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Abstract

It is proved that the number of permutations of the set {1, 2, 3, . . . , n} that

avoid three term arithmetic progressions is at most (2.7)n

21 for n ≥ 11 and at
each end of any such permutation, at least ⌊n

2
⌋−6 entries have the same parity.

1. Introduction

Let S be an n-element set of positive integers. By a permutation of S, we mean a one-
to-one sequence (a1, a2, . . . , an), where ai ∈ S for each i, 1 ≤ i ≤ n. We use letters from
the Greek alphabet to denote permutations. A permutation α = {a1, a2, . . . , an} of S is
said to contain a k-term arithmetic progression (briefly, a k-progression) if there exists
a set of indices {i1 < i2 < · · · < ik} such that the subsequence (ai1 , ai2 , . . . , aik

) is either
an increasing or a decreasing arithmetic progression. If α contains no k-progression, we
say it is k-free. The main goal of this paper is to examine the following

Problem. How many permutations of the segment [n] = {1, 2, 3, . . . , n} are 3-free?

This avoidance problem in Ramsey Theory on the integers was first raised in [4] where
after a “prodigious expenditure of computer time”, the number (call it θ(n)) of such
permutations was computed for n ≤ 20 (see Appendix). Deeming the task of finding
a formula for θ(n) to be hopelessly difficult, the editor of the Problem Section of the
Monthly observed that several conjectures concerning the behavior of the function θ(n)

suggested themselves. In particular, he asked if it were true that lim
n→∞

θ(n + 1)

θ(n)
= 2.

More recently, another intriguing question about θ(n) has been raised (see [1] Problem

7.11), asking whether lim
n→∞

(θ(n))
1
n exists. These questions are still open, and apart

from the bounds for θ(n) found in [2], not much else is known about the behavior of
θ(n). In this paper, the method applied in [2] to obtain the lower bound therein is
refined to improve the known upper bound.
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Given a permutation α = (a1, a2, . . . , an), we call each ai a term or an entry of α. The
set of all permutations of S can be put in one-to-one correspondence with each of the
following two sets: the set of all linear orderings (also called the linear arrangements)
of S, and the set of all the words of length n on S such that each symbol of S (treating
S as the alphabet) appears in each word exactly once. In the first case the permutation
(a1, a2, . . . , an) corresponds to the linear ordering a1 < a2 < · · · < an and in the second
it corresponds to the word a1a2 · · ·an. With these two correspondences in mind we may
treat a permutation as a sequence, a linear order, or a word, whichever is convenient to
the context.

The problem of determining θ(n) for various n can be viewed as one of a triplet of
Ramsey type problems about [n] that all have somewhat same flavor; the other two
problems in this triplet are about determining the least number of partitions of [n]. In
one problem the partitions are required to be sum-free, and in the other they must all
be 3-free. These two problems are, of course, related to the well-known Schur numbers
and van der Waerden numbers, respectively. A detailed account of these two types of
numbers and an extensive list of references relating to them can be found in [3].

Following the terminology used in [1], we call a 3-free permutation on a set S of positive
integers a Θ permutation. We let Θ(n) denotes the set of all Θ permutations on [n];
whence we have θ(n) = |Θ(n)|.

Of the two bounds 2n−1 ≤ θ(n) ≤ ⌊n+1
2 ⌋!⌈n+1

2 ⌉! for θ(n) found in [2], the lower bound is
an exponential function while the upper a factorial function. Therefore the two bounds
do not tell us whether θ(n) grows like an exponential function, a factorial function, or
some other function. In this regard, when we examine the known values of θ(n) (see
Appendix), we discover that the inequality θ(n) < 3n holds for all initial values of n.
This raises the question of whether θ(n) grows exponentially like 3n itself or perhaps like
cn for some c even smaller than 3. In this paper we prove this to be, indeed, the case.

Specifically, we show that θ(n) ≤ (2.7)n

21
for all n ≥ 11. This new upper bound for θ(n)

partially settles the question in [1] stated earlier. In [2], it is shown that if n = 2k for
some k, then θ(n) ≥ 1

2
× (2.248)n. It is not known whether this lower bound eventually

holds for all n. In this regard, we are only able to prove that θ(n) ≥ 1
10 × n × 2n for

all n. To prove these results, we introduce a number of new concepts which also help
to clarify the structure of Θ permutations in general. For example, we show that at
least ⌊n

2 ⌋ − 6 entries at each end of a Θ permutation on [n] have the same parity. To
properly motivate the study of the new concepts studied here, we will briefly sketch a
proof of the lower bound for θ(n) given in [1]. But, before proceeding with that proof,
we introduce some terminology.

Notation 1.1. Let α = (p1, p2, . . . , pk) be a permutation of a k-element set P of
integers. For integers a, b, and c, a and c nonzero, we let aP+b

c
be the set {ax+b

c
: x ∈ P}

and {aα+b
c

} the permutation on {aP+b
c

} obtained by replacing each entry x in α by ax+b
c

.
If T is a subset of P , then the restriction of the order α to T is called the trace of α

on T . If Q is a finite set of integers disjoint from P and if β is a permutation on Q,
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then (α, β) denotes the word αβ on P ∪Q. To avoid ambiguity, the notation 〈α, β〉 will
denote the ordered pair formed by α and β.

Theorem 1.1. For all n ∈ Z+, θ(n) ≥ 2n−1.

Proof. Since θ(1) = 1 and θ(2) = 2, the theorem holds for n = 1 and n = 2. We now
show that if the theorem holds for n = k and n = k + 1 then it holds for n = 2k and
n = 2k + 1. Observe that if α and β are two Θ permutations on [k], then due to parity
considerations (2α, 2β− 1) and (2β − 1, 2α) are Θ permutations on [2k]; since there are
[θ(k)]2 such ordered pairs 〈α, β〉, we have

θ(2k) ≥ 2 × [θ(k)]2. (1)

Similarly, if α and β are Θ permutations on [k] and [k+1] respectively, then (2α, 2β−1)
and (2β − 1, 2α) are Θ permutations on [2k + 1]. Now, an argument similar to the one
just given yields

θ(2k + 1) ≥ 2 × θ(k) × θ(k + 1). (2)

Thus if the theorem holds for n = k and n = k + 1, then

θ(2k) ≥ 2 × [θ(k)]2 ≥ 2 × (2k−1)2 = 22k−1, and

θ(2k + 1) ≥ 2 × θ(k) × θ(k + 1) ≥ 2 × 2k−1 × 2k = 22k,

and the inductive argument proves that the theorem holds for all n ∈ Z+. ♦

2. Structural Properties of Θ permutations

We begin by introducing a number of new terms that help illuminate certain properties
of Θ permutations. The properties that can be easily derived from the definitions are
detailed as propositions, and those requiring longer proofs are presented as lemmas or
theorems.

Definitions 2.1. Throughout this paper, we use the following notation

(i) n denotes an arbitrary but fixed positive integer.
(ii) γ = (a1, a2, . . . , an) generally denotes an arbitrary member of Θ(n); any additional
restrictions on γ, whenever needed, will be stated explicitly.
(iii) γo and γe represent the traces of γ on the odd and even integers in [n], respectively.
Obviously any arbitrary Θ permutations α and β on the odd and even integers in [n]
can be realized as γo and γe by letting γ = (α, β).
(iv) γ∗ is the Θ permutation on [n] obtained by replacing in γ each entry x by n+1−x.
(v) For n ≥ 2, the intervals [1, ⌊n

2
⌋] and [⌊n

2
⌋ + 1, n] are the lower and upper halves of

[n].

Definition 2.2. The permutation obtained by writing the entries of a given permuta-
tion α in reverse order is called the reversal of α and is denoted by ρ(α). Equivalently,
ρ(α) is the inverse of the order relation α.
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Definition 2.3. For any Θ permutation α = (d1, d2, . . . , dr) on a subset of [n], the
prologue of α, denoted pro(α), is the sequence (d1, d2, . . . , di) where i is the largest index
for which d1, d2, . . . , di all lie in the same half of [n]. The length of pro(α), denoted
as |pro(α)|, is the number of terms in the sequence pro(α). The notations pro(αo),
pro(αe), etc. are defined similarly. The epilogue of α, denoted epi(α), is defined as
pro(ρ(α)).

Proposition 2.1. For n ≥ 2, the first and last entries of γ have different parities.

Proof. For, if not, then these two entries together with their arithmetic mean would
be a 3-progression in γ. ♦

The property of Θ permutations in the preceding proposition induces a natural partition
of Θ(n) into two subsets which we denote as follows

Notation 2.1. Θ12(n) (respectively, Θ21(n)) consists of the members of Θ(n) that
begin with an odd (resp., even) entry.

In view of the natural one-to-one correspondence created by ρ between the sets Θ12(n)
and Θ21(n), it is sufficient to focus on the study of Θ12 permutations.

Proposition 2.2. If 1 occurs to the left of 2 in γ, then γ is a Θ12 permutation.

Proof. Suppose 1 occurs to the left of 2 in γ. Then to avoid the 3-progression 123, 3
must occur to the left of 2 in γ; then to avoid the 3-progression 432, 3 must occur in γ

to the left of 4. Thus, 1 and 3 are both to the left of 2 and both 2 and 4 to the right of
3. Continuing like this, we can show that 3 and 5 must both occur in γ to the left of
4, and then both 4 and 6 to the right of 5 and so on. Hence we conclude that any two
odd elements 2j − 1 and 2j + 1 of [n] must both occur in γ to the left of 2j, and any
two even element 2j and 2j + 2 of [n] must both occur to the right of 2j + 1. Thus, in
particular, the first entry of γ must be odd. This proves that γ ∈ Θ12(n). ♦

The preceding proof, in particular, establishes the following

Proposition 2.3. Of any two consecutive elements x and x + 1 in [n], the odd one
must occur in all Θ12 permutations to the left of the even one.

Definition 2.4. Suppose n ≥ 2. Then γo ⊗ γe denotes the set of all Θ permutations
on [n] whose traces on the odd and even integers in [n] are γo and γe and whose first
entry is in γo (define γe ⊗ γo similarly).

Definition 2.5. Whenever two elements x, y ∈ [n] with x odd and y even are such
that x is to the left of y in every Θ12 permutation on [n], we say that x and y do not
commute in [n]; on the other hand, if there does exist a Θ12 permutation on [n] which
has x to the right of y, we say that x and y commute in [n].
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Observe that if the last entry of γo does not commute with the first entry of γe, then
|γo ⊗ γe| = 1.

Proposition 2.4. For any j ∈ [n], there exists a Θ permutation on [n] that begins
with j.

Proof. This is obvious for n = 1 and n = 2. To prove the proposition inductively,
suppose it holds for n = k and n = k + 1. We show that it also holds for n = 2k and
n = 2k + 1. Let j ∈ [2k]. If j is even, choose a Θ permutation δ on [k] with first entry
j
2

(such a permutation on [k] exists by the induction hypothesis). Then (2δ, 2δ − 1) is a
Θ permutation on [2k] with first entry j. If j is odd (and thus j + 1 ≤ 2k), choose a Θ
permutation δ on [k] with first entry j+1

2 , then (2δ − 1, 2δ) is a Θ permutation on [2k]
with first entry j. This proves that the proposition holds for n = 2k. The proof that
the proposition holds for n = 2k + 1 is similar and will be omitted. ♦

Proposition 2.5. |pro(γ)| = |pro(γ∗)| except when n is odd and n+1
2 ∈ pro(γ).

Proof. This follows from the definition of pro(γ) and the fact that for any even n the
bijection c : [n] → [n], c(x) = n + 1 − x, maps each half of [n] onto the other and for
any odd n the same function fixes n+1

2 but is a bijection between the lower half of [n]
and the remainder of the upper half of [n]. ♦

Proposition 2.6. For the Θ permutation δ = (2γ, 2γ−1) on [2n], |pro(γ)| = |pro(δ)| =
|pro(δ∗)|.

Proof. The first equality follows easily from the definition of prologue, and the second
follows from Proposition 2.5 because 2n is even. ♦

Recall that Theorem 1.1 derives the lower bound for θ(n) by associating with each
ordered pair 〈α, β〉 of Θ permutations on [k] (or α on [k + 1] and β on [k]) a single Θ12

permutation on [2k] (or on [2k + 1]). In contrast to this, we associate with each such
ordered pair the class of Θ12 permutations on [2k] (resp., [2k+1]) given by (2α−1)⊗(2β).
It is easy to see that this association is a one-to-one correspondence between the set of
all such ordered pairs 〈α, β〉 and the set of all classes (2α − 1) ⊗ (2β). These classes
therefore form a partition of Θ12(2k) (or Θ12(2k + 1)). We will prove that each such
class has at most twenty members. This result is the basis of our proof of the new upper
bound.

Theorem 2.1. Any two odd elements of [n] with an even arithmetic mean must both
occur in all Θ12 permutations on [n] to the left of their mean (and similarly any two
even elements with an odd arithmetic mean must both be to the right of their mean).

Proof. Take any δ ∈ Θ12(n) and let x, y ∈ [n], x < y, be two odd integers with even
arithmetic mean 2s. Then there exists a positive integer t such that x = 2s−2t+1 and
y = 2s+2t− 1. We show, by induction on t, that both x and y lie in δ to the left of 2s.
By Proposition 2.3, this is true for t = 1. Assume that there is some integer v > 1 such
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that the proposition is true for all t < v but is false for t = v. This then means that not
both 2s− 2v + 1 and 2s + 2v − 1 lie in δ to the left of 2s. As the two cannot lie in δ on
opposite sides of 2s (because δ must avoid the progression formed by these two together
with 2s), they must, therefore, both lie in δ to the right of 2s. Thus the first and last
terms of the sequence L = (2s − 2v + 1, 2s − 2v + 3, . . . , 2s + 2v − 3, 2s + 2v − 1) both
lie in δ to the right of 2s while all of the remaining terms of L lie in δ to the left of 2s.
Note that the sequence L has 2v terms, which is an even number ≥ 4 (since v ≥ 2). For
convenience, we denote the term occupying the i-th place in L by ci, 1 ≤ i ≤ 2v. Now
let us examine the relative order in which the terms of L must appear in δ. We already
know that both c1 and c2v appear in δ to the right of 2s while all of the remaining
c′is appear in δ to the left of 2s. Observe that of any three consecutive terms ci−1, ci,
and ci+1 in L, ci−1 and ci+1 must both appear in δ on the same side of their mean
ci (to ensure that δ avoids the 3-progression (ci−1, ci, ci+1)). Applying this condition
repeatedly, we find that both c1 and c3 appear in δ to the right of c2 (because c1 is to
the right of 2s whereas c2 and c3 are to the left of 2s); both c2 and c4 to the left of
c3; both c3 and c5 the right of c4 and so on. It is thus easily seen that both ci−1 and
ci+1 lie in δ to the right (resp., left) of ci for i even (resp., odd). Thus, in particular,
both c2v−2 and c2v appear in δ to the left of c2v−1. But that is impossible because we
already know that c2v−1 appears in δ to the left of 2s whereas c2v appears in it to the
right of 2s. This completes the proof. ♦

Theorem 2.2. Let x, y ∈ [n] with x odd and y even. Then x and y do not commute
iff at least one of 2x − y and 2y − x is in [n].

Proof. Suppose 2x − y ∈ [n]. Then 2x − y and y are both even while their mean
x is odd. Therefore, by Theorem 2.1, both 2x − y and y (and thus, in particular y)
must be to the right of x in all Θ12 permutations. A similar argument applies when
2y − x ∈ [n]. This proves the ‘only if’ part of the theorem. Now, suppose neither of
2x − y and 2y − x is in [n]. Take a Θ permutation δ on the odds in [n] which ends
in x and a Θ permutation ǫ on the evens in [n] that begins with y (which both exist
by Proposition 2.4). Then (δ, ǫ) is a Θ permutation on [n] such that if we switch the
adjacent entries x and y in (δ, ǫ), the resulting arrangement is still a Θ permutation.
This is due to the fact that neither 2x−y or 2y−x is in [n], and so the stated interchange
cannot create a 3-progression. Hence we have constructed a Θ12 permutation where x

is to the right of y, and the proof is complete. ♦

Proposition 2.7. Suppose x, y ∈ [n] with x odd and y even. If x and y commute and
if there exists a Θ12 permutation α on [n] in which x is immediately to the left of y,
then the permutation β obtained from α by swapping x and y is also a Θ12 permutation
on [n].

Proof. Since x and y are consecutive terms in both α and β, the only possible 3-
progression in β would necessarily have x and y as two of its consecutive terms. However
any 3-progression in which x and y are consecutive terms must necessarily have 2x − y

the electronic journal of combinatorics 16 (2009), #R63 6



or 2y − x as the remaining term in the progression. But as x and y commute, neither
of 2x − y and 2y − x is in [n]. This completes the proof. ♦

Corollary 2.2.1. If x, y ∈ [n] are of opposite parities and lie in the same half of [n],
then they do not commute.

Proof. If x and y are in the same half of [n], then obviously one of 2x − y and 2y − x

must be in [n]. The desired conclusion now follows from Theorem 2.2. ♦

Corollary 2.2.2. The first ⌊n+1
4 ⌋ entries of γ are congruent (mod 2).

We omit the proof of this corollary as it can be easily completed by considering the four
cases n = 4j, 4j + 1, 4j + 2, and 4j + 3 and applying Theorem 2.2 and Corollary 2.2.1
in each case.

Lemma 2.1. Suppose there exist a positive integer k ≤ n+1
4 and a positive integer j

such that each Θ permutation on [n] and each Θ permutation on [n + 1] has its first k

entries congruent to each other (mod 2j). Then each Θ permutation on [2n] and each
Θ permutation on [2n + 1] has its first k entries congruent to each other (mod 2j+1).

Proof. Take any µ ∈ Θ(2n). We assume that µ is a Θ12 permutation. Let δ = 1+µo

2
and ǫ = µe

2 . Then, clearly µ ∈ (2δ − 1) ⊗ (2ǫ). Since k ≤ n+1
4 < 2n+1

4 , therefore, by
Corollary 2.2.2, the first k entries of µ all have the parity, and thus they all correspond
to the first k entries of δ. Hence the desired congruence relation between the first k

entries of µ follows from the assumed congruence on the first k entries of δinΘ(n). When
µ is a Θ21, we can reason in a similar way as the first k entries of µ would be the first k

entries of 2ǫ instead of those of 2δ. For µ ∈ Θ(2n + 1), the proof is similar and will be
omitted. ♦

Theorem 2.3. For any integer j ≥ 0, the first ⌊
⌊ n

2j ⌋+1

4 ⌋ entries of γ must be congruent
to each other (mod 2j+1).

Proof. Let N denote the set of positive integers. By Corollary 2.2.2 the statement
is true for j = 0 and for all n ∈ N . Suppose there exists a positive integer p such
that the statement is true for all j ≤ p and all n ∈ N . We show that the statement
holds for j = p + 1 and for each n ∈ N . Take n ∈ N and suppose n is even, say
n = 2m. By our supposition, this statement holds for j = p and n = m. This means

that any Θ permutation δ on [m] has its first ⌊
⌊ m

2p ⌋+1

4 ⌋ entries congruent to each other

(mod 2p+1). Hence by Lemma 2.1, each Θ permutation on [2m] has its first ⌊
⌊ 2m

2p+1
⌋+1

4 ⌋
entries congruent to each other (mod 2p+2). This proves that the given statement holds
for j = p+1 and any n even. The verification for j = p+1 and n odd is almost identical
and will be omitted. This induction argument proves the theorem. ♦

Definition 2.6. The degree of binary congruence between two distinct integers a and
b is the largest integer j such that 2j divides a − b.
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Theorem 2.4. Let x, y, z ∈ [n], and suppose z is the arithmetic mean of x and y. If
the degree of binary congruence between a1 and z is higher than that between a1 and
x, then both x and y lie in γ to the right of z.

Proof. Let the degree of binary congruence between x and y be j. Then in view of the
given hypotheses, there exist nonnegative integers r, s, and t such that x = s × 2j + r,
y = t × 2j + r, and a1 = b1 × 2j−1 + r with both b1 and s + t odd. Now, let γ′ be the

trace of γ on {a1, x, y, z}. Then the Θ permutation β = γ′−r
2j−1 has the four entries b1,

2s, 2t, and s + t, with b1 as the first entry. By Theorem 2.2, s + t must be to the left
of both 2s and 2t in β. Since the order of these entries in β is the same as that of the
corresponding entries a1, x, y, and z in γ, the desired conclusion follows. ♦

Lemma 2.2. If a1 is from the lower half of [n], then a1 is the largest entry in pro(γ).
Likewise if the entries of pro(γ) are from the upper half of [n], then a1 is the smallest
amongst them.

Proof. The first assertion must be true for otherwise the very first ai ∈ pro(γ) greater
than a1 will yield the 3-progresstion (a1, ai, 2ai −a1) in γ. The second assertion follows
similarly by considering γ∗. ♦

Lemma 2.3. Suppose a1 > 4. Let t be the largest integer such that 2t < a1 and let
u = 2t−2. Then the following are true:

(i) a1, a1 −4u, a1−2u, a1 −u occur in γ, relative to each other, in the order just listed.

(ii) If n ≥ a1 + 2u, then a1 + 2u occurs in γ to the left of a1 − u.

(iii) If n ≥ a1 + 7u, then a1 + 2u occurs in γ to the left of both a1 − 3u and a1 + 7u.

Proof. Since γ must avoid the 3-progressions (a1, a1−u, a1−2u) and (a1, a1−2u, a1−
4u), (i) holds. Similarly (ii) must be true because γ must avoid (a1−4u, a1−u, a1+2u).
Finally, (iii) holds because a + 2u is the arithmetic mean of a1 − 3u and a1 + 7u, and
there is a higher degree of binary congruence between a1 and a1 + 2u than there is
between a1 and a1 − 3u. ♦

Recall that by Theorem 2.3, certain initial blocks of the entries of γ satisfy some specific
congruence conditions. Since pro(γ) is, by definition, an initial block of γ, it must satisfy
the congruence conditions imposed on γ by Theorem 2.3. We use this fact in the proof
of the following

Lemma 2.4. If a1 is in the lower half of [n], then |pro(γ)| ≤ 6.

Proof. Since a1 is the largest entry in pro(γ), we can assume that a1 ≥ 7 for otherwise
the desired result is obvious. Choose t and u as defined in Lemma 2.3 and note that
4u < a1 ≤ 8u. Then by Lemma 2.3, a1 + 2u must be to the left of a1 − u which then
precludes a1 − u from being a term in pro(γ). Take any x ∈ [n] such that x < a1 and x

not congruent to a1 (mod u). Then y = 2a1 − 2u − x is obviously in [n]. Observe that
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the arithmetic mean of x and y is a1 − u. Now, since the degree of binary congruence
between a1 and a1 −u is higher than that between a1 and x, therefore by Theorem 2.4,
x and y must both be to the right of a1 − u. Thus, neither of x and y can be in pro(γ).
Hence the entries of pro(γ) must all come from the set {a1, a1−2u, a1−3u, a1−4u, a1−
5u, a1 − 6u, a1 − 7u}. Now, if a1 ≤ 7u, then obviously a1 − 7u cannot be in pro(γ), and
the desired result immediately follows; if a1 > 7u, then n ≥ 2a1 > a1 + 7u whence by
Lemma 2.3, a1 + 2u must be to the left of a1 − 3u which prevents a1 − 3u from being
in pro(γ). This completes the proof. ♦

The following result also plays an important role in the derivation of the new upper
bound for θ(n).

Theorem 2.5. For all n, |pro(γ)| ≤ 6.

Proof. We have already proved this statement for a1 in the lower half of [n]. If a1 is in
the upper half of [n], then as was done in Proposition 2.6, consider the Θ permutation
δ = (2γ, 2γ − 1) on [2n]. Clearly the entries of pro(δ∗) are from the lower half of [2n]
and so |pro(δ∗)| ≤ 6. By Proposition 2.6, |pro(γ)| = |pro(δ)∗| and hence the desired
conclusion follows. ♦

In the following example, |pro(γ)| attains the upper bound six.

Example 2.1. Choose n = 26, γo = (13, 5, 9, 1, 7, 3, 21, 25, 17, 23, 15, 19, 11), and
γe = (26, 10, 18, 2, 22, 6, 14, 12, 20, 4, 24, 8, 16).

Notation 2.2. For the remainder of this section, we adopt the following notation.

(1) The letter q denotes the following function of n. Determine the integer k for which
2k ≤ n < 2k+1 (and so k = ⌊log2 n⌋) and let q = 2k−4. We will usually take n ≥ 32
whence we will have 16q ≤ n < 32q.

(2) Since in the ensuing discussion we will be repeatedly referring to the the right end
entries of γo and left-end entries of γe, therefore for the sake of convenience we let
γo = (b⌈n

2
⌉, . . . , b2, b1) and γe = (c1, c2, . . . , c⌊n

2
⌋).

How large can |γo ⊗ γe| be? We already know that if b1 does not commute with c1,
then |γo ⊗ γe| = 1. Thus, to answer the question just posed, we make the following
assumptions for the remainder of this section.

(3) b1 commutes with c1, b1 is from the lower half of [n], and c1 is from the upper half.

Lemma 2.5. If |epi(γo)| = u and |pro(γe)| = v, then |γo ⊗ γe| =
(

u+v
v

)

Proof. Recall that b1 is the largest entry of epi(γo) while c1 is the smallest in pro(γe).
Clearly the rightmost entry of γo which is not in epi(γo) must lie in the same half of [n]
as c1 and so cannot commute with c1. Likewise, the leftmost entry of γe which is not
in pro(γe) cannot commute with b1. Thus, by Proposition 2.7, there are precisely as
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many elements in γo ⊗γe as there are permutations of the union of the sets of entries of
epi(γo) and pro(γe) such that the entries of each of epi(γo) and pro(γe) maintain their
relative order. ♦

For n ≥ 32, the following congruence relations hold (by Theorem 2.3) among the entries
of γ (and also amongst the entries of each of γo and γe). In the theorems that follow,
we will make use of these relations.

Proposition 2.8. If n ≥ 16q, the first two entries of γ are congruent (mod 4q), the
first four are congruent (mod 2q), and the first eight are congruent (mod q).

Proposition 2.9. If n ≥ 22q, the first three entries of γ are congruent (mod 4q), the
first five are congruent (mod 2q), and the first eleven are congruent (mod q).

Proposition 2.10. If n ≥ 28q, the first two entries of γ are congruent (mod 8q), the
first three are congruent (mod 4q), the first seven are congruent (mod 2q), and the first
fourteen are congruent (mod q).

The following two theorems tell us to what extent the assumption that b1 commutes
with c1 prevents epi(γo) and pro(γe) from impinging on each other.

Theorem 2.6. If one of |epi(γo)| and |pro(γe)| is at least four then the other is at
most two.

Proof. Suppose that for some n there exists a permutation γ on [n such that |epi(γo)| ≥
4 and |pro(γe)| ≥ 3. Since b1, b2, b3, and b4 are congruent (mod 2q), and b1 is the largest
among these four bi’s, so b1 > 6q. Consider the various possible choices of b1.

(i) Suppose b1 = 6q + z for some 0 < z < 2q. Since |pro(γ)| ≥ 4, this choice of b1 forces
b2 = 2q + z, b3 = 4q + z, and b4 = z. Now, if n ≥ 16q + z, then by Theorem 2.4, both
4q + z and 16q + z must occur in γo to the left of 10q + z, implying that cb3 = 4q + z

cannot be in epi(γe). Thus, we must have n < 16q + z. This then means that c1 and c2

are both < 16q + z; now since c1 and c2 are congruent (mod 4q) with c1 < c2, we have
c1 < 12q + z which we know does not commute with b1 = 6q + z, this contradicts our
assumption b1 and c1 commute. Hence b1 = 6q + z with 0 < z < 2q is not possible.

(ii) Suppose b1 = 8q+z for some 0 < z < 2q. This choice of b1 forces b2 = z, b3 = 4q+z,
and b4 = 2q+z. Reasoning as in (i), we conclude that n < 22q+z for otherwise 22q+z

and 2q + z would have to appear in γo to the left of 12q + z by Theorem 2.4, which
would then force b4 = 2q + z from being a term in epi(γo). Thus, c1, c2, and c3 must
all lie in [16q + 2z, 22q + z). This interval has length < 6q. For convenience, let c1 = y.
Now the values c2 = y + 4q and c3 = y + 2q are forced. As these are the first three
entries in γe, we discover that the entries y− 8q, y− 4q, y− 6q, and y− 2q must appear
in γe in this very order. But then we cannot place y − 10q anywhere in γe for γe must
avoid both of the 3-progressions (y + 2q, y − 4q, y − 10q) and (y − 10q, y − 6q, y − 2q).
Hence b1 = 8q + z is likewise impossible.
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(iii) If b1 ≥ 10q, then c1, c2, and c3 must all be in [2b1, n], and since c1 and c2 are
congruent (mod 4q), we have n ≥ 24q. But then, by Proposition 2.9, c1, c2 and c3

must be congruent (mod 4q), which forces n ≥ 28q. Now, it is impossible that b1 > 12q

because then c1 and c2 being congruent to each other (mod 8q) cannot both be placed in
the interval [2b1, 32q) because its length is less that 8q. If instead b1 = 10q + z for some
0 < z < 2q, then by similar reasoning as in (i) and (ii), we can show that n < 28q + z.
But since c1, c2 and c3 are congruent (mod 4q), it is obviously impossible to place all
three of them in the interval [2b1, n]. This completes the proof. ♦

In the proof of the following theorem, some details that are similar to those in the proof
of the preceding theorem will be omitted.

Theorem 2.7. If the length of one of epi(γo) and pro(γe) is at least five, then the
length of the other is one.

Proof. Suppose we have γo and γe such that |epi(γo)| ≥ 5 and |pro(γe)| ≥ 2. Due to
the congruence conditions on c1 and c2, we have n − 2b1 ≥ 4q and when 28q ≤ n < 32q,
n − 2b1 ≥ 8q. We now consider some cases to show γo and γe of the supposed kind do
not exist.

Case 1: n = 16q or n = 16q + 1. If b1 > 6q, then n − 2b1 < 4q, a contradiction. If
b1 < 6q, then since the last four entries of γo must be congruent (mod 2q), they could
only come from {b1, b1 − 2q, b1 − 4q}, a contradiction.

Case 2: n > 16q + 1. In this case the entries of epi(γo) can only come from the set
{b1, b1 − 4q, b1 − 6q, b1 − 8q, b1 − 10q, b1 − 12q, b1 − 14q}. Observe that b1 − 2q may not
be amongst them due to Theorem 2.4.

(i) 16q + 1 < n < 20q. Here b1 < 10q so |epi(γo)| ≤ 4 for any such n contradicting
|epi(γo)| ≥ 5.

(ii) 20q ≤ n < 24q. Since n − 2b1 ≥ 4q, therefore b1 < 10q. But then the entries of
epi(γo) could only be from {b1, b1−4q, b1−6q, b1−8q}, again contradicting |epi(γo)| ≥ 5.

(iii) 24q ≤ n < 28q. Here the entries of epi(γo) must be exactly {b1, b1−4q, b1−6q, b1−
8q, b1−10q}, for if b1 > 12q, n − 2b1 < 4q which contradicts the inequality n−2b1 ≥ 4q

established earlier in the proof. Using the fact that b1 and b2 are congruent (mod 4q),
this forces epi(γo) to be (b1−10q, b1−6q, b1−4q, b1−8q, b1). Now, as we attempt to place
in γo the elements of the set {b1 − 2q, b1 +2q, b1 +4q, . . .}, we see that the only possible
order up to b1 + 12q is (b1 − 2q, b1 + 6q, b1 + 2q, b1 + 10q, b1 + 4q, b1 + 12q, b1 + 8q). But
then b1 + 14q cannot be placed anywhere in γo as we must avoid both the progressions
(b1 +14q, b1 +4q, b1−6q) and (b1−2q, b1 +6q, b1 +14q). This implies that n < b1 +14q.
Combining this inequality with n − 2b1 ≥ 4q yields b1 < 10q which contradicts that
b1 − 10q ∈ epi(γo).

(iv) 28q ≤ n < 32q. Once again, the entries of epi(γo) would have to be exactly
{b1, b1−4q, b1−6q, b1−8q, b1−10q}; for if b1 > 12q, then n−2b1 < 8q which contradicts
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the inequality n− 2b1 ≥ 8q established for this case earlier in the proof. Now reasoning
as in (iii), we conclude that n < b1 + 14q, whence n < 26q, an obvious contradiction.

Hence there is no n for which there exist γo and γe of the supposed kind. The proof is
now complete. ♦

We note that in Example 2.1, |epi(ρ(γo))| = 6 and |pro(γe)| = 1.

In view of Theorems 2.5, 2.6, and 2.7 and Lemma 2.5, the maximum possible value of
|γo ⊗ γe| is the largest of the three numbers

(

4+2
4

)

,
(

3+3
3

)

, and
(

6+1
6

)

. Thus we have

Corollary 2.7.1. |γo ⊗ γe| ≤ 20.

The following example shows that the upper bound of 20 for |γo ⊗ γe| can be attained.

Example 2.2. Let n = 14 and choose γo and γe to be:
γo = (7, 11, 9, 13, 3, 1, 5) and γe = (10, 14, 12, 2, 6, 4, 8).

Corollary 2.2.1 and Theorem 2.5 together imply the following result mentioned in the
Introduction.

Corollary 2.7.2. At least the first ⌊n
2 ⌋ − 6 entries of any γ are of the same parity.

We can now use Corollary 2.7.1 to bound the total number of Θ permutations on [n] as
they arise from those on ⌈n

2
⌉ and ⌊n

2
⌋. For any γo let γ̂o be the Θ permutation on the

odd integers in [n] given by (n+1)−γo or n−γo, depending on whether n is odd or even.

Whenever b1 6= b̂1, b1 and b̂1 do not lie in the same half of [n] and so c1 cannot commute
with both (by Corollary 2.2.1). For such a γo and for any γe, |γo⊗γe| = 1 or |γ̂o⊗γe| = 1

and so |γo⊗γe|+|γ̂o⊗γe| ≤ 21. Now suppose b1 = b̂1. Then n must be of the form 4j+2

with b1 = b̂1 = 2j + 1. For such n, if c1 6= 4j + 2, then by Theorem 2.2, c1 commutes
with neither b1 or b̂1 and so |γo ⊗ γe| = |γ̂o ⊗ γe| = 1. Hence |γo ⊗ γe| + |γ̂o ⊗ γe| = 2
in this case. If c1 = 4j + 2, then obviously |pro(γe)| = 1. Thus by Theorem 2.5 and
Lemma 2.5, both |γo ⊗ γe| and |γ̂o ⊗ γe| are ≤ 7 and hence |γo ⊗ γe| + |γ̂o ⊗ γe| ≤ 14.
Thus, we have shown that in all cases |γo ⊗ γe|+ |γ̂o ⊗ γe| ≤ 21. Since the total number
of distinct pairs 〈γo, γe〉 is θ(⌈n

2
⌉) × θ(⌊n

2
⌋), and as |Θ12(n)| = |Θ21(n)|, we have

Theorem 2.8. For each n ≥ 3, θ(n) ≤ 21 × θ(⌈n
2 ⌉) × θ(⌊n

2 ⌋).

It can be easily verified that the inequality θ(n) ≤ (2.7)n

21 holds for all n in [11, 20]. To
assist the proof of the next theorem, we now show that this inequality also holds for
n = 21. Set n = 20 in the inequality θ(n+1) ≤ ⌊n+3

2 ⌋θ(n) given in [2] and use the value

of θ(20) from the Appendix to obtain θ(21) ≤ 11 × θ(20) ≤ (2.7)21

21 . Now, use the fact
that the inequality holds for 11 ≤ n ≤ 21 as a basis for an inductive argument similar
to the one given in Theorem 1.1 and apply Theorem 2.8 to obtain
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Theorem 2.9. For all n ≥ 11, θ(n) ≤ (2.7)n

21 .

It is possible that in the preceding theorem the base 2.7 for the exponent n could be
made even smaller with knowledge of more initial values of θ(n). For example, we can

already verify the inequality θ(n) ≤ (2.62)n

21 holds for n ∈ [13, 20], and thus if it were also
true for n ∈ [21, 25], then an inductive argument will show that it holds for all n ≥ 13.

Similarly, the inequality θ(n) ≤ (2.5)n

21
holds for n ∈ [18, 20] so if it were also true for

n ∈ [21, 35], then it it will hold for all n ≥ 18. In any case, we have shown that

Theorem 2.10. lim sup (θ(n))
1
n ≤ 2.7.

This theorem partially settles question 7.12 in [1].

3. Extending the Domain of the Lower Bound

Using the value θ(16) = 212, 728 along with inequality (1) of Section 1, it is shown in
[2] that for all n ≥ 4, θ(2n) ≥ 1

2 × (2.248)2
n

. In this section we find a lower bound for
θ(n) which is asymptotically weaker than the one just stated but has the virtue that it
holds for all n ≥ 4. The lower bound we find is based on the following two observations

(a) If for some n, θ(n) ≥ 2n and θ(n + 1) ≥ 2n+1 then by inequalities (1) and (2) of
Section 1, θ(2n) ≥ 22n+1 and θ(2n + 1) ≥ 22n+2.

(b) More generally (using the same logic as (a)), if there exist positive integers n and p

such that θ(n) ≥ 2n+p and θ(n + 1) ≥ 2n+p+1 then θ(2n) ≥ 22n+2p+1 and θ(2n + 1) ≥
22n+2p+2.

From the values of θ(n) listed in the Appendix, we observe that θ(n) ≥ 2n for all
n ∈ [10, 19]. Thus by (a), θ(n) ≥ 2n+1 for all n ∈ [20, 39]. Now, applying (b) to this
inequality with p = 1 we obtain θ(n) ≥ 2n+3 for n ∈ [40, 79]. An inductive argument
yields the following

Theorem 3.1. For p any nonnegative integer

θ(n) ≥ 2n+2p−1 for all n ∈ [5 × 2p+1, 5 × 2p+2 − 1].

Proof. We know the statement is true for p = 1. Suppose the statement holds
for all p ≤ l − 1 for some positive integer l. Then for n ∈ [5 × 2l+1, 5 × 2l+2 − 1] if
n is even, applying the inductive hypothesis to n

2
and using inequality (1) of Section

1 immediately verifies this theorem for n (similarly for n odd applying the induction
hypothesis to n−1

2 and n+1
2 and using inequality (2) accomplishes the same task) which

does verify the statement for p = l as desired. ♦

The bound for θ(n) given in this theorem is asymptotically equivalent to that of Theorem
1.1. However, exploiting the idea used in obtaining the bound in that theorem, we obtain
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another lower bound for θ(n) which is asymptotically better than the bound of Theorem
1.1. We first prove

Theorem 3.2. For any fixed integer p, lim
n→∞

θ(n)

np × 2n
= ∞.

Proof. Consider the sequence an = θ(n)
np+1×2n for n ≥ 5 × 2p+1.

Note that a2n = θ(2n)

(2n)p+1×22n ≥ 2×[θ(n)]2

(2n)p+1×22n = θ(n)
np+1×2n × θ(n)

2n+p = an × θ(n)
2n+p ≥ an

(as θ(n) ≥ 2n+2p−1 ≥ 2n+p for this range of n). Similarly a2n+1 ≥ an+1 for all such n

(proof is identical with the additional step of noting that (2n + 2)p+1 ≥ (2n + 1)p+1).
Let γ = min an for n ∈ [5 × 2p+1, 5 × 2p+2 − 1]. Using the statements a2n ≥ an and

a2n+1 ≥ an+1 recursively implies an ≥ γ for all n ≥ 5 × 2p+1. Therefore θ(n)
np×2n =

n × an ≥ n × γ for all n ≥ 5 × 2p+1 and θ(n)
np×2n clearly tends to ∞ as n → ∞ as desired.

♦

Corollary 3.2.1. For all n ∈ Z+, θ(n) ≥ 1
10 × n × 2n.

Proof. Let an = θ(n)
n×2n . From the values of θ(n) listed earlier we note that an ≥ 1

10
for

all n ∈ [1, 19]. Since θ(n) ≥ 2n for all n ≥ 10 (Theorem 3.1), therefore reasoning as in
the proof of Theorem 3.2 we can prove that a2n ≥ an and a2n+1 ≥ an+1 for all n ≥ 10.
This proves that an ≥ 1

10 for all n ∈ Z+. ♦

The following open problems are closely related to the content of this paper and a
resolution of any one of them will greatly increase our understanding of the function
θ(n)

(1) Is θ(n) monotone?

(2) Does lim
n→∞

(θ(n))
1
n exist?

(3) Does θ(n + 1) < 3 × θ(n) hold for all n?
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Appendix

The following values of θ(n) were computed by G.J. Simmons and appear in [4].

n θ(n) n θ(n)

1 1 11 2460
2 2 12 6128
3 4 13 12840
4 10 14 29380
5 20 15 74904
6 48 16 212728
7 104 17 360016
8 282 18 659296
9 496 19 1371056

10 1066 20 2937136
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