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Abstract

The importance of Pfdan orientations stems from the fact that if a grapts Pfafian,
then the number of perfect matchings®f{as well as other related problems) can be com-
puted in polynomial time. Although there are many equivatamditions for the existence
of a Pfdhian orientation of a graph, this property is not well-chaggzed. The problem is
that no polynomial algorithm is known for checking whethenot a given orientation of a
graph is Pféian. Similarly, we do not know whether this property of an wedied graph
that it has a Pfdian orientation is in NP. It is well known that the enumeratfoblem
of perfect matchings for general graphs is NP-hard. L. Isavaointed out that it makes
sense not only to seek good upper and lower bounds of the nuohiperfect matchings
for general graphs, but also to seek special classes fortvithi problem can be solved
exactly. For a simple grapB and a cycleC,, with n vertices (or a pattP,, with n vertices),
we defineCy, (or Pp) X G as the Cartesian product of grapgbs(or P,,) andG. In the present
paper, we construct Pfizan orientations of graphS, x G, P4 x G andP3 x G, whereG
is a non bipartite graph with a unique cycle, and obtain thgiex formulas in terms of

eigenvalues of the skew adjacency matrix®fto enumerate their perfect matchings by
Pfatfian approach, wher@ is an arbitrary orientation d&.

1. Introduction

The theory of Pféfian orientations of graphs had been introduced by the plsysi. E.
Fisher, P. W. Kasteleyn, and H. N. V. Temperley. The impar¢enf Pfdfian orientations stems
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from the fact that if a grapf® is Pfdfian, then the number of perfect matching€ofas well as
other related problems) can be computed in polynomial time.

P. W. Kasteleyn gave a polynomial time algorithm for compgtthe number of perfect
matchings in planar graphs using Bifan method and extended his approach to toroidal grids
in [6] and [8]. Litte [9] generalized P. W. Kasteleyn’s workdaproved that if a bipartite graph
G contains no subdivision df3 3, thenG has a Pfffian orientation. Furthermore, Fischer and
Little [3] proved that a graph has a Hian orientation under which every cycle of even length
is clockwise odd if and only if the graph contains no subgreyiich is, after the contraction
of at most one cycle of odd length, an even subdivisioK0f. McCuaig [11], and McCuaig,
Robertson et al [12], and Robertson, Seymour et al [15] faupdlynomial-time algorithm to
determine whether a bipartite graph has &iifa orientation respectively. In spite of there are
many equivalent conditions for the existence of affitda orientation of a graph, this property
is not well-characterized. The problem is that no polyndmigorithm is known for checking
whether or not a given orientation of a graghis Pfafian. We do not even know whether
this property is in NP. (It is trivially in co-NP; to prove tha given orientation is non-Pfizgan,
it suffices to exhibit two perfect matchings withfidirent signs.) similarly, we do not know
whether the property of an undirected graph that it has &iBfeorientation is in NP.

The number of perfect matchings is an important topologiedéx which has been ap-
plied for estimation of the resonant energy and tatatlectron energy and calculation of paul-
ing bond order (see [4], [13], [16]). Enumeration problem fperfect matchings in general
graphs(even in bipartite graph) is NP-hard. L. Lovasz [f6inted out that it makes sense
not only to seek good upper and lower bounds of the numberréégtenatchings for general
graphs, but also to seek special classes for which the probén be solved exactly. So far,
many mathematicians, physicists and chemists have foecuestlof their attention on the enu-
meration problem for perfect matchings (see [2], [3], [3}], [15]).

First, we repeat some standard definitions. A gréaghk a pairV(G) andE(G), whereV(G)
is a finite set of vertices and(G) is a set of unordered pairy of vertices called edges. We say
that the edgey is incident withx, y and thatx, y are adjacent and are called the ends of the edge
xy. All graphs in this paper are simple graphs which are finitendt have loops or multiple
edges. A grapld is a subgraph o if V(H) € V(G) andE(H) € E(G). A spanning subgraph
of G is a subgraptd with V(H) = V(G). For a nonempty subs®t of V(G), a subgraph o6
is called induced subgraph induced yif its vertex set isV’ and edge set is the set of those
edges ofG that have both ends M’. A k-path denoted bygX; ... X is the graph with distinct
verticesxg, X1, . .., X and edges;_1%, 1 = 1,2,...,k, wherexXy, X, are called its ends. A-cycle
is obtained from ak{ — 1)-path by adding the edge between the two exqds,_1. We say that
k is the length of th&-path andk-cycle. A path and a cycle with vertices are denoted by,
andC, respectively. A graph is connected if any two vertices anegd by a path. A bipartite
graph is one whose vertex set can be partitioned into twoidissubset andY, so that each
edge has one end X and one end irY; such a partitionX, Y) is called a bipartition of the
graph. A graph is bipartite if and only if each cycle of it hage length. A tree is a connected
acyclic graph. Clearly, a tree is bipartite. A perfect matghof a simple grapl@ is a set of
vertex-disjoint edges that are collectively incident tbvairtices. A cycleC of G is said to be
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nice if G — C contains a perfect matching, whe—- C denotes the induced subgraph®f
obtained fromG by deleting the vertices @. If C is a nice cycle of a spanning subgraphGf

thenC is also a nice cycle d&. Let G denote an orientation & which is obtained fronG by

specifying, for each edge, an orientation on its end€ i§ an even undirected cyclea, we
shall sayC is evenly oriented if it has an even number of edges oriemtelda direction of the

routing. OtherwiseC is oddly oriented. An orientatio® is Pfafian if every nice cycle o6 is
oddly oriented ind. A graphG is Pfdfian if it has a Pfefian orientation.

ForV(G) = {vi, Vs, ..., Vy}, the skew adjacency matrix @), denoted b}A(@), is defined as
follows: .
R 1 if (v,v) € E(G),
A(G) = (@j)nn.  Where a;=1 _1 if (v, v) e E(G),
0 otherwise

— . L= “— —

Let G be the reverse orientation & such thatA(G) = —A(G).

The cartesian product of two grap@sandH denoted byG x H is the graph with vertex set
V(G) x V(H) such that x, u) and {, v) are adjacentt eitherx = y andu andv are adjacent in
H, oru = vandx andy are adjacent is. For bipartite graphs, Yan and Zhang in [18] studied
the enumeration of perfect matchings for these Cartesiadyat of graphsC4 x T, P, x T
andPs; x T, whereT is a tree. In the present paper, we constructifia orientations of some
Cartesian product of graphs which are non-bipartite andinkexplicit formulas to enumerate
their perfect matchings by Rfaan approach as follows.

D dCaxG) = [] 2-2%;(Qp(PaxG)= I (1-322+2%;

1eA(G) 1e2:(G)
(3) If G has a perfect matching, th@rfP; x G) = [] (2 - 42) and¢$(C4 x G) = ¢p(P3 x G)?,
2e2(@)

whereG is a non-bipartite graph with a unique cyc@,is an arbitrary orientation o, /1(8)
is the set of all eigenvalues m(é’) and/l*(é)) is the set of those non-negative imaginary part
eigenvalues oA(@).

2. Pfaffian orientation

Theorem 2.1 [10]. Let G be any simple graph with even number of vertices, and G be an ori-
entation of G. Then the following three properties are equival ent:

(1) G isa Pfaffian orientation.

(2) Every nicecyclein G isoddly oriented relative o G.
(3) If G has a perfect matching, then for some perfect matching F, every F-alternating cycleis

oddly oriented relative t0 G.

For a simple graplG with V(G) = {vi,Vs,...,V,}, let G; and G, be two copies ofc
with V(Gy) = {v,V,, ..., v} andV(G,) = {v{,V;, ...,V } respectively, where in G; andv/’

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R52 3



in G, are corresponding t& in G (i = 1,2,---,n). Adding the edges/v'(i = 1,2,---,n)
betweenG; andG,, the resulting graph i®, x G with vertex setV(G;) U V(G,) and edge set
E(G)UEG)uU{vv'|i=12---,n}. If@ is an orientation o5, then we denote the orien-
tation of P, x G by (P, ><f;))e which is defined as follows: the orientation @f (the left half

of P, x G) is the same a8 and that ofG, (the right half of P, x G) is the same ag, and the
orientations of edgegv’(i = 1,2,--- ,n) are fromv, to v’(see Figure 1).

—-
G G G, _, G

b

(a) G b) G ()P, <G
Figure 1.

Lemma2.2[17]. Let G be a simple graph. If G isan orientation of G under which every cycle

of even length is oddly oriented in 8 then the orientation (P, x 8)6 is a Pfaffian orientation of
P, x G.

Lemma 2.3 [18]. Suppose G isatreewith V(G) = {v, Vo, ..., V,}. Thenevery cycle C of P, x G
isa nice cycle and can be written as:

Vi Vi, VGV VI (1)
whereiq,is, ..., in€{1,2,...,n}.

Lemma24. If Gisatreewith V(G) = {vi, Vo, .., V,}, then any two paths P\,i_\/j/ and P\/j_\/i/ for
I # ] must intersect each other inP, x G, i, j € {1,2,...,n}.

Proof. We prove this assertion by contradiction. If there exist @hsjoint pathsP\,i,_vj/ and
PV;—V{’ fori # jin P, x G, then there is a cycle ¢, x G that consists oni_\,},, v]’v’j, PVE—V/ and
v'v/, which has the following form:

Vi VIV VIV )

In the other hand, by Lemma 2.3, every cycld®ek G has the form (1) in Lemma 2.3. Itis clear
that the cycle form (2) is distinct from the cycle form (1),antradiction. The assertion holds.

In order to formulate our main results, it is necessary toohtice further terminology.

Supposes is a non-bipartite graph with a unique cycle. For converngetetC* denote the
unique odd cycle o6 with length X + 1, and label the vertices & asvy, Vs, . .., Vo1, ..., Vn
such thatC* = w1, .. v, Va(see Figure 2(a)). I, x G(see Figure 2(b)), let the cycl&y
in Gi(i=1, 2) be corresponding to the cydl® in G. ForE’ € E(G), G — E’ denotes the graph
obtained fromG by deleting the edges iB’. If E’ = {e} we writeG — e instead ofG — {e}. A
path with endss andt is denoted byPs ;.
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(a) G (b) P, xXG (c) P, X (G-vVy)
Figure 2.

Theorem 2.5. If G isa non-bipartite graph with a unique cycle, then every even cycle of P, x G
isanicecycleof it. N

Proof. We only need to prove the case tl@ats a connected graph. Suppd3és an even cycle
in P2 X G, andE’" = {vjV,,, 1,V V4., }. If C contains no edge d’, thenC is an even cycle of
P, x (G — vV, 1) (see Figure 2(c)) which is a spanning subgrapRok G. SinceG — vV, 1
is atreeC is a nice cycle 0P, X (G — ViV, 1) by Lemma 2.3. Thu€ is a nice cycle oP, x G.

If C contains exactly one edge Bf, without loss of generality, we assume tiatontains
the edgev,v,, ,,. SinceG - v,y is a tree, it is bipartite. 1fV;,V,) is its a bipartition, then
P, x (G -V1Va.1) is a bipartite graph with a bipartitiov/{ UV}, VU V"), where bothv; andV/”
are corresponding tw;, i = 1,2. Furthermore, there exists &-pathv}V,... ViV, ...V, V,, ..,
so the two vertices,, v, ., belong to the same partitioned subset. HeBceV,V,, , is a path
Py _v  of P, x (G — vyvx,1) Which always has even length. Thus the Iengtfifdfs odd, a

172kl
contradiction.

If C contains both edges d, thenC — E’ consists of two disjoint path®, -, and
Py, . v, of P, x (G — viv,1). Otherwise, there are two disjoint patla?si Vs and Py, v/
which contradicts to Lemma 2.4. By application of Lemma 2v@, haveP, ., = vjVv{ or
VIVI Vv, and Py, e = Vo Vo, OF Vi g Vi LV VYLV VG respectively.

Thus,{vv’ | 1< 1 <n,V ¢ V(C)} is a perfect matching a& — C. ThereforeC is a nice cycle]

By Theorem 2.5, the following corollary is immediate.
Corollary 2.6. Every even cycle of P, x Cy,1 isanice cycle of it.

Supposes is a non-bipartite graph with a unique cycle &Rds an arbitrary orientation of
G. By Lemma 2.2, the orientatiofP§ xa)e is a Pfdfian orientation oP, x G. Hence every nice

cycle in (P, ><ES))e is oddly oriented by Theorem 2.1. By Theorem 2.5, the origomaP, ><f;))e
is an orientation oP, x G under which every even cycle & x G is oddly oriented. Now we

apply Lemma 2.2 witl&s replaced byP, x G, then @, x (P, ><E§>)e)e is a Pfdfian orientation of
P, x (P, xG). SinceP, x P, = Cy4, we use C4 x G)® instead of P, x (P, x G)®)€ for convenience.
Figure 3 illustrates the orientation procedure.
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(a) ((P,x G (b) ((C, < G)
Figure 3.

For G with V(G) = {vi,Vs,...,V,}, takem copies ofG, denoted byG; with V(G)) =
m

MO VDL = 1,2,...,m Py x G is the graph with vertex sef) V(G;) and edge set
=1

m i) (i+1 . . -2 . . .
UEG) UVWM™I1 < j <n1<i<m-1}. LetG be an orientation 0. We define the
i1

orientation ofG; in P, x G to be the same &5 if i is odd,G otherwise, and the orientations of
edges)*Y in Py, x G to be fromv{’ to *Y(1 < j < n,1 < i < m-1). The orientation of
Pn x G defined as above is denoted B3,(x _G))e. The processes of the orientatio’s @8)6
and P4 ><6>)e are shown in Figure 4.

— —

g e g 616 7 8 6

(a) (P, x G (b) (P, < G)*
Figure4.

SinceP,x G is a spanning subgraph 6f x G, every nice cycle ifP;x G is also a nice cycle
in C4 x G. Noting that P4 x@)e is the orientationC, ><f;))e restricted inP, x G and C4 ><ES))e
is a Pfdfian orientation, we obtain that every nice cycldPnx G is oddly oriented relative to
(P4 x@)e. Then we get the following theorem immediately.

Theorem 2.7. Let G be a non-bipartite graph with a unique cycle, and G be an arbitrary

orientation of G. Then the orientations (C,4 xf;))e of C4x G and (P4 x@)e of P, x G are Pfaffian
orientations. R
Theorem 2.8. Let G be a non-bipartite graph with a unique cycle, and G be an arbitrary

orientation of G. If G has a perfect matching, then (P3 x@)e is a Pfaffian orientation of P3 x G.
Proof. SinceG has a perfect matching, it is clear tHat x G has a perfect matching. Suppose
C is an arbitrary nice cycle dP; x G andM; is a perfect matching d?; x G — C. Let M, be a
perfect matching o6, in P4 x G. ClearlyM; U M, is a perfect matching d?4 x G — C. So that

every nice cycle irP; x G is also a nice cycle iR, x G. Moreover, P; ><T3>)e is the orientation
(P4 ><T3))e restricted inP3 x G, and P4 ><T3))e is a Pfdfian orientation by Theorem 2.7, so every

nice cycle inP3 x G is oddly oriented relative toR3 xa)e. By Theorem 2.1,R; ><T3>)e is a
Pfafian orientation. O
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3. Enumer ation of perfect matchings

If a graphG has a Pffiian orientatior(_ﬁ, then the number of perfect matchings®tlenoted
by ¢(G) can be computed in polynomial time by the following theorem

Theorem 3.1 [7], [8], [10]. Let G bea Pfaffian orientation of a graph G. Then
$(G)? = detA(G),

where A(@) is the skew adjacency matrix of Q.

Theorem 3.2. Let G be a non-bipartite graph with a unique cycle, and G be an arbitrary
orientation of G. Then

9(CsxG)= | [ @-2).
2eA(@)
2. . . —
where A(G) isthe set of all eigenvalues of A(G).
Proof. (Cy4 ><T3>)e is a Pfdfian orientation oC4x G by Theorem 2.7. The skew adjacency matrix
of (C4 ><T3>)e has the following form by a suitable labeling of vertices Gf é<?3))e:

AG) | | 0
e | -1 -A@) © I | (A B
AlCax O =1 0 -AQ) -l _(C D )
0 - I A@)

o (A (1 0\ . (-1 0O _
wherel is the identity matrix,A = ( Ny —A(Ea)) ] B = ( 01 ) C = ( 0 I ) D=
(—A(E;’) ~ )

I A@Q) |

It is well known that for four matrixe#\, B, C, D with equivalent orden, if detA # 0 and

AC = CA then de( é g ) = det(AD - CB). By Theorem 3.1, we have
H(Cax G = detA((Cs x G)°)
— 2
_ det{_[ A(G) - ) +( | 0 )}
-1 -A(G) 0 1
_ det( 21 - (AG)y? 0 )
0 2l — (A(G))?

(det(@ - AG)?))2

SinceA(G) is a real skew matrix, its eigenvalues are either zeros @ poaginary numbers,
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hence

$(Cax Q) = |det(@ - AGY)|= || @-),
2e1(@)
where/l(é) is the set of all eigenvalues A(@). (]
Corollary 3.3. Let G be an odd cycle with 2k + 1 vertices. Then

2k+1

$(Cax G) = ]—[(2+4sinz(2§jf1)).

j=1

Proof. Without loss of generality, we orient every edge of the oddey clockwise. Then

the skew adjacency matriA(a) is a circulant matrix [1], and the eigenvaluesme) are
=2 sin(%), j=12,...,2k 2k+ 1. By Theorem 3.2, the assertion holds. O
Remark. Note that the graplC,,, x C, can be considered as the lattice imbedded on a torus.
In this case, the author of paper [6] had presented a rigdootisnore complex solution to

enumerate its perfect matchings.
Theorem 3.4. Let G be a non-bipartite graph with a unique cycle, and @ be an arbitrary
orientation of G. Then

d(Psx G) = ]_[ (1-322+ 2%,

262 (@)

where /l*(a) isthe set of those non-negative imaginary part eigenval ues of A(a).

Proof. By Theorem 2.7,R, ><6>)e is a Pfdtian orientation oP, x G. Hence, by Theorem 3.1,
we have R
O(Ps x G)? = detA((Ps x G)®).

By a suitable labeling of vertices oP{ x@)e, the skew adjacency matrix oP{ x 3)6 has the
following form:

AG) | 0 0
0 0 -1 -A@)

Now multiplying the first column, then the third and fourtharahen the fourth column of

the partitioned matriXA((P4 x_G))e) by —1, without changing the absolute value of the determi-
nant we obtain the matrix

“A@) | 0 0
V- I -AG) 1o
0 I —AGQ) |

0 0 I -A@)

1,0AR)+ B,
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where® denotes the Kronecker product of matrices and

0100
1010
B=10o 101
0010

It is well known the eigenvalues efl;® A+ B® |, are

Ui — A (1<i<4, 1<j<gn),

whereAy, A, ..., A, are the eigenvalues @f(@) anduq, up, uz anduy are the eigenvalues &
It is easy to calculate that the eigenvalue8aire

3+ 5 /3— V5
+ , * :
2 2
Thus the eigenvalues &1 are
i\/3+2\/§—/ls,i\/S_z\/B—/ls,(s:1,2,...,n).

Since the determinant of the matiik is the product of these eigenvalues,

det(A(Ps x G)9)| = IM|
S e e R

n
= [a-322+1d.
s=1

. . = . . —
If Ais an eigenvalue of the real skew matAG), so is its conjugatd. Hence we have

VdetA(Ps x B)9)

n
[ |ya-32+a9
s=1

]_[ (1-322+ 1%,

2e1+(@)

(')(P4 X G)

Where/l*(é) is the set of those non-negative imaginary part eigenwtﬁe(f;)). The Theorem
is proved. ]
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Similarly, by using Theorem 2.8, we can prove the followirfgedrem.

Theorem 3.5. Let G be a non-bipartite graph with a unique cycle, and @ be an arbitrary
orientation of G. If G has a perfect matching, then

o(PsxG) = [ ] 2-),
2e2+(@)

where 1* (8) isthe set of those non-negative imaginary part eigenval ues of A(@).

Corollary 3.6. Let G be a non-bipartite graph with a unique cycle, and @ be an arbitrary
orientation of G. If G has a perfect matching, then ¢p(Ps x G)? = ¢(C4 x G).
Proof. Corollary 3.6 is immediate from Theorem 3.2 and 3.5. 0
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