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Abstract

It is well-known that the maximum exponent that an n-by-n boolean primitive
circulant matrix can attain is n − 1. In this paper, we find the maximum exponent
attained by n-by-n boolean primitive circulant matrices with constant number of
nonzero entries in their generating vector. We also give matrices attaining such
exponents. Solving this problem we also solve two equivalent problems: 1) find the
maximum exponent attained by primitive Cayley digraphs on a cyclic group whose
vertices have constant outdegree; 2) determine the maximum order of a basis for Zn

with fixed cardinality.
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1 Introduction

A boolean matrix is a matrix over the binary Boolean algebra {0, 1}. An n-by-n boolean
matrix C is said to be circulant if each row of C (except the first) is obtained from the
preceding row by shifting the elements cyclically 1 column to the right. In other words,
the entries of a circulant matrix C = (cij) are related in the manner: ci+1,j = ci,j−1, where
0 ≤ i ≤ n−2, 0 ≤ j ≤ n−1, and the subscripts are computed modulo n. The first row of
C is called the generating vector. Here and throughout we number the rows and columns
of an n-by-n matrix from 0 to n − 1.

Let

P =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0















.

Any circulant boolean matrix C can be expressed as C = P j0 + P j1 + ... + P jr−1, with
0 ≤ j0 < j1 < ... < jr−1 < n. We define P 0 = In, where In denotes the identity matrix.

An n-by-n boolean circulant matrix C is said to be primitive if there exists a positive
integer k such that Ck = Jn, where Jn is the n-by-n matrix whose entries are all ones and
the product is computed in the algebra {0, 1}. The smallest such k is called the exponent
of C, and we denote it by exp(C).

The set of all n-by-n boolean circulant matrices forms a multiplicative commutative
semigroup Cn with |Cn| = 2n [3, 5]. In 1974, K.H. Kim-Buttler and J.R. Krabill [4], and
S. Schwarz [7] investigated the semigroup Cn. They obtained the following result:

Lemma 1.1 Let C ∈ Cn, n > 1, and assume that the nonzero entries in its generating
vector are placed in columns {j0, j1, ..., jr−1}. Then, C is primitive if and only if r ≥ 2
and gcd(j1 − j0, ..., jr−1 − j0, n) = 1 . Moreover, if C is primitive, then exp(C) ≤ n − 1.

In the literature, the problem of computing all possible exponents attained by primitive
matrices in Cn has been considered. However, not much progress has been done. In [2]
and [9], it is shown that if C ∈ Cn is primitive, then its exponent is either n − 1, ⌊n/2⌋,
⌊n/2⌋−1 or does not exceed ⌊n/3⌋+1. The matrices with exponents n−1, ⌊n/2⌋, ⌊n/2⌋−1
are also characterized.

Based on numerous numerical experiments, we state the following conjecture:

Conjecture 1 Given a positive integer n, let c be the smallest positive integer such that
⌊ n

c+1
⌋ + c > ⌊n

c
⌋. If C ∈ Cn, then

exp(C) =

⌊

n

j

⌋

+ k, k = −1, 0, 1, ..., j − 2 (1)

for some j ∈ {1, 2, ..., c − 1} or exp(C) ≤ ⌊n/c⌋ + c − 2. Moreover, there exist matrices
in Cn attaining all the exponents in the interval [1, ⌊n/c⌋ + c − 2].
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The previous conjecture would explain the gaps in the set of exponents attained by
primitive matrices in Cn for a given n.

In order to prove this conjecture, it is relevant to study the set of exponents attained
by n-by-n boolean primitive circulant matrices whose generating vector has exactly r
nonzero entries. We denote this set by Cn,r. In particular, we find important to give an
answer to the following question: Given two positive integers n and r, where 2 ≤ r ≤ n,
find the maximum exponent attained by matrices in Cn,r and give matrices attaining such
exponent. In this paper we solve this question.

Note that matrices in Cn,r are r-regular, that is, the number of nonzero entries in
each row and each column of the matrix is exactly r. Therefore, the problem we study in
this paper is also connected to the problem of finding the exponent attained by boolean
r-regular primitive matrices, which was considered in [1].

Our problem can also be stated in terms of Cayley digraphs.
A boolean primitive circulant matrix can be seen as a Cayley digraph on a cyclic

group. A digraph D is called primitive if there exists a positive integer k such that for
each ordered pair a, b of vertices there is a directed walk from a to b of length k in D.
The smallest such integer k is called the exponent of the primitive digraph D. Thus,
our problem is equivalent to finding the maximum exponent attained by primitive Cayley
digraphs on a cyclic group whose vertices have outdegree r, and giving digraphs attaining
such exponents.

In this paper we use techniques from Additive Number Theory to solve our problem.
We can restate our question in Number Theory terms in the following way: Let n be a
positive integer and let S be a nonempty subset of Zn. The set S is said to be a basis for
Zn if there exists a positive integer k such that the sumset kS = S + · · ·+ S = Zn, where
the sum is computed modulo n. The smallest such k is called the order of S. As we will
show later on, the problem we study in this paper can also be stated in the following way:
Determine the maximum order of bases for Zn with fixed cardinality r and give bases of
such order.

The main result in this paper is given in Section 3. There we prove: Let n and r be
two positive integers such that 2 ≤ r ≤ n. Let m0 = 1 and let {m1, ..., mt} be the set of
proper divisors of n smaller than r − 1. Then,

max{exp(C) : C ∈ Cn,r} = max

{⌈

n − mi

(⌈r/mi⌉ − 1)mi

⌉

, i = 0, 1, ..., t

}

.

2 Results from Additive Number Theory

In this section, we present some results from Additive Number Theory that will be useful
to solve our problem in terms of basis for finite cyclic subgroups.

Let S1, S2, ..., Sk be nonempty subsets of Zn. We define the sumset

S1 + S2 + ... + Sk = {a1 + a2 + ... + ak : ai ∈ Si, i = 1, ..., k},
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where the sum is computed modulo n. If S is a subset of Zn and Si = S for i = 1, ..., k,
then we denote the sumset S1 + ... + Sk by kS . Thus, the k-fold sumset kS is the set of
all sums of k elements of S, with repetitions allowed.

If S ⊆ Zn is a basis for Zn, we denote by order(S) the order of S. In general, we say
that S is a basis for Zn if kS = Zn for some positive integer k.

Definition 2.1 Let A ⊆ Zn be nonempty. We call the stabilizer H(A) of A the set given
by

H(A) := {h ∈ Zn : h + A = A}.

The next lemma gives some useful properties of the stabilizer H(A) of a given non-
empty set A ⊆ Zn.

Lemma 2.2 Let A ⊆ Zn be nonempty. Then,

i) H(A) is an additive subgroup of Zn;

ii) A is a union of cosets of H(A);

iii) H(kA) ⊆ H((k + 1)A), for all k ≥ 1.

iv) if 0 ∈ A, H(A) ⊆ A;

Proof. i) Let h1, h2 ∈ H(A). Let us show that h1 + h2 ∈ H(A). Since h2 ∈ H(A),

h1 + h2 + A = h1 + A.

Similarly, since h1 ∈ H(A),
h1 + A = A

and the result follows.
ii) First we note that if a ∈ A then, by the definition of H(A), a + H(A) ⊆ A. Thus,

the union of cosets of H(A) of the form a+H(A), with a ∈ A, is a subset of A. Conversely,
if a ∈ A then a ∈ a + H(A). Thus, A is contained in the union of the cosets of H(A) of
the form a + H(A) with a ∈ A.

iii) Let h ∈ H(kA). Then, h+kA = kA, which implies that h+(k+1)A = (h+kA)+
A = kA + A = (k + 1)A and the result follows.

iv) Let h ∈ H(A). Then, h + A = A. In particular, h + 0 = h ∈ A.
The next result is an immediate consequence of ii) in Lemma 2.2. We denote by |M |

the cardinality of the set M .

Corollary 2.3 Let A ⊆ Zn be nonempty. Then |H(A)| divides |A|.

Next we show that the order is invariant under addition of a constant to a basis for
Zn.
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Lemma 2.4 Let S1 and S2 be two subsets of Zn. Suppose that S1 = s+S2, where s ∈ Zn.
Then, S1 is a basis for Zn if and only if S2 is a basis for Zn. Moreover, if S1 is a basis
for Zn, then order(S1) = order(S2).

Proof. Since
kS1 = (ks) + (kS2),

we have
|kS1| = |kS2| for all k ≥ 1,

and the result follows.
The following results give a lower and an upper bound for the cardinality of a k-fold

sumset kS. The first result is a version of Kneser’s Theorem for finite abelian groups.

Theorem 2.5 (Kneser’s theorem) [6] Let S ⊆ Zn be nonempty. Let Hk = H(kS) be
the stabilizer of kS, k ≥ 1. Then,

|kS| ≥ k|S + Hk| − (k − 1)|Hk|.

Theorem 2.6 [6] Let k ≥ 2. Let S ⊆ Zn and r = |S|. Then,

|kS| ≤

(

k + r − 1

k

)

.

3 Maximum exponent attained by matrices in Cn,r.

Let C ∈ Cn and let S ⊆ Zn be the set of positions of the nonzero entries in the generating
vector of C. We will show that S is a basis for Zn if and only if C is primitive. Moreover,
if C is primitive, then the exponent of C is the order of S. Thus, we show that the study
of the maximum exponent attained by matrices in Cn,r is equivalent to the study of the
maximum order of bases for Zn with cardinality r.

The notation C(:, j) and C(i, :) denote the j-th column and the i-th row of the matrix
C, respectively.

Lemma 3.1 Let C ∈ Cn. Let S ⊆ Zn be the set of positions of the nonzero entries in the
generating vector of C. Then, for k ≥ 1, kS is the set of positions of the nonzero entries
in the generating vector of Ck.

Proof. The proof is by induction on k. If k = 1 the result is trivially true. Now suppose
that the result is true for some k ≥ 1, that is,

Ck(0, j) 6= 0 if and only if j ∈ kS.

Suppose that S = {j0, ..., jr−1} and kS = {b1, ..., bt}. Note that Ck+1(0, j) = Ck(0, :
)C(:, j) 6= 0 if and only if C(bi, j) 6= 0 for some i = 1, .., t. Also, note that, since C is
circulant, the positions of the nonzero entries in the bi-th row of C are given by j0 + bi

(mod n), . . . , jr−1+bi (mod n). Then, the nonzero entries in the generating vector of Ck+1

are in the positions corresponding to the elements in (k + 1)S.
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Theorem 3.2 Let C ∈ Cn and let S ⊆ Zn be the set of positions of the nonzero entries
in the generating vector of C. Then, S is a basis for Zn if and only if C is primitive.
Moreover, if C is primitive, then

exp(C) = order(S).

Proof. From Lemma 3.1, the generating vector of Ck is positive if and only if S is a
basis of order k for Zn. Now the result follows taking into account that the generating
vector of Ck is positive if and only if Ck is positive, as Ck is also a circulant matrix.

Next, given n and r ∈ {2, . . . , n}, we determine the maximum order of bases for Zn

with constant cardinality r. We also give subsets of Zn with such an order. Since we
are only interested in the order of the bases for Zn, based on Lemma 2.4, from now
on we exclusively consider bases S such that 0 ∈ S. In particular, notice that if S =
{0, j1, ..., jr−1}, then, the set n−S and the sets ji −S, i = 1, ..., r− 1, contain 0 and have
the same order as S.

Let us denote by Sn,r the set of bases for Zn that contain 0 and have cardinality r,
with 2 ≤ r ≤ n. Note that for each pair (n, r), Sn,r is nonempty. Clearly, if n = r and
S ∈ Sn,r, then S = Zn and order(S) = 1.

First we define the m-representation of a basis S for Zn, where m is a divisor of n
smaller than n or m = 0. This representation will allow us to study the structure of a
basis S and will facilitate the computation of its order.

Definition 3.3 Let n be a positive integer and m < n be a divisor of n. Then,

Zn = 〈m〉 ∪ (1 + 〈m〉) ∪ ... ∪ (m − 1 + 〈m〉),

where 〈m〉 denotes the cyclic subgroup of Zn generated by m. Let S ⊆ Zn be nonempty.
Let us denote Si = S ∩ (i + 〈m〉). Then, we call the set

{S0, S1, ..., Sm−1},

the m-representation of S, where some Si can be the empty set. We also define the 0-
representation of S = {j0, j1, ..., jr−1} as the set {{j0}, {j1}, ..., {jr−1}}.

We denote by fm(S) the number of subsets Si in the m-representation of S which are
nonempty.

Note that f0(S) = |S| and f1(S) = 1. Moreover, if S is a basis for Zn, taking into
account Lemma 1.1, fm(S) ≥ 2 for all proper divisors m of n and for m = 0. By a proper
divisor of a positive integer n we mean any positive integer divisor of n larger than 1 and
smaller than n. For convenience, we define fn(S) = f0(S).

The next lemma follows in a straightforward way from the previous observation and
the definition of m-representation.

Lemma 3.4 Let S ∈ Sn,r and m < n be a divisor of n. Then, fn/m(S) ≥ max {2, ⌈r/m⌉}.
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Consider a basis S ∈ Sn,r, where r < n. In what follows we denote by H the stabilizer
H(kS) 6= Zn such that if H(kS) is strictly contained in H(k′S) then H(k′S) = k′S = Zn.
Notice that if h is such that H(hS) = H , then, because of iv) in Lemma 2.2, H(kS) = H
for all k ≥ h such that |kS| < n.

Lemma 3.5 Let S ∈ Sn,r, r < n. Assume that m is the generator of H. Then,

order(S) ≤

⌈

n − |H|

(fm(S) − 1)|H|

⌉

.

Proof. Because of Theorem 2.5, we get

|kS| ≥ k|S + H| − (k − 1)|H|, for all k such that H(kS) = H.

Notice that |S + H| = fm(S)|H|. Thus,

|kS| ≥ k(fm(S)|H| − |H|) + |H|.

By considering k(fm(S)|H| − |H|) + |H| ≥ n we get the result.
An immediate corollary of the previous lemma can be obtained for bases S for Zn such

that H = H(S).

Corollary 3.6 Let S ∈ Sn,r, r < n. Assume that H = H(S) and let d = |H(S)|. Then,

order(S) ≤

⌈

n − d

r − d

⌉

.

Proof. It is an immediate consequence of Lemma 3.5 given that fm(S)|H| = |S| when
H = H(S) = 〈m〉.

Note that, it follows from the previous corollary that if n is prime, then order(S) ≤
⌈

n−1

r−1

⌉

for all S ∈ Sn,r, r < n, as H = H(S) = {0}.
The previous results can be used to determine an upper bound for the order of bases

for Zn containing 0, with given cardinality.

Theorem 3.7 Let n and r be two positive integers such that 2 ≤ r ≤ n. Let m0 = 1 and
{m1, ..., mt} be the set of proper divisors of n smaller than r − 1, which may be empty.
Let S ∈ Sn,r. Then,

order(S) ≤ max

{⌈

n − mi

(⌈r/mi⌉ − 1)mi

⌉

, i ∈ {0, 1, ..., t}

}

.

Proof. Clearly, if r = n, the left side of the inequality is one. Now suppose that r < n.
Let h = |H|. Note that h divides n and, by Lemma 3.4, the n/h-representation of S has
at least two subsets. Therefore, by Lemma 3.5, order(S) ≤

⌈

n−h
h

⌉

. Notice that

⌈

n − h

h

⌉

≤

⌈

n − 1

r − 1

⌉

, for all h ≥ r − 1.
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Thus, if the smallest proper divisor of n is larger than or equal to r−1, since h ≥ r−1,
the result follows.

If h = mi for some i ∈ {0, 1, ..., t}, then by Lemma 3.4 the n/h-representation of S
has at least ⌈r/h⌉ subsets and therefore, by Lemma 3.5,

order(S) ≤

⌈

n − mi

(⌈r/mi⌉ − 1)mi

⌉

.

and the result follows.
Next we show that the upper bound for the set of exponents of matrices in Sn,r given

by Theorem 3.7 is, in fact, a maximum.

Lemma 3.8 Let n and r be positive integers such that 2 ≤ r ≤ n. Let S = {0, 1, ..., r −
1} ⊆ Zn. Then, order(S) =

⌈

n−1

r−1

⌉

.

Proof. Notice that
kS = {0, 1, ..., k(r − 1)},

and |kS| ≥ n if and only if k(r − 1) + 1 ≥ n, which implies the result.

Lemma 3.9 Let n and r be positive integers such that 2 ≤ r ≤ n. Suppose that n has a
proper divisor m smaller than r − 1. Moreover, suppose that m ≥ 3 or both m = 2 and
r is even. Let t := ⌈r/m⌉ and r = tq + p for some positive integers q and p such that
0 ≤ p < t. Let

S =

p−1
⋃

i=0

{i, n/m + i, ..., qn/m + i} ∪
t−1
⋃

i=p

{i, n/m + i, ..., (q − 1)n/m + i}).

where the first union is empty if p = 0. Then,

order(S) =

⌈

n − m

(⌈r/m⌉ − 1)m

⌉

.

Proof. Since t = ⌈r/m⌉ and m < r − 1, then t ≥ 2 and

r > m(t − 1). (2)

Taking this into account and considering that r = tq + p, we deduce that

q =
r − p

t
>

m(t − 1)

t
−

p

t
= m −

m + p

t
.

Observe that, since p < t and t ≥ 2, then

m + p

t
<

m + t

t
≤ 1 +

m

2
.
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Therefore,

q ≥ m −
m

2
=

m

2
. (3)

Let us denote
Si = {i, n/m + i, ..., qn/m + i}

for i = 0, 1, ..., p − 1 and

S̃j = {j, n/m + j, ..., (q − 1)n/m + j})

for j = p, p + 1, ..., t − 1.
Notice that

Si + Sj = {i + j, i + j + n/m, ..., i + j + 2qn/m} = i + j + 〈n/m〉, (4)

where the last equality follows because, from (3), 2qn/m ≥ n.
Analogously,

Si + S̃j = {i + j, i + j + n/m, ..., i + j + (2q − 1)n/m} = i + j + 〈n/m〉, (5)

where the last equality follows because, from (3), (2q − 1)n/m ≥ (m − 1)n/m.
Also,

S̃i + S̃j = {i + j, i + j + n/m, ..., i + j + (2q − 2)n/m}.

In this case, (2q − 2)n/m ≥ (m − 2)n/m and we need to consider two cases:

• Case 1: Suppose that (2q − 2)n/m > (m − 2)n/m. Then, S̃i + S̃j = i + j + 〈n/m〉.
This fact together with (4) and (5) imply that H(2S) = 〈n/m〉 and therefore,

kS =
kt−k
⋃

i=0

(i + 〈n/m〉), for k ≥ 2,

or, in other words, order(S) = order{0, 1, ..., t − 1} in Zn/m, which, from Lemma
3.8, is

⌈

n/m − 1

t − 1

⌉

.

• Case 2: Suppose that (2q − 2)n/m = (m − 2)n/m. In this case, q = m/2, which
implies that m is even. Next we show that this case cannot happen under the
hypothesis of the theorem.

Notice that

t =
⌈ r

m

⌉

=

⌈

t

2
+

p

m

⌉

.

Therefore,

t − 1 <
t

2
+

p

m
≤ t,
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which implies, as p < t,

m

(

t

2
− 1

)

< p ≤ min

{

t − 1,
mt

2

}

. (6)

Taking into account that p < t, we get

m

(

t

2
− 1

)

< t.

Thus,

t <
2m

m − 2
, if m > 2. (7)

If m ≥ 6, then 2 < 2m
m−2

≤ 3. Therefore, for m ≥ 6, t = 2. Also, from (6), p = 1,
which implies that r = m + 1. But this is impossible since m < r − 1.

If m = 4, from (7) we deduce that t = 2 or 3. If t = 3, from (6), we get p > 2,
which is impossible since p < t. If t = 2, from (6), we get p = 1, and then r = 5,
which contradicts the fact that m < r − 1 again.

Finally, if m = 2, from (6) we deduce that p = t − 1 and, hence, r = 2t − 1. But
this contradicts the fact that r is even when m = 2.

The next theorem gives the main result in this paper.

Theorem 3.10 Let n and r be two positive integers such that 2 ≤ r ≤ n. Let m0 = 1
and let {m1, ..., mt} be the set of proper divisors of n smaller than r − 1. Then,

max{order(S) : S ∈ Sn,r} = max

{⌈

n − mi

(⌈r/mi⌉ − 1)mi

⌉

, i = 0, 1, ..., t

}

.

Proof. By Theorem 3.7,

max{order(S) : S ∈ Sn,r} ≤ max

{⌈

n − mi

(⌈r/mi⌉ − 1)mi

⌉

, i = 0, 1, ..., t

}

.

Note that, if n is even and r is odd, then
⌈

n − 1

r − 1

⌉

≥

⌈

n − 2

(⌈r/2⌉ − 1)2

⌉

.

Taking into account this observation, the result follows either from Lemma 3.8 or Lemma
3.9.

The next corollary is a consequence of Theorem 3.10.

Corollary 3.11 Let n, r1, and r2 be positive integers such that 2 ≤ r1 < r2 ≤ n. Then,

max{order(S) : S ∈ Sn,r1
} ≥ max{order(S) : S ∈ Sn,r2

}.
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Proof. Let m0 = 1, and let {m1, ..., mt1} and {m1, ..., mt1 , .., mt2} be, respectively, the
sets of proper divisors of n smaller than r1 − 1 and r2 − 1. Notice that, for i = 0, 1, ..., t1,

⌈

n − mi

(⌈r1/mi⌉ − 1)mi

⌉

≥

⌈

n − mi

(⌈r2/mi⌉ − 1)mi

⌉

.

Also, if t2 > t1, for any i such that t1 < i ≤ t2, since mi ≥ r1 − 1 and ⌈r2/mi⌉ ≥ 2,

⌈

n − 1

r1 − 1

⌉

≥

⌈

n − mi

(⌈r2/mi⌉ − 1)mi

⌉

.

Taking into account these observations, the result follows from Theorem 3.10.
Next we present some particular cases of Theorem 3.10 by considering several values

for r.

Corollary 3.12 For n ≥ 2,

max{order(S) : S ∈ Sn,2} = n − 1.

For n ≥ 3,

max{order(S) : S ∈ Sn,3} =

⌈

n − 1

2

⌉

.

Proof. Since there are not proper divisors of n smaller than r − 1 in both cases, the
result follows in a straightforward way from Theorem 3.10. Moreover, by Lemma 3.8 sets
attaining the maximum order in Sn,2 and Sn,3, respectively, are {0, 1} and {0, 1, 2}.

Corollary 3.13 For n ≥ 4,

max{order(S) : S ∈ Sn,4} =

{ ⌈

n−1

3

⌉

if n 6= 0 (mod 2)
⌈

n−2

2

⌉

if n ≡ 0 (mod 2).

Proof. Note that 2 is the only possible positive proper divisor of n smaller than r − 1.
Applying Theorem 3.10 and taking into account that

⌈

n − 1

3

⌉

≤

⌈

n − 2

2

⌉

, for all n ≥ 4

the result follows. By Lemma 3.8, a set attaining the maximum order when n is odd
is {0, 1, 2, 3}. By Lemma 3.9, a set attaining the maximum exponent when n is even is
{0, 1, n/2, 1 + n/2}.

Corollary 3.14 For n ≥ 5,

max{order(S) : S ∈ Sn,5} =

{ ⌈

n−1

4

⌉

if n 6= 0 (mod 3) or n = 6
⌈

n−3

3

⌉

if n ≡ 0 (mod 3), n ≥ 9.
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Proof. Note that 2 and 3 are the only possible proper divisors of n smaller than r− 1.
Applying Theorem 3.10 and taking into account that

⌈

n − 2

4

⌉

≤

⌈

n − 1

4

⌉

, for all n,

and
⌈

n − 1

4

⌉

≤

⌈

n − 3

3

⌉

if and only if n ≥ 7,

the result follows. By Lemma 3.8, a set attaining the maximum order when n 6= 0 (mod
3) or n = 6 is {0, 1, 2, 3, 4}. By Lemma 3.9, a set attaining the maximum exponent when
n ≡ 0 (mod 3) is {0, 1, n/3, 1 + n/3, 2n/3}.

Regarding a lower bound for the set of exponents of Sn,r, based on Theorem 2.6, we
get the following result.

Corollary 3.15 Let k ≥ 2. Let S ⊆ Zn for some positive integer n. Let r = |S|. Then,

min{order(S) : S ∈ Sn,r} ≥ min

{

k :
(k + r − 1)...(k + 2)(k + 1)

(r − 1)!
≥ n

}

.

Next we give a new proof for a well-known result.

Corollary 3.16 Let S be a basis for Zn. Then, order(S) is either n − 1 or does not
exceed

⌊

n
2

⌋

.

Proof. By Corollary 3.12,

max{order(S) : S ⊆ Sn,2} = n − 1.

From Corollary 3.15,

min{order(S) : S ∈ Sn,2} ≥ min {k : k + 1 ≥ n} = n − 1.

Therefore, if S ⊆ Sn,2, order(S) = n − 1.
Moreover, from Corollary 3.12,

max{order(S) : S ⊆ Sn,3} =
⌊n

2

⌋

.

Taking into account Corollary 3.11, the result follows.
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