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Abstract

Let G be a class of graphs. A d-fold grid over G is a graph obtained from a

d-dimensional rectangular grid of vertices by placing a graph from G on each of the

lines parallel to one of the axes. Thus each vertex belongs to d of these subgraphs.

The class of d-fold grids over G is denoted by Gd.

Let f(G; d) = maxG∈Gd χ(G). If each graph in G is k-colorable, then f(G; d) ≤ kd.

We show that this bound is best possible by proving that f(G; d) = kd when G is

the class of all k-colorable graphs. We also show that f(G; d) ≥
⌊√

d
6 log d

⌋

when G

is the class of graphs with at most one edge, and f(G; d) ≥
⌊

d
6 log d

⌋

when G is the

class of graphs with maximum degree 1.

1 Introduction

The Cartesian product of graphs G1, . . . , Gd is the graph with vertex set V (G1) × · · · ×
V (Gd) in which two vertices (v1, . . . , vd) and (v′

1, . . . , v
′
d) are adjacent if they agree in

all but one coordinate, and in the coordinate where they differ the values are adjacent
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vertices in the corresponding graph. The product can be viewed as a rectangular grid

with copies of G1, . . . , Gd placed on vertices forming lines parallel to the d axes. It is

well-known (and easy to show) that the chromatic number of the Cartesian product of

G1, . . . , Gd is the maximum of the chromatic numbers of G1, . . . , Gd [12].

In this paper, we consider bounds on the chromatic number of graphs in a family

resulting from a more general graph operation. Instead of placing copies of the same

graph Gi on all the lines parallel to the i-th axis, we may place different graphs from a

fixed class. Let [n] denote {1, . . . , n}. For a class G of graphs, a d-fold grid over G is a

graph with vertex set [n1] × · · · × [nd] such that each set of vertices where all but one

coordinate is fixed induce a graph from G. For example, a Cartesian product of graphs in

G is a d-fold grid over G. The family of all d-fold grids over G is denoted by Gd.

The study of the chromatic number and independence number of graphs in Gd is

related to similar problems appearing in computational geometry. Frequency assignment

problems for transmitters in the plane are modeled by coloring and independence problems

on certain graphs (see [5]). These graphs arise from sets of points using the Euclidean

metric. Analogous problems for the Manhattan metric were addressed in [3]. Since d-

fold grids over some classes of graphs can be represented by graphs appearing in this

setting, Szegedy [13] posed the following open problem at the workshop “Combinatorial

Challenges”:

What is the maximum chromatic number of a graph G ∈ Gd when G is the class B
of all bipartite graphs or the class S of graphs containing at most one edge?

If each graph in G is k-colorable, then every graph in Gd has chromatic number at

most kd, since it is the union of d subgraphs, each of which is k-colorable. In particular,

all graphs in Bd are 2d-colorable. We show that this bound is sharp, which is somewhat

surprising since Cartesian products of bipartite graphs are bipartite. More generally, let

f(G; d) = maxG∈Gd χ(G). We show that if G is the class of all k-colorable graphs, then

f(G; d) = kd. We prove the existence of kd-chromatic graphs in Gd probabilistically, but

an explicit construction can then be obtained by building, for each n, a graph in Gd that

is “universal” in the sense that it contains all graphs in Gd with vertex set [n]d. This

settles the first part of Szegedy’s question.

Determining f(S; d) is more challenging. Since the maximum degree of a graph in Sd

does not exceed d, and these graphs do not contain Kd+1, Brooks’ Theorem [2] implies

that each graph in Sd is d-colorable (when d ≥ 3). Also graphs in S2 are bipartite, since

cycles in such a graph alternate between horizontal and vertical edges. In general, graphs

in Sd are triangle-free, since any two adjacent vertices differ in exactly one coordinate.

When d is large, we can use a refinement of Brook’s Theorem obtained by Reed et

al. [6, 9, 10, 11] to improve the upper bound.
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Theorem 1 (Molloy and Reed [10]). There exists a constant D0 such that if D ≥ D0

and k2 + 2k < D, then every graph G with maximum degree D and χ(G) > D − k has a

subgraph H with at most D + 1 vertices and χ(H) > D − k.

Theorem 1 implies that f(S; d) ≤ d−
√

d+O(1). To see this, observe that any (d+1)-

vertex subgraph H of a d-fold grid over S has chromatic number at most d/2 + 1. If H

has no vertex with degree at least d/2 + 1/2, then H is (d/2 + 1)-colorable. If H has a

vertex with degree at least d/2 + 1, then its neighbors form an independent set A; since

H − A has at most d/2 vertices, the graph H has a proper coloring with d/2 + 1 colors.

A still better upper bound follows from another result.

Theorem 2 (Johansson [8]). The chromatic number of a triangle-free graph with maxi-

mum degree D is at most O(D/ logD).

This result, which was further strengthened by Alon et al. [1], implies that f(S; d) ∈
O(d/ log d), since the neighborhood of every vertex of a d-fold grid over S is independent.

We show that though graphs in Sd are very sparse, and it is natural to expect that

they can be colored properly using just a few colors, f(S; d) ≥
⌊√

d
6 log d

⌋

. Our argument is

again probabilistic. A similar argument yields f(M; d) ≥
⌊

d
6 log d

⌋

, where M is the class of

all matchings (i.e., graphs with maximum degree 1). This lower bound is asymptotically

best possible, since the discussion above yields f(M; d) ∈ O(d/log d).

2 Preliminaries

In this section, we make several observations used in the proofs of our subsequent lower

bounds on f(G; d) for various G. We start by recalling the Chernoff Bound, an upper

bound on the probability that a sum of independent random variables deviates greatly

from its expected value (see [7] for more details).

Proposition 3. If X is a random variable equal to the sum of N independent identi-

cally distributed 0, 1-random variables having probability p of taking the value 1, then the

following holds for every 0 < δ ≤ 1:

Prob(X ≥ (1 + δ)pN) ≤ e−
δ2pN

3 and Prob(X ≤ (1 − δ)pN) ≤ e−
δ2pN

2 .

Next, we establish two technical claims. We begin with a standard bound on the

number of subsets of a certain size.

Proposition 4. For ℓ, N ∈ N with ℓ > 2 and N a multiple of ℓ, the number of N/ℓ-

element subsets of an N-element set is at most 2
N
ℓ

(1+log ℓ).
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Proof. An N -element set has
(

N
N/ℓ

)

subsets of size N/ℓ. It is well known that
(

N
N/ℓ

)

≤
2N ·H(1/ℓ), where H(p) = −p log p − (1 − p) log(1 − p) (see [4], for example). A simple

calculation yields the upper bound:

(

N

N/ℓ

)

≤ 2N ·( 1
ℓ

log ℓ+ ℓ−1
ℓ

log ℓ
ℓ−1

) ≤ 2N ·( 1
ℓ

log ℓ+ ℓ−1
ℓ

· 1
ℓ−1

) ≤ 2
N
ℓ

(1+log ℓ)

The second claim is a straightforward upper bound on a certain type of product of

expressions of the form (1 − ε):

Proposition 5. If a1, . . . , am are nonnegative integers with sum n, then

m
∏

i=1

(

1 −
(

ai

2

)

1

x

)

≤
(

1 − 1

x

)n−m

for any positive real x such that x ≤
(

maxi ai

2

)

.

Proof. Since
∑

ai = n, it suffices to show that

(

1 −
(

a

2

)

1

x

)

≤
(

1 − 1

x

)a−1

(1)

for every nonnegative integer a. If a ≤ 1, then the left side of (1) is 1 and the right side is

at least 1. If a ≥ 2, then (1) follows (by setting k = a−1) from the well-known inequality

1 − k

x
≤

(

1 − 1

x

)k

,

which holds whenever 0 ≤ k ≤ x.

3 Grids over k-colorable graphs

In this section, we prove that f(B; d) = 2d. Note again that after the probabilistic proof

of existence, we can construct such graphs explicitly as explained in Section 1. Even so,

the argument that they are not (2d − 1)-colorable remains probabilistic. Theorem 6 can

also be proved by bounding the probability that a random (2d−1)-coloring of some d-fold

grid over the class of complete bipartite graphs is proper, but we prefer giving a proof

via a bound on the size of the largest independent set, since such a bound may be of

independent interest.

We prove the result in the more general setting of k-colorable graphs.
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Theorem 6. For d, k ∈ N, there exists a d-fold grid G over the class of k-colorable graphs

such that χ(G) = kd.

Proof. The claim holds trivially if d = 1, so we assume d ≥ 2. The integers k and d are

fixed, and N is a large integer to be chosen in terms of k and d. Consider the set [N ]d.

For each v ∈ [N ]d, define a random d-tuple X(v) such that X(v)i takes each value in [k]

with probability 1/k, and the d coordinate variables are independent. Generate a graph

G with vertex set [N ]d by making two vertices u and v adjacent if they differ in exactly

one coordinate and X(u)ℓ 6= X(v)ℓ, where ℓ is the coordinate in which u and v differ.

By construction, any set of vertices in G that all agree outside a fixed coordinate

induce a complete multipartite graph with at most k parts. Hence G is a d-fold grid over

the class of k-colorable graphs. It will suffice to show that almost surely (as N tends to

infinity) G does not have an independent set with more than Nd

kd−0.5
vertices. This yields

χ(G) ≥ kd, since otherwise some color class is an independent set of size at least Nd

kd−1
.

For an independent set A in G, let the shade of A be the function σ : [d]× [N ]d−1 → [k]

defined as follows. For z = (ℓ; i1, . . . , iℓ−1, iℓ+1, . . . , id) ∈ [d]× [N ]d−1, consider the vertices

in A of the form (i1, . . . , iℓ−1, j, iℓ+1, . . . , id). By the construction of G, the value of X(v)ℓ

is the same for each such vertex v, since vertices of A are nonadjacent. Let this value be

σ(z). If there is no vertex of A with this form, then let σ(z) = 1.

The union of independent sets with the same shade is an independent set. Hence for

each function σ there is a unique maximal independent set in G with shade σ; denote it by

Aσ. To have v ∈ Aσ, where v = (i1, . . . , id), the random variables X(v)1, . . . , X(v)d must

satisfy X(v)ℓ = σ(ℓ; i1, . . . , iℓ−1, iℓ+1, . . . , id). Hence each v lies in Aσ with probability k−d.

As a result, the expected size of Aσ is (N/k)d. Since the variables X(v)ℓ are indepen-

dent for all v and ℓ, we can bound the probability that |Aσ| ≥ Nd

kd−0.5
using the Chernoff

Bound (Proposition 3). Applied with δ = 1
2kd−1

, this yields

Prob

(

|Aσ| ≥
Nd

kd − 0.5

)

≤ e
− Nd

3(2kd−1)2kd ≤ e−
Nd

12k3d .

Since there are kdNd−1
possible shades, the probability that some independent set has

more than Nd

kd−0.5
vertices is at most kdNd−1 · e−Nd/12k3d

, and we compute

kdNd−1 · e−Nd/12k3d

= elog kdNd−1−Nd/12k3d → 0 .

If N is sufficiently large in terms of k and d, then the bound is less than 1, and there

exists such a graph G with no independent set of size at least Nd

kd−0.5
.
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4 Grids over single-edge graphs

In this section, we prove the lower bound for d-fold grids over the class of graphs with at

most one edge.

Theorem 7. For d ≥ 2, there exists G ∈ Sd such that χ(G) ≥
⌊√

d
6 log d

⌋

.

Proof. Let k =
⌊√

d
6 log d

⌋

. For k ≤ 2, the conclusion is immediate. Hence, we assume

k ≥ 3. We generate a graph G with vertex set [2k]d. For (ℓ; i1, . . . , iℓ−1, iℓ+1, . . . , id) ∈
[d] × [2k]d−1, choose a random pair of distinct integers j and j′ from [2k], and make the

vertices (i1, . . . , iℓ−1, j, iℓ+1, . . . , id) and (i1, . . . , iℓ−1, j
′, iℓ+1, . . . , id) adjacent in G. The

choices of {j, j′} are independent for all elements of [d] × [2k]d−1.

Since G ∈ Sd, its chromatic number is at most d. To show that the event χ(G) ≥
k has positive probability, it suffices to show that with positive probability, G has no

independent set of size at least (2k)d/k.

Consider a set A in V (G) with size (2k)d/k; we bound the probability that A is an

independent set in G. Again we think of an element z in [d] × [2k]d−1 as designating a

line in [2k]d parallel to some axis. Let A[z] be the intersection of A with this line. By the

construction of G, the probability that no two vertices in A[z] are adjacent in G is

1 −
(|A[z]|

2

)

/

(

2k

2

)

,

which is at most 1 −
(

|A[z]|
2

)

1
2k2 . By applying Proposition 5 with x = 1/2k2, n = |A| ≥

(2k)d

k
= 2(2k)d−1, and m = (2k)d−1, we conclude that the probability of all subsets of A

lying along lines in a particular direction being independent in G is at most

∏

z∈{ℓ}×[2k]d−1

(

1 −
(|A[z]|

2

)

1

2k2

)

≤
(

1 − 1

2k2

)(2k)d−1

.

Let p be the probability that A is an independent set in G. Since the edges in each of

the d directions are added to G independently,

p ≤
(

1 − 1

2k2

)d(2k)d−1

≤ e−
d(2k)d−1

2k2 ≤ e−2d(2k)d−3 ≤ 2−2d(2k)d−3

.

We want to show that with positive probability, G has no independent set of size (2k)d/k.

Let M be the number of subsets of V (G) with size (2k)d/k. By Proposition 4,

M ≤ 2
(2k)d

k
·(1+log k) ≤ 22(2k)d−1·(1+log k) ≤ 23(2k)d−1 log k.
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Therefore, we bound the probability that G has an independent set of size (2k)d/k by the

following computation:

23(2k)d−1 log k · 2−2d(2k)d−3

= 22(2k)d−3(6k2 log k−d) < 1 .

The last inequality uses the fact that 6k2 log k − d is negative, by the choice of k. We

conclude that some such graph G has no independent set of size at least (2k)d/k.

5 Grids over matchings

Finally, we consider d-fold grids over the class M of matchings.

Theorem 8. For d ≥ 2, there exists G ∈ Md such that χ(G) ≥
⌊

d
6 log d

⌋

.

Proof. As the proof is similar to the proof of Theorem 7, we will give less detail and

focus on the differences between the proofs. Set k =
⌊

d
6 log d

⌋

and assume k ≥ 3. We

randomly generate a graph G with vertex set [2k]d. As before an element z in [d]× [2k]d−1

designates a line in [2k]d parallel to some axis. We place a random perfect matching on

the 2k vertices in each such line. Hence, the resulting graph G is d-regular. It suffices to

show that with positive probability, G has no independent set of size at least (2k)d/k.

Consider a set A in V (G) with size (2k)d/k; we bound the probability that A is

an independent set in G. Let A[z] be the intersection of A with a line designated by

z ∈ [d]× [2k]d−1. Let X be the random variable that is the number of edges in G induced

by A[z]. By the construction of G, we have E(X) = 1
2k−1

(

|A[z]|
2

)

. When X is a nonnegative

integer-valued random variable, Prob[X ≥ 1] ≥ E(X)
max(X)

. Since A[z] cannot induce more

than |A[z]|/2 edges, we obtain a lower bound on the probability p that A[z] contains an

edge by computing

p ≥
1

2k−1

(

|A[z]|
2

)

|A[z]|/2
=

|A[z]| − 1

2k − 1
≥ |A[z]| − 1

2k
.

Let qℓ denote the probability that all subsets of A lying along lines in direction ℓ are

independent (each such line consists of d-tuples that agree outside the ℓth coordinate).

We compute

qℓ ≤
∏

z∈{ℓ}×[2k]d−1

(

1 − |A[z]| − 1

2k

)

≤
∏

z∈{ℓ}×[2k]d−1

e−
|A[z]|−1

2k

= e−
(2k)d/k−(2k)d−1

2k = e−(2k)d−2

.

The probability P that A is independent can now be bounded as follows:

P ≤ e−d(2k)d−2 ≤ 2−d(2k)d−2

.
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Finally, an upper bound on the probability that G has an independent set of size (2k)d/k is

obtained by multiplying the bound on P and the bound on the number of (2k)d/k-element

subsets of vertices from Proposition 4.

23(2k)d−1 log k · 2−d(2k)d−2

= 2(2k)d−2(6k log k−d) < 1 .

6 Open problem

We determined assymptotically the function f(G; d) for the class G of k-colorable graphs

and the class M of matchings. For the class S of graphs with at most one edge, we were

not able to obtain matching lower and upper bounds. Our results imply only that

⌊
√

d

6 log d

⌋

≤ f(M; d) ≤ O

(

d

log d

)

.

Hence, it remains open to determine the assymptotic behavior of the function f(M; d) in

terms of d.
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