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Abstract

Every n-vertex graph has two vertices with the same degree (if n ≥ 2). In
general, let rep(G) be the maximum multiplicity of a vertex degree in G. An easy
counting argument yields rep(G) ≥ n/(2d − 2s + 1), where d is the average degree
and s is the minimum degree of G. Equality can hold when 2d is an integer, and
the bound is approximately sharp in general, even when G is restricted to be a
tree, maximal outerplanar graph, planar triangulation, or claw-free graph. Among
large claw-free graphs, repetition number 2 is achievable, but if G is an n-vertex line
graph, then rep(G) ≥ 1

4n1/3. Among line graphs of trees, the minimum repetition

number is Θ(n1/2). For line graphs of maximal outerplanar graphs, trees with
perfect matchings, or triangulations with 2-factors, the lower bound is linear.

1 Introduction

A well-known elementary exercise states that every graph (no loops or multiedges) has
two vertices with the same degree. Motivated by this, we define the repetition number of
a graph G, written rep(G), to be the maximum multiplicity in the list of vertex degrees.

We study the minimum of rep(G) on various classes of n-vertex graphs. The maximum
is n whenever the class contains a regular graph. Some classes we study (trees, maximal
outerplanar graphs, planar triangulations) have no regular graphs, but they have nearly
regular graphs, allowing rep(G) to be as large as n − c for some constant c. Thus we
restrict our attention to minimizing rep(G).

Bounding rep(G) has structural consequences. With ∆(G) denoting the maximum
vertex degree in G, the pigeonhole principle yields rep(G) ≥ n/∆(G) (when G has no
isolated vertices). Equivalently, rep(G) ≤ k implies ∆(G) ≥ n/k. For triangle-free
graphs, this yields α(G) ≥ n/k, where α(G) is the independence number. Bollobás and
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Scott [4] answered a question of Erdős by proving that this lower bound is asympotically
sharp: for k ≥ 2, there is a triangle-free n-vertex graph G such that rep(G) ≤ k and
α(G) = (1 + o(1))n/k.

Another phrasing of the lower bound α(G) ≥ n/k is that there is no sequence of
triangle-free graphs (with Gn having n vertices) such that rep(Gn) ≤ k and the indepen-
dence number of Gn is o(n). However, Bollobás [3] showed that among K4-free graphs
with repetition number at most 5, there is a sequence with independence number o(n).

The structural consequences of making rep(G) small motivate studying lower bounds
on rep(G). By a simple counting argument, we show that rep(G) ≥ n/(2d− 2s+1) when
G has n vertices, average degree d, and minimum degree s. We prove that this is sharp
in general by proving that certain degree lists are graphic. By explicit constructions, the
bound remains sharp for trees, maximal outerplanar graphs, planar triangulations with
specified minimum degree, and certain claw-free graphs.

For line graphs, the lower bound can be improved, though the growth rate of the
minimum of rep(G) over n-vertex line graphs remains unknown. We prove a lower bound
of 1

4
n1/3 and conjecture that the truth is Θ(n1/2). For line graphs of trees, the minimum

is Θ(n1/2). For several other classes of line graphs, we show that the repetition number
is linear in the number of vertices, but the optimal coefficients are unknown.

2 General n-vertex graphs

We consider graphs having n vertices, average degree d, and minimum degree s. The
pigeonhole principle immediately yields rep(G) ≥ n/(∆(G)−s+1). More careful counting
yields a more useful lower bound.

Lemma 2.1 If G is an n-vertex graph with average degree d and minimum degree s, then
rep(G) ≥ dn/(2d − 2s + 1)e.

Proof. Let r = rep(G), and define a and b by n = ra + b with 1 ≤ b ≤ r. We obtain a
lower bound on the degree-sum dn. The r smallest terms in the degree list sum to at least
rs. The r next smallest terms sum to at least r(s + 1). Continuing this argument shows
that the degree-sum is at least the sum of r copies of each value from s through s+a− 1,
plus b copies of s+a. Summing these lower bounds yields dn ≥ ra(2s+a−1)/2+b(s+a).
Since

ra
2s + a − 1

2
+ b(s + a) = ns +

n

2
(a − 1) + b

a + 1

2
= ns +

n

2

(n

r
− 1
)

+
b(r − b)

2r
,

we obtain dn ≥ ns + (n/2)(n/r − 1), which simplifies to r ≥ n/(2d − 2s + 1). �

Before discussing the sharpness of Lemma 2.1 in general, we provide some explicit
constructions for sharpness. The kth power of a graph G is the graph Gk with vertex set
V (G) in which vertices are adjacent if the distance between them in G is at most k.
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Example 2.2 Choose a positive integer k; in this construction d = 2k. Start with
Ck

kp, which is 2k-regular. Group the vertices along the underlying cycle into sets of k

consecutive vertices. Identify each group with the k vertices at one end of a copy of P k
2k+1

to form G.
The vertex degrees in P k

2k+1 are k, . . . , 2k − 1, 2k, 2k − 1, . . . , k in order. The first
k vertices, when identified with a set S in Ck

kp, each gain k + 1 neighbors outside S in

V (Ck
kp). Hence the degrees of the vertices from one copy of P k

2k+1 are 2k + 1, . . . , 3k and
2k, 2k−1, . . . , k in the final construction. Each value from k through 3k occurs once. Since
this holds for each copy of P k

2k+1, the degrees are uniformly distributed, with average 2k,
minimum k, and rep(G) = n/(4k − 2k + 1).

If P k
kp is the “host graph” instead of Ck

kp, then the resulting graph is chordal (in fact,
a “k-tree”), and almost achieves equality in Lemma 2.1. �

The next construction achieves sharpness for more values of d but fewer values of n.

Example 2.3 Let Hp be the bipartite graph with vertex set {x1, . . . , xp} ∪ {y1, . . . , yp}
such that xi is adjacent to yj if and only if i + j > p. Note that xi and yi have degree i,
for 1 ≤ i ≤ p. This graph has sometimes been called the half-graph with 2p vertices.

Given n, d, s with n, s, 2d ∈ N, let r = n/(2d − 2s + 1). If r is an even integer and
n > 2d − s, then we build an n-vertex graph G with average degree d, minimum degree
s, and repetition number r. It must have r vertices of each degree from s through 2d− s,
and hence n ≥ 2d − s + 1 is necessary. Note also that n is even, since r is even.

Let F = (r/2)Hn/r; note that F has n vertices, with degrees 1 through 2d − 2s + 1,
equally distributed. We add to F an (s − 1)-regular graph J with V (J) = V (F ) and
E(J) ∩ E(F ) = ∅. Let V2i−1 and V2i denote the partite sets of the ith component of F .

Let V1, . . . , Vr correspond to the vertices in a copy of Kr. Ignore {V2i−1V2i : 1 ≤ i ≤
r/2}. Each of the remaining r − 2 perfect matchings in a 1-factorization of Kr provides
up to n/r disjoint perfect matchings on our vertex set by 1-factoring copies of Kn/r,n/r.
This yields a regular graph on V (F ) with any degree up to (r − 2)n/r.

We may also need edges within each Vj. Since |Vj| = 2d − 2s + 1 and 2d may be any
integer, |Vj| may be odd or even. Regular graphs with vertex set Vj may have even degree
(when 2d is even) or unrestricted degree (when 2d is odd), but in either case such graphs
have degree at most 2d − 2s.

By combining these two types of regular graphs, we can let J be a regular graph on
V (F ) with any degree up to n−n/r−1. Since n−n/r−1 ≥ (2d−s+1)−(2d−2s+1)−1 =
s−1, adding J can augment the degrees by the amount needed to construct a graph with
the desired degree list. This proves sharpness of Lemma 2.1 in this case. �

Example 2.3 does not consider odd r. Other explicit constructions can be given for
that case. We omit these because we prove next that sharpness examples always exist.
To extend the notion of sharpness when n is not a multiple of 2d− 2s+1, we seek graphs
whose degree-sum meets the refined lower bound in the counting argument for Lemma 2.1,
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including the term involving b. Say that a list of ar + b integers from s to s + a is packed
if it consists of r copies of each value from s to s + a − 1 and b copies of s + a (here
1 ≤ b ≤ r).

Showing that packed lists are graphic if they satisfy the obvious necessary conditions
shows that in some sense the simple counting argument of Lemma 2.1 is always sharp
when all graphs are allowed. We use a standard equivalent form of the Erdős–Gallai
conditions characterizing graphic lists. Let d1, . . . , dn be a list of nonnegative integers,
indexed in nonincreasing order. Erdős and Gallai [8] showed that d is the degree list of
some graph (no loops or multiple edges) if and only if d has even sum and satisfies

k
∑

i=1

di ≤ k(k − 1) +
n
∑

i=k+1

min{k, di} for 1 ≤ k ≤ n. (1)

We treat d as a partition and consider the Ferrers diagram with di dots in row i. Adding
1 for each term on the left in (1) converts the right side to a count of the first k columns
in the diagram. That is, the kth condition is equivalent to

∑k
i=1(di +1) ≤

∑k
i=1 d∗

i , where
d∗ is the conjugate partition, defined by d∗

i being the number of dots in the ith column of
the Ferrers diagram of d. Furthermore, if the inequalities hold for all k such that dk ≥ k,
then they hold for all k. The largest such k has been denoted `(d). We use the result in
this form.

Theorem 2.4 A packed list is graphic if and only if the sum is even and ar + b > s + a.

Proof. The conditions are obviously necessary, since the degree sum must be even and
the number of vertices must exceed the maximum degree. For sufficiency, we use the
conjugate form of the Erdős–Gallai conditions as described above. Note that since b ≤ r,
the hypothesis ra + b > s + a implies that r > 1 (except for the singleton list (0)). Let
n = ra + b.

Observe that in a packed list, successive terms differ by at most 1. In the conjugate,
they differ by r, except that the first s terms equal n. Let l = `(d), and compare dl and
d∗

l . If dl + 1 ≤ d∗
l , then the behavior of dk and d∗

k as k decreases implies that dk + 1 ≤ d∗
k

continues to hold. Even after d∗
k stabilizes (at n), the inequality still holds since d1 < n.

Hence it suffices to show that dl + 1 ≤ d∗
l . This will work except in one case.

By definition dl ≥ l, but also l ≥ dl+1 ≥ dl − 1. Hence dl ∈ {l, l + 1}. If dl = l + 1,
then dl+1 = l, and hence d∗

l = l + r. Since r > 1, we have dl + 1 ≤ d∗
l in this case.

Always d∗
l ≥ l, since otherwise dl < l. If dl = l and d∗

l > l, then again dl + 1 ≤ d∗
l .

This leaves the case dl = d∗
l = l, where the desired inequality fails by 1. If l = 1,

then r = 1, which is impossible. If l > 1, then we combine the inequalities for k = l
and k = l − 1. Since dl+1 < dl, we have dl−1 = dl since the list is packed. Now
dl−1 + dl + 2 = 2l + 2 ≤ 2l + r = d∗

l + d∗
l−1. Again each desired condition is a sum of

inequalities that do hold. �

Packed lists have no “gaps”; that is, successive terms differ by at most 1. Our study of
repetition number thus led to asking which gap-free lists are graphic. In [1], the authors

the electronic journal of combinatorics 16 (2009), #R7 4



prove that every gap-free list with largest term k, smallest term s, even sum, and length
at least k+

⌈

k+s
2s

⌉

is graphic. Furthermore, this is sharp. That result is not strong enough
to imply Theorem 2.4, which shows that a packed list with length at least k+1 is graphic.
The result of [1] is sharp even though its threshold length is larger, because its sharpness
examples have multiple copies of k and s but just one copy of each intermediate term.
Such lists are as far from packed as gap-free lists can get. The problem of determining
the multiplicities that enable a list to be graphic is studied in [5].

We next study whether Lemma 2.1 remains sharp within restricted families of graphs.
We show that it is asymptotically sharp for several natural families of sparse graphs.

Theorem 2.5 Among n-vertex graphs, the bound from Lemma 2.1 is asymptotically sharp
for trees, maximal outerplanar graphs, planar triangulations, and planar triangulations
with minimum degree 4 or minimum degree 5. The smallest repetition numbers in these
families are asymptotic to n/3, n/5, n/7, n/5, n/3, respectively.

Proof. Again let d and s denote the average and minimum degrees. When G is a
tree, d = (2n − 2)/n < 2 and s = 1. Hence rep(G) > n/3. If G is formed by growing
a path of two edges from each internal vertex of P(n−2)/3 (when n ≡ 2 mod 3), then
rep(G) = n/3 + (4/3).

A maximal outerplanar graph G has 2n − 3 edges and minimum degree 2. Hence
d = (4n−6)/n < 4 and s = 2, so rep(G) > n/5. The example in Figure 1 has roughly n/5
vertices of each degree from 2 through 6, with two of each degree in each vertical “strip”.
Each end has extra vertices of degrees 3 and 2. Hence rep(G) = (n−4)/5+2 = n/5+(6/5)
when n ≡ 4 mod 10.

Figure 1: Maximal outerplanar graph with small repetition number.

A planar triangulation G has 3n − 6 edges and minimum degree 3. Hence d = (6n −
12)/n < 6 and s = 3, so rep(G) > n/7. We seek a repeatable tile that will assemble to
a triangulation with repetition number n/7 + O(

√
n). We use roughly equal numbers of

vertices with degrees 3 through 9.
The vertices of the hexagonal grid have degree 3, and each lies on three hexagonal

faces. We add the same triangulation inside each hexagonal face, with each vertex of the
hexagon receiving two additional neighbors inside the hexagon; these vertices thus reach
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degree 9. Inside are two vertices with each degree from 3 through 8. Such a tile appears
on the left in Figure 2, with the edges of the hexagonal grid in bold.

Since each grid vertex lies on three hexagons, the frequency of vertices with degree 9
is the same as the frequency of the other degrees when we tile the entire plane. Making
the graph finite by stopping at the boundaries of hexagons reduces the degree of bound-
ary vertices; there are O(

√
n) of them. Carefully triangulating the unbounded face to

distribute the degrees of its vertices fairly equally reduces the difference between maxi-
mum and minimum multiplicity below O(

√
n), but without taking that care we still have

rep(G) ≤ n/7 + O(
√

n).

Figure 2: Tiles for planar triangulation with minimum degrees 3 and 4.

For triangulations with minimum degree 4 we take a similar approach. Since again
d < 6, but now s = 4, we have rep(G) ≥ n/5. This time the vertices of the hexagonal grid
have degree 8, and within each tile we have two vertices of each degree from 4 through
7, as shown on the right in Figure 2. To reach degree 8, a grid vertex has two neighbors
inside each tile where it is incident to a horizontal edge and only one neighbor inside the
third tile. The analysis of the boundary is as above, and rep(G) ≤ n/5 + O(

√
n).

For triangulations with minimum degree 5, the computation with d < 6 and s = 5
yields rep(G) ≥ n/3. Our construction looks somewhat different from those above. Again
we use the hexagonal grid, but there are no added vertices. Group the vertices of the grid
in “rows” as suggested in Figure 3. In each set of six consecutive rows, two rows have all
vertices of degree 6, and the other four alternate vertices of degrees 5 and 7.

This is achieved by inserting a path of three edges to triangulate each hexagonal tile,
contributing to the degrees of the vertices in the two central rows of vertices in the strip
of hexagons. When the central edges of the paths in the strip are parallel, each vertex
receives two incident edges from one side and one from the other and reaches degree 6.
When the central edges alternate positive and negative slope, half of the vertices receive
two incident edges and half receive four, thus creating vertices of degrees 5 and 7. We
make the central edges parallel in a third of the strips and alternating in the others. The
comments on the boundary are as before. �
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Figure 3: Planar triangulation with minimum degree 5 and low repetition.

The graphs in the constructions of Theorem 2.5 have many induced claws. The con-
structions of the next theorem avoid these.

Theorem 2.6 For n, r ∈ N with 2 ≤ r ≤ n, there is a claw-free graph with n vertices
and repetition number r.

Proof. Let H ′
p be the graph obtained from the half-graph Hp by completing each

partite set into a clique. Call H ′
p the augmented half-graph. The vertex degrees in H ′

p are
p through 2p− 1, each with multiplicity 2. Since V (H ′

p) is the union of two cliques, H ′
p is

claw-free.
We construct an n-vertex claw-free graph Gn,r with rep(Gn,r) = r. Let “+” denote

disjoint union of graphs. If n − r is odd, then we let Gn,r = Gn−1,r + K1, which suffices
since our construction when n− r is even has no isolated vertices. Hence we may assume
that n−r is even and let p = (n−r)/2. Since rep(H ′

p) = 2, we may assume that 3 ≤ r ≤ n.
Note that complete graphs are claw-free. Also the graph K ′

r formed by deleting one
edge from Kr is claw-free. If p ≤ r − 1 ≤ 2p − 1, then let G = K ′

r + H ′
p; otherwise, let

G = Kr +H ′
p. Since Kr, K ′

r, and H ′
p are all claw-free, also G is claw-free. If G = Kr +H ′

p,
then H ′

p has no vertex of degree r − 1, and rep(G) = r.
If G = K ′

r + H ′
p, then two vertices of H ′

p have degree r − 1, and changing from Kr to
K ′

r leaves r vertices of degree r − 1. Also G has four vertices of degree r − 2 if r − 1 > p
(if r − 1 = p, then degree r − 1 enters with multiplicity 2).

Multiplicity 4 for r−2 causes no problem unless r = 3. This case requires (n−3)/2 =
p ≤ r − 1 = 2, or n ≤ 7. Since n − r is even, it suffices to present claw-free graphs for
n = 5 and n = 7 with repetition number 3; these are K ′

5 and K ′
5 + K2. �

When r is even, the graph (r/2)H ′
p is an instance of the construction in Example 2.3.

It has rp vertices, and indeed r = n/(2d − 2s + 1) = rp/(3p − 1 − 2p + 1). Hence this
class of claw-free graphs also achieves equality in the bound from Lemma 2.1.
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3 General m-vertex line graphs

Although H ′
p is claw-free, it is not a line graph when p ≥ 3. It is easy to show that

the subgraph induced by {x1, y1, x2, y2, xp, yp} is not an induced subgraph of any line
graph; in fact, it is a forbidden induced subgraph in the characterization of line graphs
by Beineke [2] (different for p = 3 and p > 3).

For line graphs, the lower bounds on the repetition number can be strengthened. We
seek lower bounds that apply to all m-vertex line graphs (we use m to distinguish between
the numbers of vertices and edges in the graph whose line graph we study). Although
general graphs with m vertices may have repetition number as small as 2, and this also
holds for the claw-free augmented half-graph, for line graphs the lower bound will grow
with m.

When 2d− 2s+1 is small, the lower bound from Lemma 2.1 is large and can be sharp
on line graphs; we present easy examples. For an edge xy in a graph G, the degree of
vertex xy in L(G) is dG(x) + dG(y) − 2; we call it the edge-degree of xy in G.

Figure 4: Unicyclic graphs with equal edge-degree multiplicities

Example 3.1 In Figure 4 we show portions of two “periodic” unicyclic graphs. In the
first, the length of the cycle is a multiple of 4. At every fourth vertex, add two pendant
edges. The edge-degrees are 2, 3, 4 with equal multiplicity.

In the second graph, the length of the cycle is a multiple of 3. The graphs attached
at the vertices rotate among P2, P3, P5, where the copies of P2 and P3 have an endpoint
merged with the vertex on the cycle, but the copies of P5 have a neighbor of an endpoint
merged. The edge-degrees are 1, 2, 3, 4, 5 with equal multiplicity.

Since the edge-degrees are equally distributed over an interval, in the line graphs of
these graphs the repetition number equals the lower bound from Lemma 2.1. �

Finding connected graphs with equally distributed edge-degrees (to match the bound
from Lemma 2.1) is difficult, but it is easy without the connectedness requirement, and
connected examples come close.
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Proposition 3.2 For each pair (s, d) with s, 2d ∈ N and s ≤ d, there exist arbitrarily
large graphs whose edge-degrees are equally distributed over {s, . . . , 2d−s}. Also there are
connected graphs that in addition to this “uniform” distribution have a small number of
edges with larger edge-degrees.

Proof. We use components whose line graphs are regular, such as stars. Let M be a
multiple of each element of {s + 1, . . . , 2d− s + 1}. For s + 1 ≤ j ≤ 2d− s + 1, take M/j
components isomorphic to K1,j. The resulting graph has M edges with each edge-degree
in {s, . . . , 2d − s}.

To form a connected graph, use the disconnected construction for (s− 1, d− 1/2) and
adding one vertex v adjacent to the centers of the stars. Now the edges of the original stars
have the desired edge-degrees and the edges incident to v have much larger edge-degrees.
There are not so many such edges, and their edge-degrees have small multiplicity. �

Whether connected or not, the repetition number in these constructions is linear in
m, since s and d are fixed. Next we study how small it can be in terms of m. Let NG(v)
denote the set of neighbors of vertex v in G.

Theorem 3.3 If G is a graph with m edges, then rep(L(G)) ≥ 1
4
m1/3.

Proof. Let D be the maximum vertex degree in G, so that all edge-degrees are at
most 2(D − 1). Since at most 2D − 1 distinct edge-degrees are available, rep(L(G)) ≥
m/(2D − 1). Let a = m/D. We consider two cases.

Case 1: a ≥ m1/3. Since m = aD, we have rep(L(G)) ≥ m
2D−1

> a
2
≥ 1

2
m1/3.

Case 2: a ≤ m1/3. Since m = aD, we have D = m/a ≥ m2/3 ≥ a2, so a ≤ D1/2. Let v
be a vertex of degree D in G. With b1, ..., bD being the degrees of the vertices in NG(v),

∑

i

bi < 2|E(G)| = 2m = 2aD ≤ 2D3/2 (2)

On the other hand, suppose that among NG(v), no degree appears more than r times,
where r = 1

4
D1/2. Since |NG(v)| = D, we obtain the smallest sum of these degrees when

the list of them is packed. From the computation in Lemma 2.1, with s = 1, we obtain
∑

bi ≥ D · 1 + (D/2)(D/r − 1). Thus
∑

bi ≥ D2/(2r) = 2D3/2, which contradicts (2).
We conclude that some degree appears more than r times among NG(v). Since the

edges from v to NG(v) have a fixed endpoint, any degree that occurs more than r times
in NG(v) occurs more than r times as a degree in L(G). Hence rep(L(G)) > r = 1

4
D1/2.

Since in Case 2 we have D ≥ m2/3, we conclude that rep(L(G)) > 1
4
m1/3. �

Proposition 3.4 For infinitely many m there is a graph G with m edges and rep(L(G)) ≤
√

4m/3.
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Proof. As in Proposition 3.2, we use a disjoint union of stars. Fix an integer r. For
1 ≤ i ≤ r, include br/ic components that are stars with i edges, totalling m edges. At
most r edges have edge-degree i − 1, for 1 ≤ i ≤ r, so rep(L(G)) ≤ r.

There are at most r edges in stars with i edges, so m ≤ r2; we need a lower bound. For
r ≥ i > r/2, we lose r − i edges from the count of r in stars of size i. For r/2 ≥ i > r/3,
we lose r − 2i edges. For r/3 ≥ i > r/4, we lose r − 3i. Summing the deficiencies
yields m ≥ r2 − r2

∑r
j=1[2j(j + 1)2]−1. After approximating the sum with an integral,

m ≥ (3/4)r2. Thus rep(G) ≤
√

4m/3. �

The number of centers of the stars in Proposition 3.4 is on the order of r ln r. Hence
adding a single vertex adjacent to the centers yields a connected example (in fact a tree)
without disturbing the asymptotic computation.

Conjecture 3.5 The minimum of rep(L(G)) over m-edge graphs is Θ(m1/2).

4 Line graphs of sparse graphs

For various families of sparse graphs with m edges, such as trees, maximal outerplanar
graphs, and triangulations, we can improve the lower bounds on the repetition number of
the line graphs in terms of m. We begin with a general argument.

Theorem 4.1 Let G be a graph with average degree d, minimum degree s, and m edges.
If d ≥ s ≥ 1, then rep(L(G)) ≥ α

√
m−1, where α = s/

√

cd(cd − s) with c = 2d−2s+1.

Proof. Since G has average degree d, we have m = dn/2, where n = |V (G)|. Recall
that rep(G) ≥ n/c, from Lemma 2.1. Let A be a set of rep(G) vertices in G having the
same degree; this degree is at least s.

Let X be the set of edges having both endpoints in A. Let Y be the set of edges
having one endpoint in A. With |A| ≥ n/c, we have |Y | ≥ s|A| − 2|X| ≥ ns/c − 2|X|.

All members of X have the same edge-degree, so the proof is complete if |X| ≥ α
√

m.
Hence we may assume that |X| < α

√
m, so |Y | ≥ s|A| − 2|X| > ns/c − 2α

√
m.

If there are more than k distinct degrees among the vertices outside A having neighbors
in A, then these degrees sum to more than k2/2, and yet the sum is at most dn − s|A|.
Thus k ≤

√

2dn − 2sn/c. Now the edges of Y have the same degree at their endpoint

in A and at most
√

2dn − 2sn/c distinct degrees at the other endpoint. This yields

rep(L(G)) ≥ |Y |/
√

2dn − 2sn/c.
If rep(L(G)) ≤ α

√
m, then we now have

α
√

m ≥ ns/c − 2α
√

m
√

2dn − 2sn/c
.

Rearranging and using m = nd/2 yields α ≥ s
/

(

√

cd(cd − s) + cd/
√

m
)

.
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The effect of the lower-order term in the denominator is quite small. Using s/(a+b) >

(s/a)(1 − b/a) with b = cd/
√

m and a =
√

cd(cd − s), we obtain α
√

m > s
√

m
cd(cd−s)

− s
cd−s

.

The amount subtracted is less than 1. Thus if α is set to s/
√

cd(cd − s), then we obtain
rep(L(G)) ≥ α

√
m − 1. �

For several families of sparse graphs with a linear number of edges, Theorem 4.1 gives
lower bounds that are multiples of n1/2 instead of the previous n1/3. With Proposition 3.4,
we conclude that for line graphs of trees with m edges, the asymptotic growth rate of the
smallest repetition number is Θ(m1/2).

Corollary 4.2 For a tree or a maximal planar graph with m edges, the repetition number
of the line graph is at least

√

m/30 or at least
√

m/182, respectively.

Proof. Let n be the number of vertices in the graph G. In the notation of Theorem 4.1,
in each case we compute the lower bound s

√
m/[cd(cd − s)] − 1.

For a tree, s = 1, d = 2 − 2/n, and c = 3 − 4/n yield rep(L(G)) ≥
√

m/30.
For a maximal planar graph, s = 3, d = 6−12/n, and c = 7−12/n yield rep(L(G)) ≥

√

m/182. �

The computation of Corollary 4.2 also yields rep(L(G)) ≥
√

m/90 for a maximal
outerplanar graph, but Corollary 4.5 will greatly improve that. The improvements in
Corollary 4.5 for trees and maximal planar graphs are valid only for subclasses of those
families.

Our final general result employs a technique of looking only at some of the edges.
The approach fits into the general theme of finding “light” edges in planar graphs. The
weight w(xy) of an edge xy in a graph G is dG(x) + dG(y). Since shifting the values in a
list by 2 does not change the multiplicities, instead of studying the edge-degrees we may
equivalently study the maximum multiplicity of the weights of edges of G. An edge is
light in G if its weight is bounded by a specified constant. If the sum of the weights of
the light edges is large, then there must be large multiplicity of some weight.

The theory of light edges in planar graphs has many applications, particularly in
coloring problems. Recent surveys of this topic can be found in [6] and [9].

Theorem 4.3 Let Q be a set of q edges with weight at least s in a graph G. If the total
weight of edges in Q is at most cq, then rep(L(G)) ≥ maxk>s

2(k−c)
(k−s)(k−s+1)

q.

Proof. Let Xi be the number of edges of weight i in Q. For any k with k > s,

cq ≥
∑

i≥s

iXi ≥
k−1
∑

i=s

iXi + k
∑

i≥k

Xi =

k−1
∑

i=s

iXi + k

(

q −
k−1
∑

i=s

Xi

)

= kq +

k−1
∑

i=s

(i − k)Xi.

Letting r = rep(L(G)), each Xi is at most r. With the previous computation, we obtain

(k − c)q ≤
k−1
∑

i=s

(k − i)Xi ≤ r

k−1
∑

i=s

(k − i),
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which yields r ≥ 2(k−c)
(k−s)(k−s+1)

q. �

We apply Theorem 4.3 with Q being the edge set of an appropriate subgraph of G.
We obtain a bound in terms of the order, minimum degree, and maximum degree of that
subgraph, and we are particularly interested when it is a spanning regular subgraph.

Corollary 4.4 Let G be an n-vertex graph with average degree d and minimum degree z.
Let H be a p-vertex subgraph with minimum degree a and maximum degree b. If every
edge of H has weight at least s in G, then rep(L(G)) ≥ maxk>s

kap−2(bdn−(n−p)z)
(k−s)(k−s+1)

. If a = b

and p = n, then rep(L(G)) ≥ maxk>s
bn(k−2d)

(k−s)(k−s+1)
.

Proof. Using the notation of Theorem 4.3, let Q = E(H). We have q = |Q| ≥ pa/2.
Define c by letting the total weight of the edges in Q be cq.

When we sum the edge weights in H, each vertex contributes its degree (in G) at most b
times. Hence cq ≤ b

∑

v∈V (H) dG(v). We weaken this inequality by adding the nonnegative

quantity bdG(v)−z for each vertex v outside H. Hence cq ≤ b
∑

v∈V (G) dG(v)− (n−p)z =

bdn−(n−p)z. With q ≥ pa/2, we obtain 2kq−2cq ≥ kap−2(bdn−(n−p)z). Theorem 4.3
now yields the first claim here. When a = b and p = n, the lower bound simplifies as in
the second claim. �

Corollary 4.5 Let G be a graph with m edges. If G is a tree with perfect matching,
a maximal outerplanar graph, or a triangulation with a 2-factor, then rep(L(G)) is at
least m/6, m/14, or m/33, respectively. The lower bound improves to m/27 or m/15 for
triangulations having a 2-factor and minimum degree 4 or 5, respectively.

Proof. Let n = |V (G)|. In each case, we apply Corollary 4.4 with H and k chosen
appropriately. In each case H is a regular spanning subgraph, so a = b and p = n, and
the simple formula bn(k−2d)

(k−s)(k−s+1)
applies.

Let H be a 1-factor in a tree G. Here (b, d, s) = (1, 2 − 2/n, 3). Choosing k = 6, we

have rep(L(G)) > 1·n(6−4)
3·4 = n

6
> m

6
.

Let H be the spanning cycle in a maximal outerplanar graph G. Here (b, d, s) =

(2, 4 − 6/n, 5). With k = 12, we have rep(L(G)) > 2n(12−8)
7·8 = n

7
> m

14
.

Let H be a 2-factor in a maximal planar graph G. We have rep(G) = m if n ≤ 4. If
n ≥ 5, then G is 3-connected and cannot have adjacent vertices of degree 3 (their common
neighbors would form a separating 2-set). This yields s ≥ 7 and (b, d, s) = (2, 6−12/n, 7).

With k = 18, we have rep(L(G)) > 2n(18−12)
11·12 = n

11
> m

33
. If G is restricted to minimum

degree 4, then s ≥ 8, and choosing k = 16 yields rep(L(G)) > 2n(16−12)
8·9 = n

9
> m

27
. If G

is restricted to minimum degree 5, then s ≥ 10, and choosing k = 14 yields rep(L(G)) >
2n(14−12)

4·5 = n
5

> m
15

. �

For trees with 1-factors, this bound is fairly good.
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Example 4.6 Let T be the tree obtained from P7 by adding one pendant edge at each of
the three most central vertices. Take many disjoint copies of T , plus one edge xy disjoint
from them. Make x adjacent to one 3-valent vertex other than the center in each copy of
T . Since T has a perfect matching, the full tree G also has a perfect matching.

In each set of 10 edges (a copy of T plus the edge to x), the edge weights are two each
of 3, 4, 5, 6, plus one 7 and one 5+ (m− 1)/10. Also xy has weight (m− 1)/10+2. Hence
rep(G) = (m − 1)/5, close to the lower bound from Corollary 4.5. �

Question 4.7 What is the infimum of rep(L(G))
|E(G)| for the classes of trees with perfect match-

ings, maximal outerplanar graphs, and triangulations with 2-factors? Our constructions
are at most twice the lower bounds (better for trees).

Every triangulation is 3-connected. Whitney [11] proved that 4-connected triangu-
lations are Hamiltonian, so Corollary 4.5 applies to them. For triangulations that are
not 4-connected, we obtain a weaker bound using another result about planar graphs. A
2, 3-factor in a graph is a spanning subgraph in which every vertex has degree 2 or 3.
Enomoto, Iida, and Ota [7] proved that every 3-connected planar graph with minimum
degree at least 4 has a connected 2, 3-factor.

Corollary 4.8 Let G be a triangulation with m edges. If G has minimum degree at least
4, then rep(L(G)) ≥ m/68. If G has minimum degree at least 5, then rep(L(G)) ≥ m/51.

Proof. Let n = |V (G)|, so m = 3n−6. Let H be a 2, 3-factor in G. In the main statement
of Corollary 4.4, set (a, b, p, d, s) = (2, 3, n, 6 − 12/n, 8), where s ≥ 8 because G has min-

imum degree 4. Using k = 24, we find rep(L(G)) ≥ 24·2n−2(3·6n)
16·17 = 3n

68
> m

68
. When G has

minimum degree 5, set s = 10. Now k = 26 yields rep(L(G)) ≥ 26·2n−2(3·6n)
16·17 = n

17
> m

51
. �

Our last result uses another classical structural result in graph theory. Sumner [10]
proved that every claw-free graph of even order has a 1-factor.

Corollary 4.9 Let G be a claw-free graph with n vertices, m edges, average degree d, and
minimum degree z. If n is even, then rep(L(G)) ≥ maxk>2z

2k/d−4
(k−2z)(k−2z+1)

m. If n is odd,

then rep(L(G)) ≥ maxk>2z
2k/d−4−(k−2z)/m
(k−2z)(k−2z+1)

m.

Proof. If G has even order, then by Sumner’s result G has a 1-factor H. If G has odd
order, then let H be a 1-factor in a graph obtained by deleting one vertex from G. In
Corollary 4.4, we set a = b = 1 and s = 2z.

If n is even, then p = n and rep(L(G)) ≥ maxk
kn−2dn

(k−2z)(k−2z+1)
= maxk

2k/d−4
(k−2z)(k−2z+1)

m.

If n is odd, then p = n−1 and rep(L(G)) ≥ maxk
k(n−1)−2(dn−z)
(k−2z)(k−2z+1)

= maxk
2k/d−4−(k−2z)/m
(k−2z)(k−2z+1)

m.
In each case the maximization is over k > 2z. �
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