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Abstract

In this paper, we characterize all possible h-vectors of 2-dimensional Buchsbaum
simplicial complexes.

1 Introduction

Given a class C of simplicial complexes, to characterize the face vectors of simplicial
complexes in C is one of central problems in combinatorics. In this paper, we study face
vectors of 2-dimensional Buchsbaum simplicial complexes.

We recall the basics of simplicial complexes. A simplicial complez A on [n] =
{1,2,...,n} is a collection of subsets of [n] satisfying that (i) {i} € A for all i € [n]
and (ii) if ' € A and G C F then G € A. An element F' of A is called a face of A
and maximal faces of A under inclusion are called facets of A. A simplicial complex is
said to be pure if all its facets have the same cardinality. Let fz(A) be the number of
faces F' € A with |F| = k + 1, where |F| is the cardinality of . The dimension of A is
dim A = max{k : fr(A) # 0}. The vector f(A) = (f-1(A), fo(A),..., fa—1(A)) is called
the f-vector (or face vector) of A, where d = dim A + 1 and where f_;(A) = 1. When
we study face vectors of simplicial complexes, it is sometimes convenient to consider h-
vectors. Recall that the h-vector h(A) = (ho(A), hi(A), ..., hgy(A)) of A is defined by the
relation Y0 fi1(A)(z — 1) = 3¢ hi(A)z*7. Thus knowing f(A) is equivalent to
knowing h(A). Let H;(A; K) be the reduced homology groups of A over a field K. The
numbers 3;(A) = dimy H;(A; K) are called the Betti numbers of A (over K). The link of
A with respect to F' € A is the simplicial complex Ika(F) ={G C [n]\ FF: GUF € A}.

In the study of face vectors of simplicial complexes, one of important classes of sim-
plicial complexes are Cohen—Macaulay complexes, which come from commutative algebra
theory. A (d — 1)-dimensional simplicial complex A is said to be Cohen-Macaulay if
for every face F' € A (including the empty face), Gi(lka(F)) = 0 for i # d — 1 — |F].
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Given positive integers a and d, there exists the unique representation of a, called the
d-th Macaulay representation of a, of the form

0= (“(d)d+ d) + (a(d —d1>_+1d - 1) R (a(k:); k:)

where k£ > 1 and where a(d) > --- > a(k) > 0. Define

) <a(d)dtrd1+ 1) N <a(d —d1)+d) - (a(k:)ktrkijt 1)

and 0/ = 0. The following classical result due to Stanley [St, Theorem 6] has played an
important role in face vector theory.

Theorem 1.1 (Stanley). A wvector (1,hy,..., hg) € Z4 is the h-vector of a (d — 1)-

dimensional Cohen—Macaulay complex if and only if hy > 0 and 0 < h;yq < hy> for
i=1,2,...,d—1.

There is another interesting class of simplicial complexes arising from commutative
algebra, called Buchsbaum complexes. A simplicial complex A is said to be Buchsbaum
if it is pure and lka(v) is Cohen-Macaulay for every vertex v of A. Thus the class of
Buchsbaum complexes contains the class of Cohen—Macaulay complexes. Buchsbaum
complexes are important since all triangulations of topological manifolds are Buchsbaum,
while most of them are not Cohen—-Macaulay. Several nice necessity conditions on h-
vectors of Buchsbaum complexes are known (e.g., [Sc, NSJ), and these necessity conditions
have been applied to study face vectors of triangulations of manifolds (e.g., [N, NS, Sw]).
On the other hand, the characterization of h-vectors of (d — 1)-dimensional Buchsbaum
complexes is a mysterious open problem. About this problem, the first non-trivial case
is d = 3 since every l-dimensional simplicial complexes (without isolated vertices) are
Buchsbaum. In 1995, Terai [T] proposed a conjecture on the characterization of h-vectors
of Buchsbaum complexes of a special type including all 2-dimensional connected Buchs-
baum complexes, and proved the necessity of the conjecture. The main result of this paper
is to prove the sufficiency of Terai’s conjecture for 2-dimensional Buchsbaum complexes.
As a consequence of this result, we obtain the following characterizations of h-vectors.

Theorem 1.2. A vector h = (1, hy, hy, h3) € Z* is the h-vector of a 2-dimensional con-
nected Buchsbaum complex if and only if the following conditions hold:

(1) 0 S hl;.

(ii) 0<hy < ("H);

(iii) —1hy < hy < hy.

Theorem 1.3. A vector h = (1, hy, ho, hs) € Z* is the h-vector of a 2-dimensional Buchs-
baum complez if and only if there exist a vector h' = (1,h}, hly, hy) € Z* satisfying the
conditions in Theorem 1.2 and an integer k > 0 such that h = b’ + (0, 3k, —3k, k).
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Note that one can always take k = L%(2h1 +3—+/8hy +8hy +9)| = max{a: ho+3a <
((hl_;’“)“)}, where |r] is the integer part of a real number r. Indeed, if (1, R}, hb, hY)
satisfies the conditions in Theorem 1.2 and if h,+3 < (h5_23+1) then (1, h}—3, hy,+3, h5—1)
again satisfies the conditions in Theorem 1.2.

This paper is organized as follows: In section 2, some techniques for constructions
of Buchsbaum complexes will be introduced. In section 3, we construct a Buchsbaum
complex with the desired h-vector. In section 4, we prove Theorem 1.3 and study h-
vectors of 2-dimensional Buchsbaum complexes with fixed Betti numbers.

2 Terai’s Conjecture

We recall Terai’s Conjecture [T, Conjecture 2.3] on h-vectors of Buchsbaum complexes of
a special type. We say that a vector (1,hy,...,hy) € Z* is an M-vector if hy > 0 and

0< hipr < B fori=1,2,...,d—1.

Conjecture 2.1 (Terai). A vector h = (1,hy,. .., hg) € Z3* is the h-vector of a (d — 1)-
dimensional Buchsbaum complex A such that Gi(A) = 0 for k£ < d — 3 if and only if the
following conditions hold:

(a) (1,h1,...,hq_1) is an M-vector;
(b) —Lhay < hg < h§TY.

Terai [T] proved the ‘only if’ part of the above conjecture. Thus the problem is to
construct a Buchsbaum complex A such that G;(A) = 0 for £ < d — 3 and h(A) = h.
Actually, if hy > 0 then any vector h € Z* satisfying (a) and (b) is an M-vector, so there
exists a Cohen—Macaulay complex A with h(A) = h by Stanley’s theorem. Thus it is
enough to consider the case when hy < 0.

From this viewpoint, Terai [T] and Hanano [H] constructed a class of 2-dimensional
Buchsbaum complexes A with h3(A) = —$he(A). Also, by using Hanano’s result, Terai
and Yoshida [T'Y1] proved the conjecture in the special case when d = 3 and hy = (h12+ 1).

In this paper, we prove Conjecture 2.1 when d = 3, which is equivalent to Theorem
1.2. Since we only need to consider the case when hs < 0, what we must prove is the
following statement.

Proposition 2.2. Let hy, ho and w be positive integers such that 3w < hy < (h12+1). There
exists a 2-dimensional connected Buchsbaum complex A such that h(A) = (1, hq, he, —w).

In the rest of this section, we introduce techniques to prove the above statement. We
first note the exact relations between f-vectors and h-vectors when d = 3.

ho=1, hi=fo—3, ha=fi—2fo+3, hg=fo— fi+ fo—1,
f_lzl, f0:h1+3, f1:h2+2h1+3, f2:h3+h2+h1+1.
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Lemma 2.3. Let A be a (d — 1)-dimensional Buchsbaum complex on [n]. Then hy(A) =
—éhd_l(A) if and only if, for every v € [n], Br(lka(v)) =0 for all k.

Proof. The statement follows from the next computation.

d
dhqg+hg—1 = Z )7k fooa (A)

( )4 fema(Ika (v )))

Note that the second equation follows from > . fr-2(lka(v)) = kfx—1(A), and, for the
third equation, we use the Buchsbaum property together with the well-known equation

im0 (=1 T B (ka(0) = o (D) fima(Tka (v). =

Definition 2.4. We say that a Buchsbaum complex A on [n] is link-acyclic if A satisfies
one of the conditions in Lemma 2.3.

Every 1-dimensional simplicial complex is identified with a simple graph, and, in this
special case, the Cohen—Macaulay property is equivalent to the connectedness. Thus a
2-dimensional pure simplicial complex is Buchsbaum if and only if its every vertex link is
a connected graph. Moreover, a 2-dimensional Buchsbaum complex is link-acyclic if and
only if its every vertex link is a tree. From this simple observation, it is easy to prove the
following statements.

Lemma 2.5. Let A be a 2-dimensional Buchsbaum complex on [n| and let Ay, ..., A, be
2-dimensional simplicial complexes whose vertex set is contained in [n].

(i) If AUAy is Buchsbaum for k =1,2,...,t then AUA{U---UA; is also Buchsbaum
forj=1,2,...,t.

(ii) If A is link-acyclic then any 2-dimensional Buchsbaum complex I' C A is also link-
acyclic.

Proof. (i) Without loss of generality we may assume j = t. Let ¥ = AUA;U---UA,;. Fix
v € [n]. What we must prove is lky(v) is connected. Let vy be a vertex of Ika (v). For every
vertex u of lky(v) there exists a k such that u is a vertex of lkaya, (v). By the assumption,
there exists a sequence u = ug, uy, ..., u, = vg such that {u;, u;41} € lkaya, (v) C lks(v)
fori=0,1,...,7 — 1. Hence lky(v) is connected.

(ii) For every vertex v of I, lkp(v) is connected and lkp(v) C lka(v). Since lka(v) is
a tree, lkp(v) is also a tree. O

For a collection C' = {F, Fy, ..., F}} of subsets of [n], we write (C) = (Fy, F5, ..., F})
for the simplicial complex generated by Fi, Fy, ..., F}.
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Lemma 2.6. Let A be a 2-dimensional Buchsbaum complexr and F = {a,b,c}. Set
'=AU(F).

(i) If AN(F) = ({a,b},{a,c},{b,c}) thenT is Buchsbaum and h(I') = h(A)+(0,0,0,1).
(ii) If An(F) = ({a,b},{a,c}) then T is Buchsbaum and h(T') = h(A) + (0,0, 1,0).
(iii) If AN(F) = ({a,b}) then I' is Buchsbaum and h(I') = h(A) + (0, 1,0,0).

3 Proof of Proposition 2.2

In this section, we prove Proposition 2.2. Let h = (1,hy, hy, —w) € Z* be the vector
satisfying w > 0 and 3w < hy < (}”2“).
Let = be the smallest integer & such that 3w < (k;rl) and y = min{hs, (“1)}. We
write
h=(1,z,y,—w)+ (0,7,6,0).
Then the vector (1,z,y, —w) again satisfies the conditions in Proposition 2.2 (that is,

3w <y < (x;rl)) Also, if 6 > 0 then y = (I'QH) The next lemma shows that, to prove

Proposition 2.2, it is enough to consider the vector (1,x,y, —w).

Lemma 3.1. If there exists a 2-dimensional connected Buchsbaum complex A such that
h(A) = (1,z,y, —w) then there ezists a 2-dimensional connected Buchsbaum complez T
such that h(I') = h.

Proof. We may assume that A is a simplicial complex on [z + 3] such that {1,2} € A.
For j =0,1,...,7, let

Aj=AU{{1,2,2+3+k}: k=1,2,...,5}),

where Ag = A. Since A;_1 N ({1,2,2+3+j}) = ({1,2}), Lemma 2.6(iii) says that A,
is a connected Buchsbaum complex with h(A,) = (1,2 + v, y, —w).

If 6 = 0 then A, satisfies the desired conditions. Suppose 6 > 0. Then y = (I'QH)
This means that A contains all 1-dimensional simplexes {i,j} C [z + 3]. Let

E={{i,j} c{3,4,...,a+7v+3}: {i,j} & [z +3], i #j}.

Then E is the set of 1-dimensional non-faces of A,. Also,

r+v+1 r+1
5=h2—ys( ) )—( ; )zlEl.

Choose distinct elements {i1, 71}, {i2, jo}, ..., {is,js} € E. Let
Fg :A,YU <{{1,’lk,]k} k= 1,2,,€}>

for ¢ =0,1,...,0, where I'g = A,. Since I'v—y N ({1,744, 7¢}) = ({1, 4}, {1, je}), it follows
from Lemma 2.6(ii) that I's is a connected Buchsbaum complex with h(T's) = (1, z+7,y+
5, —w) = h. O
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Let n = 4+ 3 and M = max{k : 3k < (”51)} Write n = 3p 4+ ¢ where p € Z and
q € {0,£1}. Then

1) =t -1)Bp—4), ifn=3p—1,

M=< ")) =ip-1)Bp-2), ifn=23p,

H(") -1t =2%(p-1)3p, ifn=3p+1.
Let b, ¢ and « be non-negative integers satisfying
(Lz,y,—w)=(1,n—3,3(M = b) +a,—(M —b) +¢)

and a € {0,1,2} (a is the remainder of y/3). Since (
the following conditions hold:

92”) < 3w < (x;rl) by the choice of x,

en>>5andp>2;
e 0<b+c<p-—2.

Note that n > 5 holds since 3w < (”2“) and w is positive. Also, b+ ¢ < p — 2 holds since
if b+c>p—1then 3w=3M-b—c) < (3).

We will construct a Buchsbaum complex A on [n] with A(A) = (1,z,y, —w). The
construction depends on the remainder of n/3, and will be given in subsections 3.1, 3.2
and 3.3. We explain the procedure of the construction. First, we construct a connected
Buchsbaum complex I' with the h-vector (1,n — 3,3(M — b),—(M — b)). Second, we
construct a Buchsbaum complex A with the h-vector (1,n — 3,3(M —b), —(M —b) + ¢)
by adding certain 2-dimensional simplexes to I' and by applying Lemma 2.6(i). Finally,

we construct a Buchsbaum complex with the desired h-vector by using Lemma 2.6(ii).

Remarks and Notations of subsections 3.1, 3.2 and 3.3. For an integer ¢ € Z we
write i for the integer in [n] such that i = i mod n. The constructions given in subsections
3.1, 3.2 and 3.3 are different, however, the proofs are similar. Thus we write details of
proofs in subsection 3.1 and sketch proofs in subsections 3.2 and 3.3.

3.1 Construction when n =3p — 1

Let
=({{i,T+i,2+4}:i=1,2,...,n})

and fori=1,2,...,nand 7 =1,2,...,p—2, let

A7) ={i,1+4,2+i+35{1+1+35,2+i+3j,1 +i}).

Let
L={A@,7):1=1,2,...,nand j =1,2,...,p— 2}
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and

Then it is easy to see that

o If A(7,5) # A(¢, j) then A(4,7) and A(7/, ') have no common facets.

e A=({{i,T+i2+i+3j}:i=1,2,...,nand j=0,1,...,p—2}).
Example 3.2. Consider the case when n = 8. Then p = 3 and
Y =({1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},{7,8,1},{8, 1, 2}).
Also,

A(1,1) = A(5, 1) = ({1,2,6},{5,6,2}), A(2,1)
A(3,1) = A(T,1) = ({3,4,8),{7.8,4}), A(4,1)

A(6,1) = ({2,3,7},{6,7,3}),
A(8,1) = ({4,5,1},{8,1,5}).

Lemma 3.3.
(i) (Hanano) A is Buchsbaum, link-acyclic and h(A) = (1,n — 3,3M, —M).
(i) For any subset M C L, U (Uaqjyem A(E, 7)) is Buchsbaum and link-acyclic.

Proof. The simplicial complex ¥ is Buchsbaum since its every vertex link is connected.
Also, for any A(i,j) € L, one can easily see that every vertex link of ¥ U A(4, j) is
connected. Then the Buchsbaum property of (i) and (ii) follows from Lemma 2.5(i).

To prove the link-acyclic property of (i) and (ii), what we must prove is that A is link-
acyclic by Lemma 2.5(ii). It is enough to prove h(A) = (1,n —3,3M,—M), equivalently
F(A) = (1,n, (5),2M +n — 2). This fact was shown in [H]. Thus we sketch the proof. It
is clear that fo(A) = n(p—1) = 2M +n —2. On the other hand, f;(A) = (5) holds since

A contains all 1-dimensional faces {i,7} C [n]. O

Recall that what we want to do is to construct a connected Buchsbaum complex with
the h-vector (1,n—3,3(M —b) +a, —(M —b) + ¢), where a € {0,1,2} and b+ ¢ < p—2.
Let

M =L\{A(L,1),A(L,2),...,A(L,0)}

and
r=xu{ (J a6
A(i,j)eM
For j=1,2,....,p—2, let
G;={1,2+4+35,3+ 35}
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Note that G; ¢ A. Define
Ap =T U(Gpy1) U (Ghy2) U -+ U (Gpyp)
for k=0,1,...,¢c, where Ay =T.

Lemma 3.4. Fork =0,1,...,c, the simplicial complex Ay, is connected, Buchsbaum and
h(Ag) = (1,n—3,3(M —b), —(M —b) + k).

Proof. The connectedness is obvious. By Lemma 3.3, I' is Buchsbaum and link-acyclic.
In particular, since fo(I') = fo(A) — 2b, the equation fo = hg + hy + hy + hs and the
link-acyclic property imply

~

h(I') = h(A) —(0,0,3b,—b) = (1,n — 3,3(M —b),—(M —b)).
Then, to complete the proof, by Lemma 2.6(i) it is enough to prove that
Apr N {(Goar) = {1,243+ k) }{1,3+3(b+k)},{2+3(b+k),3+3(b+k)})

for k = 1,2,...,c. It is clear that Gyip & Ag_1. Also, {1,3+3(b+ k)},{2+ 3(b+
k),3+30b+k)} e A(l,b+ k) C Ap_1. Finally, {1,2+3(0b+ k)} € A(n,b+ k) and
A(n,b+ k) CI' C Ap_1 by the construction of T O

Let A = A.. If « = 0 then A has the desired h-vector. We consider the case
a € {1,2}. Then b > 0 since 3(M —b) + a < (",?) = 3M. The next lemma and Lemma
2.6(ii) guarantee the existence of a 2-dimensional connected Buchsbaum complex with the
h-vector (1,z,y, —w) = (1,n —3,3(M —b) + o, —(M — b) + ¢).

Lemma 3.5.
(i) AN(G,) = ({1,2+3b}, {2+ 3b,3 + 3b}).
(i) (AU(G)) N {{1,2,343b}) = ({1,2},{1,3 + 3b}).

Proof. First, we claim that {1,3 4+ 3b},{2,2 + 3b},{2,3+ 3b} ¢ A. By Lemma 3.3, both
I’ and I' U A(1, b) are Buchsbaum and link-acyclic. Since A(1,b0) ¢ I', fo(I' U A(1,0)) =
f2(I') 4+ 2. Then the link-acyclic property shows h(I'UA(1, b)) = h(I") +(0,0,3, —1). This
fact implies fi(I'UA(1,b)) = f1(I') + 3. Thus A(1,b) contains three edges which are not
in I". Actually, A(1,0) has 5 edges

{1,2},{2+3b,3+ 3b},{1,3+ 30}, {2,2 + 3b},{2,3 + 3b}.

Since the first two edges are contained in Y, the latter three edges are not contained in
I'. Since h;(I") = hy(A) for i < 2, fi(I') = f1(A). Thus the set of edges in I' and that of
A are same. Hence {1,3 + 3b},{2,2 + 3b},{2,3 + 3b} € A as desired.

Then (i) holds since {1,2 4+ 3b} € A(n,b) C A, {2+ 3b,3 +3b} € ¥ C A and
{1,343b} ¢ A, and (ii) holds since {1,2} € ¥ C A, {1,3+3b} € (Gy) and {2,3+ 3b} ¢
AU (Gy). O
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Example 3.6. Again, consider the case when n = 8 as in Example 3.2. In this case,
M = 5. We construct a 2-dimensional Buchsbaum complex with the h-vector (1,n —
3,3(M —1)+2,—(M —1)) =(1,5,14, —4).

The simplicial complex Ay = I' = ¥ U A(2,1) U A(3,1) U A(4,1) is Buchsbaum
and h(I') = (1,5,12,—4). Now, G; = {1,5,6} and Ay U ({1,5,6}) has the h-vector
(1,5,13, —4). Finally, Ag U ({1,5,6},{1,2,6}) has the h-vector (1,5, 14, —4) as desired.

3.2 Construction when n = 3p

Let )
S={{ii+pi+2p}:i=1,2,...,p})
and, fori =1,2,...,nand j =1,2,...,p—1, let

A(i,j) = {i,i+pi+j+py{i+7+pi+7+2pi}).

Let
L={A@,7):i=1,2,...,nand j=1,2,...,p— 1}
and
A=xul |J AG)
A(i,5)EL
Note that

A=su{{iitpi+ti+pt:i=12...,nandj=1,2....p—1}.
The next lemma can be proved in the same way as in Lemma 3.3.
Lemma 3.7.
(i) (Hanano) A is Buchsbaum, link-acyclic and h(A) = (1,n — 3,3M, —M).
(i) For any subset M C L, U (Uaq jyem A(E, 7)) is Buchsbaum and link-acyclic.
Let M =L\ {A(1,1),A(1,2),...,A(1,b)} and

r=xu{ J AG)
A(i,j)EM

For j=1,2,...,p—2, let
Gi={1+p1+j+p1+j+2p}.
Note that G; ¢ A. Define
Ap =T U(Gpy1) U (Ghy2) U -+ U (Gpyp)
for k=0,1,...,¢c, where Ay =T.
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Lemma 3.8. For k =0,1,...,c, the simplicial complex A}, is connected, Buchsbaum and
h(Ag) = (1,n—3,3(M —b), —(M —b) + k).

The proof of the above lemma is the same as that of Lemma 3.4. (To prove that
Ag—1N{Gpik) is generated by three edges, use {1+p, 1+ (b+k)+p}, {1+ (b+k)+p, 1+
(b+Fk)+2p} e A(l,b+k)CTand {1+p, 14+ (b+k)+2p} € Al+p,b+k)CT))

Let A = A.. Then the next lemma and Lemma 2.6(ii) guarantee the existence of a
2-dimensional connected Buchsbaum complex with the h-vector (1,z,y,—w) = (1,n —
3,3(M —b) + a,—(M —b) + ¢).

Lemma 3.9.
(1) AN(G,) = ({1+p,1+b+2p}, {1 +b+p,1+b+2p}).
(i) (AUG)NHL1+p,14+b+pY) = ({1, 14+pL{1+p,1+b+p}).

Proof. By using Lemmas 3.7 and 3.8, one can prove f;(I' UA(1,0)) = fi(I') + 3 in the
same way as in the proof of Lemma 3.5. The complex A(1,b) has 5 edges

(L1+ph {1 +0+p, 140420} {1, 1+b+p}, {1, 1+b+2p}, {1 +p,1+b+p}.

Since the first two edges are contained in X C I, the latter three edges are not contained
in I". Since h;(I") = h;(A) for i < 2, the set of edges in I" and that of A are same. Hence
these three edges are not in A.

Then (i) holds since {1+p, 1+b+2p} € A(1+p,b) C A, {1+b+p, 1+b+2p} € X C A
and {1+p,14+b+p} & A, and (ii) holds since {1,1+p} € X C A, {1+p,1+b+p} € (Gy)
and {1,1+b+p} & AU (Gy). O

3.3 Construction when n =3p+1

Let

S={{i-(p-1).,5i+p@+1)}:i=12...,n}).
Fori=1,2,....,nand 7 =1,2,...,p— 2, let

and for i =1,2,...,p let

A(i,00) = ({i,i +p,i+2p}, {i +p.i +2p,i + 3p}).
Let
L={A@G,7):i=1,2,...,nand j=1,2,...,p—2} U{A(j,00) :i=1,2,...,p}

and

A=xul |J AG)

A(i,j)el
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Note that

EU< U A(z}j)) (1)

1<i<n, 1<j<p—2

={{i—j,ii+2p—j)}:i=1,2,....nand j=1,2,...,p—1}).
Lemma 3.10.
(i) A is Buchsbaum, link-acyclic, h(A) = (1,n — 3,3M,—M) and {p,n} & A.
(i) For any subset M C L, U (Uaqjyem A(E, 7)) is Buchsbaum and link-acyclic.

Proof. The simplicial complex ¥ is Buchsbaum since its every vertex link is connected.
Also, for any A(i,7) € L, aroutine computation shows that every vertex link of UA(4, j)
is connected. Then the Buchsbaum property of (i) and (ii) follows from Lemma 2.5(i).

To prove the link-acyclic property, it is enough to prove that A is link-acyclic by
Lemma 2.5(ii). We will show h(A) = (1,n—3,3M, —M), equivalently f(A) = (1,n, (5) -
1,2M +n —2). It is easy to see that fo(A) =n(p—1)+2p = 2M +n — 2. We will show
A= () -1,

We claim that A contains every {i,5} C [n] except for {p,n}. For any {i,j} C [n],
there exists a 1 < k < 2p—1such that j =i+ k ori = j + k. We may assume j =i + k.
If k£ # p then we have either {i,j} € ¥ or {i,7} € A(¢,j') for some 7, j" with j' # oo
by (1). On the other hand, for every 1 < i < n — 1, we have {i,7 + p} € A(i,00) for
some 7. Thus A contains every {i,j} C [n] such that {i,j} # {p,n}. Finally, since ¥
and any A(i,j) € £ with j # oo contain no elements of the form {i,i + p} and since
{p,n} ={n,nFp} & A(#,00) for i’ = 1,2,...,p, we have {p,n} & A as desired. O

Let M = £\ {A(1,1),A(1,2),...,A(1,b)} and

r=x»u U A(1, j)
A(i,7)eEM

For j=1,2,....p—2, let
Gy={1-j,1,2+p}.

Note that G; ¢ A. Define
Ap =T U (Gp1) U (Gpr2) U - U(Goyr)
for k=0,1,...,c, where Ag =

Lemma 3.11. For k = 0,1,...,c, the simplicial complex Ay is connected, Buchsbaum

and h(Ag) = (1,n —3,3(M = b),—(M —b) + k).
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The proof of the above lemma is the same as that of Lemma 3.4. (To prove A,_; N
(Gpyr) is generated by three edges, use {1 — (b+ k),1},{1,24+p} € A(1,b+ k) C ' and
{1-—(b+k),2+p} e A2+pb+k)CT.)

Let A = A.. We will construct a 2-dimensional connected Buchsbaum complex with
the h-vector (1,z,y, —w) = (1,n—3,3(M —b)+a, —(M —b)+c). If @ = 0 then A satisfies
the desired conditions. Suppose a > 0.

Case 1: If b= 0 then & = 1 and I' = A since 3M = ("52) —land y < ("52) Since

the set of edges in A and that of I' = A are same and since {p,n} & A, it follows that
AN {1l,p,n}y = ({1,p},{1,n}). By Lemma 2.6(ii), A U ({1,p,n}) satisfies the desired
conditions.

Case 2: Suppose b > 0. Then the next lemma and Lemma 2.6(ii) guarantee the
existence of a Buchsbaum complex with the desired properties.

Lemma 3.12.
(1) AN{(Gy) = {T—=0,2+p}. {1,2+p}).

(i) (AUG)N{T=0,1,1+(2p—-0)}) = ({1 -b1}{1-b1+(2p—b)}).

Proof. By using Lemmas 3.10 and 3.11, one can prove fi(I' UA(1,b)) = f1(I') + 3 in the
same way as in the proof of Lemma 3.5. The complex A(1,b) has 5 edges

(L24ph {T=b,14+Cp—b) {T=b,11 {1, 1+ (2p— b} {2+p. 1+ (2p—b)}.

Since the first two edges are contained in X C I, the latter three edges are not contained
in I'. Since the set of edges in I and that of A are same, these three edges are not in A.

Then (i) holds since {1 —5,2 + p} € A2+ p,b) C A, {1,2+p} € ¥ C A and
{1-0,1} € A, and (ii) holds since {1 —b,1} € (G}), {1 —=b,1+ (2p —b)} € ¥ C A and
{L1+2p—0)} € AU(Gp). O

4 Proof of Theorem 1.3 and open problems

To prove Theorem 1.3, we need the following easy fact: If A is the disjoint union of
2-dimensional simplicial complexes I" and I then

h(A) = h(T) + h(I") + (—1,3,-3,1).

Proof of Theorem 1.3. We first prove the ‘only if’ part. If the vectors (1, hy, ho, hg) and
(1, Ry, hi, hy) are M-vectors then (1, hy + b, ho + iy, hs+ hY) is also an M-vector. Thus, if
(1, hy, he, h3) and (1, b, hi, hY}) satisfy the conditions of Theorem 1.2 then (1, hy + A}, ho+
hy, hs + h%) satisfies the same conditions. Let A be a 2-dimensional Buchsbaum complex
with the connected components Ay, ..., Agyy. Since each A; is a 2-dimensional connected
Buchsbaum complex,

k+1 k+1 k+1
= <1,Zh1(A]~),Zh2 Zhg ) (0, 3k, =3k, k)
j=1 j=1
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satisfies the desired conditions.

Next, we prove the ‘if’ part. Suppose that h' = (1,h], h, h}) € Z* satisfies the
conditions of Theorem 1.2. Then there exists a 2-dimensional Buchsbaum complex A
with A(A) = h'. Let I' be the disjoint union of A and k copies of 2-dimensional simplexes.
Then I' is Buchsbaum and h(I') = b’ +(0, 3k, —3k, k) since the h-vector of a 2-dimensional
simplex is (1,0,0,0). O

It will be interesting to study a generalization of Theorems 1.2 and 1.3 for higher
dimensional Buchsbaum complexes. On the other hand, since properties of Buchsbaum
complexes heavily depend on their Betti numbers, it might be more natural to study h-
vectors of Buchsbaum complexes for fixed Betti numbers. The strongest known relation
between h-vectors and Betti numbers of Buchsbaum complexes is the result of Novik
and Swartz [NS, Theorems 3.5 and 4.3]. In the special case when A is a 2-dimensional
connected Buchsbaum complex, the result of Novik and Swartz says

o (1,h1(A),ha(A)) is an M-vector; ,
o ho(A) >3B31(A) and hg(A) + Bi(A) < (ha(A) — 35,(A)2. (2)

Note that h3(A)+ 51 (A) = F2(A) in this case. It was asked in [NS, Problem 7.10] if there
exist other restrictions on h-vectors of Buchsbaum complexes for fixed Betti numbers.
Recently, Terai and Yoshida [TY2, Corollary 5.1] proved that, for every (d—1)-dimensional
Buchsbaum complex A on [n], if d > 3 and ho(A)+-- -+ ha(A) > (hljd) —3hy +2 then A
is Cohen—Macaulay. This result of Terai and Yoshida gives a restriction on h-vectors and
Betti numbers of Buchsbaum complexes which does not follow from (2). For example, we
have

Proposition 4.1. There exist no 2-dimensional connected Buchsbaum complexes A such
that 51(A) =1, B2(A) =4 and h(A) = (1, 3,6, 3).

The conditions of Betti numbers and an h-vector in Proposition 4.1 satisfy (2). How-
ever, the vector h = (1, 3,6, 3) satisfies the assumption of the result of Terai and Yoshida

6
h0+h1—|—h2—|—h3:132 (3) —3X3—|—2,

and therefore any 2-dimensional connected Buchsbaum complex A with h(A) = h must
satisfy G1(A) = 0.

It seems likely that, to characterize h-vectors of Buchsbaum complexes for fixed Betti
numbers, we need further restrictions on h-vectors and Betti numbers. Here, we propose
the following problem.

Problem 4.2. Find a new inequality on h-vectors and Betti numbers of Buchsbaum
complexes which explain [TY2, Corollary 5.1].
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