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Abstract

In this work we consider weighted lattice paths in the quaplaneN, x Ny. The
steps are given bym,n) — (m — 1,n), (m,n) — (m,n — 1) and are weighted as
follows: (m,n) — (m — 1,n) by m/(m + n) and stegm,n) — (m,n — 1) by n/(m +
n). The considered lattice paths are absorbed at lines =/t — s/t with ¢ € N and
s € Nyp. We provide explicit formulae for the sum of the weights ofhsatstarting at
(m,n), which are absorbed at a certain heighat linesy = x/t — s/t with ¢ € N and
s € Ny, using a generating functions approach. Furthermore tivesghted lattice paths
can be interpreted as probability distributions arisinghia context of P6lya-Eggenberger
urn models, more precisely, the lattice paths are samples mtthe well known sampling
without replacement urn. We provide limiting distributicesults for the underlying random
variable, obtaining a total of five phase changes.
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1 Introduction

1.1 Lattice paths

LetS C Ny x N, denote a set of lattice points in the quarter pfankle consider lattice paths
with steps(m,n) — (m — 1,n) and (m,n) — (m,n — 1), starting at(m,n) € S. The
steps are weighted as follows: step,n) — (m — 1,n) is weighted bym/(m + n) and step
(m,n) — (m,n — 1) is weighted byn/(m + n). We are interested in weighted lattice paths
starting atim,n) € S, which touch or cross a certain lige= f(z) at heightk, with0 < k£ <n
andS = S, suitably defined. We consider the following types of lings= =/t — s/t, with

t € Nands € Ny. In this case we hav€ = {(m,n) | m > tn + s,n € Ny}. We are interested
in the sum of the weights of all paths starting(at,n) € S and touchingy = z/t — s/t at
heightk, with 0 < k£ < n, not touching the ling before, which we caldbsorption at liney.

From a probabilistic point of view we can interpret the dedinumbers as probability dis-
tributions of a random variabl¥,, ,,, which can be described as follows. A particle is located
at a certain pointm,n) € S, and moves randomly to the left or downwards with probab#it
depending on the actual position:

m n

P{(m,n) — (m—1,n)} = o P{(m,n) — (myn—1)} = e

The random variablé’,, ,, describes the heiglit at which a particle starting dtn, n) is ab-
sorbed, i.e., where it is touching or crossing a line- f(x) for the first time. The searched
probabilityP{Y;, ,, = k} is then equal to the sum of the weights of all lattice pattestisig at
(m, n), which touch or cross the ling= f(z) at heightt. We can also formulate this problem
in the context of certain urn models.

1.2 Polya-Eggenberger urn models and sampling without replacemnt

Polya-Eggenberger urn models are defined as follows. Wewgitéh an urn containing: white
balls andm black balls. The evolution of the urn occurs in discrete tsteps. At every step

a ball is chosen at random from the urn. The color of the baligpected and then the ball is
reinserted into the urn. According to the observed coloref ball, balls are added/removed
due to the following rules. If we have chosen a white ball, weipto the urna white balls and

b black balls, but if we have chosen a black ball, we put intouirec white balls andf black
balls. The values, b,c,d € Z are fixed integer values and the urn model is specified by the
2 x 2 ball replacement matri/ = (¢ 5).

One of the most fundamental urn models is the so-caladpling without replacement urn
associated with the ball replacement matkix= (' % ). In this urn model a parameter of
interest is the numbey,,, ,, of remaining white balls, after all black balls have been oged,
starting withn white andm black balls. The formal setting is as follows. We have a stptee
S, which is given byS := {(m,n) | m,n € Ny}. Further we have a set of absorbing states
A:={(0,n) | n € Ny}, where the evolution of the urn stops.

Throughout this work we use the notatidNs= {1,2,3,...} andN, := {0,1,2,...}.
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The problem of absorption at lingcan also be formulated in the context of Polya-Eggen-
berger urn models, where the state sp&cand the set of absorbing statgsare suitably
modified. E.g., fory = x/t — s/t we consider a sampling urn with ball replacement matrix
M = (' %), where the state space is given®y= {(m,n) | m > tn + s,n € Ny} and the
set of absorbing states by = {(tm + s, m) | m € Ny}.

(7.2) (8.2)

Figure 1: Sample paths for absorptiorvat 0, y = x andy = x/2.

1.3 Motivation and related work

The main motivation for this study is to combine the différareas of lattice path enumeration,
see, e.g., Mohanty [11], Banderier and Flajolet [2], anty&&ggenberger urn models, see
Flajolet et al. [3, 4], and Hwang et al. [6]. For the weightattite paths and absorbing lines
studied, we obtain closed formulee for the probability ofapson at height.. These explicit
results also allow a detailed study of the limiting behaviotithe random variablé’,, ,. We

can completely characterize the limit laws¥f, ,, and phase changes appearing depending on
the growth behaviour of: andn of the starting pointm, n).

The problem studied was also motivated by a combinatorialeggvolving card guessing,
which has been analyzed by Levasseur [10], Zagier [14],rikel§13] and Knopfmacher and
Prodinger [9]. One starts with a deck consistingrofed andn black cards. A guess is made as
to the color of the top card, after which itis revealed andaided. To maximize the number of
correct guesses one chooses the color corresponding todjoeity1 of cards remaining in the
deck. We will revisit this problem and provide limiting digtution results.

Our analysis is based on a generating function approach:ilv@esive functional equations
for suitably defined generating functions and use argumeinfs] in order to obtain explicit
formulee for the probability functions of the considereddam variables.

1.4 Results

Here we collect the exact and asymptotic results obtainetthéoweighted lattice paths studied.

Theorem 1. The probabilityP{Y,, ,, = k} that a particle starting atm, n) is absorbed on the
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liney = x/t — s/t at heightk is given by the following explicit formula:

((t—i—llzk—i-s) <(m+n—1n—_sk—(t+1)k) _ t(m+n—n1_—lj_—1(t+1)k)>

P{Yyn =k} = G :

form > tn+sand0 < k <n,witht € N, s € Nj,.

In the next theorem we state the obtained limiting distidmutesults ofY,, ,,, depending on
the growth ofm andn, for absorbing lineg = =/t — s/t, witht € N, s € N, fixed. We use
here the notation’, £, v for the weak convergence, i.e., the convergence in digtabuof a

sequence of random variabl&s to a random variabl&”. Furthermore we us#& £ 7 for the
equality in distribution of two random variablésand~.

Theorem 2. The limiting distribution behaviour df,, ,, is, form — oo and depending on the
growth ofn = n(m), described as follows.

1. n = o(m): The random variable,, ,, is asymptotically zero, as tends to infinity:

(m — s —tn) (T)
(m+n—s) (m:")

P{Y,n =0} =

2. n ~ pm,suchthat) < p < %: The random variablé’, , weakly converges to a discrete
random variableX,,

1—t t+ 1Dk k

P (+)+8) p ke N,

P{Yn,m = k} ~ ﬂ ( k (1 + p)(t—‘rl)k—i-s’

3. n~ 7, suchthath = 2 — 2 — (, withm = o(¢?): The scaled random variabl@%Ym,n

is asymptotically Gamma distributed with shape paramétend scale paramete#-™|

t212 m? V20t + 1) /rz ’ '

4. n ~ =, suchthan = % — 2 — ¢, with/ ~ p\/m andp > 0: The scaled random variable
LY. weakly converges to a random variabfgwith densityf,(z),
242,

t ¢ _
@P{—Ymm = x} ~ fo(z) = P ce I )<z < 1.
t tm 2nx(l+1t) (1 —x)2

5. n ~ 7, such thath = =

2 —{, with¢ — oo and? = o(y/m): The shifted and scaled
random variabley; (2

Y,.») is asymptotically Bvy distributed with parametqfr—,

P L (% —¥n) =2} v =L, o0

e\t V2r(t+ 1) 22
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2

%, such thatn ~ = — 2 — /, with ¢/ € N fixed: The shifted random variable

— § =Y, weakly converges to a discrete random variable

m s tt (t+1)k—¢—1\1¢
—_Z_ = ~—_— — > L.
P{t t Y k} (1+t)“f—€< k—1¢ )k k!

*IS S

Remark 1. The Lévy distribution is a stable distribution. It is a s@case of the Lévy skew
alpha-stable distribution, which in its general form does Imave an analytically expressible
probability density. Furthermore the moments of the Léistribution do not exist. Hence, for
n ~ m/t, such that = m/t — s/t — ¢, with { — oo and/ = o(y/m), the random variable
(m/t — Y,,.,)/¢* converges in distribution, but without convergence of amgger moment.
The occurrence of the Lévy distribution was some kind opsse for the authors. Note that in
the case of absorption at line= 0 one can always prove moment convergence [3, 6, 7].

2 Linesy=uz/t—s/t,witht e N, s € N

2.1 Recurrences

Let . (v) = >0 P{Ymn = k}v* denote the probability generating functionof ,,, where
Yinn = Yma(s,t). We usually drop the dependencelf,, on s andt for the sake of simplicity.
By using the basic decomposition of the paths accordingeaditst step and taking into account
the absorbing lines, the problem can be translated intodih@fing recurrence:

m

Om-1n(V) + Omn_1(v), form>tn+s n>1,

m-+n ’ m-4+n
Otmtsm(v) =0™, form >0, Omo(v) =1, form > s.

Pmn(v) =

This recurrence will be treated by introducing the normedifunctions

B0 = (" ") omalo)

m
We obtain

D0 (V) = Ppm1 (V) + Py a1 (v), form>tn+s>1, (1a)

Dus o (1) = ((t +1)m +s

m

)vm, for m > 0, Q,,0(v)=1, form>s. (1b)

2.2 Generating functions

We introduce the trivariate generating function

ZU'U § E (bmn mmtns’

n>0 m>tn+s

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R67 )



and alsa + 1 auxiliary functionsFj.(z, v) defined by

Fi(z,v) = Z <I>m+s+k,n(v)zm+s+k, for0 <k <t

n>0

Due to (1b) the generating functidhy(z, v) is already known:

FQ(Z, U) _ 8 Z (I)tn-i-s,n(v)zm — 58 Z ((t + 1)” + 8) (UZt)n~ (2)
n>0 n>0 n
Using (1a) we obtain the following functional equation ofz, u, v):
1 1 1
(1—zu— E)F(z,u,v) =(1- E)F@(Z,U) o Zu Fi(z,v). 3
k=1
It is advantageous to write equation (3) in the followingior
t
(zu'™ — ' + 1) F(z,u,v) = (1 —u")Fy(z,v) + Z uF Fy(z,0). 4)
k=1

Remark 2. The standard approach for solving equation (4) is the kemethod, we refer
to Prodinger [12] for a survey about this method, and the warkBanderier et al. [1, 2] for
applications. We will proceed in a slightly different waying a variation of the kernel method
based on arguments of Mireille Bousquet-Mélou [1].

2.3 Solving the functional equation

Equation (4) gives a simple relation between the unknowmtfans F'(z, v, v) and Fy(z, v),
1 < k < t. In order to solve (4) we consider the so-called charadtegsgjuation

P(z,u) = zu™ —u' + 1 =0.

By general considerations on the roots of the charactesgtiynomial P(z, u), as figured out
in [2], it follows that P(z, u) can be written in the following form:

P(z,u) = (zu = A (2))(u = Mi(2)) (1 = Aa(2)) - - - (u = Mi(2)),

with functionsi,(z), ..., Ar1(2) analytic around = 0. In the following we use the abbrevia-
tion \; := \;(2), 1 <7 <t + 1, where we do not express explicitly the dependencg; ai =.
Now we use the fact thaf(z, u, v) is an analytic function in a neighbourhoodof= 0. Thus
we can evaluaté’(z, u,v) and therefore equation (4) at= \(z),...,u = A\ (z) for zina

2A preliminary version of this work, where the kernel methaashbeen used, can be found on the authors
websites and the arXiv.
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neighbourhood of. SinceP(z, \;(z)) = 0, for 1 <1 < t, we obtain from (4) after plugging in
u=\;, 1 <i <t asystem of linear equations for the unknown functiofg(z, v), 1 < k < t:

t
(1= M) Fo(z,0) + > MF(z,v) =0,

k=1

(1= M) Fo(z,0) + > M Fi(z,0) = 0.

k=1

Applying Cramer’s rule we can write the solution of this laresystem of equations as a quotient
of determinants, with < k < t:

At ARTU TN AR AL A2 e a T

Ag o AETL 1 aE ZEHL LN A2 A3 - AL

A e L Y B Y T EX) (5)

A e ABTT O NE ARFL L g e A2 X
By Bousquet-Mélou’s [1] observation we only need to detivez, v). In the casé = ¢ we can
split thet-th row in the determinant appearing in the numerator of (&) abtain easily:

Fi(z,0) = (% v I)Fo(z,v). (6)

Now let N (z, u) denote the right-hand-side of the functional equation ¢4 yf(z, u, v):

t
N(zu) = (1 —u)Fo(z,v) + Y _ uFFi(z,v).
k=1
The quantityN(z, ) is a polynomial inu with leading coefficient;(z,v) — Fy(z,v), whose
zeros are exactly,, ..., \,. Hence, after normalization, we have a leading monomfiahnd
the normalized polynomial factors nicely into the followiexpression:

N(z)u) B t .
Ft(z,v) _FO(Z,’U) - ;!;[1( )\k)

Since
(—1)t+1)\1 M A = 1

which is a direct consequence of the factorizatio®P¢f, «), we get

(~1) (~1)
Fi(z,v) — Fp(z,v) = + 1) Fo(z,v) — Fo(z,v) = Fo(z,v
(= 0) = Fo(ev) = (3o +1) Bole) = Bz ) = 53— Fo(z.)
= —Mig1 Fo(z,v).
Hence we finally obtain:
t
F(Z,U,U) — N(’Z?u) . )\t+1F0<Z7U> Hk:l(u Ak) _ )\t+1 F(](Z,U). (7)

P(Z,U) - (ZU - )‘t+1) szl(u — )\k) B )‘t-‘rl — 2ZU
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2.4 Extracting coefficients

To obtain the required probabilities we only have to ext@mfficients of (7). By using the
definition of F'(z, u, v) we get

]P){Ym,n — k,} — (mi‘_n) [Zmum—tn—svk]F(Z’ u, ’U) — (min) [Ztn-i-s(uz)m—tn—s lc] 1F10_(27;:L)
m m At+1
. tn+s_ k140 %,V _ tn_ k >0 l vz
_ 1 [Z . ]F( ) _ 1 [Z . ]Z ((t+1)l+s)( t)l
(mn—l;n) )\ﬁ—ltn—s (mn—i;n) )\z_—ltn—s
_ ((t-l-l]zk-i-s) [Zt(n_k)] 1 |
(mn—i;n) )\H_I(Z)m—tn—s

To extract coefficients from this expression we considerctiaracteristic equatiom! ™! —
u' + 1 = 0. Multiplying with 2! and using the substitution:= zu leads then to the equation

2P =1 -\,

Of course,\ = \..1(2) is exactly the function implicitly defined by this equatiomhich sat-
isfies \;+1(0) = 1. To apply the Lagrange inversion formula we introduce thiessitutions
z:= 2z andw := X\ — 1 leading to the following equation, which is suitable forttha

Z=—(14+w)w.

Thus we obtain further:

((t-i-l)k-‘rs) . 1
_ _ k sn—ky__ -
P{Ym,n - k} - (mn—:n) [Z ] (1 + w)m—tn—s

((t+1}2k+s) 1

mey i W) (o)
_ () () m = s — ) !

[w" ]

(m;L—n) n—k (]_ + w)m—l—l—tk—s
_((t+1,zk+s)m—s—tn m—s+n—1—(t+1)k
GS) n—k n—k—1

(DRt m—s—tn m—s+n—(t+1)k
(™) m—s4+n—(t+1k n—k ’

m

form > tn + s and0 < k < n. Now we rewrite the probabilities obtained in the following
form, which is given in Theorem 1:

((t+1lzk+s) <(m+n—1n—_sk—(t+l)k) _ t(m+n—nl_—lj_—1(t+1)k)>

(") |

P{Y,.=k}=
form >tn+ s, with0 <k <n.
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Remark 3. Due to the simplicity of the result concerning the lines- x/t — s/t it is natural
to ask for a more direct derivation of the probabilities. e following we will sketch such an
alternative combinatorial derivation. It is well known ththe number of (unweighted) lattice
paths from(m, n) to the origin(0, 0) with unit steps to the left or downwards is given g§°").
We need the following result, which can be found in Mohantij[1

Lemma 1. The number of (unweighted) lattice paths from the origirisig n), which never
pass above the ling = z/t, is given by

m—tn+1<m+n+1) _ (m+n) _t<m+n)_
m+n+1 n n n—1
Now we obtain the probabilitieB{Y,, ,, = k} by fixing the last step and using Lemma 1:
P{Y,. =k} =P{(m,n) — (tk+s,k) | y= (z— s)/tis nottouchedl.
By fixing the last step we get further

P{Y,,, =k} =P{(m,n) — (tk+s+1,k)| y=(xr—s)/tisnottouched
x P{(tk + s+ 1,k) — (tk + s,k)}.

Furthermore,

#pand (m — th —s — 1,n— k) — (0,0) | y = =/t is not passed
#patnd (m, 1) — (0,0))

tk+s+1
X #tpand (th + s + 1,k) — (0,0)) - (t+1)k+s+1

((m+n—1—s—(t+1)k) _ t(m-l—n—l—s—(t-i—l)k)) ((t+1)k+s+l)

P{Y),, =k} =

B n—k n—k—1 k _ th+s+1
B (™ (t+1)k+s+1
B ((m-l—n—ln—_sk—(t-i-l)k) _ t(m+n—nl_—lj_—1(t+1)k)> ((t-i-l]zk:-i-s)

(")

2.5 Deriving the limiting distributions

The main results of this paper, which describe the limitingribution of Y, ,, depending on
the growth behaviour ofn. andn, are obtained from the probability mass function given in
Theorem 1 after a careful application of Stirling’s formula

n! =V2mn <%>n<1+0(%)) (8)

Note that one main difficulty is to “guess” the right normalimns required. Once the right
guess was made, we still had to carry out quite lengthy aniddeccalculations in order to
obtain the stated results. Since these calculations ayeleegthy, we will only present as an
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example the derivation of the local limit for the case- 0 andn ~ %, such that, = 7 — ¢,
with ¢ ~ py/m andp > 0. Other computations are carried out in a similar manner.

L \u+ha-ompm
S pt (I - Zmas I 5)
—P{ =z}

=Ty ~ _
tom n(t+ Da(l—x)  (1— )05 rvm
(1= Zp)erm

X
1+ 1Yym—py/m
——
t
N pt <(1 — \/mfl—:w)( <1+t )> y
ot + Dar (1 — )2 \(1—Z=)(1— Tiaa)
13 1 m m
x <<1—m>“ )T“—ﬂ( <1— ﬁ) )?
t t
- 7= (= Zaw)™
pt bt AU (Y
~ 5 e e(1+t2(1-=z)p (1+1)2
2r(t+ Dz (1 — 2)2 g—p?t,~ o
pt 2 2

2rx(14+1t) (1 — x)%

3 Limit laws for the card guessing game again revisited

One starts with a deck consisting@f red andn black cards. A guess is made as to the color
of the top card, after which it is revealed and discarded. Bximize the number of correct
guesses one chooses the color corresponding to the majbdéyds remaining in the deck. Let
Zm n denote the random variable counting the number of correzsggs starting wit red and

n black cards. The following result was obtained by Sulankd,[&nd also by Knopfmacher
and Prodinger [9].

Theorem 3(Sulanke; Knopfmacher and Prodingefhe exact distribution of the random vari-
able Z,, ,, counting the number of correct guesses in the card guessinegtarting withmn
red andn black cards is given as follows:

(") — (o)
")
Since no limit laws were derived in [9, 13], we complete thalgsis by stating the limit
laws for Z,,, ,,.

P{Z,, =k} = form <k <m+n.

Corollary 1. The random variableZ,, ,, counting the number of correct guesses in the card
guessing game starting with red andn black cards satisfies, fon — oo and depending on
the growth ofn = n(m), the following limit laws.
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e The regionn = o(m): the centered random variablg;, , = Z,, , — m is asymptotically

Zero:
n

+1

~ 1.

P{Z =0}=1-
’ m

e The regionn ~ pm, with0 < p < 1: the centered random variablg;, = Z,,, —mis
asymptotically geometrically distributed with parameter

P{Z},, =k}~ (1—p)p*, keN.

e The regionn = m — ¢, with m = o(¢?): the centered and scaled random variable
Z3n = (Zmn — m) is asymptotically exponential distributed:

%IP’{Z:M —zl~e z>0.

e The regionn = m — ¢, with/ ~ py/m andp > 0: the centered and scaled random
variable Z;, . = (Zmm,» — m)/+/m weakly converges t4, with densityf,, (z),

VmP{Z;, =z}~ (p+ 2x)e Pt 1 >0,

e The regionn = m — ¢, with ¢ = o(y/m): the centered and scaled random variable
70 = (Zmn —m)/y/m is asymptotically Rayleigh distributed:

VmP{Z;, =z}~ )

Proof sketch.The limiting distributions can be derived by an applicatadrstirling’s formula.
The calculations are again quite lengthy, so we leave ttedldétd the interested reader. [

Conclusion and Acknowledgement

We have analysed the distribution of weighted lattice patbsorbed at certain lines using a
generating function approach. Moreover, we have derivedihg distributions for the under-
lying random variable. A wealth of different distributioasises in the limit depending on the
starting position. In one case we obtained the Lévy digtidm, which implies that for this case
moment convergence does not hold. We address here thesiiigrepen problem of extending
the studies of the limiting distribution behaviour of thedtg of the absorption to other absorb-
ing lines, and also to other classes of weighted latticegathequivalently to other types of
Polya-Eggenberger urn models, such as the OK-Corral umheii8, 8] with ball replacement
matrix M = (%, 3').

The authors thank the referee for valuable remarks impgpthie presentation of this work.
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