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Abstract

The commuting graph C(G,X) , where G is a group and X a subset of G, has
X as its vertex set with two distinct elements of X joined by an edge when they
commute in G. Here the diameter and disc structure of C(G,X) is investigated when
G is the symmetric group and X a conjugacy class of G.

1 Introduction

The purpose of this note is to record certain properties of commuting graphs C(G, X)
where G is Sym(n), the symmetric group of degree n, and X is a G-conjugacy class. In
[1] C(G, X) was investigated when X was a conjugacy class of involutions. There it was
shown that C(G, X) is connected unless n = 2`+1 or n = 4, ` = 1 (` being the number of
2-cycles in the involution), and that the diameter of C(G, X) is at most 3 except for three
specifically given graphs (when n ∈ {6, 8, 10}). Moreover, if we exclude these three excep-
tional graphs, an algorithm is given which determines the distance between two vertices
using data encoded in x-graphs (see Lemma 2.3 and Proposition 3.6 in [1] for more de-
tails). For further recent work on commuting graphs we direct the reader to [2], [3] and [4].
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We recall that C(G, X) is the graph whose vertex set is X with x, y ∈ X (x 6= y) joined
whenever they commute. Clearly elements of G induce (by conjugation) graph automor-
phisms of C(G, X) . Since G is transitive on the vertices of C(G, X) , we may without loss
choose a to be a fixed element of X. Writing a as a product of pairwise disjoint cycles,
define m to be the maximum length of a cycle in this decomposition. In view of the work
in [1] we shall usually assume that m is greater than two. As compared to [1] (and not
surprisingly) we see on perusing Table 1 a great variety of behaviour concerning both
connectedness and possible diameters. The information in Table 1 on connectedness and
diameters for n ≤ 16 was obtained with the assistance of the computer algebra package
Magma [6]. Indeed, the question of when such graphs are connected has been completely
answered by Bundy [5].

Before stating our main results we introduce some notation. For x ∈ X we put x = x̃x∗

where x̃ is a cycle of length m and x∗ is the product of all the remaining disjoint cycles.
We assume G = Sym(n) (= Sym(Ω)) acts upon the set Ω = {1, . . . , n}. For g ∈ G,
Supp(g) denotes the set of points of Ω not fixed by g and Fix(g) the set of points of Ω
fixed by g. Set G∗ = Sym(Fix(ã)). Then G∗ ≤ G and a∗ ∈ G∗. Let X∗ denote the
G∗-conjugacy class of a∗. If q ∈ Q, then dqe means the smallest integer greater than or
equal to q. We use d( , ) for the standard graph-theoretic distance on C(G, X) and, for
x ∈ X and i ∈ N, define the ith disc of x to be

∆i(x) = {y ∈ X | d(x, y) = i}.

The diameter of C(G, X) is denoted by Diam C(G, X) .

Our first result gives an explicit description of all the discs of a when a = (12 · · ·m)
and n ≥ 2m + 1.

Theorem 1.1. Suppose that |Fix(a)| = m + r where m ≥ 2 and r ≥ 1, and a = (1 · · ·m)
(= ã). For i with 3 ≤ i ≤ dm−1

r
e + 1, set

Σi(a) =

{

x ∈ X

∣

∣

∣

∣

(i − 3)r

2
+ 1 ≤ |Supp(x) ∩ Supp(a)| ≤

(i − 1)r

2

}

when i is odd, and

Σi(a) =

{

x ∈ X

∣

∣

∣

∣

m −
ir

2
≤ |Supp(x) ∩ Supp(a)| ≤ m −

(i − 2)r

2
− 1

}

when i is even. Then

(i) ∆1(a) = {x ∈ X| Supp(x) ∩ Supp(a) = ∅} ∪ (〈a〉 ∩ X) \ {a};

(ii) ∆2(a) = {x ∈ X| m − r ≤ |Supp(x) ∩ Supp(a)|} \ (∆1(a) ∪ {a});

(iii) for i with 3 ≤ i ≤ dm−1
r

e, ∆i(a) = Σi(a); and

(iv) for i = dm−1
r

e + 1, ∆i(a) ⊆ Σi(a) ⊆ ∆i(a) ∪ ∆i−1(a).
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We next investigate the diameter of C(G, X) when a has at least m fixed points on Ω.

Theorem 1.2. Let |Fix(a)| = m + r, with m ≥ 3 and r ≥ 0.

(i) If a = (1 · · ·m)(= ã) and r ≥ 1, then Diam C(G, X) = dm−1
r

e + 1.

(ii) If r ≥ 1, then Diam C(G, X)≤ m + 2Diam C(G∗, X∗).

(iii) If r ≥ 1 and a = (12 · · ·m)(m + 1 m + 2), then Diam C(G, X)≤ dm−1
r

e + 3.

(iv) Suppose that a = (12 · · ·m)(m + 1 · · ·2m − 1). Then Diam C(G, X)≤ 3dm−2
r+1

e + 4.

Our final theorem gives bounds for diameters in the case when a has no fixed points.
In order to state this result we define the following function. For k an integer with k ≥ 4
let

f(k) =















2(
(

k−1
2

)

+ k − 5) if k ≡ 0 mod 4

2
(

k−1
2

)

+ 10 if k ≡ 1 mod 4

2(
(

k−1
2

)

+ k − 4) if k ≡ 2 mod 4

2
(

k−1
2

)

+ 1 if k ≡ 3 mod 4.

Theorem 1.3. Suppose that |Fix(a)| = 0, m ≥ 4 and a is the product of m pairwise
disjoint cycles each of length m. Then Diam C(G, X)≤ 3f(m) + 2.

Note that the case m = 3 in Theorem 1.3 we have Diam C(G, X) = 4 (see Table 1).
We remark that, as a consequence of Theorems 1 and 2 of [5], all the commuting graphs
in Theorems 1.1, 1.2 and 1.3 are connected.

Section 2 is devoted to the proof of Theorem 1.1 while Theorem 1.2 follows from Corol-
lary 2.1, and Propositions 3.3, 3.1 and 3.4; further results which bound Diam C(G, X) are
given in Propositions 3.2 and 3.5. From Table 1 when a = (123)(45) and n = 9,
Diam C(G, X) = 5 and when a = (123)(45) and n = 8, Diam C(G, X) = 7, so the bounds
in Theorem 1.2 (iii) and (iv) are sharp. The bound in part (ii) of Theorem 1.2 we believe
is not best possible. At the end of Section 3 we give the proof of Theorem 1.3.

In Table 1, D means that C(G, X) is disconnected. The entry d (respectively (d))
means that C(G, X) is connected and has diameter d (respectively diameter at most d).
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a n = 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(1 2 3) 1 D D D 3 2 2 2 2 2 2 2 2 2

(1 2 3 4) - D D D D D 4 3 2 2 2 2 2 2
(1 2 3)(4 5) - - D D D 7 5 3 3 3 2 2 2 2
(1 2 3 4 5) - - D D D D D D 5 3 3 2 2 2

(1 2 3)(4 5 6) - - - D D D D 6 4 4 3 3 3 2
(1 2 3 4)(5 6) - - - D D D D 8 5 4 3 3 3 2
(1 2 3 4 5 6) - - - D D D D D D D 6 4 3 3

(1 2 3)(4 5)(6 7) - - - - D D D 6 5 4 3 3 3 3
(1 2 3 4)(5 6 7) - - - - D D D D 9 6 5 4 3 3
(1 2 3 4 5)(6 7) - - - - D D D D D 8 5 4 3 3
(1 2 3 4 5 6 7) - - - - D D D D D D D D 7 4

(1 2 3)(4 5 6)(7 8) - - - - - D D D 12 8 5 4 (5) (6)
(1 2 3 4)(5 6)(7 8) - - - - - D D 12 9 6 5 (6) (6) (6)
(1 2 3 4)(5 6 7 8) - - - - - D D D D 10 6 5 5 4
(1 2 3 4 5)(6 7 8) - - - - - D D D D D 9 6 5 4
(1 2 3 4 5 6 7 8) - - - - - D D D D D D D D D

(1 2 3)(4 5 6)(7 8 9) - - - - - - 4 D D 6 6 5 (6) (7)
(1 2 3 4)(5 6)(7 8)(9 10) - - - - - - - 7 D 8 (9) (10) (10) (9)
(1 2 3 4)(5 6 7 8)(9 10) - - - - - - - D D D D (18) (14) (11)
(1 2 3 4 5)(6 7 8 9 10) - - - - - - - D D D D D D 10

(1 2 3)(4 5 6)(7 8 9)(10 11 12) - - - - - - - - - 4 D D (10) (6)

Table 1: Connectedness and Diameters of C(G, X)
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2 Disc Structure for a = (1 · · ·m)

In this section we prove Theorem 1.1. Recall that a = (1 · · ·m), n = 2m + r with m > 2
and r ≥ 1. Also we recall the following two sets of vertices which appear in this theorem.

Σi(a) =

{

x ∈ X

∣

∣

∣

∣

(i − 3)r

2
+ 1 ≤ |Supp(x) ∩ Supp(a)| ≤

(i − 1)r

2

}

when i is odd, and

Σi(a) =

{

x ∈ X

∣

∣

∣

∣

m −
ir

2
≤ |Supp(x) ∩ Supp(a)| ≤ m −

(i − 2)r

2
− 1

}

when i is even, where 3 ≤ i ≤ dm−1
r

e + 1.

Proof of Theorem 1.1. It is easy to see that

∆1(a) = {x ∈ X| Supp(x) ∩ Supp(a) = ∅} ∪ (〈a〉 ∩ X) \ {a}.

Now consider x ∈ ∆2(a). Then x ∈ ∆1(y) for some y ∈ ∆1(a). Now x /∈ 〈y〉 and y /∈ 〈a〉,
for otherwise x ∈ ∆1(a). Therefore Supp(x) ∩ Supp(y) = ∅ and Supp(y) ∩ Supp(a) = ∅.
Hence |Supp(x) ∩ Supp(a)| ≥ m − r. Conversely, if |Supp(x) ∩ Supp(a)| ≥ m − r, then
|Supp(x) ∪ Supp(a)| ≤ m + r and there are at least m points which are fixed by x and a.
Therefore there exists y which commutes with x and a. Hence

∆2(a) = {x ∈ X| m − r ≤ |Supp(x) ∩ Supp(a)|} \ (∆1(a) ∪ {a}).

If r ≥ m − 1, then we are done. Otherwise, we will prove by induction that for
3 ≤ i ≤ dm−1

r
e

∆i(a) =

{

x ∈ X

∣

∣

∣

∣

(i − 3)r

2
+ 1 ≤ |Supp(x) ∩ Supp(a)| ≤

(i − 1)r

2

}

when i is odd, and

∆i(a) =

{

x ∈ X

∣

∣

∣

∣

m −
ir

2
≤ |Supp(x) ∩ Supp(a)| ≤ m −

(i − 2)r

2
− 1

}

when i is even.
We first deal with the case when i = 3 which will be the basis for the induction.

Suppose x ∈ ∆3(a) and y ∈ ∆1(x) ∩ ∆2(a). If x ∈ 〈y〉, then |Supp(x) ∩ Supp(a)| =
|Supp(y) ∩ Supp(a)| ≥ m − r, which is a contradiction to x ∈ ∆3(a). Hence Supp(x) ∩
Supp(y) = ∅ and so |Supp(x)∩Supp(a)| ≤ r. Also |Supp(x)∩Supp(a)| ≥ 1, for otherwise
d(x, a) ≤ 1. Conversely, if 1 ≤ |Supp(x) ∩ Supp(a)| ≤ r, then there exists y ∈ X with
Supp(x)∩Supp(y) = ∅ and |Supp(y)∩Supp(a)| ≥ m− r. So d(y, a) ≤ 2 and y commutes
with x. Hence x ∈ ∆3(a) which verifies our assertion in the case when i = 3.
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Now suppose the induction hypothesis holds for all 3 ≤ i ≤ k and that x ∈ ∆k+1(a).
Let y ∈ ∆1(x) ∩ ∆k(a). If y ∈ 〈x〉, then |Supp(x) ∩ Supp(a)| = |Supp(y) ∩ Supp(a)| and
by the induction hypothesis x ∈ ∆k(a), a contradiction. Hence Supp(x) ∩ Supp(y) = ∅.

If k is odd, then by the induction hypothesis

(k − 3)r

2
+ 1 ≤ |Supp(y) ∩ Supp(a)| ≤

(k − 1)r

2
.

Therefore

|Supp(y) ∪ Supp(a)| ≥ 2m −
(k − 1)r

2

and so there are at most r + (k−1)r
2

points which are fixed by y and a. Hence

m − r −
(k − 1)r

2
≤ |Supp(x) ∩ Supp(a)|.

But when |Supp(x)∩ Supp(a)| ≥ m− (k−1)r
2

, by the induction hypothesis, or when k = 3,
using the result for ∆2(a), we have that d(x, a) = k − 1, which is a contradiction. Hence

(∗) m − (k+1)r
2

= m − r − (k−1)r
2

≤ |Supp(x) ∩ Supp(a)| ≤ m − (k−1)r
2

− 1,

and so x has the required form. Conversely, given x such that (∗) holds, by the induction
hypothesis it cannot be in any ∆i(a) for i even and less than k. Furthermore, since
k ≤ (m − 1)/r,

|Supp(x) ∩ Supp(a)| ≥ m −
(k + 1)r

2
≥

m + 1 − r

2
>

m − 1 − r

2
≥

(k − 1)r

2
.

So again by the induction hypothesis, x cannot be in any ∆i(a) for i odd and at most k.
Therefore the distance of x from a is at least k + 1. It is now easy to see that we can
reverse the argument above to show that there exists y ∈ ∆k(a) which commutes with x.
Hence x ∈ ∆k+1(a) and this completes the induction step when k is odd.

Now suppose k is even with x ∈ ∆k+1(a) and y ∈ ∆1(x)∩∆k(a). As before Supp(x)∩
Supp(y) = ∅. Also, by the induction hypothesis

m −
kr

2
≤ |Supp(y) ∩ Supp(a)|,

and so |Supp(x)∩Supp(a)| ≤ kr/2. If |Supp(x)∩Supp(a)| ≤ (k−2)r
2

, then by the induction
hypothesis d(a, x) ≤ k − 1, which is a contradiction. Therefore

(k − 2)r

2
+ 1 ≤ |Supp(x) ∩ Supp(a)| ≤

kr

2
,

which is the form required for x. Conversely, given x which satisfies these inequalities
then by the same argument as in the odd case we can use the criterion k ≤ (m − 1)/r to
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show that x must be at least distance k + 1 from a and again it is easy to see that there
exists y ∈ ∆1(x) ∩ ∆k(a), which completes the induction.

In the case when i = dm−1
r

e+ 1, then the same argument shows that ∆i(a) ⊆ Σi(a) ⊆
∆i(a) ∪ ∆i−1(a), so completing the proof of Theorem 1.1. �

We remark that it is possible in Theorem 1.1 to have Σi(a) ∩ ∆i−1(a) 6= ∅ when
i = dm−1

r
e + 1. For example when m = 4 and r = 2 (so dm−1

r
e = 2),

Σ3(a) = {x ∈ X| 1 ≤ |Supp(x) ∩ Supp(a)| ≤ 2}; and

∆2(a) = {x ∈ X| 2 ≤ |Supp(x) ∩ Supp(a)|} \ (∆1(a) ∪ {a}).

However, we note that in the case r = 1 we have Σm(a) = ∆m(a). Since X is the union of
{a}, ∆1(a), ∆2(a), ∆3(a) . . . , ∆dm−1

r
e+1(a) and ∆dm−1

r
e+1(a) 6= ∅, we observe the following

corollary of Theorem 1.1.

Corollary 2.1. If |Fix(a)| = m + r where m ≥ 2, r ≥ 1 and a = (1 · · ·m) (= ã), then
Diam C(G, X) = dm−1

r
e + 1.

3 Diameter Bounds

Proposition 3.1. Suppose that |Fix(a)| ≥ m + 1. Then

Diam C(G, X) ≤ m + 2Diam C(G∗, X∗).

Proof. Let x(= x̃x∗) ∈ X. Set {j1, . . . , jk} = Supp(ã)\Supp(x̃) and let y ∈ X equal
x̃y∗ be such that {j1, . . . , jk} ⊆ Fix(y∗). Clearly d(x, y) ≤ Diam C(Sym(Ω1), (x

∗)Sym(Ω1))
where Ω1 := Fix(x̃). Let Ω2 = Fix(y∗). Then Supp(ã) ⊆ Ω2. Note that |Ω2| ≥ 2m+1. So
d(ã, x̃) (in C(Sym(Ω2), (ã)Sym(Ω2))) is at most m, by Corollary 2.1. Thus d(ãy∗, x̃y∗) ≤ m
and, as before,

d(ãy∗, ãa∗) ≤ Diam C(Sym(Fix(ã)), (a∗)Sym(Fix(ã))) = Diam C(G∗, X∗).

Hence Diam C(G, X)≤ m + 2Diam C(G∗, X∗).

The proof of the next result is almost identical to that of Proposition 3.1 and so is
omitted.

Proposition 3.2. Suppose a = (1 · · ·m)(m + 1 · · ·m + k)a∗∗ where {1, . . . , m + k} ⊆
Fix(a∗∗). Let G̃ = Sym(Fix(a∗∗)) and X̃ be the G̃-conjugacy class of (1 · · ·m)(m+1 · · ·m+
k). If k < m and |Fix(a)| = m, then

Diam C(G, X) ≤ Diam C(G̃, X̃) + 2Diam C(G∗, X∗).

Proposition 3.3. Let a = (12 · · ·m)(m + 1 m + 2) have m + r fixed points, for m ≥ 3
and r ≥ 1. Then Diam C(G, X)≤ dm−1

r
e + 3.
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Proof. Let x ∈ X have m-cycle x̃, and define s = |Supp(ã) ∩ Supp(x̃)|. Then

|Ω \ (Supp(ã) ∪ Supp(x̃))| ≥ s + 3.

We consider separately the cases s = 0, s = 1 and s ≥ 2.

Assume that s = 0. Then let y = (12 · · ·m)(α β) where α, β /∈ Supp(ã) ∪ Supp(x̃) and
either (α β) = (m + 1 m + 2) or {α, β} ∩ {m + 1, m + 2} = ∅. Since |Ω\(Supp(ã) ∪
Supp(x̃))| ≥ 3 at least one of these is possible. Now let z = x̃(α β). Then [a, y] = [y, z] = 1
and d(z, x) ≤ 2. Hence d(a, x) ≤ 4 ≤ dm−1

r
e + 3.

Now assume that s = 1. Suppose first that {m + 1, m + 2} ∩ Supp(x̃) 6= ∅. Let (γ δ)
be the 2-cycle in x. If {m + 1, m + 2} ⊆ Supp(x̃), then let α, β be such that {α, β} ∩
(Supp(ã) ∪ Supp(x̃) ∪ {γ, δ}) = ∅. If |{m + 1, m + 2} ∩ Supp(x̃)| = 1, then let α,
β be such that either {α, β} = {γ, δ} (if {γ, δ} ∩ (Supp(ã) ∪ {m + 1, m + 2}) = ∅)
or {α, β} ∩ [({γ, δ, m + 1, m + 2}) ∪ Supp(ã) ∪ Supp(x̃)] = ∅. This is possible because
|Ω\(Supp(ã) ∪ Supp(x̃) ∪ {m + 1, m + 2})| ≥ 3. In either case let y = ã(α β). Then
[a, y] = 1. Let z = x̃(α β). Then d(y, z) ≤ dm−1

r
e + 1 by Corollary 2.1 and [z, x] = 1.

Hence d(a, x) ≤ dm−1
r

e+3. Now we are left with the case {m+1, m+2}∩Supp(x̃) = ∅. Set
y = x̃(m + 1 m + 2). Then, again by Corollary 2.1, d(a, y) ≤ dm−1

r
e + 1, and d(y, x) ≤ 2.

So d(a, x) ≤ dm−1
r

e + 3.

Finally assume that s ≥ 2. Suppose {m + 1, m + 2} ∩ Supp(x̃) 6= ∅. Then |Ω\(Supp(ã) ∪
Supp(x̃) ∪ {m + 1, m + 2})| ≥ s + 2 ≥ 4. So let {α, β} ⊆ Ω\(Supp(ã) ∪ Supp(x̃) ∪ {m +
1, m + 2, γ, δ}) where {γ, δ} is the 2-cycle for x. Let y = ã(α β) and z = x̃(α β). Then
[a, y] = [x, z] = 1 and d(y, z) ≤ dm−1

r
e + 1 by Corollary 2.1. So d(a, x) ≤ dm−1

r
e + 3.

If {m + 1, m + 2} ∩ Supp(x̃) = ∅, then y = x̃(m + 1 m + 2). Using Corollary 2.1,
d(a, y) ≤ dm−1

r
e + 1. Hence, as d(y, x) ≤ 2, d(a, x) ≤ dm−1

r
e + 3 and the result is

proven.

Proposition 3.4. Let a = (12 · · ·m)(m+1 · · ·2m−1) have m+r fixed points, for m ≥ 3
and r ≥ 0. Then Diam C(G, X)≤ 3dm−2

r+1
e + 4.

We remark that this bound is strict – if a = (123)(45) ∈ S8 then Diam C(G, X) = 7 =
3 × 1 + 4.

Proof. Let x̃ = (α1 · · ·αm), and define k = |Supp(ã)∩ Supp(x̃)|. We will consider various
possibilities for k.

Firstly, suppose k ≤ r. Let a1 = ã1(m+1 · · ·2m−1) and a2 = ã2(m+1 · · ·2m−1), where
the m-cycles ã1 and ã2 are chosen such that Supp(x̃)\Supp(a) ⊆ Supp(ã1) ⊆ Ω\Supp(a)
and Supp(x̃)∪Supp(a1) ⊆ Fix(ã2). In particular, |Supp(ã2)∩Supp(x̃)| = 0. Then [a, a1] =
[a1, a2] = 1 and hence d(a, a2) ≤ 2. Now there exists x1 ∈ X with d(a2, x1) ≤ dm−2

r+1
e + 1

such that x1 = ã2(β1 · · ·βm−1) where Supp(x̃) ⊆ Fix(x1) by Corollary 2.1. Hence, for
x2 = (α1 · · ·αm)(β1 · · ·βm−1), [x1, x2] = 1 and again d(x2, x) ≤ dm−2

r+1
e + 1. Therefore

d(a, x) ≤ 2(dm−2
r+1

e + 1) + 3 < 3dm−2
r+1

e + 4.

Now assume that r < k < m − 1. Then αik+1
, . . . , αim > m for some ik+1, . . . , im. So

there exists x1 = (1 · · ·m)(β1 · · ·βm−1) ∈ X with {αik+1
, . . . , αim} = {βk, . . . , βm−1}.
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Let l = |{β1 · · ·βm−1} ∩ {m + 1 · · ·2m − 1}|. By varying the size of {β1, . . . , βk−1} ∩
{m + 1, . . . , 2m − 1} we may choose k different values for l. But by Theorem 1.1, at
most r of these values can occur for elements of Σdm−2

r+1
e+1(a), and so, since k > r, we

may choose x1 so that d(a, x1) ≤ dm−2
r+1

e. Now define x2 = (γ1 · · ·γm)(β1 · · ·βm−1) for

some γ1, . . . , γm > m. Clearly x1x2 = x2x1. Now d(x2, x3) = dm−2
r+1

e + 1 where x3

has m-cycle (γ1 · · ·γm) and fixes (α1 · · ·αm). Hence d(x3, x) ≤ (dm−2
r+1

e + 1) + 1. So,

recalling that d(a, x1) ≤ dm−2
r+1

e, d(x1, x2) = 1 and d(x2, x3) ≤ dm−2
r+1

e+1, we conclude that

d(a, x) ≤ 3dm−2
r+1

e + 4.

If k = m, then let x1 = (m + 1 · · · 2m − 1)(2m · · ·3m − 1) and x2 = (α1 · · ·αm)(m +
1 · · ·2m−1), noting that in this case {α1, . . . , αm} = {1, . . . , m}. It is clear that ax1 = x1a,
x1x2 = x2x1 and d(x2, x) ≤ dm−2

r+1
e + 1. Thus d(a, x) ≤ dm−2

r+1
e + 3.

Finally we deal with the case k = m− 1. Using the notation above, αi1 /∈ {1, . . . , m} but
αij ∈ {1, . . . , m} for each j > 1. Set x1 = (1 · · ·m)(αi2 · · ·αim) and, for some γj > m,
x2 = (γ1 · · ·γm)(αi2 · · ·αim). Let x3 be such that x3 has m-cycle (γ1 · · ·γm) and fixes
α1, . . . , αm. Now let x4 have m-cycle (α1 · · ·αm) and fix γ1, . . . , γm. Then we see that
d(a, x1) ≤ dm−2

r+1
e+1, d(x1, x2) = 1, d(x2, x3) = 1, d(x3, x4) = 1, and d(x4, x) ≤ dm−2

r+1
e+1.

Therefore d(a, x) ≤ 2dm−2
r+1

e + 5 ≤ 3dm−2
r+1

e + 4 (since m ≥ 3). We have shown, for all

possible values of k, that d(a, x) ≤ 3dm−2
r+1

e + 4 and so the proposition is proved.

Proposition 3.5. Let a = (1 . . .m)(m + 1 . . .m + k) = ãa∗, where k < m, and assume
|Fix(a)| = r + m ≥ m. Then

Diam C(G, X) ≤ (d k−1
m+r−k

e + 2)(dm−1
k+r

e + 2) − 1.

Proof. For x ∈ X let G∗
x = Sym(Fix(x̃)) and let Xx = xG∗

x . Consider the graph Γ with
vertices {Xx| x ∈ X} and edges {Xx, Xy}, for x, y ∈ X, whenever there exist v ∈ Xx and
w ∈ Xy such that vw = wv. Then Diam Γ = Diam C(G, (ã)G). Now let π be a path of
minimum length in C(G, X) between two points in X. Then we can obtain a path πΓ in
Γ by taking Xx for each x ∈ π and then contracting an edge whenever neighbours x and
y in π are such that Xx = Xy. We have that the length of πΓ is at most Diam Γ and
at each vertex of πΓ at most Diam C(G∗, X∗) edges of π were contracted. Hence, using
Corollary 2.1,

|π| ≤ |πΓ| + (Diam C(G∗, X∗))(Diam Γ + 1)

= (Diam C(G∗, X∗) + 1)(Diam (G, (ãG) + 1)) − 1

= (d k−1
m+r−k

e + 2)(dm−1
k+r

e + 2) − 1.

The final part of this section is devoted to the proof of Theorem 1.3. From now on we
shall assume that n = mm, m ≥ 4 and a is the product of m pairwise disjoint cycles each
of length m.

Given a cycle c = (α1 . . . αm), we say that an m-cycle c′ differs from c by a simple
transposition if c′ is c with two adjacent elements interchanged. For example, if c = (1234),
then (1342), (1324), (1243) and (1423) all differ from c by a simple transposition.
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Lemma 3.6. Let x =
∏m

i=1 xi ∈ X where each xi is an m-cycle and the xi are pairwise
disjoint. Suppose y =

∏m

i=1 yi where yi differs from xi by a simple transposition. Then
d(x, y) = 2.

Proof. For each i, write xi = (xi,1xi,2xi,3 · · ·xi,m) where xi,1 is chosen so that
yi = (xi,2xi,1xi,3 · · ·xi,m). Now define z ∈ X as follows.

z = (x1,1x2,1 · · ·xm,1) · · · (x1,mx2,m · · ·xm,m).

Then d(x, z) = 1 = d(y, z). Therefore d(x, y) = 2.

Corollary 3.7. Suppose that x =
∏m

i=1 xi and y =
∏m

i=1 yi are elements of X and that, for
1 ≤ i ≤ m, yi differs from xi by an even number ni of transpositions. Let N = max{ni}.
Then d(x, y) ≤ 2N .

Note that the identity permutation is an even permutation, hence any cycle differs
from itself by an even number of transpositions. We may therefore permute elements of
individual cycles if necessary without affecting other cycles, as long as the permutation
in question is even. The next result shows that we can guarantee this if m is even.

In the proofs of Propositions 3.8 and 3.9, the permutations appearing there are acting
upon the ‘positions’; that is to say (23) applied to an m-cycle c in Sym{1, 2, . . . , m} means
‘interchange the second and third element of c’ and not ‘interchange the numbers 2 and
3’. To illustrate this we give an example of the instance in Proposition 3.8 where (i i + 1)
is replaced by

(i + 1 i + 2) · · · (m − 1 m)(m 1)(1 2) · · · (i − 2 i − 1).

Suppose m = 6, (i i+1) = (45) and c = (123456). Applying (56)(61)(12)(23) to (123456)
means

(123456)
(56)
−→ (123465)

(61)
−→ (523461)

(12)
−→ (253461)

(23)
−→ (235461)(= (123546) = d).

Proposition 3.8. Suppose m is even. Let c and d be m-cycles with Supp(c) = Supp(d).
Then c and d differ by an even number N of transpositions and

N ≤

{ (

m−1
2

)

+ m − 5 if m ≡ 0 mod 4
(

m−1
2

)

+ m − 4 if m ≡ 2 mod 4

Proof. Clearly d may be obtained from c by a permutation σ of Sym(2, . . . , m) (note
that for example (23) means ‘interchange the second and third elements of c’, rather
than ‘interchange the numbers 2 and 3’). Now Sym(2, . . . , m) is generated by the simple
transpositions (23), (34), . . . , (m − 1 m) and the longest such expression is length

(

m−1
2

)

;
this corresponds to sending 23 · · ·m to m · · · 32, in other words c to c−1. If the length L of σ
is even, then N = L and we are done. Otherwise, suppose (i i+1) is the final transposition
of σ. Then replace (i i + 1) with (i + 1 i + 2) · · · (m − 1 m)(m 1)(1 2) · · · (i − 2 i − 1)
(which still has the effect of interchanging the i and (i+1)st elements of the cycle). Then

the electronic journal of combinatorics 16 (2009), #R6 10



N = L − 1 + m − 2 = L + m − 3, which is even. Suppose
(

m−1
2

)

is even (that is, m ≡ 2

mod 4). Then N ≤
(

m−1
2

)

−1+m−3 =
(

m−1
2

)

+m−4. Suppose
(

m−1
2

)

is odd. If d = c−1,
then we may convert c into d by the transposition (1m) followed by the permutation of
Sym(2 · · ·m− 1) which reverses the order of the elements. This has length

(

m−2
2

)

. Hence

N ≤ max{
(

m−2
2

)

+1, (
(

m−1
2

)

−2)+m−3} corresponding to the cases d = c−1 and d 6= c−1.

Therefore N ≤
(

m−1
2

)

+ m − 5 in the case m ≡ 0 mod 4.

Proposition 3.9. Suppose that m is odd. If x, y ∈ X have the same orbits, then there
exists x′ ∈ X with the same orbits as x and y such that

(a) cycles of x′ and y with the same orbit differ by an even number, not more than
(

m−1
2

)

,
of simple transpositions;

(b) d(x, x′) ≤ 1 if m ≡ 3 mod 4 and d(x, x′) ≤ 10 if m ≡ 1 mod 4.

Proof. Suppose m ≡ 3 mod 4. Given a cycle xi of x, xi differs from x−1
i by an odd number

of transpositions (and hence an odd number of simple transpositions) of Sym(2, 3, . . . , m).
Therefore choosing x′

i to be xi or x−1
i as appropriate means that the corresponding cycle

of y differs from x′
i by an even number N of simple transpositions of Sym(2, 3 . . . , m) and

hence N ≤
(

m−1
2

)

. Since xi commutes with x′
i for all cycles xi of x we see that d(x, x′) ≤ 1.

Next we consider the case m ≡ 1 mod 4. Write x = x1x2 · · ·xm and y = y1 · · · ym, where
Supp(xi) = Supp(yi) for 1 ≤ i ≤ m. Suppose that xi and yi differ by an odd number of
simple transpositions for 1 ≤ i ≤ t and by an even number of simple transpositions for
i > t. We assume first that t = 2k is even. We will describe elements b, c, d, e, x′ of X. It
is helpful to write each one as an m × m array, where the rows are the cycles.

x =











x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

...
xm,1 xm,2 · · · xm,m











; b = xT =











x1,1 x2,1 · · · xm,1

x1,2 x2,2 · · · xm,2
...

...
...

x1,m x2,m · · · xm,m











c =











x1,1 x1,2 x3,3 x3,4 · · · x3,m

x2,1 x2,2 x4,3 x4,4 · · · x4,m

...
...

...
...

...
xm,1 xm,2 x2,3 x2,4 · · · x2,m











Next we permute the first k rows of c using the double transposition (12)(34) to produce
d.

d =



















x1,2 x1,1 x3,4 x3,3 x3,5 · · · x3,m

...
...

...
...

...
...

xk,2 xk,1 xk+2,4 xk+2,3 xk+2,5 · · · xk+2,m

xk+1,1 xk+1,2 xk+3,3 xk+3,4 xk+3,5 · · · xk+3,m

...
...

...
...

...
...

xm,1 xm,2 x2,3 x2,4 x2,5 · · · x2,m


















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e = dT =























x1,2 · · · xk,2 xk+1,1 · · · xm−2,1 xm−1,1 xm,1

x1,1 · · · xk,1 xk+1,2 · · · xm−2,2 xm−1,2 xm,2

x3,4 · · · xk+2,4 xk+3,3 · · · xm,3 x1,3 x2,3

x3,3 · · · xk+2,3 xk+3,4 · · · xm,4 x1,4 x2,4

x3,5 · · · xk+2,5 xk+3,5 · · · xm,5 x1,5 x2,5
...

...
...

...
...

...
x3,m · · · xk+2,m xk+3,m · · · xm,m x1,m x2,m























The bold entries of e form the first cycle (row) of x′ below. The second cycle consists of
the entries immediately to the right of the bold entries, and so on.

x′ =

































x1,2 x1,1 x1,3 x1,4 x1,5 · · · x1,m

...
...

...
...

...
...

xk,2 xk,1 xk,3 xk,4 xk,5 · · · xk,m

xk+1,1 xk+1,2 xk+1,4 xk+1,3 xk+1,5 · · · xk+1,m

...
...

...
...

...
...

x2k,1 x2k,2 x2k,4 x2k,3 x2k,5 · · · x2k,m

x2k+1,1 x2k+1,2 x2k+1,3 x2k+1,4 x2k+1,5 · · · x2k+1,m

...
...

...
...

...
...

xm,1 xm,2 xm,3 xm,4 xm,5 · · · xm,m

































Now d(x, b) = 1 = d(b, c). By Corollary 3.7 d(c, d) ≤ 4. Moreover d(d, e) = 1 = d(e, x′).
Hence d(x, x′) ≤ 8. Note that each of the first t cycles of x′ differs from the corresponding
cycle of x by one simple transposition (either (12) or (34)). Hence for 1 ≤ i ≤ m, x′

i

differs from yi by an even number of simple transpositions, so x′ is as required.
Suppose t is odd. Then let x̂ =

∏m

i=1 x̂i, where each x̂i differs from xi by a simple
transposition. By Lemma 3.6, d(x, x̂) = 2. Moreover m − t cycles of x̂ differ from the
corresponding cycle of y by an odd number of simple transpositions. Since m − t is
even, we may use the above argument with x replaced by x̂ to obtain an element x′ with
d(x̂, x′) ≤ 8 such that each cycle x′

i of x′ differs from the corresponding cycle of y by an
even number of simple transpositions. Since d(x, x̂) = 2 we have d(x, x′) ≤ 10 and as in
the case m ≡ 3 mod 4, each cycle of x′ differs from the corresponding cycle of y by at
most

(

m−1
2

)

simple transpositions.

Corollary 3.7 along with Propositions 3.8 and 3.9 immediately give the next result.

Proposition 3.10. Suppose x has the same orbits as y. Then d(x, y) ≤ f(m).

Proof of Theorem 1.3 Write x as an m×m array with the rows being the cycles of x.
Any permutation which leaves the set of rows fixed produces an element y of X with the
same orbits as x. Permute the elements of each row in such a way that in each column
there is exactly one element of each orbit of a. This produces an element y of X with
d(x, y) ≤ f(m) by Proposition 3.10. Reflecting the array in the main diagonal produces
z ∈ X with d(y, z) = 1. Now permute the elements of each row of z to produce v ∈ X
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such that the ith entry of each row of v is in the ith orbit of a. Again by Proposition
3.10, d(z, v) ≤ f(m). Finally, reflect again in the main diagonal to product w ∈ X with
d(v, w) = 1 and the orbits of w are the same as the orbits of a. Hence d(w, a) ≤ f(m).
Therefore d(x, a) ≤ 3f(m) + 2. �
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