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Abstract

We study the total weight of weighted matchings in segment graphs, which is
related to a question concerning generalized Chebyshev polynomials introduced by
Vauchassade de Chaumont and Viennot and, more recently, investigated by Kim
and Zeng. We prove that weighted matchings with sufficiently large node-weight
cannot have equal total weight.

1 Introduction

Let Segn = (V, E) be the graph (i.e., the segment graph) with vertex set V = [n] and E
the set of undirected edges {i, i+1} with 1 ≤ i ≤ n−1. A matching µ of Segn is a subset
of edges with no two edges being connected by a common vertex. A node in Segn is called
isolated (with respect to a given matching) if it is not contained in the matching. Given a
matching, we put the weight x on each isolated vertex and the weight −1 or −a on each
edge {i, i + 1}, depending on whether i is odd or even. Denote by M(Segn) the set of all
matchings of Segn. The weighted matching polynomial is then given by

Un(x, a) =
∑

µ∈M(Seg
n
)

(−1)|µ| aEIND(µ)xn−2|µ|, (1)
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−1 −1 x̂

x̂ x̂ x̂ −â
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Figure 1: Weighted matchings of Seg4 and Seg5.

where |µ| denotes the number of edges of µ and EIND(µ) the number of edges {i, i + 1}
with i even. The polynomials Un(x, a) came first up in some enumeration problems
in molecular biology [15] and are generalized Chebyshev polynomials of the second kind
because we get the classical (monic) Chebyshev polynomials of the second kind [14, p. 29]
for a = 1. Recently, Kim and Zeng [7] used (1) and a combinatorial interpretation of
the corresponding moments to evaluate the linearization coefficients of certain products
involving Un(x, a), which again generalize and refine results by De Sainte-Catherine and
Viennot [4].

The purpose of this paper consists in studying these matching polynomials yet from
another point of view. We are interested in simultaneous weighted matchings on segment
graphs of different size, and ask how often the cumulative weight of these matchings, i.e.
the corresponding weighted matching polynomials, can be made equal.

To clarify the problem, we first may take a closer look at a specific example, namely,
at the weighted matching polynomials of Seg4 and Seg5 (see Fig. 1):

We see that

U4(x, a) = x4 + (−1)x2 + (−a)x2 + (−1)x2 + (−1)2

= x4 − (a + 2)x2 + 1,

U5(x̂, â) = x̂5 + (−1)x̂3 + (−â)x̂3 + (−1)x̂3 + (−â)x̂3 + (−1)2x̂ + (−1)(−â)x̂ + (−â)2x̂

= x5 − 2(â + 1)x̂3 + (â2 + â + 1)x̂.

Given m, n, a and â, how often can we choose x and x̂, such that the cumulative
weights equalize? In other words, regarding our example, how many integral solutions
does U4(x, a) = U5(x̂, â) have?
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It is well-known [7, 15] that the family of polynomials {Un(x, a)} satisfies a three-term
recurrence equation, i.e.,

U0(x, a) = 1, U1(x, a) = x, Un+1(x, a) = xUn(x, a) − λnUn−1(x, a), (2)

where λ2k = a, λ2k+1 = 1. Kim and Zeng [7] used Viennot’s theory for orthogonal
polynomials [16, 17] to derive the combinatorial model (1) from (2). Recently, McSor-
ley, Feinsilver and Schott [9] provided a general framework for generating all orthogonal
polynomials via vertex-matching-partition functions of some suitably labeled paths. The
main point of the present work is to exhibit a close connection between the enumeration
of a graph-theoretic quantity (i.e., weighted matchings) and a number-theoretic finiteness
result, which here relies on the fact that {Un(x, a)} “almost” denotes a classical orthog-
onal polynomial family. Similar diophantine problems evolve from the enumeration of
colored permutations [8] and from lattice point enumeration in polyhedra [1] (see [12] for
a list of references). One of the first works studying a diophantine equation which arises
from a combinatorial problem is due to Hajdu [6]; many papers on similar topics have
appeared. In the present graph-theoretic context, however, it is crucial that {Un(x, a)}
can be related to classical orthogonal polynomials. Note that by Favard’s theorem [3],
the polynomials Un(x, a) given in (2) are orthogonal with respect to a positive-definite
moment functional if and only if a > 0.

Theorem 1.1. Let a, â ∈ Q+ and m > n ≥ 3. Then the equation

Um(x, a) = Un(x̂, â)

has only finitely many integral solutions x, x̂ with the exception of the case

m = 6, n = 3, a = 9/2, â = 59/4, (3)

where x = t, x̂ = t2 − 4 with t ∈ Z is an infinite family of solutions. In other words,
besides (3), matchings of segment graphs with sufficiently large node-weights cannot have
equal total matching weight.

The paper is organized as follows. We first establish a differential equation of second
order for Un(x, a) (Section 2), which may be of independent interest. We then apply
an algorithm due to the first author [13] to characterize all polynomial decompositions
Un(x, a) = r(q(x)) with polynomials r, q ∈ R[x] and use a theorem due to Bilu and
Tichy [2] to conclude (Section 3).

2 Differential equation

Recall that the Chebyshev polynomials of the second kind Un(x) := Un(x, 1) are defined
by

U0(x) = 1, U1(x) = 2x, Un+1(x) = 2xUn(x) − Un−1(x). (4)
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Let Vn(x) = Un(x/2) be the monic Chebyshev polynomials of the second kind. In what fol-
lows, we assume that a ∈ R+. From (2) we observe that there are polynomials Pn(x, a) ∈
R[x] and Qn(x, a) ∈ R[x] such that U2n+1(x, a) = xPn(x2, a) and U2n(x, a) = Qn(x2, a).
Since

Un+1(x, a) = (x2 − a − 1)Un−1(x, a) − a Un−3(x, a), n ≥ 3, (5)

by scaling with

Wn(x, a) = Pn(
√

ax + a + 1, a)/(
√

a)n,

Sn(x, a) = Qn(
√

ax + a + 1, a)/(
√

a)n,

we derive from (5) that Wn(x, a) and Sn(x, a) satisfy the recurrences:

W0(x, a) = 1, W1(x, a) = x, Wn+1(x, a) = xWn(x, a) − Wn−1(x, a),

S0(x, a) = 1, S1(x, a) = x +
√

a, Sn+1(x, a) = xSn(x, a) − Sn−1(x, a).

Thus, the polynomials Wn(x, a) are independent of a and equal the monic Chebyshev
polynomials of the second kind Vn(x), while the polynomials Sn(x, a) are co-recursive
versions of the polynomials Vn(x) (see [5, sec. 2.1.2]). In general, co-recursive orthogonal
polynomials can be easily rewritten in terms of the original non-shifted and the first
associated polynomials (see [5, eq. (20)]). By straightforward calculations we therefore
get the following representation for Un(x, a).

Proposition 2.1. We have

Un(x, a) =







(
√

a)k xVk

(

x2−a−1√
a

)

, n = 2k + 1;

(
√

a)k
{

Vk

(

x2−a−1√
a

)

+
√

a Vk−1

(

x2−a−1√
a

)}

, n = 2k.

Taking into account the explicit coefficient formula for Chebyshev polynomials of the
second kind (see e.g. [10]) we obtain

Un(x, a) = xn + ε
(n)
2 xn−2 + ε

(n)
4 xn−4 + · · · ,

where

ε
(n)
2 =

{

−1
2(a + 1)n + a, n even;

−1
2(a + 1)(n − 1), n odd,

ε
(n)
4 =

{

1
8 (n − 2)(n(a + 1)2 − 4a2 − 8a), n even;

1
8 (n − 3)(n(a + 1)2 − a2 − 6a − 1), n odd.

(6)

Similar expressions can be also given for ε
(n)
6 , ε

(n)
8 and ε

(n)
10 (see Appendix). It is

well-known [14] that Chebyshev polynomials of the second kind satisfy a second order
differential equation with polynomial coefficients of degree ≤ 2. With the aid of Proposi-
tion 2.1, it is a direct calculation to come up with a differential equation also for Un(x, a)
(however, with polynomial coefficients of higher order).
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Proposition 2.2. The polynomials Un(x, a) satisfy

A(x) Un(x, a) + B(x) U ′
n(x, a) + C(x) U ′′

n(x, a) = 0, (7)

where

• n even:

A(x) = −n(n + 1)(n + 2)x5 + 3n(n + 2)(a − 1)x3,

B(x) = 3(n + 1)x6 − 5(a − 1)x4 − (a − 1) {(3n − 1)a − (3n + 7)}x2 + (a − 1)3,

C(x) = (n + 1)x7 − {(2n + 3)a + (2n + 1)}x5

+ (a − 1) {(n + 3)a − (n − 1)}x3 − (a − 1)3x;

• n odd:

A(x) = −n(n + 2)x4 + 3(a − 1)2,

B(x) = 3x5 − 3(a − 1)2x,

C(x) = x6 − 2(a + 1)x4 + (a − 1)2x2.

In the next lemma we make use of the differential equation given in Proposition 2.2.

Lemma 2.3. Let a ∈ R+ and Un(x, a) = r(q(x)) with r, q ∈ R[x] and min(deg r, deg q) ≥
2. Then deg q ≤ 6.

Proof. We use a powerful method due to Sonin, Pólya and Szegő; for more details see [12,
13]. Define the Sonin-type function

h(x) = Un(x, a)2 +
C(x)

A(x)
U ′

n(x, a)2,

which by Proposition 2.2 satisfies h′(x) = − ω(x)
A(x)2

U ′
n(x, a)2 with

ω(x) = (2B(x) − C ′(x)) A(x) + C(x)A′(x).

If n is even then

ω(x) = x5
(

−4n(n + 1)2(n + 2)x6 + 16n(n + 1)(n + 2)(a − 1)x4

+4n(n + 2)(n2 + 2n − 5)(a − 1)2x2 − 8n(n + 2)(a − 1)2(2an − a − 2n − 5)
)

.

By Descartes’ rule of signs [10, p. 7] and a ∈ R+ this polynomial has at most five distinct
real zeroes, thus h′(x) changes sign at most five times. Since Un(x, a) has only simple real
zeroes for a > 0, by Rolle’s theorem so does U ′

n(x, a). We therefore have deg gcd(Un(x, a)−
ζ, U ′

n(x, a)) ≤ 6, for all ζ ∈ C. Now, suppose a non-trivial decomposition Un(x, a) =
r(q(x)) and denote by ζ0 a zero of r′, which exists by deg r ≥ 2. Then both Un(x, a)−r(ζ0)
and U ′

n(x, a) are divisible by q(x) − r(ζ0). Thus,

deg q ≤ deg(q − ζ) ≤ deg gcd(Un(x, a) − ζ, U ′
n(x, a)) ≤ 6,

which completes the proof for n even. If n is odd then

ω(x) = x
(

−4n(n + 2)x8 + 4(a − 1)2n(n + 2)x4 + 24(a + 1)(a − 1)2x2 − 24(a − 1)4
)

,

and a similar argument yields the result.
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3 Polynomial decomposition

This section is devoted to a complete characterization of polynomial decompositions of
Un(x, a). By a polynomial decomposition of p(x) ∈ R[x] we mean p(x) = r ◦ q(x) with
r, q ∈ R[x] and min(deg r, deg q) ≥ 2. We call two decompositions p = r1 ◦ q1 = r2 ◦ q2

equivalent, if there is a linear polynomial κ such that r2 = r1 ◦ κ and q2 = κ−1 ◦ q1. A
polynomial p is said to be indecomposable, if there is no polynomial decomposition of p.

Lemma 3.1. The generalized Chebyshev polynomials Un(x, a) are indecomposable (up to
equivalence) except in the following cases:

(i) n = 2k, k ≥ 2; then Un(x, a) = r(x2) and r(x) is indecomposable unless (iii).

(ii) n = 6, a = 3
4
; then U6(x, 3

4
) = (x2 − 1) ◦ (x3 − 9

4
x).

(iii) n = 8, a = 4; then U8(x, 4) = (x2 + 14x + 1) ◦ (x4 − 8x2).

In view of Lemma 2.3, we have to show that Un(x, a) = r(q(x)) with 3 ≤ deg q ≤ 6
leads – in general – to a contradiction. A well-arranged way to equate the (parametric)
coefficients on both sides of the decomposition equation is via the algorithmic approach
(using Gröbner techniques) presented in [13, sec. 4]. We shortly recall and outline the
procedure for deg q = 3 and n even, where we find (ii) in Lemma 3.1. The other cases
are similar (for instance, for deg q = 4 we consider [x4k−6] = [x4k−10] = 0 etc.).

By [12, Proposition 3.3] we can calculate a polynomial q̂(x) of degree three from the
data given in (6) which has the following property: If Un(x, a) = r(q(x)) with deg q = 3
and q(0) = 0, lcoeff(q(x)) = 1 then necessarily q(x) ≡ q̂(x). In other words, q̂(x) is the
only (normed) candidate of degree three. According to [13, Algorithm 1] we here get

q̂(x) = x3 − 3k(a + 1) − 2a

2k
x,

such that U3k(x, a) = q̂(x)k + R(x) with R(x) = β1x
3k−4 + terms of lower order. If there

is a decomposition with a right component of degree three, then necessarily β1 = 0, which
gives the equation

3k2a2 − 6k2a + 3k2 − 8a2k + 4ak + 4a2 = 0. (8)

Therefore, assuming k > 2, we may suppose that

U3k(x, a) = q̂(x)k + β2q̂(x)k−2 + R1(x),

where degR1 ≤ 3k − 8. Indeed, the coefficient [x3k−8] in R1(x) must be zero. This yields

(k − 2)(162k5a4 + 162k5 − 324k5a2 + 378k4a2 − 189k4 − 324k4a3 + 108k4a

− 837k4a4 − 72ak3 + 72a2k3 + 648a3k3 + 1656a4k3 + 72a2k2

− 624a3k2 − 1512a4k2 + 480a3k + 608a4k − 80a4) = 0. (9)

Obviously, k = 2, a = 3/4 is a solution of (8). On the other hand, it is easy to see that
the solutions of (8) and (9) for k ≥ 3 are not admissible (this can be checked, for instance,
with the help of the Groebner package and the Solve command in MAPLE).
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Corollary 3.2. Let a, â ∈ R+ and m > n ≥ 3. Then there does not exist a polynomial
P (x) ∈ R[x] such that

Um(x, a) = Un(P (x), â) (10)

with the exception of the case

m = 6, n = 3, a =
9

2
, â =

59

4
, P (x) = x2 − 4. (11)

Proof. By Lemma 3.1 every decomposition of Um(x, a) = r(q(x)) with deg q ≥ 3 implies
deg r ≤ 2, which is not allowed by n ≥ 3. Therefore, we may assume that P (x) = αx2 +β
for some α, β ∈ R. First, suppose n ≥ 5. Equating [xm−2], [xm−4], [xm−6], [xm−8] and
[xm−10] on both sides of (10) yields a contradiction (see the Appendix for the corresponding
quantities). It is straightforward to exclude also the case n = 4. Finally, for n = 3 we
have α = 1 and the coefficient equations

−3 − 2a = 3β, a2 + 2a + 3 = 3β2 − â − 1, −1 = β3 − (1 + â)β,

which yield (β, a, â) = (−1, 0,−1) or (β, a, â) = (−4, 9/2, 59/4). Only the latter solution
is admissible.

As for the final step, we recall the finiteness theorem due to Bilu and Tichy [2]. Again,
for more details we refer to [12]. First some more notation is needed. Let γ, δ ∈ Q \ {0},
r, q, s, t ∈ Z+ ∪ {0} and v(x) ∈ Q[x]. Denote by Ds(x, a) the Dickson polynomial of the
first kind of degree s defined by

D0(x, a) = 2, D1(x, a) = x,

Dn+1(x, a) = xDn(x, a) − aDn−1(x, a), n ≥ 1,

which satisfies Dn(x, a) = xn + d
(n)
2 xn−2 + d

(n)
4 xn−4 + · · · , where

d
(n)
2k =

n

n − k

(

n − k

k

)

(−a)k. (12)

To state the result, we also need the notion of five types of so-called standard pairs, which
are pairs of polynomials of some special shape. To begin with, a standard pair of the
first kind is of the type (xq, γxrv(x)q) (or switched), where 0 ≤ r < q, gcd(r, q) = 1 and
r + deg v > 0. A standard pair of the second kind is given by (x2, (γx2 + δ)v(x)2) (or
switched). A standard pair of the third kind is (Ds(x, γt), Dt(x, γs)) with s, t ≥ 1 and
gcd(s, t) = 1. A standard pair of the fourth kind is (γ−s/2Ds(x, γ),−δ−t/2Dt(x, δ)) (or
switched) with s, t ≥ 1 and gcd(s, t) = 2. Finally, a standard pair of the fifth kind is of
the form ((γx2 − 1)3, 3x4 − 4x3) (or switched).

The following (less strong) version of the theorem of Bilu and Tichy [2] is sufficient
for our purposes:
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Theorem 3.3 (Bilu/Tichy [2]). Let f(x), g(x) ∈ Q[x] be non-constant polynomials and
assume that there do not exist linear polynomials κ1, κ2 ∈ Q[x], a polynomial ϕ(x) ∈ Q[x]
and a standard pair (f1, g1) such that

f = ϕ ◦ f1 ◦ κ1 and g = ϕ ◦ g1 ◦ κ2, (13)

then the equation f(x) = g(y) has only finitely many integral solutions.

We stress the fact that the proof of Theorem 3.3 is based – beside other tools – on
Siegel’s theorem on integral points on algebraic curves [11] and is therefore ineffective.
This means that we have no upper bound available for the size of solutions x, y. The
standard pairs make up the exceptional cases where one can find an infinite parametric
solution set. According to Theorem 3.3 we here have to check the decompositions of
shape (13) whether they match with those given in Lemma 3.1.

To start with, consider the standard pair of the first kind and Um(αx + β, a) = ϕ(xq).

If q ≥ 3 then β = 0 and ε
(m)
2 αm−2 = 0, a contradiction. If q = 2 then since m, n ≥ 3 we

have deg ϕ ≥ 2. We distinguish two cases. If deg ϕ = 2 then we are led to the system of
equations

U4(α1x + β1, a) = e2x
4 + e1x

2 + e0,

U6(α2x + β2, â) = e2x
2(v1x + v0)

4 + e1x(v1x + v0)
2 + e0, (14)

or, respectively, with switched parameters a, â. Equating coefficients on both sides gives
a contradiction.1

If deg ϕ ≥ 3 then deg(xrv(x)q) = 1 which by Corollary 3.2 gives m = 6, n = 3, a = 9/2
and â = 59/4. A similar conclusion holds for q = 1.

A standard pair of the second kind is not possible as well. Since m 6= n, we have
deg v(x) ≥ 1. Again, we distinguish two cases. If deg v(x) ≥ 2 then ϕ(x) is linear, a
contradiction to m, n ≥ 3. On the other hand, if deg v(x) = 1 we have the two equations
(resp. with switched parameters),

U4(α1x + β1, a) = e2x
4 + e1x

2 + e0,

U8(α2x + β2, â) = e2(γx2 + δ)2(v1x + v0)
4 + e1(γx2 + δ)(v1x + v0)

2 + e0. (15)

Again a contradiction arises.
Next, consider the standard pair of the fifth kind and suppose Um(αx+β, a) = ϕ((γx2−

1)3). This implies that ϕ(x) is linear. Again, a contradiction arises, since U ′
m(x, a) only

has simple roots whereas the derivative of the right-hand-side polynomial has a triple
root.

It remains to treat the standard pairs of the third and fourth kind. Suppose a stan-
dard pair of the third kind, namely Um(α1x + β1) = ϕ(Ds(x, γt)) and Un(α2x + β2) =
ϕ(Dt(x, γs)). By gcd(s, t) = 1 and Lemma 3.1 we see that deg ϕ ≤ 2 (leaving aside the

1Again, we used safe Groebner computations with MAPLE to conclude for (14) and (15).
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case (11)). First, let ϕ(x) be linear. Assume m ≥ 7 and Um(α1x + β1) = e1Ds(x, δ) + e0

with δ = γt. Then using (12) the coefficient equations

ε
(m)
2k = α2k

1 d
(m)
2k , k = 1, 2, 3 (16)

yield a contradiction. Therefore,

(m, n) ∈ {(6, 5), (5, 4), (5, 3), (4, 3)}.

Suppose m = 5. Then (16) with k = 1, 2 yields a = (3±
√

5)/2 6∈ Q, a contradiction. Let
U4(α1x + β1, a) = e1(x

4 − 4γ3x2 + 2γ6) + e0 and U3(α2x + β2, â) = e1(x
3 − 3γ4x) + e0.

This gives e0 = 0, e1 = α4
1 and the contradiction 2α4

1γ
6 = 1. Now, suppose ϕ(x) =

e2x
2 + e1x + e0. By (s, t) = 1 and Lemma 3.1 we have an equation similar to

U6(α1x + β1) = e2D3(x, δ)2 + e1D3(x, δ) + e0,

which directly leads to a contradiction.
Finally, suppose a standard pair of the fourth kind. Again, we conclude deg ϕ ≤ 2.

First, let deg ϕ = 1. From the discussion above we see that (m, n) = (6, 4). Thus,

U6(α1x + β1, a) = e1

(

x6

γ3
1

− 6x4

γ2
1

+
9x2

γ1
− 2

)

+ e0,

U4(α2x + β2, â) = e1

(

−x4

γ2
2

+
4x2

γ2
− 2

)

+ e0.

This gives α4
2γ

2
2 = −e1 and −(2a + 3)α4

1γ
2
1 = −6e1 which implies a < 0, a contradiction.

A similar argument also applies for deg ϕ = 2. This completes the proof of Theorem 1.1.

Remark. It causes no great difficulty to replace the edge weight −1 by −β with β ∈ Q+

in (1) and to conclude in a similar way. Both Proposition 2.2 and Lemma 3.1 can be
appropriately generalized. As the focus of the paper is on the cross connection between
Diophantine properties and graph quantities, we here omit the details for the general case.

Appendix

We here append some more upper coefficients of Un(x, a) which are needed in the proof
of Corollary 3.2 and in the last section.

ε
(n)
6 =















− 1
48 (n − 4)(3n2a + n2 + n2a3 + 3n2a2 − 24na − 2n − 30na2

−8na3 + 72a2 + 36a + 12a3), n even;

− 1
48 (n − 3)(n − 5)(a + 1)(na2 − a2 − 14a + 2na + n − 1), n odd,
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ε
(n)
8 =























1
384 (n − 4)(n − 6)(n2a4 + 4n2a3 + 6n2a2 + 4n2a + n2 − 40na − 10na4

−84na2 − 2n − 56na3 + 64a + 16a4 + 288a2 + 192a3), n even;

1
384 (n − 5)(n − 7)(n2a4 + 4n2a3 + 6n2a2 + 4n2a + n2 − 4na4 − 72na2

−40na − 4n − 40na3 + 84a + 210a2 + 3a4 + 3 + 84a3), n odd.

ε
(n)
10 =















































− 1
3840(n − 6)(n − 8)(10n3a3 + n3a5 + 5n3a4 + n3 + 10n3a2 + 5n3a − 80n2a

−110n2a4 − 6n2 − 220n2a2 − 16n2a5 − 240n2a3 + 340na

+1520na2 + 68na5 + 760na4 + 8n + 1880na3 − 3200a2

−400a − 1600a4 − 4800a3 − 80a5), n even;

− 1
3840(n − 5)(n − 7)(n − 9)(a + 1)(n2a4 − 4na4 + 3a4 − 56na3 + 4n2a3

+132a3 + 6n2a2 − 104na2 + 498a2 − 56na + 4n2a + 132a
+n2 − 4n + 3), n odd.
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conférences, UQAM, Montréal, 1984.
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