a graphG has a Pfaffian orientation
−→
G, then the number of perfect matchings ofG denoted

by φ(G) can be computed in polynomial time by the following theorem.

Theorem 3.1 [7], [8], [10]. Let
−→
G be a Pfaffian orientation of a graph G. Then

φ(G)2
= detA(

−→
G),

where A(
−→
G) is the skew adjacency matrix of

−→
G.

Theorem 3.2. Let G be a non-bipartite graph with a unique cycle, and
−→
G be an arbitrary

orientation of G. Then
φ(C4 ×G) =

∏

λ∈λ(−→G)

(2− λ2),

where λ(
−→
G) is the set of all eigenvalues of A(

−→
G).

Proof. (C4×
−→
G)e is a Pfaffian orientation ofC4×G by Theorem 2.7. The skew adjacency matrix

of (C4 ×
−→
G)e has the following form by a suitable labeling of vertices of (C4 ×

−→
G)e:

A((C4 ×
−→
G)e) =



A(
−→
G) I I 0

−I −A(
−→
G) 0 I

−I 0 −A(
−→
G) −I

0 −I I A(
−→
G)


=

(
A B
C D

)
,

whereI is the identity matrix,A =


A(
−→
G) I

−I −A(
−→
G)

, B =

(
I 0
0 I

)
, C =

(
−I 0
0 −I

)
, D =


−A(
−→
G) −I

I A(
−→
G)

.

It is well known that for four matrixesA, B,C,D with equivalent ordern, if detA , 0 and

AC = CA, then det

(
A B
C D

)
= det(AD − CB). By Theorem 3.1, we have

φ(C4 ×G)2
= detA((C4 ×

−→
G)e)

= det


−


A(
−→
G) I

−I −A(
−→
G)


2

+

(
I 0
0 I

)

= det


2I − (A(

−→
G))2 0

0 2I − (A(
−→
G))2



= (det(2I − A(
−→
G)2))2.

SinceA(
−→
G) is a real skew matrix, its eigenvalues are either zeros or pure imaginary numbers,
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hence

φ(C4 ×G) =
∣∣∣∣det(2I − A(

−→
G)2)

∣∣∣∣ =
∏

λ∈λ(−→G)

(2− λ2),

whereλ(
−→
G) is the set of all eigenvalues ofA(

−→
G). ❏

Corollary 3.3. Let G be an odd cycle with 2k + 1 vertices. Then

φ(C4 ×G) =
2k+1∏

j=1

(
2+ 4 sin2

(
2 jπ

2k + 1

))
.

Proof. Without loss of generality, we orient every edge of the odd cycle G clockwise. Then

the skew adjacency matrixA(
−→
G) is a circulant matrix [1], and the eigenvalues ofA(

−→
G) are

λ j = 2i sin( 2 jπ
2k+1), j = 1, 2, . . . , 2k, 2k + 1. By Theorem 3.2, the assertion holds. ❏

Remark. Note that the graphCm × Cn can be considered as the lattice imbedded on a torus.
In this case, the author of paper [6] had presented a rigorousbut more complex solution to
enumerate its perfect matchings.

Theorem 3.4. Let G be a non-bipartite graph with a unique cycle, and
−→
G be an arbitrary

orientation of G. Then
φ(P4 ×G) =

∏

λ∈λ∗(−→G)

(1− 3λ2
+ λ4),

where λ∗(
−→
G) is the set of those non-negative imaginary part eigenvalues of A(

−→
G).

Proof. By Theorem 2.7, (P4 ×
−→
G)e is a Pfaffian orientation ofP4 ×G. Hence, by Theorem 3.1,

we have
φ(P4 ×G)2

= detA((P4 ×
−→
G)e).

By a suitable labeling of vertices of (P4 ×
−→
G)e, the skew adjacency matrix of (P4 ×

−→
G)e has the

following form:

A((P4 ×
−→
G)e) =



A(
−→
G) I 0 0

−I −A(
−→
G) I 0

0 −I A(
−→
G) I

0 0 −I −A(
−→
G)


,

Now multiplying the first column, then the third and fourth row, then the fourth column of

the partitioned matrixA((P4 ×
−→
G)e) by −1, without changing the absolute value of the determi-

nant we obtain the matrix

M =



−A(
−→
G) I 0 0

I −A(
−→
G) I 0

0 I −A(
−→
G) I

0 0 I −A(
−→
G)



= −I4 ⊗ A(
−→
G) + B ⊗ In,
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where⊗ denotes the Kronecker product of matrices and

B =



0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


.

It is well known the eigenvalues of−I4 ⊗ A + B ⊗ In are

µi − λ j (1 6 i 6 4, 1 6 j 6 n),

whereλ1, λ2, . . . , λn are the eigenvalues ofA(
−→
G) andµ1, µ2, µ3 andµ4 are the eigenvalues ofB.

It is easy to calculate that the eigenvalues ofB are

±

√
3+
√

5
2
, ±

√
3−
√

5
2
.

Thus the eigenvalues ofM are

±

√
3+
√

5
2

− λs,±

√
3−
√

5
2

− λs, (s = 1, 2, . . . , n).

Since the determinant of the matrixM is the product of these eigenvalues,
∣∣∣∣det

(
A((P4 ×

−→
G)e)

)∣∣∣∣ = |M|

=

∣∣∣∣∣∣∣

n∏

s=1

(√
3+
√

5
2 − λs

) (
−

√
3+
√

5
2 − λs

) (√
3−
√

5
2 − λs

) (
−

√
3−
√

5
2 − λs

)∣∣∣∣∣∣∣

=

n∏

s=1

(1− 3λ2
s + λ

4
s).

If λ is an eigenvalue of the real skew matrixA(
−→
G), so is its conjugateλ. Hence we have

φ(P4 ×G) =

√
det(A((P4 ×

−→
G)e))

=

n∏

s=1

√
(1− 3λ2

s + λ
4
s)

=

∏

λ∈λ∗(−→G)

(1− 3λ2
+ λ4),

whereλ∗(
−→
G) is the set of those non-negative imaginary part eigenvalues of A(

−→
G). The Theorem

is proved. ❏
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Similarly, by using Theorem 2.8, we can prove the following Theorem.

Theorem 3.5. Let G be a non-bipartite graph with a unique cycle, and
−→
G be an arbitrary

orientation of G. If G has a perfect matching, then

φ(P3 ×G) =
∏

λ∈λ∗(−→G)

(2− λ2),

where λ∗(
−→
G) is the set of those non-negative imaginary part eigenvalues of A(

−→
G).

Corollary 3.6. Let G be a non-bipartite graph with a unique cycle, and
−→
G be an arbitrary

orientation of G. If G has a perfect matching, then φ(P3 ×G)2
= φ(C4 ×G).

Proof. Corollary 3.6 is immediate from Theorem 3.2 and 3.5. ❏
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