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Abstract

Graph transformation is concerned with the manipulatiographs by means of rules.
Graph grammars have been traditionally studied using iques from category theory.
In previous works, we introduced Matrix Graph Grammars (M@&GS a purely algebraic
approach for the study of graph dynamics, based on the mEgon of simple graphs by
means of their adjacency matrices.

The observation that, in addition to positive informatiamule implicitly defines neg-
ative conditions for its application (edges cannot becowmuegting, and cannot be added
twice as we work with simple digraphs) has led to a representaf graphs as two ma-
trices encoding positive and negative information. Usimg tepresentation, we have re-
formulated the main concepts in MGGs, while we have intreduother new ideas. In
particular, we present (i) a new formulation of productidogether with an abstraction of
them (so calledswaps3, (ii) the notion ofcoherencewhich checks whether a production
sequence can be potentially applied, (iii) the minimal grapabling the applicability of a
sequence, and (iv) the conditions for compatibility of sawees (lack of dangling edges)
and G-congruence (whether two sequences have the sameahinitial graph).

1 Introduction

Graph transformation [1, 2, 14] is concerned with the malaifion of graphs by means of rules.
Similar to Chomsky grammars for strings, a graph grammar aéslenof a set of rules, each
having a left and a right hand side graphs (LHS and RHS) anditalihost graph, to which
rules are applied. The application of a rule to a host graphlled a derivation step and involves
the deletion and addition of nodes and edges according touklaspecification. Roughly, when
an occurrence of the rule’s LHS is found in the graph, theairitloe replaced by the RHS. Graph
transformation has been successfully applied in many areesmputer science, for example,
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to express the valid structure of graphical languages heispecification of system behaviour,
visual programming, visual simulation, picture procegsamd model transformation (see [1]
for an overview of applications). In particular, graph graars have been used to specify
computations on graphs, as well as to define graph languageséts of graphs with certain

properties), thus being possible to “translasgdtic properties of graphs such as coloring into
equivalent properties of dynamical systems (grammars).

In previous work [9, 10, 11, 12] we developed a new approactin¢otransformation of
simpledigraphs. Simple graphs and rules can be represented wile&o matrices and vectors
and the rewriting can be expressed using Boolean operatbrs@ne important point of MGGs
is that, as a difference from other approaches [2, 14], itieXly represents the rule dynamics
(addition and deletion of elements), instead of only thécsfarts (pre- and post- conditions).
Apart from the practical implications, this fact faciliest new theoretical analysis techniques
such as, for example, checking independence of a sequeadatodry length and a permutation
of it, or obtaining the smallest graph able to fire a sequeSee.[12] for a detailed account.

In [11] we improved our framework with the introduction ofethihilation matrix, which
makes explicit some implicit information in rules: elemethat, if present in the host graph,
disable a transformation step. These are all edges notdedlin the left-hand side (LHS),
adjacent to nodes deleted by the rule (which would becomglihgy) and edges that are added
by the production, as in simple digraphs parallel edges aefgidden. In this paper, we fur-
ther develop this idea, as it is natural to consider that ayection transforms pairs of graphs,
a “positive” one with elements that must exist (identifiedtbg LHS), and a “negative” one,
with forbidden elements (identified by the nihilation ma}riwhich we call a boolean complex.
Thus, using boolean complexes, we have provided a new fatronlof productions, and in-
troduced an abstraction callsgvapthat facilitates rule classification and analysis. Then, we
have recasted the fundamental concepts of MGGs using thigarenulation, namelyccoher-
ence which checks whether a production sequence can be pdigmtplied, the image of a
sequence, the minimal graph enabling the applicability séquence, the conditions for com-
patibility of sequences (lack of dangling edges) and G-ooeigce (whether two sequences have
the same minimal initial graph). Some aspects of the theayedt for further research, such
as constraints, application conditions and reachabigée (12]).

The rest of the paper is organized as follows. Section 2 gvesef overview of the basic
concepts of MGG. Section 3 introduces Boolean complexesgaldth the basic operations
defined for them. Section 4 encodes productions as Boolaaple@es and relates operations
on graphs with operations on Boolean complexes. Sectiondiest coherence of sequences of
productions and Section 6 initial digraphs and the image séquence. Section 7 generalizes
other sequential results of MGG such as compatibility ando@gruence. Finally, Section 8
ends with the conclusions and further research.

2 Matrix Graph Grammars. Basic Concepts

In this section we give a very brief overview of some of theita®f MGGs, for a detailed
account and accesible presentation, the reader is referfé@].
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Graphsand Rules. We work with simple digraphs, which we represen{ 45 ') whereM is
a Boolean matrix for edges (the graptjacencymatrix) andl” a Boolean vector for vertices
or nodes. We explicitly represent the nodes of the graph aitlector because rules may add
and delete nodes, and thus we mark the existing nodes witim #he corresponding position
of the vector. Although nodes and edges can be assigned gtype[11]) here we omit it for
simplicity.

A production, or rulep : L — R is a partial injective function of simple digraphs. Using
a static formulation a rule is represented by two simple digraphs that encodkethand right
hand sides.

Definition2-1 (Static Formulation of Production). A productipn: L. — R is statically
represented ag = (L = (LF,LV); R = (RF, RY)), where E stands for edges and for
vertices.

A production adds and deletes nodes and edges; therefang,atynamic formulationwe
can encode the rule’s pre-condition (its LHS) together wthtrices and vectors to represent
the addition and deletion of edges and nodes.

Definition2-2 (Dynamic Formulation of Production). A productipn L. — R is dynam-
ically represented ag = (L = (L¥,LV);ef r¥;e", rV), wheree?” ande" are the deletion
Boolean matrix and vector,” andr" are the addition Boolean matrix and vector (with &
the position where the element is deleted or added respégtiv

The right-hand side of a rulgis calculated by the Boolean formula= p(L) = r V€L,
which applies to nodes and edges. Th@nd) symbol is usually omitted in formulae. In order
to avoid ambiguityand has precedence over. Theand andor operations between adjacency
matrices are defined componentwise.

100 1
: Ll Rl : p.= LE: 010 ,LV: 1 RE:|:8 (1):|’RV:|:::|)
A ) 110 1
1 2 i 2
b ~'e ® 100 01 0 0 0
p= (LE,LV) =lo 1 ol.7"=lo o ol =|ol|.7"=|o
110 000 1 0

Figure 1: Simple Production Example (left). Matrix Repretsgion, Static and Dynamic (right)

Example. Figure 1 shows an example rule and its associated matrieseptation, in its static
(right upper part) and dynamic (right lower part) formutatsill

In MGGs, we may have to operate graphs of different sizesrfiarices of different dimen-
sions). An operation calledompletion[9] rearranges rows and columns (so that the elements
that we want to identify match) and inserts zero rows androokias needed. For example, if
we need to operate with graplhs and R, in Fig. 1, completion adds a third row and column to
RF (filled with zeros) as well as a third element (a zero) to ve&b.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R73 3



A sequence of productions= p,;...;p; is an ordered set of productions in whighis
applied first and,, is applied last. The main difference with compositioa- p,, o ... o p; IS
thatc is a single production. Therefore,hasn — 1 intermediate states plus initial and final
states, while: has just an initial state plus a final state. Often, sequeaesaid to b&eom-
pleted because an identification of nodes and edges accross pimtkibas been chosen and
the matrices of the rules have been rearranged accordifigly.is a way to decide if two nodes
or edges in different productions will be identified to thenganode or edge in the host graph
(the graph in which the sequence will be applied).

Compatibility. A graph (M, V') is compatible ifA/ and V' define a simple digraph, i.e. if
there are no dangling edges (edges incident to nodes thabapeesent in the graph). A rule is
said to becompatibléf its application to a simple digraph yields a simple digrdpee [12] for
the conditions). A sequence of productions= p,.; .. .; p1 (Where the rule application order is
from right to left) is compatible if the image a&f, = p,.; ... ;p1 IS compatibleym < n.

Nihilation Matrix. In order to consider the elements in the host graph that isabule
application, rules are extended with a new grdph Its associated matrix specifies the two
kinds of forbidden edges: those incident to nodes deletatidyule and any edge added by the
rule (which cannot be added twice, since we are dealing vintiple digraphs}.
According to the theory developed in [12], the derivationtloé nihilation matrix can be
automatized because
K=p(D) with D=c"ae",

where transposition is represented'bfhe symbol denotes the Kronecker product, a special
case of tensor product. K is anm-by-n matrix andB is ap-by-¢ matrix, then the Kronecker
productA ® B is themp-by-ng block matrix

CI,HB alnB
A® B = : :
amB - amnB

For example, it" = [0 1 0], then

1
D=e¢"@e” =[1-[101]" 0-[101) 1-[101]] =0
1

o O O

1
0
1

Please note that given an arbitrary LHSa valid nihilation matrix/’ should satisfy.” K =
0, that is, the LHS and the nihilation matrix should not havenowon edges.
Example. The left of Fig. 2 shows, in the form of a graph, the nihilatimatrix of the rule
depicted in Fig. 1. It includes all edges incident to nadehat were not explicitly deleted
and all edges added by. To its right we show the full formulation gf; which includes the
nihilation matrixi

Nodes are not considered because their addition does netagerconflicts of any kind.
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Figure 2: Nihilation Graph (left). Full Formulation of Proftenter). Evolution of< (right)

As proved in [12] (Prop. 7.4.5), the evolution of the nihitat matrix is fixed by the pro-
duction. If R = p(L) = r V€L then

Q=p '(K)=eVTK, (1)

being @ the nihilation matrix of the right hand side of the productign Hence, we have that
(R,Q) = (p(L),p~'(K)). Notice thatQ # D in general though it is true thd@ c Q.
Example. The right of Fig. 2 shows the change in the nihilation matfixpwhen the rule is
applied. As nod8 is deleted, no edge is allowed to stem from it. Self-loopsfroodesl and
2 are deleted by so they cannot appear in the resulting grilbh

We can depictarule : L — RasR = p(L) = (L, p), splitting the static part (initial and
final states/. and R) from the dynamics (element addition and deletion,

Direct Derivation. A direct derivation consists in applying a rute L — R to a graphG,
through a matchn: L — G yielding a graph{. In MGG we use injective matchings, so given
p : L — R and a simple digrapt¥ anym : L — G total injective morphism is a match for

in G. The match is one of the ways cbmpletingL in G. In MGG we do not only consider
the elements that should be present in the host gfapihose inL) but also those that should
not be (those in the nihilation matri¥’). Hence two morphisms are sought;: L — G and
mg: K — G, whereG is the complement of/, which in the simplest case is just its negation.
In general, the complement of a graph may take place insioedngger graph. See [11] or
Ch. 5in [12]. For exampleL will normally be a subgraph of;. The negation of. is of the
same sizel} has the same number of nodes), but not its complement idsigkich would be
as large as-.

Definition2-3 (Direct Derivation). Given arulg : L — R and a graplG = (GF,G")
as in Fig. 3(a)d = (p,m) —withm = (m,mg) — is called a direct derivation with result
H = p* (G) if the following conditions are fulfilled:

1. There existn;, : L — G andmy : K — GF total injective morphisms.
2. my(n) = mg(n),¥n € LV.

3. The matchn, induces a completion df in G. Matricese andr are then completed in the
same way to yield* andr*. The output graph is calculated &s= p*(G) = r* V e*G.

2In [12], K is written N, andQ is written Nz. We shall use subindices when dealing with sequences in Sec.
7, hence the change of notation. In the definition of proauwctl stands folleft and R for right. The letters that
preceed them in the alphabédt @nd(Q) have been chosen.
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Figure 3: Direct Derivation (left). Example (right)

Remarks. The square in Fig. 3 (a) is a categorical pushout (also knaafédered coproduct
or a cocartesian square). The pushout is a universal catisinyhence, if it exists, is unique
up to a unique isomorphism. It univoquely definfésp* andm} out of L, R andp.

Item 2 in the definition is needed to ensure thaand K are matched to the same nodes in
G.
Example The right of Fig. 3 depicts a direct derivation example usiig p; shown in Fig. 1,
which is applied to a grap&' yielding graphH. A morphism from the nihilation matrix to the
complement of, my : K — G, must also exist for the rule to be applilld

Analysis Techniques. In [9, 10, 11, 12] we developed some analysis techniques GGV
One of our goals was to analyze rule sequences independ#raifaost graph. For its analy-
sis, wecompletethe sequence by identifying the nodes across rules whichsaemmed to be
mapped to the same node in the host graph (and thus rearfamgeatrices of the rules in the
sequences accordingly). Once the sequence is completeahtion of sequenceoherencg9]
allows us to know if, for the given identification, the seqoeris potentially applicable, i.e. if
no ruledisturbsthe application of those following it. For the sake of contpiess:

Definition2-4 (Coherence of Sequences). The completed sequeeee,,; . ..;p; iS co-
herentif the actions ofp; do not prevent those ¢k, £ > i, forall i, k € {1,...,n}.

Closely related to coherence are the notions of minimal awative initial digraphs, MID
and NID, resp. Given a completed sequence, the minimadirdigraph is the smallest graph
that allows its application. Conversely, the negativeahitligraph contains all elements that
should not be present in the host graph for the sequence togdheable. Therefore, the NID is
a graph that should be found @ for the sequence to be applicable (i.e. none of its edges can
be found inG).

Definition2-5 (Minimal and Negative Initial Digraphs). Let= p,;...;p; be a completed
sequence. Aninimal initial digraphis a simple digraph which permits all operationssand
does not contain any proper subgraph with the same prop&rtyegative initial digraphis a
simple digraph that contains all the elements that can spibf the operations specified by

If the sequence is not completed (i.e. no overlapping ofridelecided) we can give the set
of all graphs able to fire such sequence or spoil its appticatiThese are the so-called initial
and negative digraph sets in [12]. Nevertheless, they wilbe used in the present contribution.
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Other concepts aim at checking sequential independercegame result) between a se-
guence of rules and a permutation of@-congruenceletects if two sequences (one permuta-
tion of the other) have the same MID and NID.

Definition2-6 (G-congruence). Let = p,;...;p; be a completed sequence ang) =
Po(n); - - - : Do(1), DEINGo @ permutation. They are called G-congruent (for graph aoegp) if
they have the same minimal and negative initial digraphs.

G-congruence conditions return two matrices and two vectm@presenting two graphs,
which are the differences between the MIDs and NIDs of eadguesgce. Thus, if zero, the
sequences have the same MID and NID. It can be proved thatawerent and compatible
completed sequences that are G-congruent are sequeirtddiyendent.

All these concepts have been characterized using operataaad ;. They extend the
structure of sequence, as explained in [12]. Their definisoncluded here for future reference:

AR (F(z,y) =\ (/\ <F<x,y>>> 2)

y=to \T=y

Vi (Glz,y) = \/ (/\ (G(Ly))> : 3)

y=to r=tg

As we have seen with the concept of the nihilation matrixs matural to think of the LHS
of a rule as a pair of graphs encoding positive and negatiegrnmation. Thus, we extend our
approach by considering graphs as pair of matrices, sodcBlb®lean complexes, that will be
manipulated by rules. This new representation brings sawardages to the theory, as it allows
a natural and compact handling of negative conditions, disase proper formalization of the
functional notation(L, p) as a dot product. In addition, this new reformulation hasttethe
introduction of new concepts, likewaps(an abstraction of the notion of rule), or measures on
graphs and rules. Next section introduces the theory of @ootomplexes, while the following
ones use this theory to reformulate the MGG concepts we maraduced in this section.

3 Boolean Complexes

In this section we introduce Boolean complexes togethdr 8ome basic operations defined on
them. Also, we shall define the Preliminary Monotone Compégebra (nonotonebecause
the negation of Boolean complexes is not defined), PMCA. algebra and the Monotone
Complex Algebra to be defined in the next section permit a @rhgeformulation of grammar
rules and sequential concepts such as independencd,digtiaphs and coherence.

Definition3-1 (Boolean Complex). MBoolean complefor just acomple) z = (a, b) con-
sists of acertainty part 'a’ plus a nihil part '»’, where a andb are Boolean matrices. Two
complexes; = (aq, b)) andzy = (ag, by) are equalz; = z», if and only ifa; = a, andb; = b,.

A Boolean complex will be calledtrict Boolean comple¥ its certainty part is the adjacency
matrix of some simple digraph and its nihil part correspotadthe nihilation matrix.
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Definition3-2 (Basic Operations). Let = (a,b), z1 = (a1,b1) andzy = (as, by) be two
Boolean complexes. The following operations are definedpmmantwise:

e Addition: z; V zo = (aq V ag, by V by).

e Multiplication: z; A zo = 21 20 = (aq ag V by by, aq by V agby).
e Conjugation:z* = (b, a@).

e Dot Product:(zy, z0) = 21 z3.

Here, componentwise means not only that the definition takiese on the certainty and on
the nihil parts, but also that we use the standard Boolearmatipes on each element of the
corresponding Boolean matrices. For example, # (a;x); k=1, andb = (bjx); k=1, are
two Boolean matrices, thén

a Vb= (aVbjr)jr=1,.n
alANb= (ajk N bjk)jkzl,m,n

a = (@) jk=1,..n

The notation(-, -) for the dot product is used because it coincides with thetfanal no-
tation introduced in [9, 12]. Notice however that there isumalerlying linear space so this is
just a convenient notation. Moreover, the dot product of Bomlean complexes is a Boolean
complex and not a scalar value.

The dot product of two Boolean complexes is Zdtbey areorthogona) if and only if each
element of the first Boolean complex is included in both theagety and nihil parts of the
second complex. Otherwise stated;iif= (a;, b)) andzy = (as, b2), then

<Zl, ZQ> =0 < 109 = algg = 6162 = blgg = 0. (4)

Given two Boolean matrices, we say thak b if ab = a, i.e. whenever has a 1) also has a
1 (grapha is containedin graphb). The four equalities in eq. (4) can be rephrased.as as-,
a; < by, by < az @andb; < be. Thisis equivalentt@a; Vv b;) < (asbs). Orthogonality is directly
related to the common elements of the certainty and nihtspar

A particular relevant case — see eq. (8) —is when we condigatdt product of one element
z = (a, b) with itself. In this case we g€t Vv b) < (ab), which is possible if and only i@ = b.
We shall come back to this issue later.

Definition3-3 (Preliminary Monotone Complex Algebra, PMCA). The &ét= {2 |z isa
Boolean complektogether with the basic operations of Def. 3-2 will be knowipeeliminary
monotone complex algehr&esides, we shall also introduce the sulsset= {z = (a,b) €
&’ |a A b= 0} with the same operations.

3Notice that these operations are also well defined for vedthey are matrices as well).
4Zero is the matrix in which every element is a zero, and isespnted by or a bolded if any confusion may
arise. Similarly,1 or 1 will represent the matrix whose elements are all ones.
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Elements offy’ are the strict Boolean complexes introduced in Def. 3-1. Weget rid of
the term “preliminary” in Def. 4-1, when not only the adjacgmmatrix is considered but also
the vector of nodes that make up a simple digraph. In MGG wicbeiinterested in thosee &’
with disjoint certainty and nihil parts, i.ex € $’. We shall define a projectiof : & — $’
by Z(g) = Z(a,b) = (ab,ba). The mappingZ sets to zero those elements that appear in both
the certainty and nihil parts.

A more complex-analyticatepresentation can be handy in some situations and in fdct wi
be preferred for the rest of the present contribution:

z=(a,b) — z=aVib.

Its usefulness will be apparent when the algebraic manipuis become a bit cumbersome,
mainly in Secs. 5, 6 and 7.

Define one elemerit— that we will namenil term or nihil term— with the property A = 1,
being: itself not equal td.. Then, the basic operations of Def. 3-2, following the sawtation,
can be rewrittert:

=bVia
Zl\/Zg = (CLl\/ag)\/i(bl\/lh)
Z1%92 = 21 N Z9 = (0,1 V 'Lbl) N (CLQ V 'ng) = (&1&2 V blbg) V1 (albg V bla,g)
<Zl, ZQ) = (CL1 V ’Lbl) N (52 V 162) = (CLll_)Q V blag) V1 (aﬁg V blgg) .
Notice that the conjugate of a complex teene &’ that consists of certainty part only is
z* = (a V1i0)" = 1Vvia. Similarly for one that consists of nihil part along: = (0Vib)* = bVi.
If 2 € © then they further reduce toVv :0 and0 V b by applying the projectiol®, respectively,

i.e. they are invariarft. Also, the multiplication reduces to the standardi operation if there
are no nihil parts{a; Vv i0)(as V i0) = a;as.

Proposition 3-4. Letz,y,z € & andz;, 2z € §'. Then,(zVy,z) = (z,2) V (y, 2),
(21, 29) = (29, 21)" @nd(z122)" = 27 23.

Proof

OThe first identity is fulfilled by any Boolean complex and twils directly from the definition.
The other two hold iy’ but not necessarily i®’. For the second equation just write down the
definition of each side of the identity:

<Zl, 22> = (algg V agbl) Vi (CLlaQ V blgg)
<22, Zl>* = [0,152 V agbl V (&161 V Qa9 52)} V1 [0,162 V blgg V (&161 V as 52)} .

Termsa, by V @sb-, vanish as they appear in both the certainty and nihil patte. third identity
is proved similarlyl

5The authors did not manage to prove the existence of sucheekenm any domain, by any means. In the
present contribution,should be understood just as a very convenient notatiorstimglifies some manipulations.
The reader may however stick to the representation of Boateanplexes as pairs of matrices b). All formulas
and final results in this paper have an easy translation freernmtation into the other.

®Notice thatl v iz = (a Va) Via=aVi0andb Vil =bVi(bVb) =0V ib.
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Notice however thatz; V 25)" # 2} V z5. It can be checked easily 43, V 2;)" =
[(0,1 V ag) V1 (bl V bg)]* = 5152 V 1 G1as but Zik V Z; = (51 V 52) V1 (61 V 62). This ImplleS
that, although(z; V 29, 2) = (21, 2) V (22, 2), we no longer haveesquilinealityi.e. it is not
linear in its second component taking into account conjugacy:

z [(l_)l \/52) Vi (61 \/62)} = <Z,Zl V ZQ) # <Z,Zl> V <Z, 22> =z [511_32 V iaﬁg} .

In fact the equalityz, z; V 22) = (2, 21) V (2, 22) holds if and only ifz; = z,.

The following identities show that the dot product of onenedat with itself does not have
nihil part, returning what one would expect. Equation (f)asticularly relevant as it states that
the certainty and nihil parts are in some sense mutuallyusia, which together with eq. (8)
suggest the definition af’ as introduced in Sec. 3. Notice that this fits perfectly wethvthe
interpretation of.. and K in MGG given in Sec. 2.

(aVvi0,aVi0)=(aVO0a)(lVia)=(aV0a)Vi(0OVaa) =a (5)
(OVib,0vib)=(0Vib) (bvil)=(bVv0b) Vi(bbV0)=b (6)
(cVic,eVic))=(cVic)(¢Vic)=(cecVce)Vi(ceVcee)=0. @)

The dot product of one element with itself gives rise to thefaing useful identity:
<z,z):zz*:(aE\/Eb)\/i(bE\/aE)ZaGBb, (8)

being ® the componentwis&or operation. Apart from stating that the dot product of one
element with itself has no nihil part (as commented abowg)(®) tells us how tdactorizeone
of the basic Boolean operationsor.

We shall introduce the notation

[2]] = (=, 2)- (9)

In some sense|z|| measurefiow big (closer tal) or small (closer t@®) the Boolean com-

plex z is. It follows directly from the definition thati|| = 1 (this is just a formal identity) and
[2*[] = | z]-

4 Production Encoding

In this section we introduce the Monotone Complex Algebraiciv not only considers edges
but also nodes. Compatibility issues may appear so we studypatibility for a simple digraph
and also for a single production (compatibility for sequeswill be addressed in Sec. 7). Next
we turn to the characterization of MGG productions usingdbeproduct of Def. 3-2. The
section ends introducingwaps which can be thought of as a generalization of productions.
This concept will allow us to reinterpret productions asaduced in [12].

To get rid of the “preliminary” term in the definition &’ and §y’ (Def. 3-3) we shall
consider an element as being composed of a (strict) Booleaplex and a vector of nodes.
Hence, we have that = (L¥ v iK* LY viK") whereE stands foredgeandV for vertex’
Notice thatZL” v i K'* are matrices and" v iK' are vectors.

’If an equation is applied to both edges and nodes then theisdjpes will be omitted. They will also be
omitted if it is clear from the context which one we refer to.
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Definition4-1 (Monotone Complex Algebra). THdonotone Complex Algebris the set
& = {(LF ViKF LV ViK") |L¥ v iK¥ andL" v iK" are Boolean complexes as intro-
duced in the paragraph abgviogether with the operations in Def. 3-2. L@tbe the subset of
& in which certainty and nihil parts are disjoint.

This definition extends Def. 3-3. The intuition behigid(and $) is that L” v i KF keeps
track of edges whild,V v iK" keeps track of nodes.

Concerning®, a productiornp : & — & consists of two independent productioms=
(pc, pn) — beingpe, py MGG productions; see Defs. 2-1 and 2-2 — one acting on thainéyt
part and the other on the nihil part:

R =p(L)=p(LViK)=pc(L)Vipn(K)= RViQ, (10)

whereR is introduced in Def. 2-1 an@ in eq. (1). Aspc andpy are not related to each other
if we stick to &, it is true thatvg,, go € &, Jp such thatp(g;) = ¢». However, productions
as introduced in MGG do relai@- andpy: they must fulfillpy = pgl. Also, in MGG, the
certainty and nihil parts have to be disjoint. Hence, we wolhsiderp = (pc, py) : $H — $ for
the rest of the paper unless otherwise stated.

We wantp to be a production so we must split it into two parts: the ora #tts on edges
and the one that acts on vertices. Otherwise there wouldapiglbe dangling edges in the nihil
part as soon as the production acts on nodes. The point ithéh&hage of the nihil part with
the operations specified by productions are not graphs iergérunless we restrict to edges
and keep nodes apart. This behaviour is unimportant andghotibe misleading.

2 Pel A 2

Figure 4. Potential Dangling Edges in the Nihilation Part

Example.[0The left of Fig. 4 shows the certainty part of a productjpthat deletes node 1
(along with two incident edges) and adds node 3 (and two @mtiddges). Its nihil counterpart
for edges is depicted to the right of the same figure. Notie¢ledel should not be included
in K because it appears ihand we would be simultaneously demanding its presence and it
absence. Therefore, edgés 3), (1,2) and(3, 1) — those with a red dotted line — would be
dangling inK (red dotted edges do belong to the graphs they appear on)sarhe reasoning
shows that something similar happensiirbut this time with edge$l, 3), (3,1), (3,2) and
(3,3) and node 3.

This is the reason to consider nodes and edges independetitéy/nihil parts of graphs and
productions. Ik, as noded and3 belong toL, it should not make much sense to include them
in K too, for if K dealt with nodes we would be demanding their presence amdath&cense.

In @ the production adds nodkeand something similar happeili.

Now that nodes are considered, compatibility issues in #r&amty part may show up.

The determination of compatibility for a simple digraph isnast straightforward. Ley =
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(gE Vv igh, gt Vigk) € 9. Potential dangling edges are given by

Dy = g8 @ g, (11)

so the graply will be compatible ifgZ D, = 0. As g € , there are no common elements
between the certainty and nihil parts abg < ¢%.

A productionp(£) = p(L ViK) = RV i@ = R is compatible if it preserves compatibility,
i.e. if it transforms a compatible digraph into a compatitiigraph. This amounts to saying that
RQ = 0.

Recall from Sec. 2 that grammar rule actions are specifiesliftrerasingand addition
matricese andr respectively. Becauseacts on elements that must be presentiand those
that should not exist, it seems natural to encode a produaso

p=-e\Vair. 12)

Our next objective is to use the dot product — see Def. 3-2 epoesent the application of
a production. This way, a unified approach would be obtaiffedhis end define the operator
P:® — &by
p=eVir— P(p)=€eFVi(eVr). (13)

Proposition 4-2 (Production).Let £ and R be the left and right hand sides, resp., as in
Def. 4-1 and eq(10), and P as defined in e(13). Then,

R = (L, P(p))- (14)

Proof
(OThe proof is a short exercise that makes use of some identvtiech are detailed below:

(L,P(p)) =((LViK),eTVi(eVr)) =
=[€eTLV (eVr)K]Vi[eFTKV (eVr)L] =
= (rveL)eVi(TK)=p(L)Vip "(K)=R. (15)

In addition torL = L, we have used the following identities:

(evr)K =eKVrK=rK =r(rvVeD)=r.
erK =7 (erveeD) =TK.
(evr)L=eLVrL=eL =e.

We have also used that = r, rD = r due to compatibility anaZ = 0 almost by definition.
Besides, Prop. 7.4.5in [12] has also been used, which ptbegsransformation of the nihil
parts evolves according to the inverse of the productien.= p~! (K). 1

The production is defined through the operatbinstead of directly ap = e7 V i(e V r)
for several reasons. First, eq. (12) and its interpretasie®m more natural. Secongp)
is self-adjoint, i.e. P(p)* = P(p), which in particular implies thaf P(p)|| = 1, Vp (see eq.
(16) below). Therefore||-|| would notmeasurehe size of productions (interpreted as graphs

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R73 12



according to eq. (12) and as long [ag§ measures sizes of Boolean complexes) and we would
be forced to introduce a new norm. This is because

I1P(p)Il = (P(p), P(p)) =
=(erVi(eVvr))(erVi(leVr)) =erVeVr=1. (16)

By way of contrast||p|| = e®r = eV r. With operatorP the size of a production is the number
of changes it specifies, which is appropriate for M&G.

The proposed encoding puts into a single expression th&apiph of a grammar rule, both
to L and toK. Also, it links the functional notation introduced in [12j@the dot product of
Sec. 3.

Theorem 4-3 (Surjective Mapping).There exists a surjective mapping from the set of MGG
productions on to the set of self-adjoint graphsin

Proof
Cit is not difficult to check that is self-adjoint if and only if]|z|| = 1: on the one hand, if
z =aViathen(z z) = zz* = (a Via)(a Via) = a Va = 1. On the other hand, if we have
z=aViband|z|| = a ® b= 1thena = b.

The surjective morphism is given by operatBr Clearly, P is well-defined for any pro-
duction. To see that it is surjective, fix some graph- ¢; V ig, such that|g|| = 1. Then,
g = g1 V ig,. Any partition ofg, asor of two disjoint digraphs would do. Recall that produc-
tions (as graphs) have the property that their certaintyranidiparts must be disjoinl

The operatorP is surjective but not necessarily injective. It defines aniegjence relation
and the corresponding quotient space. In this way, we inttedhe notion oswapwhich
allows a more abstract view of the concept of production.iflingortance stems from the fact
that swaps summarize the dynamics of a production, indegrelydof its left hand side. They
allow us to study a set of actions, indepedently of the adjtegbh they are going to be applied
to.

Definition4-4 (Swap). The swap space is defined®s= §$/P(5)). An equivalence class
in the swap space will be calledssvap The swapw associated to a productign: $ — ) is
w=w,=P(p),i.e.peHr— w,e WS

Figure 5: Example of Productions

ExamplelCILet p, andps be two productions as those depicted in Fig. 5. Their imagé¥’i

are.
P =P = ¢ |vilg 1] =w (17)

8Eventually, in complexity theory, one is interested in lowkfor an appropriate measure of the number of
actions that transform one state (graph) into another.
SAcording to eq. (12) any element i can be interpreted as a production and viceversa.
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They appear to be very different if we look at their definingtriecas L,, L; and R,, R3 or
at their graph representation. Also, they seem to differeflaok at their erasing and addition

matrices:
[1o0 11 [0 1 [o o
210 1| " loo| ™ ]ool|l BT lo 1]

However, they are the same swap as eq. (17) shows, i.e. thaygo® the same equivalence
class. Notice that both productions act on edged), (2,2) and(1,2) and none of them
touches edg€, 1). This is precisely what eq. (17) says as we will promptly see.

Swaps can be helpful in studying and classifying the prddostof a grammar. For ex-
ample, there are 16 different simple digraphs with 2 nodeendd, there are 256 different
productions that can be defined. However, there are only fiéeint swaps. From the point
of view of the number of edges that can be modified, there isdpdvat does not act on any
element (which includes 16 productions), 4 swaps that adt element, 6 swaps that act on 2
elements, 4 swaps that act on 3 elements and 1 swap that aatsetementsli

We can reinterpret actions specified by productions in MdBtiaph Grammars in terms of
swaps: instead of adding and deleting elements, they mtage elements between the certainty
and nihil parts, hence the name.

Notice that, because swaps are self-adjoint, it is enoudteép track of the certainty or
nihil parts. So one production is fully specified by, for exae its left hand side and the nihil
part of its associated swap.

5 Coherence

So far we have extended MGG by defining the transformatiors(tions) in® and$). The
theory will be more interesting if we are able to develop tleeassary concepts to deal with
sequences of applications rather than productions alormendy the two most basic notions are
coherence and the initial digraph, which have been intredu Sec. 2. We shall reformulate
and extend them in this and the next sections.

Recall that the coherence of the sequeneep,,; . . .; p; guarantees that the actions of one
productionp; do not prevent the actions of those sequentially behingl it;, . . ., p,. The first
production to be applied inis p; and the last one is,. The order is as in composition, from
right to left.

Theorem 5-1 (Coherence).The sequence of productions= p,;...;p; is coherent if the
Boolean complex’' = C*V iC~ = 0, where

\/ j VJ+1 exry) vV Lj A] ! (6y Tx)) (18)

10Gjven a swap and a comple it is not difficult to calculate the production havindjas left hand side and
whose actions agree with those of the swap.
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and

n

c- = \/ (Q; V0 (eyT0) VE; AT (ry20)) - (19)

j=1
with A andyy as defined in eqgs. (2) and (3), resp.

Proof

OThe definition of equality of Boolean complexes in Def. 3-4tes thaC*Vv iC~ = 0 if and
only if C* = C~ = 0. The certainty parC* and the nihil parC~ = 0 can be proved simi-
larly.!* We shall start with the certainty patt'.

Certainty part C*
Considers; = po; p; @ sequence of two productions. In order to decide whetheappécation
of p; does not excludg,, we impose three conditions on edges:

1. The first production -»p; — does not deletee() any element usedL{) by the second
production:
61L2 =0. (20)

2. p, does not addrg) any element preserved (used but not deleted;) by p;:

T2L1€1 =0. (21)

3. No common elements are added by both productions:

rire = 0. (22)

The first condition is needed becausg;ifdeletes an edge used py, thenp, would not be
applicable. Regarding edges, the last two conditions aredatary in order to obtain a simple
digraph (with at most one edge in each direction between tug).

Conditions (21) and (22) are equivalenttad?; = 0 because, as both are equal to zero, we
can do

0:7’2[/1@1\/7’27’1:7’2(7’1 \/élLl):’f’gRl,

which may be ready, does not add any element that comes out frgra application”. All
conditions can be synthesized in the following identity:

T2R1 V 61L2 =0. (23)

To obtain a closed formula for the general case, we may udathéhatre = r ander = e.
Equation (23) can be transformed to obtain:

Rlég’f’g V L2€1F1 =0. (24)
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Dy; Dy (20) Dy; Py vV Dy; Ay V
Py; Dy (20) Py Py \/ P2;A1 \/
Ag; Dy \/ Ag; Py (21) Ag; Ay (22

)

Table 1: Possible Actions for Two Productions

Now we chack that eq. (24) covers all possibilities. @athe action of deleting an element,
A its addition andP its preservation, i.e. the edge appears in both the LHS anBHS. Table
1 comprises all nine possibilities for two productions.

A tick means that the action is allowed, while a number retiethe condition that prohibits
the action. For exampld;;; D; means that first productign deletes the element and second
py preserves it (in this order). If the table is looked up we finattthis is forbidden by eq. (20).

Now we proceed with three productions. Consider the sequene- ps; po; p1. We must
check thai, does not disturlp; and thatp; does not prevent the application@f. Notice that
both of them are covered in our previous explanation (in t productions case). Thus, we
just need to ensure that does not excludgs, taking into account that, is applied in between.

1. p; does not deletez() any element used ) by p; and not addedr() by p,:
61[/3?2 = 0. (25)

2. Productiorp; does not addi§) any edge stemming fromy (this is R;) and not deleted

(e2) by ps:
TgRlég =0. (26)

Again, regarding edges, the last condition is needed inrdadebtain a simple digraph.
Performing similar manipulations to those carried out §omwe get the full condition fors,
given by the equation:

L261 V Lg (6172 V 62) V Rl (527“3 V 7“2) V R27“3 = 0. (27)

Proceeding as before, identity (27) is “extended” to repnéshe general case using operators
A andyy:
L26171 V Lg?g (6171 V 62) Vv Rlég (7“2 V 537’3) V RQEng = O (28)

This part of the proof can be finished by induction.
Nihil part C~
We proceed as for the certainty part. First, let’s considseguence of two productions =

p2; p1. In order to decide whether the applicationpefdoes not excludg, (regarding elements
that appear in the nihil parts) the following conditions s demanded:

1. No common element is deleted by both productions:
€16g = 0. (29)

The reader is invited to consult the proof of Th. 4.3.5 in [pR)s Lemma 4.3.3 and the explanations that
follow Def. 4.3.2 in the same reference. Diagrams and exasiplerein included can be of some help.
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2. Productionp, does not delete any element that the producgiprdemands not to be
present and that besides is not addegpy

€2K1F1 =0. (30)
3. The first production does not add any element that is deethnat to exist by the second
production:

T1K2 =0. (31)

Altogether we can write
€162 V 7162[{1 V 7“1K2 = 62(61 V FlKl) V 7“1K2 = 62@1 V TlKQ = O, (32)

which is equivalent to

62?2@1 V €1T1K2 = 0 (33)

due to basic properties of MGG productions (see e.g. Prdp4 4 [12] for further details).

In the case of a sequence that consists of three producti9ns,ps; p2; p1, the procedure
is to apply the same reasoning to subsequepggs (restrictions orp, actions due te;) and
p3; po (restrictions onps actions due tg,) andor them. Finally, we have to deduce which
conditions have to be imposed on the actiongoflue top,, but this time taking into account
thatp, is applied in between. Again, we can put all conditions inngla expression:

Ql (62 V Fgeg) V Qgeg V K2T1 V Kg (7’152 V TQ) =0. (34)
Dy; Dy (31) Dy; Py V Do; Ay Vv
Py; Dy (31) Py; Py V Py; Ay Vv
Ag; Dy \/ Ag; Py (30) Ag; Ay (29)

Table 2: Possible Actions for Two Productions

We now check that egs. (33) and (34) do imply coherence. Tdlsdeeq. (33) implies
coherence we only need to enumerate all possible actionseonihil parts. It might be easier
if we think in terms of the negation of a potential host graphvhich both productions would
be applied(G) and check that any problematic situation is ruled out. Skketa whereD is
deletion of one element frord¥ (i.e., the element is added &), A is addition toG andP is
preservation (These definitions Bf A andP are opposite to those given for the certainty case
above)'? For example, actionl,; A, tells that in first place, adds one elementto G. To do
so this element has to be én (or incident to a node that is going to be deleted). After,that
adds the same element, deriving a conflict between the riites.provesC'~ = 0 for the case
n = 2.

When the sequence has three productiens,ps; p»; p1, there are 27 possible combinations
of actions. However, some of them are considered in the suiesees,; p; andps; p». Table
3 summarizes them.

12preservation means that the element is demanded to Bebiecause it is demanded not to exist by the
production (it appears ik(;) and it remains as non-existent after the application ofpfauction (it appears
also inQ1).
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D3; Do; Dy (31) D3; Do; Py (31) Ds; Dy; Ay (31)
P3; Dy; Dy (31) P3; Dy; Py (31) P3; Do; Ay (31)
Asz; Doy Dy (31) Asz; Do; Py \/ Asz; Doy Ay \/
D3; Py; Dy (31) D3; Py; Py \/ Ds; Py; Ay \/
P3; Po; Dy (31) P3; Py; Py vV P3; Py Ay Vv
Asz; Po; Dy (31)/(30) Asz; Py; Py (30) As; Po; Ay (30)
Ds; Ag; Dy vV Ds; Ay; Py (30) Ds; Ag; Ay (29)
Ps; Ag; Dy vV P3; Ag; Py (30) P3; Ag; Ay (29)
Asz; Ag; Dy (29) Asz; Ag; Py (29) Asz; Ay Ay (29)

Table 3: Possible Actions for Three Productions

There are four forbidden actiod3:Ds: Dy, As; P;, Ps; D, and A;; A,. Let’s consider the
first one, which corresponds ter; (the first production adds the element — it is erased fdm
—and the same fgg;). In Table 3 we see that related conditions appear in positio 1), (4, 1)
and(7,1). The first two are ruled out by conflicts detecteginp, andps; ps, respectively. We
are left with the third case which is in fact allowed. The ciiod 3, taking into account the
presence op, in the middle in eq. (34) is contained i3 €5, which includesriesrs. This
must be zero, i.e. it is not possible forandp; to remove from one element if it is not added
to G by p,. The other three forbidden actions can be checked similarly

The proof can be finished by induction on the number of pradast The induction hy-
pothesis leaves again four casés;; D1, A,; Pi, P,; D; andA,,; A;. The corresponding table
changes but it is not difficult to fill in the detaill

There are some duplicated conditions, so it could be passibtoptimize”C'. The form
considered in Th. 5-1 is preferred because we mayusads; to synthesize the expressions.
Some comments on previous proof follow:

1. Notice thateq. (29) is already @through eq. (18) which demandglL, = 0 (ase; C Lo
we have that?ng =0= e = O)

2. COﬂditiOﬂ (30) iSeQKﬁl = 627_17’1 V 62715131 = 625131, where we have used that
K, =p(Dy). Note that those, D, # 0 are the dangling edges not deleted/hy

3. Equation (31) i3’1K2 = T1D2 (Eg) =T (7’2 V EQEQ) = 7riro V Tlégﬁg. The first term
(ri72) is already included i€’ and the second term is again related to dangling edges.

4. Potential dangling edges appear in coherence and thisse®y to indicate a possible
link between coherence and compatibifity.

An easy remark is that the complé% viC~ in Th. 5-1 provides more information than just
settling coherence as it measures non-cohergmodslematicelements (i.e. those that prevent
coherence) would appear as ones and the rest as zeros.

13Those actions appearing in table 1 updategfor
4Compatibility for sequences is characterized in Sec. 7.eBarce takes into account dangling edges, but only
those that appear in the “actions” of the productions (inrio@se andr).
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Figure 6: Example of Coherence

Example.ClLet’'s consider the sequenege= ps; p,. Recall that the order of application is from
right to left sop, is applied first ancp; right afterwards. Lep, andp; be those productions

depicted in Fig. 6. Once simplified, its coherence complex is

C(S) = C+<8) V ’LC_ (8) = (R47’5 V L564) V1 (Q465 V K5T4) =
011 0 00 010 0 00
= 0 0 1 00 v]10 00 0 00 V
0 0 O 0 00 0 0 1 0 01
0 00 010 1 01 011
V1 0 00 0 00|v|1O01 0 01 =
0 01 0 00 1 00 0 0 0
0 0O 0 01
=100 1]|]vVve| 00 1]{.
0 01 0 0 0

Coherence problems appear in this example for severalmsagalgg 2, 3) is added twice
while self-loop(3, 3) is first deleted irp, and then used ips. Edge(1,3) becomes dangling
because productiops deletes nodé. Edge(2,3) appears inC~ (s) for the same reason that

makes it appear in'*(s). B

6 Initial Digraph

The minimal initial digraph)M (s) for a completed sequence= p,;...;p; was introduced
in [12] as a simple digraph that permits all operations; @nd that does not contain a proper
subgraph with the same property. The negative initial gigraas a similar definition but for

the nihil part (see Sec. 2 for both definitions).
In this section, in Th. 7-1 we encode, as a Boolean complexythimal and negative initial

digraphs, renaming it taitial digraph. Also, a closed formula for its image under the action
of a sequence of productions is provided.

Coherence and initial digraphs are closely related. Themite of a sequence of produc-
tions depends on how nodes are identified across productidms identification defines the
minimum digraph needed to apply a sequence, which is thalidigraph.

Now we are interested in what elements will be forbidden ahitivones will be available
once every production is appliédl Matrix D = € @ ' specifies what edges can not be present

Swhenever the tensor (Kronecker) product is used, we reféhd@ovector of nodes so thé superscript is
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because at least one of their incident nodes have beendieletes introduce the dual concept:
T = (?@?t) A(E®e). (35)

T are the newly available edges after the application of ayrtdn due to the addition
of nodes'® The first term,;7 ® 7, has a one in all edges incident to a vertex that is added by
the production. We have to remove those edges that are mtdidesome node deleted by the
production, which is what ® &' does.

o O o
= oo
[ =]

Figure 7: Available and Unavailable Edges After the Apgiima of a Production

Example.CJFigure 7 depicts to the left a productigrthat deletes nodé and adds nodg. Its
nihil term and its image are

—_ = =

1
K:q(ﬁ)zr\/éﬁ: 1
1

o O O

1 11
1 Q=q¢ ' (K)=eVTK = 00
0 00
To the right of Fig. 7, matri¥ is included. It specifies those elements that are not fodsndd
once productiory has been applie@
It is worth stressing that matricd3 and7" do not tell actions of the production to be per-

formed in the complement of the host graph,Actions of productions are specified exclusively
by matrices andr.

Theorem 6-1 (Initial Digraph). The initial digraph M (s) for the completed coherent se-
guence of productions= p,; ... ; p; is given by

M(s) = Mc(s) ViMy(s) = 1 (Toly Vi, T, Ky) . (36)

Proof
(OWe shall first prove the theorem for the certainty part. Thib give us the main ideas to
proceed with the nihil part. In both cases we shall use indnan the number of productions.

Certainty part M¢c = 7 (TxLy)
As the sequence is coherent and has been completed (i.es acgleelated across produc-
tions) the graphl, = V;‘Zl L; has enough elements to carry out all operations specified in

omitted. For exampl& ® R’ = RV ® (RV)t. The! symbol stands for transposition.
18This is whyT does not appear in the calculation of the coherence of a sequeoherence takes care of real
actions(e, ) and not of potential elements that may or may not be avail(ablél”).
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the sequenc¥. Hence, in order to check if/(s) has enough elements it suffices to see that
s(L) = s(M(s)).

If we had a sequence consisting of only one productioa: p; then it should be clear that
the minimal digraph needed to apply the sequendg isThis is almost by definition.

In the case of a sequence of two productions, say- p.; p1, Whatp; uses(L,) is again
needed. All edges that uses (,), except those added,( by the first production, are also
mandatory. Note that the elements added by p,; are not considered in the initial digraph.
If an element is preserved (used and not erasebl,) by p, then it should not be taken into
account:

L1 V LQFl (élLl) - Ll V LQFl (61 V fl) == L1 V Lgﬁl. (37)
This formula can be paraphrased as “elements used Ipyus those needed kps’s left hand
side, except the ones resulting friis application”. Let’s see that it provides enough elements
to s5:

p2ip1 (L1 V LoRy) =y Ve (Ve (L V LayRy)) =

=T9 V €9 (Rl V TlﬁlLQ V Elﬁng) =
=Ty \/52 (Rl V 7’1L2 \/éng) =
:7“2\/52(7’1 \/51 (Ll\/LQ)) = P2;P1 (Ll\/LQ).

Let's move one step forward with the sequence of three prii@h&s; = ps; po;p1. The
minimal digraph needs what needed [, V L, R;) but even more so. We have to add what the
third production usesI(;) except what comes out fromy and is not deleted by productign
(this is Re,) to finally remove what comes ouk() from p,:

M(Sg) = Ll V Lgﬁl V Lg(ég Rl)EQ - Ll V Lgﬁl V Lgﬁg (62 V El) . (38)

Similarly to what has already been done fgywe check that the initial digraph has enough
elements such that it is possible to applyp. andps:

P3;P2; P1 (M(Sg)) = 7“3\/53 (7’2\/52 (7’1 V 51 (Ll Vv Lgﬁl V Lgﬁg (62 V Rl)))) =

=T3 \/53 D) \/52 €1L2 V 5162[/3?2 V 51 V Lgélﬁle =

=RiVLsei1 Ry

=T3 \/53 éQTl V EgélLl \/5251[/2 V T2 V L3€1€2F2Z2 =
~—_——

Vv
=ex Ry =roVLseieals

= T3\/€3 (TQ V 52 (7’1 V 51 (L1 V L2 V Lg))) =
=p3;po;p1 (L1 V Lo V L) .

Mt is also possible to interprdt as a non-completed graph, whose completion will avoid amecence issue.
If for example we had coherence issues with every single @htimp, thenZ would be the disjoint union of every
L;.
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The same reasoning applied to the case of four productimes ¢ine equation:

M4 == L1 V Lgﬁl V Lg(ég R1> EQ V L4(€3 égRl) (égRg) Eg. (39)

Minimality is inferred by construction, because for edghall elements added by a previous
production and not deleted by any productjpn; < ¢, are removed. If any other element is
erased from the initial digraph, then some productios,jmvould miss some element.

Now we want to express previous formulas using operatoends;. The expression

Lyv\/ [Li AT (Ryey)] (40)

=2

is close but we would be adding terms that inclutie;, and clearlyﬁleljé Ry, which is what
we have in the initial digrap® Therefore, considering the fact th#tva b = @ in propositional
logics, we eliminate them by performiray operations:

e Vi (RaLysa). (41)

Thus we have a formula for the initial digraph which is sligtdifferent from that in the
theorem:

M(s) =L Ve Vi (RoLysr) vV [Li A7 (Raey)] - (42)
=2
Our next step is to show that previous identity is equivatent

n

M(s) =L Ve Vi (Folysr) V \/ [Li AT (Faey)] (43)

=2
by illustrating the way to proceed fer = 3. To this end, the identityL = L is used as well as
the fact thatz vV @b = a V b in propositional logics:
M3 = L1 V Lgﬁl V Lgﬁg (62 \/El) =
= Ll V Lgfl (61 V fl) V (L37262 V Lg?gfg) (62 V 716171Z1) =
= Ll V Lﬁlfl V L261 V L362 V L36261 V Lgegflzl V L362z%\/

~
disappears due thses

V Lg?gfg?lzl V Lg?gfgel =
= L1 V L2 (71 V 61) V L3Z27271 V L362 V Lgfg?gel =
= L1 V Lg?l V L3F2 (62 V Fl) .

But (43) is what we have in the theorem, because as the segjisacmherent, the third term
in (43) is zero:

n

\ [Li AT (Ppey)] = 0. (44)

=2

BNot in formula (36) but in expressions derived up to now fonimial initial digraph: formulas (37) and (38).
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Finally, asL; = L; V e, it is possible to omie; and obtain (36), recalling again that
7L = L.

Nihil part Mn(s) = 7 (6xTxKy)

We shall go a little bit faster as the proof proceeds alondittes of that for the certainty part,
which in essence started with a big enough graph and remavethay elements as possible.
However, for edges in the nihil part, besides the actionfiefdroductions on edges, we need
to keep track of the actions of the productions on nodes Isecanme potential dangling edges
may become available (if their incident nodes are added byesgrammar rule then they stop
being potential dangling edges).

Think of G as an “ambient graph” in which the operations are takingepldéor the nihil
term v’fExTxKy it is easier to think in what must be or must not be foundsirrather than in
G.

We once more proceed by induction on the number of produstibor the time being, for
simplicity, we omit the effect of adding nodes which may tatential dangling edges into
available ones, i.e. we ignof&,. In a sequence with a single production it should be obvious
that K; (and onlyK;) needs to be demanded.

For a sequence of two productions = ps;p1, K; is again necessary. It is clear that
K1V K, with K} KY = 0—i.e. all nodes and hence edges unrelated — would be enauigh, b
may include more elements than strictly needed. Among thieose already deleted hy and
those that already appear ity and that are not added by — 7, K; —. If these elements df’,
are not going to be considered, we needrd their negationz, (7, K; ) K. Altogether, we get
K Ve (71 K1) K. Some simple manipulations prove that:

Kl V Kgél(FlKl) = Kl V Kgél (T’l \/Fl) =
= K1V Ky(er VT Ky) = KyQ;. (45)

Minimality is inferred by construction. If any other elentevas removed then eithef ! or
p, * could not be applied (and still consider dangling edges ot difficult to check that the
sequence; '; p; ! can be applied td(, v K,Q,. The expressions for sequences of three, four,
., n poductions are:

N3 = Ny V K370 Q, (46)
Ny = N3V K 737201 T2Q2 Q4 (47)
Ny =K v v (QuKm) v K A7 (@Qury)] (48)

,7:

N, =K, VT v (@K, ) K; A7 (eury)] - (49)

||<:

There are two tricky steps. The first one is how to derNein eq. (48) and the second is
how to obtain its equivalent expression (49). The readesfexred to the proof for the certainty
part above, where detailed explanations have been pravided
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Once we get here it is easy to obtaj} (e, K,). First, note that the sequence is coherent so
the third term in eq. (49) is zero. Second,lds = K; V rq, ther; can be simplified because
a VvV ab = a V bin propositional logics.

Finally, the same reasoning applies for those nodes thatdated. So we do not only need
to remove elements erased by previous productions but digesethat are not incident to any
non-existent edgey’ (¢, K,) — V7 (e,17,K,) W

o o
=
o
Lol

o o

=

X
N
|
=
N
<
|
N)
Sl
N
Il
o o
o
=
<
=
o
=
=
=
=
Il
o o
o
=

Figure 8: Sequence of Two Productions

Example.lJFigure 8 includes two productions with their nihilation megs K; and K. The
initial digraph of the sequence= ¢s; ¢ Is
M(S) - v% (FxLy\/ZéxTxKy) - (FlLl \/F172L2>\/7: (élTlKl\/éléngTgKg) -
= (Ll V FlLQ)\/’L. (TlKl V ElTngKg)

110 1 11 0 00 1 11 0 01
=110 0 vio 11 1 10 Vi 1 11 1 01|V
11 1 11 000 1 11 0 01
10 11 110 011
11 11 1 10 0 01 =
0 0 11 0 00 0 00

Mc(s2) has the minimal set of edges and nodes necessary to applyqgbi@usp; andps,
in this precise orderM y(s2) has the minimal amount of edges that must be missing.

We have representetd(s;) V iMy(s2) to the left of Fig. 9 together with its evolution as
well as the final states, (M (s2)). To the right of the same figure there is the same evolution
but limited to edges and from the point of view of swaps. Witack solid lines we have
represented the edges that are present and with red dotéstthiose that are absent. Recall that
swaps interchange theill.

As above, think of5 as an “ambient graph” in which operations take place. A finadark
is that7 makes the number of edges@has small as possible. For examplezgin,T: 75K, we
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Figure 9: Initial Digraph of a Sequence of Two Productiongéiber with its Evolution

are in particular demanding 7, T,r, (becauses, = r, VV €,D5). If we start with a compatible
host graph, it is not necessary to ask for the absence of edigjdent to nodes that are added
by a production (we called thepotentially availableabove). Notice that these edges could not
be in the host graph as they would be dangling edges or we vimgdiding an already existent
node. Summarizing, if compatibility is assumed or demanolethiypothesis, we may safely
ignore T, in the formula for the initial digraph. This remark will be e in the proof of the
G-congruence characterization theorem in Sec. 7.

We end this section with a closed formula for the effect of éipglication of a coherent
concatenation to an initial digraph. It can be useful if wentm@ operate in the general case.

Corollary 6-2. Lets = p,;...;p: be a coherent sequence of productions, ards) its
initial digraph. Considering only the certainty parts, the

s(M(s)) = N\ @M(s)) v 27 (1) (50)

.
Il
—

SO = N\ (FMG)) v A7 (Faey) (51)

~.

-
Il
—

Proof
OTheorem 6-1 proves that(M (s)) = s (\/\_, L;). To derive the formulas apply induction on
the number of productions arsat = . B

Notice that egs. (50) and (51) have the same shape as a sindlecfionp = r VeL, where
for eq. (50)

e= \/ e r =AY (eyry) (52)
i=1

and for eq. (51)

e= \/ T r=A7](Tyey). (53)
=1
Thee’s in egs. (52) and (53) are those elements not deleted by rmgption and the’s
are what a grammar rule adds and no previous productionegeg@eviouswith respect to the
order of application).
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For the application of a single productipnthe order of deletion and addition is unimpor-
tant: p(L) = r VeL = e(r vV L). This is becauser = r. However, the order of application
does matter in the case of a sequendewne write it using egs. (52) and (53)(G) = r V eG.
Here it is necessary to carry out deletion first and addititeraards.

Equation (50) is closely related to composition of a seqaesfgroductions as defined in
Sec. 4.5in[12]. This explains why it is possible to intet@eoherent sequence of productions
as a single production. Recall that any sequence is cohéthatappropriate identifications on
nodes are performed.

The negation of the minimal initial digraph which appeargientity (51) can be explicitly
calculated in terms of the operator nabla:

M(s) =V (Lyry) V /n\f (54)

Corollary 6-3. Lets = p,;...;p: be a coherent sequence of productions, ards) its
initial digraph. Then

s(M(s)) = s (Mo(s)) Vi s (MN(S)). (55)

7 Compatibility and Congruence

This section reviews some more sequential results, adpptid extending them. The notions
we cope with are compatibility and G-congruence. By the end of the section we will very
briefly touch on sequential independence, application itimmd and graph constraints.

Compatibility asks for “closedness” of the space (graph#) vespect to the specified op-
erations. In essence, it demands the lack of dangling edgeBnitions of compatibility for
increasingly general concepts can be found in Sec. 2: ssigiple digraph, production and
sequence. According to Prop. 4-2 productions act on edgksrarertices. They are obviously
related but this relation has not been demonstrated. It impbrtance in order to study the
evolution of the nihil part of (strict) Boolean complexesh¥f one production forbids, another
production may need or even can make accessible again.

Proposition 7-1 (Compatibility). Lets = p,,;...;p; be a sequence consisting of compati-
ble productions. If
Vi (€eTaMc(82)Mn(s2)) =0 (56)

thens is compatible, wherd/.(s,,) and My s,,) are the certainty and nihil parts of the initial
digraphs ofs,, = py; .. .;p1, m € {1,...,n}.

Proof (Sketch)

CJEquation (56) is a restatement of the definition of comphitytdor a sequence of productions.
The condition appears when the certainty and nihil partsdareanded to have no common
elements. Compatibility of each production is used to sitypérms of the formZ, K; &

®Compatibility has been defined in Sec. 2 and used for a simgldugation for example in the proof of Prop.
4-2, Sec. 4.
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As happened with coherence and the compléx/:C'~ in Th 5-1, eq. (56) for compatibility
provides information on which elements may prevent it.

Compatibility and coherence are related notions but onlsaime extent. Coherence deals
with actions of productions, while compatibility with potgal presence or abscense of ele-
ments. This might be better understood if we think in termsexfuences: when the left hand
sideL Vv iK of a grammar rule is matched in a host graghi v iG, all elements of. must be
found in G and all edges of¢ must be found inG. Whenp is applied, a new grapk Vv i
is derived. Again, all elements @t have to be found iif and all edges i) will be in H, no
matter if some of them are now potentially usable (sagds some nodes and some potentially
dangling edges are not dangling edges anymore).

Now we turn to G-congruence, which studies equality of ahidigraphs for a sequence=
Pn; - -3 p1 and a permutation of i’ = o(s) = po(n); - - - Po(1)- AS previously commented, this
is closely related to sequential indepence, which is a foredal concept in graph rewriting.

We limit ourselves to the advancement and delaying of asipgdduction: permutations
ands. Advancemerifis¢ = (1 2 ... n—1 n) and delayingi$y = (n n—1 ... 2 1), i.e
B(8) = Pn-1;Pn—2---;D1;Pn ANAI(S) = P1; ;- - - P2

We first calculate what we call congruence conditions. Tis®me technical lemmas are
proved and, finally, the section ends stating and provingrthin result regarding sameness of
initial digraphs. As commented right after the example oB%.assuming compatibility allows
us to safely ignord@’. We shall do so for the rest of the section.

Congruence conditions (abbreviated@8, positive CCif they refer to the certainty part
of the initial digraph andegative CCror the nihil part of the initial digraph) are the formulas
which should check the differences between the initialaps of two sequences, one being a
permutation of the other. For its calculation we proceednalction on the number of produc-
tions, starting withn, = 2.

Let’s start by just considering the certainty part of thaiatidigraph. Suppose we have a
coherent sequence made up of two productions- p.; p; with initial digraph M (s,) and,
applying the (only possible) permutation= (1 2), get another coherent concatenatign=
p1; p2 With initial digraph M (s5). Productionp; does not delete any element addedyby
because, otherwise,if in s, deleted something, it would mean that it already existeg{as
applied first ins,) while p, adding that same element s would mean that this element was
not present (becauge is applied first ins}). This condition can be written:

errs = 0. (57)
A similar reasoning states that can not add any element thatis going to use:

riLs = 0. (58)
Analogously forp, againsip,, i.e. fors, = p;; p2, we have:

€71 — 0 (59)
7’2[/1 =0. (60)

2ONumbers in the permutation refers to the position that tloelpetion occupies inside the sequence, not to its
subindex.
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As a matter of fact two equations are redundant — (57) and<{¥#cause they are already
contained in the other two. Note thagtl; = ¢;, i.e. in some sense C L;, SO it is enough to
ask for:

7’1[/2 \/7’2[/1 =0. (61)

It is easy to check that these conditions make(sz) = M¢(s,). In detail:

Mc(82> = Mc(82> V T1L2 = Ll V Fng V T1L2 = Ll V L2
MC(SIQ) = MC(SIQ) V 7“2L1 = L2 V Fng V 7“2L1 = L2 V L1~

Let’'s now turn to the nihil part of the initial digraph, for wdh the first production should
not delete any element forbidden for (in such a case these elements would b€ ifor p;; p,
and inG for py; p1):

0= 61K2 = €172 V 615232. (62)

Note that we already hadr, = 0in eq. (57). A symmetrical reasoning yields, D, = 0,
and altogether: - -
61€2D2 V 62€1D1 = 0. (63)

First monomial in (63) simply states that no potential darggedge forp, (not deleted by
p2) can be deleted by;.

It is not difficult to show that eq. (63) guarantees the sarhé part of the initial digraph.
In py; p1 the nihil part of the initial digraph is given bi; Vv &, K5. Condition (62) demands
e1 K5 = 0 so we caror them to get:

K1 \/élKQ\/elKQ :Kl\/KQ. (64)

A similar reasoning applies to ; p», Obtaining the same result.

We will proceed with three productions so, following a catent notation, we se; =
Ps; P2; D1, S5 = P2; p1; ps With permutatiornos = (1 3 2) and their corresponding certainty part
of the initial digraphsMC(s3) = L1 VT Ly VT 1Ty L3 annd(Sg) =73 LV T37To Ly Vv L3.
Conditions are deduced similarly to the two productionecéas

7’3L1 =0 TgLQTl =0 7“1L3 =0 7“2L3€1 =0. (65)

Let’s interpret them all.r;L; = 0 says thaip; cannot add an edge that uses. This is
because this would mean (3y) that the edge is in the host graph (it is usedzhy but s
says that it is not there (it is going to be addedzh). The second condition is almost equal
but with p, playing the role ofp;, which is why we demang; not to add the elemenf;).
Third equation is symmetrical with respect to the first. Taerth states that we would derive
a contradiction if the second production adds sometkingthat productiorp; uses(L;3) and
p1 does not deletée; ). This is because by; the element was not in the host graph. Note
that s}, says the opposite, ag (to be applied first) uses it. All can be put together in a ngl
expression:

L3 (7“1 \/517’2) \/7’3 (Ll \/FlLQ) = 0. (66)

2IAs far as we know, there is no rule of thumb to deduce the cmmitfor G-congruence. They depend on the
operations that productions define and their relative order
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For the sake of completeness let’s point out that there drer édur conditions but they are
already considered in eq. (66):

€173 = 0 T362F1 =0 €371 = 0 7’26351 = 0. (67)

Now we deal with those elements that must not be present.démditions similar to those
for two productions — compare with eq. (62) — are needed:

61K3 = €173 vV €1€3D3 =0
63K1 = €371 V €3€1D1 =0
63K2€1 = e3rqeq V 63€1€2D2 =0

62K3F1 = 627’3?1 V 62?1@3?3 = 0 (68)

Note that the first monomial in every equation can be dischedethey are already consid-
ered in identity (66). We put them altogether to get:

615333 V 63525132 V 635131 V 62537133 =
= €3 (élﬁl V élégbg) V égﬁg (61 V F1€2> . (69)

Moving one production three positions forward in a sequeoicéour productions, i.e.
Pa; P33 P2; D1 — D33 Po; P1; P4, While maintaining the certainty part of the initial diglajpas
as associated conditions those given by the equation:

L4 (7“1 V €179 V €1 €9 7“3) V T4 (Ll V T L2 V T1To Lg) = 0, (70)
and the nihil part of the initial digraph by:
€4 (El El V €1 5232 V €1 €2 5333) V €y 34 (61 V T1 €2 V T1To 63) = 0. (71)

By induction it can be proved that for advancement of one petidnn — 1 positions inside
the sequence of productionss,, = p,,; .. .; p1, the equation which contains glbsitive CCcan
be expressed in terms of operal@rand has the form:

CC (¢ny 8n) = L,V (@ery) V1 VI (T2 Ly) = 0. (72)
and for thenegative CC
CC™ (pn, 5n) = D&, Vi (Tre,) Ve, Vit (Exﬁy) =0. (73)

Some monomials were discarded in eq. (68) because they Wwesslp considered in eq.
(66). If (73) is not used in conjunction with (72), then themmoomplete form

CC™ (P, sn) = K, Vi (Tuey) Ve, Vi (€.K,) (74)

should be preferred. Recall that; = r; V €;D;. The point is that; D, considers potential
dangling edges whil&; also includes those to be added.
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It is possible to write eqs. (72) and (73) in termsigfand K;. We will do it for sequences
s3 andsj;. One illustrating example should suffice:
7“371[/1 V 33537161 = TlLl (7“3 V 615333) =
FlLl (T3€1 V Tgél V 61@3?3) =
TlLl (61K3\/7“3€1) :FlLlKg (61 \/7’3). (75)

Last equality holds becaugér; = r; Vr; D; = r; anda\Vab = a Vb in propositional logics.
We have also used thafe; = €; (r; V€ D;) = K;.

A formula considering the positive (72) and the negative (&8ts can be derived by induc-
tion. It is presented as a proposition:

Proposition 7-2. Positive and negative congruence conditions for sequeficasd s, =
on(sy) are given by:

CC (pn, sn) = LHV?_léxKy (ry Ve,V KnV’f_IF;ELy (ey V1y). (76)

Proof
Om

G-congruence is obtained whenC (¢,,s,) = 0. An equivalent reasoning does it for
production delaying: — 1 positions, giving very similar formulas. Suppose that prcitbn
p1 is moved backwards in concatenationto gets” = py;pn;...;p2, i.€. 6, is applied. The
positive part of the condition is:

CC™T (0,, 8,) = L1 V5 (€,1y) V11 Vy (F2Ly,) =0 (77)
and the negative part:
cc (5n, Sn) = Elélvg (7x6y) V elvg (éxﬁy) =0. (78)
As in the positive case it is possible to merge equationsdrid)(78) to get a single expres-
sion:
Proposition 7-3. Positive and negative congruence conditions for sequeficasd s!! =
dn(s,) are given by:
ccC (57“ Sn) = legéxKy (ry V 61) V Klvgfx[/y (6y V 7’1) . (79)

Proof
]

It is necessary to show that these conditions guaranteerg@m®ef initial digraphs, but first
we need two technical lemmas that provide us with some itiestised to transform the initial
digraphs. Advancement and delaying are very similar so adiyancement is considered for
the rest of the section.

Lemma 7-4. Lets, = p,;...;p1 be a sequence and, = o (s,) = pn_1;-..;p1;ps and
that CC™* (¢,, s,) is satisfied. Then the following identity may dred to M (s,,) without
changing it:

DCH (¢, 8n) = L V172 (Tuey) . (80)

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R73 30



Proof
OLet’s start with three productions. Recall thdf(s3) = L; vV othertermsand thatl; =
Ly Ve = Ly Ve Ve Ls (last equality holds for any formula v ab = a in propositional
logics). Note that; L3 is eq. (80) fom = 3.

Forn = 4, apart frome; L,, we need to get,7; L4 (as the full condition iDC (¢4, s4) =
L, (e; V T1e2)). Recall again the minimal initial digraph for four prodigets whose first two
terms areMq(sy) = L1 V T1Lo. It is not necessary to consider all terms/if-(s,) to get
DC+(¢4, 84):

Mc(84) = (Ll V 61) V (FlLQ V F1€2) V...=
= (Ll V €1 V 61L4) V (71[/2 \/7162 V 7162[/4) V...=
== (Ll V 61[/4) vV (FlLQ V 7162[/4) V...=
= Mc(84) vV DC+(¢4, 84).
The proof can be finished by inductidll.

Next lemma states a similar result for the nihil part of @ltidigraphs. We will need it to
prove invariance of the nihil part of the initial digraph.

Lemma 7-5. With notation as above and assuming that'~ (¢, s,,) is satisfied, the fol-
lowing identity may bered to My (s, ) without changing it:

DC™ (¢, 8n) = €, D, V72 (€x1y) - (81)

Proof

(OWe follow the same scheme as in the proof of Lemma 7-4. Ledid giith three productions.
Recall thatMy(s3) = K, V othertermsand thatk, = K, V7, = K, Vr; VriesDs. Note that
resDs is eq. (81) forn = 3.

For n = 4, besides the term,e,D, we need to get;r.e,D, (because we have that
DC~ (¢4, 84) = €4Dy4 (r1 V €172)). The first two terms of the negative initial digraph for four
productions aré/y (s4) = K; Ve K,. Again, itis not necessary to consider the whole formula
for My (s4):

My(sy) = (K1 V) V(etKaVree) V... =
= (KyVriVreDy) V(e Ky Vers VerseDy) V... =
= (K1 VrieDy) V (1Ko Verse,Dy) V... =
= Mn(s4) V DC™ (¢a, 84).
The proof can be finished by inductidll.

If conditionsC'C~ (¢, s,,) andDC~ (¢, s,,) are applied independently 6fC*(¢,, s,,) and
DCT (¢, s,) then the expression

DC™(¢n, $n) = K, Vi ™2 (€ ry) (82)

should be used instead of the definition given by equatioh (81
We are ready to formally state a characterization of G-coegce in terms of congruence
conditionsC'C.
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Theorem 7-6 (G-congruence)With notation as above and assuming compatibility and co-
herence, sequencg and¢(s, ) are G-congruent it C* (¢, s,,) Vi CC™ (pn, s,) = 0, where

CCH(pn, 8n) = LoV e K, (1, V ey) (83)
CCO™ (P, 8n) = K, V7T, Ly, (e, V1) (84)
Also, s, andd(s,) are G-congruent itC'C* (4, s,) Vi CC™(0,, s,) = 0, with
CC+(5n, Sn) = legéxKy (Ty V 61) (85)
CC™ (O, 8n) = Ki V3T, Ly (e, V1) . (86)

Proof
OFirst, usingCC* (¢, s;) and DC (¢;, s;), we will prove M (s) = M (s') for three and five
productions. Identities Vab = a VvV banda VvV ab=aV bwill be used.

Mc(s3) VCCH(¢3,83) V DCF (g3, 83) = [Ly VT1Ly VT iToLs] V

V [riLs VeiraLs V rsly V FirsLo| V [e1Ls] =

= Ly VT1 LoV PToL3 V ri L3V @11roL3 V e Ly =

=Ly VT1LoV Pols V rolsV Ly (r1 Vey) =

=L VT1LyV Ls.

In our first step, as neitheg L, nor7,r3L, are applied taV/-(s3), they have been omitted

(for example,L, V r3L; = L1). Oncer; Ls, e; L3 andry L3 have been used, they are omitted as
well.

Let's check outM(s4), where in the second equalityL; andrye, L3 are ruled out since
they are not used:

Mc(Sg)\/CC+(¢3, Sg> == [Fng \/F1F3L2\/L3] V [T1L3VT2€1L3\/T3L1 \/FngLQ] =
=V3Ly VT P3Lo V L3V 3Ly VT ir3Ly =
- L1 vV FlLQ V Lg.
The case for five productions is almost equal to that of thredyrctions but it is useful to
illustrate in detail howC'C™* (¢35, s5) andDC™ (¢s, s5) are used to prove that(s5) = Mc(sy)

in a more complex situation. The key point is the transforamet, 7,737, L; — L5 and the
following identities show the way to proceed:

ViToT3Ty L5V 1riLs =ToT3T4 Ls
VoTsTa LsV F11ralsV erLs =T3Ty Ls
V3Ta LsV 71 Forzls V ey LsV Preals V rils =Ty Ls
ValsV @1 @» @arals V e1LsV JreaLs V riLs
V 71 PaesLlsV @iroLs = Ls.
Note that we are in a kind of iterative process: what we gethenright of the equality is

inserted and simplified on the left of the following one, uigtie getLs. For L, the process is
similar but shorter.
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Now one example with three productions for the nihil partteé tnitial digraph is studied,
My (s3) vV CC™ (3, 83) V DC™ (3, 83) = Mp(s5) V CC™(¢3, 53):

My (s3) VCC™(¢3,83) V DC™ (3, 83) =
=[KiVe KyVe e K3 Vi]esK; Ve esKy Ve K3V
VT1eaKs) VvV [rnKs| = Ky Ve KoV gi1es K3 Ve K3V
V 71esKsVriKs =K Ve KoV @y K3V ey K3V
VEKs(riVe) =K Ve Ky V Ks.

My (s5) VCC™ (¢3,83) = [esK1 Veres KoV K3V [e1 K3V eaT1 K3 V es K1V
V eresKs| =73 K1Vey 3KV EK3Ves Ky VeesKy =
=K, Ve Ky V Kj.

Notice that the procedure followed to shavi (s3) = My(s4) is completely analogous to that
of Mc(Sg) = Mc(Sg) n

As happened with coherence in Th 5-1 and compatibility inpP1, CCtVviCC™ in
Th. 7-6 provides information on which elements may prevemigruence.

There are some relevant topics that we have not mentiondu asicequential indepen-
dence?? application conditions and graph constraifit§Ve briefly discuss them now.

Swaps and productions are closely related, but one doesubstitte the other. With re-
spect to the image of a sequence and sequential independeokiag to swaps to the detriment
of productions has its effect on the interpretation of opers. On the positive side, among
many other things, swaps are a nice redefinition and gemataln of productions that take into
account the certainty and nihil parts; on the negative sideintuition needs to be adjusted. For
example, consider a productigrthat only deletes edgd, 2) and does nothing else. Suppose
that it is applied twice to the grapfi that consists of nodek 2 and edg€1, 2). In this case
p; p(G) = G which is algebraically correct. However, it does not enctiidete edgg1, 2)
twice”. The point here is that of completion: we would rathewe considered its application
to G’, made up of nodes, 1’ and2 and edges$l, 2) and(1’,2). A similar reasoning shows that
sequential independence is “granted” if we rely only on htgec operations and do not pay
attention to completion:

p2;p1(L) = ((L, P(p1)), P(p2)) = LP(p1)P(p2) = LP(p2) P(p1) = p1; p2(L).

Previous comments highlight some of the reasons why cobereompatibility, initial digraph
and G-congruence are so valuable, justifying their incosind also linking Secs. 5, 6 and 7 to
Sec. 4.

Regarding application conditions and graph constraiisy tare not difficulty related to
what has been presented so far. If they are allowed to beeabpdig € & instead of the
restricted case that we have studigg), we may impose limits on what elements cannot be

22productiong; andp, are sequentially independentis; p; andp,; p» output the same result. This concept
can be generalized to more than two productions. This teptudied in detail in [12].

23They are both means to establish restrictions on the apiolicaf productions. These topics are studied in
detail in [12].
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added or deleted by sequences of productions (swaps). Fhiscause if one edge is in the
certainty part and in the nihil part, it cannot be deleted hy swap. On the contrary, if one
edge does not appear either in the certainty or in the nilnikpd is not possible for a swap to
add it.

If we call any of these situationsswap restrictionit can be guaranteed that a sequence
will not add or delete (or both) some element, despite theahatefinition of the productions
that make up the sequence or the grammatr.

8 Conclusionsand Future Work

In this paper we have given a comprehensive study of MGG .d@essome new concepts such
as swaps and (strict) Boolean complexes have been intrddumkalmost all results have been
generalized. We believe it is a natural representation MGG context, as productions act
on pairs of graph$L, K) 2 (p(L), p~'(K)). Relevant algebraic structures for their study have
been introduced (PMCA®, $). Swaps allow studying and classifying productions acicayd
to their dynamic behaviour, defining a surjective morphisto the self-adjoint graphs ify.

With respect to other similar approaches to MGGs, in [15] BHeO approach was im-
plemented using Mathematica. In that work, (simple) dipsapere represented by Boolean
adjacency matrices. This is the only similarity with our Woas our goal is to develop a theory
for (simple) graph rewriting based on Boolean matrix algel®ther somehow related work is
the relational approaches of [5, 6], but they rely on catggioeory for expressing the rewriting.
It is also worth mentioning the set-theoretic approachegaph transformation [3, 13]. Even
though some of these approaches have developed powerlyssngchniques and efficient
tool implementations, the rewriting is usually limitedde.a node or edge can be replaced by
a subgraph). Altogether, our work is original as we encodeli@s not only static information
(pre- and post-conditions), but also the dynamics (eleraddition and deletion). Moreover,
our new formalization allows a compact representation @litp@ and implicit negative infor-
mation. This new approach to graph transformation has masdsilple to analyse new concepts
in the literature (like e.g. the initial digraphs, nihilati matrix, swaps, congruence) and extend
others to sequences of arbitrary finite length (e.g, sedgientependence).

Our main interest for further research is complexity thetitpough MGGs. Complexity
theory [4, 8] is concerned with the study of thrinsic complexityof computational tasks.
Traditionally, it has been studied through abstract des/edale to represent the notion of algo-
rithm, such as Turing Machines or Boolean Circuits [16]. @Proposal is to use MGG instead,
as its algebraic nature allows using results from diffeteanches of mathematics such as log-
ics, group theory and Boolean algebra. For this purposs,fitst necessary to study MGG as
a model of computation. Also, measures of complexity andikegeare mandatory. Identities
like (8) suggest the use @br metrics.

Another promising idea might be to encode properties of lgga(such as coloring) using
graph grammars, translatirggatic properties into equivalertynamicproperties of associated
sequences. We are also working in the introduction of abistrarmonic analysis in MGG.
Finally, there are many more topics for further researct, graph constraints, applicability,
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reachability, confluence and infinite graphs, some of whielhave already commented on.
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