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Abstract

The semifields of order q6 which are two-dimensional over their left nucleus and
six-dimensional over their center have been geometrically partitioned into six classes
by using the associated linear sets in PG(3, q3). One of these classes has been par-
titioned further (again geometrically) into three subclasses. In this paper algebraic
curves are used to construct two infinite families of odd order semifields belonging
to one of these subclasses, the first such families shown to exist in this subclass.
Moreover, using similar techniques it is shown that these are the only semifields in
this subclass which have the right or middle nucleus which is two-dimensional over
the center. This work is a non-trivial step towards the classification of all semifields
that are six-dimensional over their center and two-dimensional over their left nu-
cleus.
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1 Introduction

A semifield S is an algebraic structure satisfying all the axioms for a skewfield except
(possibly) associativity. The subsets

Nl = {a ∈ S | (ab)c = a(bc), ∀b, c ∈ S},
Nm = {b ∈ S | (ab)c = a(bc), ∀a, c ∈ S},
Nr = {c ∈ S | (ab)c = a(bc), ∀a, b ∈ S},

K = {a ∈ Nl ∩ Nm ∩ Nr | ab = ba, ∀b ∈ S}
are skewfields which are known, respectively, as the left nucleus, middle nucleus, right
nucleus and center of the semifield. In the finite setting, which is the only setting con-
sidered in this paper, every skewfield is a field and thus we may assume that the center
of our semifield is the finite field Fq of order q, where q is some power of the prime p. It
is also important to note that a (finite) semifield is a vector space over its nuclei and its
center.

If S satisfies all the axioms for a semifield, except that it does not have an identity
element under multiplication, then S is called a pre-semifield. Two pre-semifields, say
S = (S, +, ◦) and S′ = (S′, +, ·), are said to be isotopic if there exist three Fp-linear maps
g1, g2, g3 from S to S

′ such that

g1(x) · g2(y) = g3(x ◦ y)

for all x, y ∈ S. From any pre-semifield, one can naturally construct a semifield which is
isotopic to it (see [13]).

A pre-semifield S, viewed as a vector space over some prime field Fp, can be used
to coordinatize an affine (and hence a projective) plane of order |S| (see [5] and [11]).
Albert [1] showed that the projective planes coordinatized by S and S′ are isomorphic if
and only if the pre-semifields S and S′ are isotopic, hence the importance of the notion
of isotopism. Any projective plane π(S) coordinatized by a semifield (or pre-semifield) is
called a semifield plane.

Semifield planes are necessarily translation planes, and the kernel of a semifield plane,
when treated as a translation plane, is the left nucleus of the coordinatizing semifield. A
semifield plane is Desarguesian (classical) if and only if the coordinatizing semifield S is
a field, in which case all nuclei as well as the center are equal to S. As discussed in [2],
any translation plane can be obtained from a spread of an odd dimensional projective
space. The translation planes are isomorphic if and only if the corresponding spreads are
projectively equivalent.

If the semifield is two-dimensional over its left nucleus, say Fqn, then the corresponding
semifield plane will arise from a line spread of PG(3, qn). This spread can be represented
by a spread set of linear maps, as described and fully discussed in [6]. In short, such a
spread of linear maps consists of a set S of q2n linearized polynomials of the form

ϕδ,ζ : Fq2n → Fq2n via x 7−→ δx + ζxqn

,

for some δ, ζ ∈ Fq2n, with the following properties:
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P1 S is closed under addition and Fq–scalar multiplication, with the usual point-wise
operations on functions.

P2 Fq is the largest subfield of Fqn with respect to which S is a vector subspace of the
vector space of all Fqn–linear maps of Fq2n .

P3 Every nonzero map in S is non-singular (that is, invertible).

Moreover, if we assume δ and ζ are nonzero to avoid trivialities, it is straightforward to
show that

ϕδ,ζ is non-singular ⇔ N

(

δ

ζ

)

6= 1, (1)

where N is the norm from Fq2n to Fqn.
From the above properties for the q2n maps in S, we know that there is a unique

element ϕ ∈ S such that ϕ(1) = y for each element y ∈ Fq2n . We call this uniquely
determined map ϕy, and thus there is a natural one-to-one correspondence between the
linear maps in S and the elements of the field Fq2n . If we now define an algebraic structure
S = (Fq2n, +, ◦), where + is the sum operation in the field Fq2n and ◦ is defined as

x ◦ y = ϕy(x),

it turns out (for instance, see [12]) that S is a semifield with identity 1 and left nucleus
Fqn that is isotopic to the semifield of order q2n which with we began.

The general classification of finite semifields appears to be way beyond reach at this
point in time. However, some progress has been made in the case when the semifield
is two-dimensional over its left nucleus Fqn , where as always we assume the center of
the semifield Fq. In fact, the complete classification for n = 2 is given in [4]. For
n = 3 ([16]), the semifields of order q6 which are two-dimensional over their left nucleus
and six-dimensional over their center have been geometrically partitioned into six classes
F0,F1, · · · ,F5 by using the associated linear sets in PG(3, q3) (see [4] or [12] and see
[18] for a more general discussion on linear sets). In [16] the classes F0,F1, and F2 are
completely characterized.

The class F4 has been partitioned further (again geometrically) into three subclasses,

denoted F (a)
4 , F (b)

4 and F (c)
4 . In [7] the generic multiplication is determined for each of

these three subclasses, and several computer-generated examples of new semifields are
presented that belong to these subclasses. In the present paper we use some ideas from
algebraic curves to construct two infinite families for odd prime powers q belonging to the
subclass F (a)

4 , the first such infinite families.
Precisely, for any u ∈ Fq3 \ Fq (q odd), with minimal polynomial x3 − σx − 1 ∈ Fq[x],

and for any b ∈ F∗

q6 such that N(b) = bq3+1 = σ2 + 9u + 3σu2, we get a semifield
Su,b = (Fq6 , +, ◦) with multiplication given by

x ◦ y = (α + βu + γu2)x + bγxq3

,
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where α, β, γ ∈ Fq2 are uniquely determined in such a way that y = α + βu + γ(b + u2).
Moreover, with the same choices of u and b we get a semifield Su,b = (Fq6, +, ◦) with
multiplication given by

x ◦ y = (α + βu + γu2)x + bγqxq3

,

where α, β, γ ∈ Fq2 are uniquely determined in such a way that y = α + βu + γu2 + bγq.
Also, we are able to show that, when q is odd, up to isotopism, these are the only

semifields in F (a)
4 which have the right or middle nucleus of order q2. In particular, we

are able to show that no such semifields exist when q is even. Thus this work is bringing
us closer and closer to a complete classification in the case n = 3.

2 Two Infinite Families in Class F (a)
4

From now on, N will denote the norm function from Fq6 to Fq3. The following theorem

in [7] provides the generic multiplication for a semifield of order q6 belonging to class F (a)
4 .

Theorem 2.1. ([7, Thm. 3.1]) Let S
(a)
4 = (Fq6, +, ◦) be a semifield belonging to F (a)

4 .
Then there exist u, v ∈ Fq3 \ Fq, A, D ∈ Fq6 \ Fq3, and b, B, C ∈ F∗

q6 with

N(b) 6∈
{

N

(

a0 + a1u + A(a2 + a3v) + a4B + a5C

a4 + a5D

)

: ai ∈ Fq, (a4, a5) 6= (0, 0)

}

such that {1, u, A, Av, B, C} is a basis for Fq6 over Fq and, up to isotopy, the multiplication

in S
(a)
4 is given by

x ◦ y = [(a0 + a1u) + A(a2 + a3v) + a4B + a5C]x + b(a4 + a5D)xq3

, (2)

where a0, a1, · · · , a5 ∈ Fq are uniquely determined so that y = a0 + a1u + a2A + a3Av +
a4(B + b) + a5(C + bD).

Conversely, Multiplication (2) subject to the conditions stated above defines a semifield

of order q6, with Nl = Fq3 and center Fq, belonging to the Family F (a)
4 .

The next two results, also found in [7], determine precisely when such a semifield has
the right nucleus of order q2 or the middle nucleus of order q2.

Theorem 2.2. ([7, Thm. 3.2]) Using the notation of Theorem 2.1, the right nucleus of

S
(a)
4 has order at most q2. Moreover, the right nucleus has order q2 if and only if the

following conditions are satisfied:

(i) [1, u, A, Av]Fq
= [1, u]F

q2
,

(ii) D ∈ Fq2 \ Fq,

(iii) C ∈ DB + [1, u]F
q2

.

the electronic journal of combinatorics 16 (2009), #R53 4



In this case we have Nr = Fq2, Nm = Fq and there exists some b′ ∈ F
∗

q6 with

N(b′) 6∈ {N(α + βu + u2) | α, β ∈ Fq2} (3)

such that multiplication (2) may be rewritten as

x ◦ y = (α + βu + γu2)x + γb′xq3

, (4)

where α, β, γ ∈ Fq2 are uniquely determined so that y = α + βu + γ(b′ + u2).
Conversely, Multiplication (4) subject to the conditions stated above defines a semifield

of order q6 belonging to the Family F (a)
4 and having Nl = Fq3, Nr = Fq2, Nm = K = Fq.

Theorem 2.3. ([7, Thm. 3.3]) Using the notation of Theorem 2.1, the middle nucleus

of S
(a)
4 has order at most q2. Moreover, the middle nucleus has order q2 if and only if the

following conditions are satisfied:

(i) [1, u, A, Av]Fq
= [1, u]F

q2
,

(ii) D ∈ Fq2 \ Fq,

(iii) C ∈ DqB + [1, u]F
q2

.

In this case we have Nr = Fq, Nm = Fq2 and there exists some b′′ ∈ F∗

q6 with

N(b′′) 6∈ {N(α + βu + u2) | α, β ∈ Fq2}

such that multiplication (2) may be rewritten as

x ◦ y = (α + βu + γu2)x + γqb′′xq3

, (5)

where α, β, γ ∈ Fq2 are uniquely determined so that y = α + βu + γu2 + γqb′′.
Conversely, Multiplication (5) subject to the conditions stated above defines a semifield

of order q6 belonging to the Family F (a)
4 and having Nl = Fq3, Nm = Fq2, Nr = K = Fq.

Moreover, it should be noted that semifields with operation (5) are the transposes of
semifields with operation (4) (see [7, Remark 3.4]).

In this section we show that there are two infinite families of semifields belonging to
class F (a)

4 , each semifield in the first family having right nucleus of order q2, and each
semifield in the second family having middle nucleus of order q2. We begin with the
following observation about finite fields.

Lemma 2.4. For any prime power q, there is an irreducible monic polynomial in Fq[x]
of the form

f(x) = x3 − σx − 1,

for some σ ∈ F∗

q.
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Proof. The statement in the lemma is equivalent to the existence of an element u ∈ Fq3\Fq

whose trace and norm over Fq are 0 and 1, respectively. Namely, the minimal polynomial
for such an element u is the desired polynomial. And, indeed, such an element exists for
any prime power q (for instance, see [17]).

In the proofs of our main results we will use some techniques involving algebraic curves.
So, for the benefit of the reader, we now give some definitions and basic facts concerning
algebraic plane curves.

Let X0, X1, X2 be homogeneous projective coordinates of a plane PG(2, K) over a field
K. Let F ∈ K[X0, X1, X2] be a homogeneous polynomial of degree n > 0, and define

V (F ) = {P = (Y0, Y1, Y2) ∈ PG(2, K) : F (Y0, Y1, Y2) = 0}.

We let (F ) be the ideal generated by F in the polynomial ring K[X0, X1, X2]. The
pair Γ = (V (F ), (F )) is an algebraic plane curve of PG(2, K) with equation F (X) =
F (X0, X1, X2) = 0 of order (or degree) n. We typically identify the curve Γ = (V (F ), (F ))
with the variety V (F ). If F is irreducible over K, then Γ is said to be irreducible. If F is
irreducible over the algebraic closure K̂ of K, then Γ is called absolutely irreducible.

Assume now that K is an algebraically closed field. Then any homogeneous polynomial
F (X) has a factorization F = F1 · F2 · . . . · Fr into irreducible homogeneous factors,
unique to within constant multiples. The irreducible curves Γ1, . . . , Γr whose equations
are F1(X) = 0, . . . , Fr(X) = 0, respectively, are called the (irreducible) components of the
curve Γ whose equation is F (X) = 0. An irreducible curve appearing more than once as
a component of Γ is said to be a multiple component of Γ. A curve with two or more
components is said to be reducible.

Let Γ be a curve of order n of PG(2, K), and let ℓ be a line passing through the point P0

of Γ which is not a component of the curve. The algebraic multiplicity of P0 as a solution
of the algebraic system given by the equations of Γ and ℓ is the intersection number of ℓ
and Γ in P0. The minimal m0 of the intersection numbers of all the lines through P0 is
the multiplicity of P0 on Γ, and we write m0 = mP0

(Γ). Obviously, 1 ≤ mP0
(Γ) ≤ n. If

mP0
(Γ) = 1, then P0 is a simple point of Γ; if mP0

(Γ) > 1, then P0 is a singular point of Γ.
In particular, P0 is a double point, triple point, r–fold point if mP0

(Γ) = 2, mP0
(Γ) = 3,

mP0
(Γ) = r, respectively. Any point belonging to a multiple component of Γ or to at

least two components of Γ is a singular point of the curve. If mP0
(Γ) = r, then any line ℓ

through P0 such that the intersection number of ℓ and Γ in P0 is greater than r is called
a tangent to Γ at P0. An r–fold point P0 of Γ admits at least one tangent and at most r
tangents to Γ at P0.

Now let K = Fq and let F be the algebraic closure of Fq, where q is any prime
power. The projective plane PG(2, F) contains the finite planes PG(2, qi) for each i ≥ 1.
An Fqi–rational point of Γ is a point P = (Y0, Y1, Y2) in the plane PG(2, qi) such that
F (Y0, Y1, Y2) = 0.

To any absolutely irreducible curve Γ of PG(2, q) is associated a non–negative integer
g, called the genus of Γ ([10, Sec. 5]). It can be shown (see [10, pag. 135]) that if Γ
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is an absolutely irreducible curve of order n and P1, . . . , Ph are its singular points with
multiplicity r1, . . . , rh, respectively, the genus g of Γ satisfies the inequality

g ≤ (n − 1)(n − 2) −
∑h

i=1 ri(ri − 1)

2
. (6)

Finally, let Γ be an absolutely irreducible curve of PG(2, q), and let g be its genus.
Denote by Mq the sum of the number of Fq–rational simple points of Γ and the number
of distinct tangents (over Fq) to Γ at the singular Fq–rational points of Γ. Then by the
Hasse–Weil Theorem ([8, Section 2.9]) one obtains the following result:

q + 1 − 2g
√

q ≤ Mq ≤ q + 1 + 2g
√

q. (7)

For further details on algebraic curves over finite fields see [8] and/or [10].

We now prove the following technical lemma, which will be used to show the existence
of semifields in class F (a)

4 .

Lemma 2.5. Let PG(2, F) be the projective plane over the algebraic closure F of Fq, with
q an odd prime power. Let ρ be a nonsquare element of Fq and σ ∈ F∗

q as in Lemma 2.4.
For each A′, B′, C ′ ∈ Fq consider the algebraic curve Γ = Γ(A′, B′, C ′) of PG(2, F) with
affine equation

f(x, y) = (x2 − ρy2)3 − 2C ′(x2 − ρy2)2 − 2x(2σx − B′)(x2 − ρy2) − 8ρy2x

−ρ(C ′2 − 4A′)y2 + (C ′ + 2σ)2x2 − 2B′(C ′ + 2σ)x + B′2 = 0. (8)

If Γ has no Fq–rational point off the line y = 0, then either (A′, B′, C ′) = (0,−1,−σ)
or (A′, B′, C ′) = (σ2, 8, 2σ). In fact, Γ(0,−1,−σ) and Γ(σ2, 8, 2σ) have no Fq–rational
points, either on or off the line y = 0.

Proof. By the previous lemma there exists an element u ∈ Fq3 \Fq such that u3 = σu+1.
Denoting by Φ the semilinear collineation of the projective plane PG(2, F) induced by the
automorphism x 7→ xq, it is clear from Equation (8) that ΓΦ = Γ.

If y = 0, then Equation (8) becomes

(x3 − (C ′ + 2σ)x + B′)2 = 0.

Thus there are at most three affine points on Γ with y = 0, namely Pηi
= (ηi, 0), where

η3
i − (C ′ + 2σ)ηi + B′ = 0 for i ∈ {1, 2, 3}. Moreover, either at least one point Pηi

is
an Fq–rational point or Pη1

, Pη2
and Pη3

are three distinct Fq3–rational points conjugate
over Fq. In either case, a straightforward computation shows that these points are double
points for Γ. Certainly, we see that Γ has at most three Fq–rational points on the line
y = 0.

The curve Γ, expressed projectively, has two triple points, namely P∞ = (ξ, 1, 0) and
Q∞ = (−ξ, 1, 0), where ξ ∈ Fq2 \ Fq and ξ2 = ρ (hence ξq = −ξ). Note that these two
points have coordinates in Fq2 and Q∞ = PΦ

∞
. The tangents to Γ at P∞ are

t1 : x − ξy − u = 0,
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t2 : x − ξy − uq = 0,

t3 : x − ξy − uq2

= 0,

and hence
t4 = tΦ1 : x + ξy − uq = 0,

t5 = tΦ2 : x + ξy − uq2

= 0,

t6 = tΦ3 : x + ξy − u = 0

are the tangents to Γ at Q∞. Note that {t1, t2, t3, t4, t5, t6} = {t1, tΦ1 , tΦ
2

1 , tΦ
3

1 , tΦ
4

1 , tΦ
5

1 }.
To prove the first assertion, we begin by assuming Γ has no Fq–rational point with

y 6= 0, and thus has at most three Fq–rational points in total by our work above.

Suppose first that Γ is absolutely irreducible. Then, by (6) Γ has genus g ≤ 1. From
the Hasse–Weil lower bound (7), we thus have

Mq ≥ q + 1 − 2g
√

q ≥ (
√

q − 1)2. (9)

Since Γ has at most three Fq–rational points (and they are double points for Γ), we have
Mq ≤ 6. This contradicts (9) when q ≥ 13. As Magma [3] computations show that the
first assertion stated in the lemma holds for q < 13, we may assume for the remainder of
the proof that Γ is absolutely reducible and q ≥ 13.

Let Cn denote an absolutely irreducible component of Γ passing through the point P∞,
where Cn has order n for some 1 ≤ n ≤ 5.

Case n = 1 Suppose first that there exists a line ℓ of PG(2, F) contained in Γ and
passing through the point P∞. Since ℓ is a tangent to the curve Γ at P∞, we know that
ℓ = tΦ

i

1 for some i ∈ {0, 2, 4}. Since ΓΦ = Γ, necessarily Γ = t1 ∪ tΦ1 ∪ tΦ
2

1 ∪ tΦ
3

1 ∪ tΦ
4

1 ∪ tΦ
5

1

and thus t1 : x = ξy + u is a component of Γ, i.e. the polynomial f(ξy + u, y) is the
zero polynomial. By direct computation, recalling that u3 = σu + 1 and using the fact
that {1, u, u2} are linearly independent over Fq, we obtain in this case that (A′, B′, C ′) =
(0,−1,−σ).

Case n = 2 Suppose next that there is an absolutely irreducible conic C2 in PG(2, F)
contained in Γ and passing through the point P∞. There are many subcases to be con-
sidered. If CΦ

2 = C2, then C2 has q + 1 Fq–rational points, a contradiction. Hence we may
assume that CΦ

2 6= C2. Moreover, if CΦ2

2 = C2, then C2 is represented by an equation with
coefficients in Fq2 , up to a nonzero scalar. Hence, since P∞ is a simple point for C2, one
of the tangents to Γ at P∞ should be represented by an equation whose coefficients are in
Fq2 (up to a nonzero scalar), a contradiction.

It follows that, in the n = 2 case, we have C2 6= CΦ
2 and C2 6= CΦ2

2 . Again using ΓΦ = Γ
and Q∞ = PΦ

∞
, we obtain

Γ = C2 ∪ CΦ
2 ∪ CΦ2

2 , C2 = CΦ3

2 , {P∞, Q∞} ⊆ C2 ∩ CΦ
2 ∩ CΦ2

2 ,

where both P∞ and Q∞ are simple points of the conics C2, CΦ
2 and CΦ2

2 . Moreover, in
this case Γ has no Fq–rational point. Indeed, if at least one of the points Pηi

(i = 1, 2, 3)

the electronic journal of combinatorics 16 (2009), #R53 8



were an Fq–rational point, it would belong to all of the conics C2, CΦ
2 and CΦ2

2 and so
would be a triple point for Γ, a contradiction. Hence the points Pηi

(i = 1, 2, 3) are three
distinct Fq3–rational points of Γ and they are conjugate over Fq. Also, since C2 = CΦ3

2 , if

we denote by t the tangent to C2 at P∞ (respectively Q∞), then tΦ
3

is the tangent to C2

at Q∞ (respectively P∞).
Thus we may assume that C2 belongs to the pencil of conics passing through P∞ and

Q∞ and whose tangents at P∞ and Q∞ are

t1 : x − ξy − u = 0 and tΦ
3

1 : x + ξy − u = 0,

respectively. Hence, the conic C2 has affine equation

C2 : x2 − ρy2 − 2ux + F = 0

for some F ∈ Fq3 and, consequently,

CΦ
2 : x2 − ρy2 − 2uqx + F q = 0,

CΦ2

2 : x2 − ρy2 − 2uq2

x + F q2

= 0.

Now, observe that the line y = 0 intersects the conic CΦi

2 (i = 0, 1, 2) at the affine points
PΦi

1 = (uqi

+
√

u2qi − F qi, 0) and PΦi

2 = (uqi −
√

u2qi − F qi, 0). On the other hand, the
line y = 0 intersects the curve Γ in the three distinct affine Fq3–rational points Pη1

, PΦ
η1

and PΦ2

η1
as previously defined, where

η3
1 − (C ′ + 2σ)η1 + B′ = 0. (10)

It follows that {P1, P2, P
Φ
1 , PΦ

2 , PΦ2

1 , PΦ2

2 } = {Pη1
, PΦ

η1
, PΦ2

η1
}, and by (10) we know that

Trq3/q(η1) = η1 + ηq
1 + ηq2

1 = 0. (11)

Hence we see that we must have P1 = P2 or P1 = PΦ
2 or P1 = PΦ2

2 . (Note that if
P1 = PΦ

1 or P1 = PΦ2

1 , then P1 is an Fq–rational point of Γ, a contradiction.) If P1 = P2,
then F = u2 and hence C2 : (x − u)2 − ρy2 = 0. But then C2 is a reducible conic, a
contradiction. Thus P1 6= P2, and so either P1 = PΦ

2 or P1 = PΦ2

2 . If P1 = PΦ
2 , since Γ

has no Fq–rational points, the three distinct Fq3–rational intersection points of Γ and the
line y = 0 are {P1, P2, P

Φ
1 }. Then by (11) we obtain

(u +
√

u2 − F ) + (u −
√

u2 − F ) + (uq +
√

u2q − F q) = 0,

and thus

F = −4(u2q2

+ uq2+1) = −4uq2

(uq2

+ u) = 4uq2+q =
4

u
,

recalling that N(u) = 1 and Trq3/q(u) = 0. Arguing in the same way, if P1 = PΦ2

2 , then
also F = 4

u
.
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In summary, if P1 6= P2, then the conic C2 is absolutely irreducible and has the affine
equation

x2 − ρy2 − 2ux +
4

u
= 0.

Recalling that Γ = C2 ∪ CΦ
2 ∪ CΦ2

2 , it is now easy to see that

C2 ∩ CΦ
2 ∩ CΦ2

2 = {P∞, Q∞}.

Since C2 is a component of Γ, we obtain from Equation (8) that (A′, B′, C ′) = (σ2, 8, 2σ).
It should be noted that this computation uses 1

u
= u2 − σ and the fact that {1, u, u2} are

linearly independent over Fq.

Case n = 3 Since ΓΦ = Γ, the cubic CΦ
3 must be a component of Γ. If CΦ

3 = C3,
then C3 is an irreducible cubic over Fq, and Γ = C3 ∪ C′

3, where C′

3 is another (possibly
reducible) cubic over Fq. Since C3 has genus g ≤ 1, from the Hasse–Weil lower bound
(9) with q ≥ 13, we get a contradiction. It follows that CΦ

3 6= C3 and Γ = C3 ∪ CΦ
3 ,

with CΦ2

3 = C3, i.e. C3 is represented by an equation with coefficients in Fq2 , up to a
nonzero scalar. Again, since the point P∞ is an ordinary triple point for Γ and since C3

is absolutely irreducible, we get that P∞ is a simple point of either C3 or CΦ
3 . Hence one

of the tangents to Γ at P∞ should be represented by an equation whose coefficients are in
Fq2 (up to a nonzero scalar), a contradiction.

Case n = 4 Since ΓΦ = Γ, we obtain Γ = C4 ∪ C, where C is a conic (possibly
reducible) of the projective plane PG(2, F), such that CΦ = C and CΦ

4 = C4. Since P∞ and
Q∞ are triple points of Γ and C4 is irreducible, at least one of P∞ and Q∞ is on the conic
C. Thus, if C is reducible, at least one of its linear components must pass through P∞ or
Q∞ and hence must be the line tΦ

i

1 , for some i ∈ {0, . . . , 5}, i.e. Γ is the union of the six
lines t1, t

Φ
1 , . . . , tΦ

5

1 , a contradiction. Therefore C is absolutely irreducible, and thus since
CΦ = C, it must have q + 1 Fq–rational points, again a contradiction.

Case n = 5 Finally, suppose that Γ is the union of C5 and a linear component.
Since ΓΦ = Γ, the curve Γ has at least q+1 Fq–rational points (which belong to the linear
component), again a contradiction.

Thus we have shown that if Γ has no Fq–rational point with y 6= 0, then necessarily
(A′, B′, C ′) = (0,−1,−σ) or (A′, B′, C ′) = (σ2, 8, 2σ), proving the first statement of the
lemma.

Moreover, if (A′, B′, C ′) = (0,−1,−σ), then Γ = t1 ∪ tΦ1 ∪ tΦ
2

1 ∪ tΦ
3

1 ∪ tΦ
4

1 ∪ tΦ
5

1 , where
t1 : x = ξy + u. And if (A′, B′, C ′) = (σ2, 8, 2σ), then Γ = C2 ∪ CΦ

2 ∪ CΦ2

2 , where
C2 : x2 − ρy2 − 2ux + 4

u
= 0. In both these cases the curve Γ has no Fq–rational point,

either on or off the line y = 0, proving the second statement of the lemma.

We now use the above results to prove the following theorem.

Theorem 2.6. Assume that q is an odd prime power. Let u ∈ Fq3\Fq such that u3 = σu+1
for some σ ∈ F

∗

q, and let

P (u) = {N(α + βu + u2) : α, β ∈ Fq2}.
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Then there exists a unique non-zero element η in Fq3 \P (u). In fact, η = σ2 +9u +3σu2.

Proof. Let η be an element of Fq3 and uniquely express η = A + Bu + Cu2 for some
A, B, C ∈ Fq. Then η ∈ P (u) if and only if

A + Bu + Cu2 = (αq + βqu + u2)(α + βu + u2) (12)

for some α, β ∈ Fq2. Taking into account that u4 = u + σu2 and {1, u, u2} is an Fq–basis
of Fq3 , we see that (12) is satisfied if and only if the system







αq+1 + (β + βq) = A
αβq + αqβ + σ(β + βq) + 1 = B

α + αq + βq+1 + σ = C
(13)

admits a solution (α, β) ∈ Fq2 × Fq2.
Now, let ξ be an element of Fq2 \ Fq such that ξ2 = ρ, where ρ is a nonsquare in Fq.

Taking {1, ξ} as a basis for Fq2 over Fq, we may write α = w + zξ and β = x + yξ for
unique choices of w, z, x, y ∈ Fq. Hence, System (13) becomes







w2 − z2ρ + 2x = A′

2(xw − zyρ) + 2xσ = B′

2w + x2 − ρy2 = C ′,
(14)

where A′ = A, B′ = B − 1 and C ′ = C − σ. That is, Equality (12) is satisfied if and only
if System (14) admits a solution (w, z, x, y) ∈ F4

q. That is, η ∈ P (u) if and only if System
(14) has a common solution.

From the second and third equations of (14), for any common solution we may solve
for w and z in terms of x and y, provided y 6= 0. Substituting into the first equation of
(14), we see that if (12) is satisfied for some α = w + zξ and β = x + yξ with y 6= 0, then
the algebraic curve Γη of the projective plane PG(2, F) with affine equation

(x2 − ρy2)3 − 2C ′(x2 − ρy2)2 − 2x(2σx − B′)(x2 − ρy2) − 8ρy2x

−ρ(C ′2 − 4A′)y2 + (C ′ + 2σ)2x2 − 2B′(C ′ + 2σ)x + B′2 = 0

has the Fq–rational point (x, y). Conversely, if Γη has an affine Fq–rational point (x, y)
with y 6= 0, then we may reverse the above steps to see that necessarily η = A+Bu+Cu2 ∈
P (u).

Hence, if the element η = A+Bu+Cu2 ∈ Fq3 does not belong to the set P (u), then Γη

has no Fq–rational point with y 6= 0. From the first statement of Lemma 2.5, this implies
that either (A′, B′, C ′) = (0,−1,−σ) or (A′, B′, C ′) = (σ2, 8, 2σ); that is, we must have
either (A, B, C) = (0, 0, 0) or (A, B, C) = (σ2, 9, 3σ). Hence the only possible nonzero
element of Fq3 \ P (u) is the element σ2 + 9u + 3σu2. It remains to show that indeed this
element is not in P (u).

the electronic journal of combinatorics 16 (2009), #R53 11



Thus we let η̄ = σ2 + 9u + 3σu2. From our work above it suffices to show that the
resulting system (14) does not have a common solution. Putting A′ = σ2, B′ = 8 and
C ′ = 2σ, System (14) becomes







w2 − z2ρ + 2x = σ2

2(xw − zyρ) + 2xσ = 8
2w + x2 − ρy2 = 2σ.

(15)

A solution (w, z, x, y) ∈ F
4
q with y 6= 0 would correspond to an Fq–rational point (x, y), off

the line y = 0, of the algebraic curve Γη̄ = Γ(σ2, 8, 2σ) in the projective plane PG(2, F).
This contradicts the second statement of Lemma 2.5, and hence such a common solution
does not exist.

Finally, with y = 0, System (15) becomes






w2 − z2ρ + 2x = σ2

2xw + 2xσ = 8
2w + x2 = 2σ,

which is equivalent to






w2 − z2ρ + 2x = σ2

x3 − 4σx + 8 = 0
w = −x2/2 + σ.

(16)

If there were a solution (w, z, x, 0) ∈ F
4
q of System (16), then the curve Γη̄ would have

an Fq–rational point on the line y = 0, and again we get a contradiction to the second
statement of Lemma 2.5, completing the proof of the theorem.

Using the above highly technical results, we are now able to show the existence of two
infinite families of semifields belonging to F (a)

4 .

Theorem 2.7. For any odd prime power q, there exists a semifield belonging to class F (a)
4

with Nr = Fq2 and Nm = Fq.

Proof. Choose u to be an element in Fq3 \ Fq whose minimal polynomial over Fq is of
the form f(x) = x3 − σx − 1, for some σ ∈ F

∗

q , as in the proof of Lemma 2.4. Let
η = σ2 + 9u + 3σu2, and choose b′ ∈ F∗

q6 so that N(b′) = η. Defining multiplication as in
Equation (4), we obtain a semifield of the desired type by Theorem 2.6 and Theorem 2.2.
In particular, we may choose v = u, A = D ∈ Fq2 \ Fq, B = u2 and C = Du2 in the
notation of Theorem 2.1 to obtain such a semifield.

In a similar way, using Theorem 2.6 and Theorem 2.3, we obtain the following result.

Theorem 2.8. For any odd prime power q, there exists a semifield belonging to class F (a)
4

with Nr = Fq and Nm = Fq2.

We do not have similar construction for q even since Theorem 2.6 does not hold in
this case, as we now show. We first prove the following lemma.
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Lemma 2.9. Let PG(2, F) be the projective plane over the algebraic closure F of Fq, with
q even. Let ρ be an element of Fq with Trq/2(ρ) = 1 and σ ∈ F∗

q as in Lemma 2.4. For
any A′, B′, C ′ ∈ Fq consider the algebraic curve Γ = Γ(A′, B′, C ′) of PG(2, F) with affine
equation

(x2 + xy + y2ρ)3 + (B′y + σy2 + C ′2)(x2 + xy + y2ρ) + y3

+(σ2 + C ′σ + A′)y2 + B′C ′y + B′2 = 0. (17)

Then Γ has no Fq–rational point off the line y = 0 if and only if (A′, B′, C ′) = (0, 1, σ).
Moreover, Γ has at most three Fq–rational points on the the line y = 0.

Proof. The proof proceeds exactly as it did for Lemma 2.5. However, since all fields under
consideration now have characteristic 2, the computational results are different.

Let ξ be an element of Fq2 \ Fq such that ξ2 + ξ + ρ = 0 (hence ξq = ξ + 1). The
curve Γ has two ordinary triple points, which now have coordinates P∞ = (ξ, 1, 0) and
Q∞ = (ξ + 1, 1, 0). As before, these coordinates are in Fq2 and Q∞ = PΦ

∞
. The tangents

to Γ at P∞ are
t1 : x + ξy + u = 0,

t2 : x + ξy + uq = 0,

t3 : x + ξy + uq2

= 0,

and the tangents to Γ at Q∞ are

t4 = tΦ1 : x + (ξ + 1)y + uq = 0,

t5 = tΦ2 : x + (ξ + 1)y + uq2

= 0,

t6 = tΦ3 : x + (ξ + 1)y + u = 0.

As in the previous proof, {t1, t2, t3, t4, t5, t6} = {t1, tΦ1 , tΦ
2

1 , tΦ
3

1 , tΦ
4

1 , tΦ
5

1 }.
Equation (17) reduces to

(x3 + C ′x + B′)2 = 0

when y = 0. Hence Γ has at most three Fq–rational points on the line y = 0; namely,
the only possibilities are the points Pηi

= (ηi, 0, 1) with η3
i + C ′ηi + B′ = 0 (i ∈ {1, 2, 3}).

This proves the second assertion of the lemma. Moreover, a direct computation shows
that each Pηi

, for i = 1, 2, 3, is a double point of Γ.

We now assume that Γ has no Fq–rational point with y 6= 0. In the present setting
(q even), the Hasse-Weil bound shows that Γ is reducible if q ≥ 16, and Magma [3]
computations show that the result stated in the proposition holds for q ≤ 8. Thus, as in
the previous argument, we are reduced to studying the cases where Γ is either the union
of the six tangents t1, . . . , t

Φ5

1 or the union of three absolutely irreducible conics which are
conjugate over Fq (since the other cases can be dealt with as in Lemma 2.5).

In the first case, exactly as in the proof of Lemma 2.6, requiring t1 : x = ξy + u to be
a component of Γ implies from Equation (17) that

(u2 + uy)3 + (B′y + σy2 + C ′2)(u2 + uy) + y3 + (σ2 + C ′σ + A′)y2 + B′C ′y + B′2 = 0
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for all y ∈ F, and hence (using u3 = σu + 1) we obtain the system of equations







(1 + B′)u + σ2 + C ′σ + A′ = 0
(B′ + 1)u2 + (C ′2 + σ2)u + B′C ′ = 0
(C ′2 + σ2)u2 + B′2 + 1 = 0.

The linear independence of {1, u, u2} over Fq implies that the unique solution to this
system is (A′, B′, C ′) = (0, 1, σ).

In the second case, Γ is the union of three absolutely irreducible conics with affine
equations

C2 : x2 + xy + ρy2 + uy + F = 0,

Cq
2 : x2 + xy + ρy2 + uqy + F q = 0,

Cq2

2 : x2 + xy + ρy2 + uq2

y + F q2

= 0,

where F is some element of Fq3 . As in the proof of Lemma 2.5, in this case the curve Γ has

no Fq–rational point whatsoever, and hence F 6∈ Fq (else (
√

F, 0) would be an Fq–rational
point).

Requiring C2 to be a component of Γ implies that

(uy + F )3 + (B′y + σy2 + C ′2)(uy + F ) + y3 + (σ2 + C ′σ + A′)y2 + B′C ′y + B′2 = 0

for all y ∈ F, and thus

(u3 + σu + 1)y3 + (3Fu2 + B′u + σF + σ2 + C ′σ + A′)y2

+(3F 2u + B′F + C ′2u + B′C ′)y + (F 3 + FC ′2 + B′2) = 0

for all y ∈ F. Hence
Fu2 + B′u + σF + σ2 + σC ′ + A′ = 0, (18)

(F + C ′)(B′ + (F + C ′)u) = 0, (19)

F 3 + FC ′2 + B′2 = 0. (20)

We now express F as F = α+βu+γu2, for uniquely determined elements α, β, γ ∈ Fq

with (α, β, γ) 6= (0, 0, 0). Since Trq3/q(u) = 0 by assumption, this expression implies that
Trq3/q(F ) = 3α. However, as F 6∈ Fq, Equation (20) implies that Trq3/q(F ) = 0, and
therefore α = 0 as the characteristic of Fq is not 3.

Again using the facts that F 6∈ Fq and q is even, we see from Equation (19) that
Fu = B′ + C ′u and hence F = C ′ + B′σ + B′u2, since u3 = σu + 1. It follows from the
uniquely determined expression for F in the previous paragraph that β = 0, C ′ = B′σ,
and γ = B′ 6= 0. That is, F = B′u2. Since N(u) = 1 by assumption, we have N(F ) =
N(B′) = B′3. However, we know that N(F ) = B′2 from Equation (20) and thus B′ = 1.
Hence F = u2 and C ′ = σ. Now from Equation (18), using the fact that u3 + σu + 1 = 0,
we see that A′ = 0. Substituting F = u2 in the equation of C2 we get that C2 = t1 ∪ t6,
i.e. a contradiction.
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Thus we have shown that if Γ contains no Fq–rational point with y 6= 0, then necessarily
(A′, B′, C ′) = (0, 1, σ).

Conversely, if (A′, B′, C ′) = (0, 1, σ), then Γ = t1 ∪ tΦ1 ∪ tΦ
2

1 ∪ tΦ
3

1 ∪ tΦ
4

1 ∪ tΦ
5

1 , where
t1 : x = ξy + u, and direct computations show that Γ has no Fq–rational point. Hence
certainly Γ has no Fq–rational point with y 6= 0, completing the proof of the lemma.

Now we can prove the following result.

Theorem 2.10. Assume that q is even, and let u ∈ Fq3 \ Fq such that u3 = σu + 1 for
some σ ∈ F∗

q. Define P (u) as in Theorem 2.6. Then nonzero elements in Fq3 \ P (u) do
not exist.

Proof. The proof proceeds exactly as it did for Theorem 2.6. Choose ξ to be an element of
Fq2 \Fq such that ξ2+ξ+ρ = 0, where ρ is an element of Fq such that Trq/2(ρ) = 1. Then,
taking {1, ξ} as our basis for Fq2 over Fq, we write α = w+zξ and β = x+yξ for uniquely
determined elements w, z, x, y ∈ Fq. Hence, system (14) in the proof of Proposition 2.6
becomes







w2 + wz + z2ρ + y = A′

wy + zx + σy = B′

z + x2 + xy + y2ρ = C ′,

where A′ = A, B′ = B + 1 and C ′ = C + σ.
Thus the associated algebraic curve Γη now has affine equation

(x2 + xy + y2ρ)3 + (B′y + σy2 + C ′2)(x2 + xy + y2ρ) + y3

+(σ2 + C ′σ + A′)y2 + B′C ′y + B′2 = 0.

As in the proof of Theorem 2.6, if the element η = A + Bu + Cu2 ∈ Fq3 does not belong
to the set P (u), the algebraic curve Γη has at most three affine Fq–rational points (all on
the line y = 0). From Lemma 2.9, this occurs if and only if (A′, B′, C ′) = (0, 1, σ); that
is, if and only if (A, B, C) = (0, 0, 0). The result now follows.

At this stage it seems conceivable that some approach other than the one outlined
in Theorem 2.7 and Theorem 2.8 might produce an even order semifield belonging to
subclass F (a)

4 which is 3–dimensional over its right or middle nucleus. However, in the
next section we will show that this cannot happen.

3 Isotopy and Uniqueness

From Theorem 2.2 we know that any semifield belonging to subclass F (a)
4 which is 3–

dimensional over its right nucleus must have, up to isotopy, a spread set of linear maps
of the form

Su,b = {x 7→ (α + βu + γu2)x + bγxq3

: α, β, γ ∈ Fq2},
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for some u ∈ Fq3 \Fq and some b ∈ F
∗

q6 such that N(b) /∈ P (u) = {N(α+βu+u2) : α, β,∈
Fq2}. As always, N denotes the norm function from Fq6 to Fq3. We begin this section by
showing that the number of isotopism classes of such semifields depends only upon N(b).

Theorem 3.1. Let Su,b be the semifield defined by the spread set Su,b above. Then the
following statements hold true:

i) For each u′ ∈ Fq3 \ Fq, there exists some b′ ∈ F∗

q6 such that Su′,b′ is isotopic to Su,b.

ii) If b′ is an element of F∗

q6 such that N(b′) = N(b), then Su,b′ is isotopic to Su,b.

Proof. i) We first note that if u = s + tu′ with s, t ∈ Fq and t 6= 0, then Su,b = Su′,b′,
where b′ = b

t2
. Indeed, since

α + βu + γu2 = α + β(s + tu′) + γ(s2 + 2stu′ + t2u′2)

= α + βs + γs2 + (βt + 2stγ)u′ + t2γu′2

= α′ + β ′u′ + γ′u′2,

where α′ = α + βs + γs2, β ′ = βt + 2stγ, and γ′ = t2γ, we see that (α′, β ′, γ′) vary over
all of Fq2 ×Fq2 ×Fq2 as (α, β, γ) vary over Fq2 ×Fq2 ×Fq2 . Thus, setting b′ = b

t2
, we have

Su,b = {x 7→ (α + βu + γu2)x + bγxq3

: α, β, γ ∈ Fq2}
= {x 7→ (α′ + β ′u′ + γ′u′2)x + b′γ′xq3

: α′, β ′, γ′ ∈ Fq2} = Su,b′ ,

where necessarily N(b′) /∈ P (u′) by Condition (1).
Now, suppose that u′ ∈ Fq3 \ Fq and u 6= f + gu′ with f, g ∈ Fq. Then by [12, Lemma

2.3], there exist ℓ, m, s, t ∈ Fq such that u = s+tu′

ℓ+mu′
. From our assumption on u′, we know

m 6= 0. Moreover, sm− ℓt 6= 0, since otherwise substituting s = ℓt
m

into the expression for
u shows that u = t

m
∈ Fq, a contradiction.

First, let t = 0. Since {1, u′, u′2} is an Fq–basis of Fq3, there exist A, B, C ∈ Fq, with
C 6= 0, such that u = A + Bu′ + Cu′2. Let λ = ℓ + mu′ ∈ Fq3 . Then the spread set

λSu,b = {x 7→ (α + β + γu2)λx + bλγxq3

: α, β, γ ∈ Fq2}

defines a semifield isotopic to Su,b. Now

(α + βu + γu2)λ = α′ + β ′u′ + γ′u′2,

where α′ = αℓ + βs + γAs, β ′ = αm + βt + γBs and γ′ = γCs.
Thus we may write γ = γ′

Cs
and

bλγ = bλ
γ′

Cs
= b′γ′,

where b′ = bλ
Cs

. That is,

λSu,b ⊆ {x 7→ (α′ + β ′u′ + γ′u′2)x + b′γ′xq3

: α′, β ′, γ′ ∈ Fq2} = Su′,b′ .
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Since the two sets contain the same number of maps, we obtain λSu,b = Su′,b′ and Su,b is
isotopic to Su′,b′.

Finally, let t 6= 0 and note that u = s+tu′

l+mu′
= t

m
+ sm−lt

m(l+mu′)
= f + gu′′, where f = t

m
,

g = sm−lt
m

6= 0 and u′′ = 1
l+mu′

. By the previous cases there exist b′, b′′ ∈ F∗

q6 such that
Su,b = Su′′,b′′ and Su′′,b′′ is isotopic to Su′,b′. Hence Su,b is isotopic to Su′,b′, completing the
proof of this part.

ii) Let b′ ∈ F∗

q6 such that N(b′) = N(b). Then b′ = bµq3
−1, for some µ ∈ F∗

q6. Letting
µ̄ : x 7→ µx, we see that

µ̄−1Su,bµ̄ = {x 7→ (α + βu + γu2)x + bµq3
−1xq3} = Su,b′,

and hence Su,b and Su,b′ are also isotopic. This completes the proof.

Corollary 3.2. For every odd prime power q, there is a unique semifield, up to isotopism,
of order q6 in subclass F (a)

4 which is 3-dimensional over its right nucleus and hence 6-
dimensional over its middle nucleus.

Proof. By Theorem 2.7, we know there is a semifield S of order q6 in class F (a)
4 which is

3-dimensional over its right nucleus and 6-dimensional over its middle nucleus. In fact,
from the proof of Theorem 2.7 we know that S = Su,b for some u ∈ Fq3 \ Fq and some
b ∈ F∗

q6 , using the notation established prior to the statement of Theorem 3.1.

Now let S
′ denote any semifield of order q6 in class F (a)

4 which is 3-dimensional over
its right nucleus and 6-dimensional over its middle nucleus. By Theorem 2.2, there exists
some u′ ∈ Fq3 \ Fq and some b′ ∈ F∗

q6 such that S′ is isotopic to the semifield Su′,b′,
whose multiplication is given by (4) subject to Condition (3). By part (i) of Theorem 3.1,
there exists some b′′ ∈ F∗

q6 such that Su′,b′′ is isotopic to Su,b. But there is a unique
nonzero element in Fq3 \ P (u′) by Theorem 2.6, and hence we must have N(b′) = N(b′′).
Therefore by part (ii) of Theorem 3.1, we know that Su′,b′ is isotopic to Su′,b′′. Thus, by
the transitivity of isotopism, we have that S′ and S are isotopic, proving the result.

Corollary 3.3. For every odd prime power q, there is a unique semifield, up to isotopism,
of order q6 in subclass F (a)

4 which is 3-dimensional over its middle nucleus and hence 6-
dimensional over its right nucleus.

Proof. Recalling that Family F (a)
4 is closed under the transpose operation (see [14, Theo-

rem 4.2]) and that the transpose operation interchanges the sizes of the right and middle
nuclei (see [15, Prop. 4]), the result follows from Corollary 3.2.

Corollary 3.4. Let q be an odd prime power and let S = (Fq6, +, ◦) be a semifield of
order q6 with left nucleus Fq3 and center Fq. Assume that either Nr

∼= Fq2 and Nm = Fq,
or Nr = Fq and Nm

∼= Fq2. If S does not not belong to class F5, then S is isotopic to
either the unique semifield of Corollary 3.3 or the unique semifield of Corollary 3.2.

Proof. Follows immediately from the above corollaries and [7, Thm. 3.5].
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The situation for even q is quite different.

Theorem 3.5. There is no even order semifield in subclass F (a)
4 which is either 3-

dimensional over its middle nucleus or 3-dimensional over its right nucleus.

Proof. Using an argument similar to that given in the proof of Corollary 3.2, the result
follows from Theorem 2.2, Theorem 2.3, and Theorem 2.10.

Corollary 3.6. Suppose that q is even and S = (Fq6, +, ◦) is a semifield of order q6 with
left nucleus Fq3 and center Fq. Assume that either Nr

∼= Fq2 and Nm = Fq, or Nr = Fq

and Nm
∼= Fq2. Then S belongs to class F5.

Proof. Follows immediately from Theorem 3.5 above and [7, Thm. 3.5].

Remark 3.7. It is still unknown if there exist semifields in class F (a)
4 that have both the

right and middle nucleus equal to the center.

The following table summarizes the state of the art on the classification project for semi-
fields of order q6 with |Nl| = q3 and |K| = q.

Semifields of order q6 with |Nl| = q3 and |K| = q

Family |Nm| |Nr| Existence results
F0 q q Generalized Dickson semifields, q odd

F1 q q Semifields from Payne–Thas ovoid of Q(4, 33)
F2 q q Semifields from Ganley flock of PG(3, 33)
F3 q q HJ semifields [9] of type II, III, IV, V for q = 2

F (a)
4

q2

q

q

q

q2

q

∃ ! semifield for q odd, 6 ∃ semifields for q even

∃ ! semifield for q odd, 6 ∃ semifields for q even

?

F (b)
4 q q There exist semifields for q = 3 [7]

F (c)
4

q

q2

q

q2

There exist semifields for any q [6]

Cyclic semifields for any q

F5

q3

q3

q

q2

q

q

q3

q

q3

q

q2

q

Hughes Kleinfeld semifields

Knuth semifields of type (17) for any q

Knuth semifields of type (19) for any q

∃ for any q 6= 2 (e.g. Generalized Twisted Fields)

∃ for any q 6= 2 (e.g. Generalized Twisted Fields)

∃ for any q 6= 2 (e.g. Generalized Twisted Fields)

Some explanatory comments on the above table are needed. All the possibilities for
the sizes of the middle and right nuclei of a semifield belonging to one of the families
F0, F1, F2, F3, F (a)

4 , F (b)
4 , F (c)

4 and F5 are listed (these are in the middle columns).
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The last column contains the known examples of semifields with the given values for the
parameters, i.e. with the given orders for the nuclei. Some of them appear written in bold
face, this notation meaning that such examples, up to isotopy, are uniquely determined
by the orders of the nuclei. In the other cases the examples appearing are not necessarily
uniquely determined.

The following open problems remain.

• Are there semifields belonging to the Family F3 when q > 2 ?

• Are there semifields belonging to the Family F (a)
4 having Nr and Nm both of order

q?

• Are there semifields belonging to the Family F (b)
4 when q 6= 3?

• Are there semifields belonging to the Family F5 having Nr and Nm of order either
q or q2 which are not isotopic to Generalized Twisted Fields?
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