
A Reformulation of Matrix Graph Grammars with
Boolean Complexes

Pedro Pablo Ṕerez Velasco, Juan de Lara
Escuela Politécnica Superior

Universidad Autónoma de Madrid, Spain

{pedro.perez, juan.delara}@uam.es

Submitted: Jul 16, 2008; Accepted: Jun 10, 2009; Published:Jun 19, 2009
Mathematics Subject Classifications: 05C99, 37E25, 68R10,97K30, 68Q42

Abstract

Graph transformation is concerned with the manipulation ofgraphs by means of rules.
Graph grammars have been traditionally studied using techniques from category theory.
In previous works, we introduced Matrix Graph Grammars (MGG) as a purely algebraic
approach for the study of graph dynamics, based on the representation of simple graphs by
means of their adjacency matrices.

The observation that, in addition to positive information,a rule implicitly defines neg-
ative conditions for its application (edges cannot become dangling, and cannot be added
twice as we work with simple digraphs) has led to a representation of graphs as two ma-
trices encoding positive and negative information. Using this representation, we have re-
formulated the main concepts in MGGs, while we have introduced other new ideas. In
particular, we present (i) a new formulation of productionstogether with an abstraction of
them (so calledswaps), (ii) the notion ofcoherence, which checks whether a production
sequence can be potentially applied, (iii) the minimal graph enabling the applicability of a
sequence, and (iv) the conditions for compatibility of sequences (lack of dangling edges)
and G-congruence (whether two sequences have the same minimal initial graph).

1 Introduction

Graph transformation [1, 2, 14] is concerned with the manipulation of graphs by means of rules.
Similar to Chomsky grammars for strings, a graph grammar is made of a set of rules, each
having a left and a right hand side graphs (LHS and RHS) and an initial host graph, to which
rules are applied. The application of a rule to a host graph iscalled a derivation step and involves
the deletion and addition of nodes and edges according to therule specification. Roughly, when
an occurrence of the rule’s LHS is found in the graph, then it can be replaced by the RHS. Graph
transformation has been successfully applied in many areasof computer science, for example,

the electronic journal of combinatorics 16 (2009), #R73 1

to express the valid structure of graphical languages, for the specification of system behaviour,
visual programming, visual simulation, picture processing and model transformation (see [1]
for an overview of applications). In particular, graph grammars have been used to specify
computations on graphs, as well as to define graph languages (i.e. sets of graphs with certain
properties), thus being possible to “translate”staticproperties of graphs such as coloring into
equivalent properties of dynamical systems (grammars).

In previous work [9, 10, 11, 12] we developed a new approach tothe transformation of
simpledigraphs. Simple graphs and rules can be represented with Boolean matrices and vectors
and the rewriting can be expressed using Boolean operators only. One important point of MGGs
is that, as a difference from other approaches [2, 14], it explicitly represents the rule dynamics
(addition and deletion of elements), instead of only the static parts (pre- and post- conditions).
Apart from the practical implications, this fact facilitates new theoretical analysis techniques
such as, for example, checking independence of a sequence ofarbitrary length and a permutation
of it, or obtaining the smallest graph able to fire a sequence.See [12] for a detailed account.

In [11] we improved our framework with the introduction of the nihilation matrix, which
makes explicit some implicit information in rules: elements that, if present in the host graph,
disable a transformation step. These are all edges not included in the left-hand side (LHS),
adjacent to nodes deleted by the rule (which would become dangling) and edges that are added
by the production, as in simple digraphs parallel edges are forbidden. In this paper, we fur-
ther develop this idea, as it is natural to consider that a production transforms pairs of graphs,
a “positive” one with elements that must exist (identified bythe LHS), and a “negative” one,
with forbidden elements (identified by the nihilation matrix), which we call a boolean complex.
Thus, using boolean complexes, we have provided a new formulation of productions, and in-
troduced an abstraction calledswapthat facilitates rule classification and analysis. Then, we
have recasted the fundamental concepts of MGGs using this new formulation, namely:coher-
ence, which checks whether a production sequence can be potentially applied, the image of a
sequence, the minimal graph enabling the applicability of asequence, the conditions for com-
patibility of sequences (lack of dangling edges) and G-congruence (whether two sequences have
the same minimal initial graph). Some aspects of the theory are left for further research, such
as constraints, application conditions and reachability (see [12]).

The rest of the paper is organized as follows. Section 2 givesa brief overview of the basic
concepts of MGG. Section 3 introduces Boolean complexes along with the basic operations
defined for them. Section 4 encodes productions as Boolean complexes and relates operations
on graphs with operations on Boolean complexes. Section 5 studies coherence of sequences of
productions and Section 6 initial digraphs and the image of asequence. Section 7 generalizes
other sequential results of MGG such as compatibility and G-congruence. Finally, Section 8
ends with the conclusions and further research.

2 Matrix Graph Grammars: Basic Concepts

In this section we give a very brief overview of some of the basics of MGGs, for a detailed
account and accesible presentation, the reader is referredto [12].

the electronic journal of combinatorics 16 (2009), #R73 2

Graphs and Rules. We work with simple digraphs, which we represent as(M, V) whereM is
a Boolean matrix for edges (the graphadjacencymatrix) andV a Boolean vector for vertices
or nodes. We explicitly represent the nodes of the graph witha vector because rules may add
and delete nodes, and thus we mark the existing nodes with a1 in the corresponding position
of the vector. Although nodes and edges can be assigned a type(as in [11]) here we omit it for
simplicity.

A production, or rule,p : L → R is a partial injective function of simple digraphs. Using
a static formulation, a rule is represented by two simple digraphs that encode theleft and right
hand sides.

Definition2-1 (Static Formulation of Production). A productionp : L → R is statically
represented asp = (L = (LE , LV); R = (RE , RV)), whereE stands for edges andV for
vertices.

A production adds and deletes nodes and edges; therefore, using adynamic formulation, we
can encode the rule’s pre-condition (its LHS) together withmatrices and vectors to represent
the addition and deletion of edges and nodes.

Definition2-2 (Dynamic Formulation of Production). A productionp : L → R is dynam-
ically represented asp = (L = (LE , LV); eE, rE; eV , rV), whereeE andeV are the deletion
Boolean matrix and vector,rE andrV are the addition Boolean matrix and vector (with a1 in
the position where the element is deleted or added respectively).

The right-hand side of a rulep is calculated by the Boolean formulaR = p(L) = r ∨ e L,
which applies to nodes and edges. The∧ (and) symbol is usually omitted in formulae. In order
to avoid ambiguity,and has precedence overor. Theand andor operations between adjacency
matrices are defined componentwise.

Figure 1: Simple Production Example (left). Matrix Representation, Static and Dynamic (right)

Example. Figure 1 shows an example rule and its associated matrix representation, in its static
(right upper part) and dynamic (right lower part) formulations�

In MGGs, we may have to operate graphs of different sizes (i.e. matrices of different dimen-
sions). An operation calledcompletion[9] rearranges rows and columns (so that the elements
that we want to identify match) and inserts zero rows and columns as needed. For example, if
we need to operate with graphsL1 andR1 in Fig. 1, completion adds a third row and column to
RE (filled with zeros) as well as a third element (a zero) to vector RV .

the electronic journal of combinatorics 16 (2009), #R73 3

A sequence of productionss = pn; . . . ; p1 is an ordered set of productions in whichp1 is
applied first andpn is applied last. The main difference with compositionc = pn ◦ . . . ◦ p1 is
that c is a single production. Therefore,s hasn − 1 intermediate states plus initial and final
states, whilec has just an initial state plus a final state. Often, sequencesare said to becom-
pleted, because an identification of nodes and edges accross productions has been chosen and
the matrices of the rules have been rearranged accordingly.This is a way to decide if two nodes
or edges in different productions will be identified to the same node or edge in the host graph
(the graph in which the sequence will be applied).

Compatibility. A graph (M, V) is compatible ifM andV define a simple digraph, i.e. if
there are no dangling edges (edges incident to nodes that arenot present in the graph). A rule is
said to becompatibleif its application to a simple digraph yields a simple digraph (see [12] for
the conditions). A sequence of productionssn = pn; . . . ; p1 (where the rule application order is
from right to left) is compatible if the image ofsm = pm; . . . ; p1 is compatible,∀m ≤ n.

Nihilation Matrix. In order to consider the elements in the host graph that disable a rule
application, rules are extended with a new graphK. Its associated matrix specifies the two
kinds of forbidden edges: those incident to nodes deleted bythe rule and any edge added by the
rule (which cannot be added twice, since we are dealing with simple digraphs).1

According to the theory developed in [12], the derivation ofthe nihilation matrix can be
automatized because

K = p
(
D
)

with D = eV ⊗ eV
t
,

where transposition is represented byt. The symbol⊗ denotes the Kronecker product, a special
case of tensor product. IfA is anm-by-n matrix andB is ap-by-q matrix, then the Kronecker
productA ⊗ B is themp-by-nq block matrix

A ⊗ B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

For example, ifeV = [0 1 0], then

D = eV ⊗ eV
t
=
[
1 · [1 0 1]t 0 · [1 0 1]t 1 · [1 0 1]t

]
=

1 0 1
0 0 0
1 0 1

 .

Please note that given an arbitrary LHSL, a valid nihilation matrixK should satisfyLEK =
0, that is, the LHS and the nihilation matrix should not have common edges.
Example. The left of Fig. 2 shows, in the form of a graph, the nihilationmatrix of the rule
depicted in Fig. 1. It includes all edges incident to node3 that were not explicitly deleted
and all edges added byp1. To its right we show the full formulation ofp1 which includes the
nihilation matrix�

1Nodes are not considered because their addition does not generate conflicts of any kind.

the electronic journal of combinatorics 16 (2009), #R73 4

Figure 2: Nihilation Graph (left). Full Formulation of Prod. (center). Evolution ofK (right)

As proved in [12] (Prop. 7.4.5), the evolution of the nihilation matrix is fixed by the pro-
duction. IfR = p(L) = r ∨ eL then

Q = p−1(K) = e ∨ rK, (1)

beingQ the nihilation matrix2 of the right hand side of the productionp. Hence, we have that
(R, Q) = (p(L), p−1(K)). Notice thatQ 6= D in general though it is true thatD ⊂ Q.
Example. The right of Fig. 2 shows the change in the nihilation matrix of p1 when the rule is
applied. As node3 is deleted, no edge is allowed to stem from it. Self-loops from nodes1 and
2 are deleted byp so they cannot appear in the resulting graph�

We can depict a rulep : L → R asR = p(L) = 〈L, p〉, splitting the static part (initial and
final states,L andR) from the dynamics (element addition and deletion,p).

Direct Derivation. A direct derivation consists in applying a rulep : L → R to a graphG,
through a matchm : L → G yielding a graphH. In MGG we use injective matchings, so given
p : L → R and a simple digraphG anym : L → G total injective morphism is a match forp
in G. The match is one of the ways ofcompletingL in G. In MGG we do not only consider
the elements that should be present in the host graphG (those inL) but also those that should
not be (those in the nihilation matrix,K). Hence two morphisms are sought:mL : L → G and
mK : K → G, whereG is the complement ofG, which in the simplest case is just its negation.
In general, the complement of a graph may take place inside some bigger graph. See [11] or
Ch. 5 in [12]. For example,L will normally be a subgraph ofG. The negation ofL is of the
same size (L has the same number of nodes), but not its complement insideG which would be
as large asG.

Definition2-3 (Direct Derivation). Given a rulep : L → R and a graphG = (GE, GV)
as in Fig. 3(a),d = (p, m) – with m = (mL, mK) – is called a direct derivation with result
H = p∗ (G) if the following conditions are fulfilled:

1. There existmL : L → G andmK : K → GE total injective morphisms.

2. mL(n) = mK(n), ∀n ∈ LV .

3. The matchmL induces a completion ofL in G. Matricese andr are then completed in the
same way to yielde∗ andr∗. The output graph is calculated asH = p∗(G) = r∗ ∨ e∗G.

2In [12], K is writtenNL andQ is writtenNR. We shall use subindices when dealing with sequences in Sec.
7, hence the change of notation. In the definition of production,L stands forleft andR for right. The letters that
preceed them in the alphabet (K andQ) have been chosen.

the electronic journal of combinatorics 16 (2009), #R73 5

K

mK

��

L
p

//

=mL

��

R

m∗

L

��

GE G
p∗

// H

Figure 3: Direct Derivation (left). Example (right)

Remarks. The square in Fig. 3 (a) is a categorical pushout (also known as a fibered coproduct
or a cocartesian square). The pushout is a universal construction, hence, if it exists, is unique
up to a unique isomorphism. It univoquely definesH, p∗ andm∗

L out ofL, R andp.
Item 2 in the definition is needed to ensure thatL andK are matched to the same nodes in

G.
Example The right of Fig. 3 depicts a direct derivation example usingrule p1 shown in Fig. 1,
which is applied to a graphG yielding graphH. A morphism from the nihilation matrix to the
complement ofG, mK : K → G, must also exist for the rule to be applied�

Analysis Techniques. In [9, 10, 11, 12] we developed some analysis techniques for MGG.
One of our goals was to analyze rule sequences independentlyof a host graph. For its analy-
sis, wecompletethe sequence by identifying the nodes across rules which areassummed to be
mapped to the same node in the host graph (and thus rearrange the matrices of the rules in the
sequences accordingly). Once the sequence is completed, our notion of sequencecoherence[9]
allows us to know if, for the given identification, the sequence is potentially applicable, i.e. if
no ruledisturbsthe application of those following it. For the sake of completeness:

Definition2-4 (Coherence of Sequences). The completed sequences = pn; . . . ; p1 is co-
herentif the actions ofpi do not prevent those ofpk, k > i, for all i, k ∈ {1, . . . , n}.

Closely related to coherence are the notions of minimal and negative initial digraphs, MID
and NID, resp. Given a completed sequence, the minimal initial digraph is the smallest graph
that allows its application. Conversely, the negative initial digraph contains all elements that
should not be present in the host graph for the sequence to be applicable. Therefore, the NID is
a graph that should be found inG for the sequence to be applicable (i.e. none of its edges can
be found inG).

Definition2-5 (Minimal and Negative Initial Digraphs). Lets = pn; . . . ; p1 be a completed
sequence. Aminimal initial digraphis a simple digraph which permits all operations ofs and
does not contain any proper subgraph with the same property.A negative initial digraphis a
simple digraph that contains all the elements that can spoilany of the operations specified bys.

If the sequence is not completed (i.e. no overlapping of rules is decided) we can give the set
of all graphs able to fire such sequence or spoil its application. These are the so-called initial
and negative digraph sets in [12]. Nevertheless, they will not be used in the present contribution.

the electronic journal of combinatorics 16 (2009), #R73 6

Other concepts aim at checking sequential independence (i.e. same result) between a se-
quence of rules and a permutation of it.G-congruencedetects if two sequences (one permuta-
tion of the other) have the same MID and NID.

Definition2-6 (G-congruence). Lets = pn; . . . ; p1 be a completed sequence andσ(s) =
pσ(n); . . . ; pσ(1), beingσ a permutation. They are called G-congruent (for graph congruent) if
they have the same minimal and negative initial digraphs.

G-congruence conditions return two matrices and two vectors, representing two graphs,
which are the differences between the MIDs and NIDs of each sequence. Thus, if zero, the
sequences have the same MID and NID. It can be proved that two coherent and compatible
completed sequences that are G-congruent are sequentiallyindependent.

All these concepts have been characterized using operators△ and▽. They extend the
structure of sequence, as explained in [12]. Their definition is included here for future reference:

△t1
t0

(F (x, y)) =

t1∨

y=t0

(
t1∧

x=y

(F (x, y))

)

(2)

▽t1
t0

(G(x, y)) =

t1∨

y=t0

(
y
∧

x=t0

(G(x, y))

)

. (3)

As we have seen with the concept of the nihilation matrix, it is natural to think of the LHS
of a rule as a pair of graphs encoding positive and negative information. Thus, we extend our
approach by considering graphs as pair of matrices, so called Boolean complexes, that will be
manipulated by rules. This new representation brings some advantages to the theory, as it allows
a natural and compact handling of negative conditions, as well as a proper formalization of the
functional notation〈L, p〉 as a dot product. In addition, this new reformulation has ledto the
introduction of new concepts, likeswaps(an abstraction of the notion of rule), or measures on
graphs and rules. Next section introduces the theory of Boolean complexes, while the following
ones use this theory to reformulate the MGG concepts we have introduced in this section.

3 Boolean Complexes

In this section we introduce Boolean complexes together with some basic operations defined on
them. Also, we shall define the Preliminary Monotone ComplexAlgebra (monotonebecause
the negation of Boolean complexes is not defined), PMCA. Thisalgebra and the Monotone
Complex Algebra to be defined in the next section permit a compact reformulation of grammar
rules and sequential concepts such as independence, initial digraphs and coherence.

Definition3-1 (Boolean Complex). ABoolean complex(or just acomplex) z = (a, b) con-
sists of acertaintypart ’a’ plus a nihil part ’b’, where a and b are Boolean matrices. Two
complexesz1 = (a1, b1) andz2 = (a2, b2) are equal,z1 = z2, if and only ifa1 = a2 andb1 = b2.
A Boolean complex will be calledstrict Boolean complexif its certainty part is the adjacency
matrix of some simple digraph and its nihil part correspondsto the nihilation matrix.

the electronic journal of combinatorics 16 (2009), #R73 7

Definition3-2 (Basic Operations). Letz = (a, b), z1 = (a1, b1) andz2 = (a2, b2) be two
Boolean complexes. The following operations are defined componentwise:

• Addition: z1 ∨ z2 = (a1 ∨ a2, b1 ∨ b2).

• Multiplication: z1 ∧ z2 = z1 z2 = (a1 a2 ∨ b1 b2, a1 b2 ∨ a2b1).

• Conjugation:z∗ = (b, a).

• Dot Product:〈z1, z2〉 = z1 z∗2 .

Here, componentwise means not only that the definition takesplace on the certainty and on
the nihil parts, but also that we use the standard Boolean operations on each element of the
corresponding Boolean matrices. For example, ifa = (ajk)j,k=1,...,n andb = (bjk)j,k=1,...,n are
two Boolean matrices, then3

a ∨ b = (ajk ∨ bjk)j,k=1,...,n

a ∧ b = (ajk ∧ bjk)jk=1,...,n

a = (ajk)jk=1,...,n

The notation〈·, ·〉 for the dot product is used because it coincides with the functional no-
tation introduced in [9, 12]. Notice however that there is nounderlying linear space so this is
just a convenient notation. Moreover, the dot product of twoBoolean complexes is a Boolean
complex and not a scalar value.

The dot product of two Boolean complexes is zero4 (they areorthogonal) if and only if each
element of the first Boolean complex is included in both the certainty and nihil parts of the
second complex. Otherwise stated, ifz1 = (a1, b1) andz2 = (a2, b2), then

〈z1, z2〉 = 0 ⇐⇒ a1a2 = a1b2 = b1a2 = b1b2 = 0. (4)

Given two Boolean matrices, we say thata ≺ b if ab = a, i.e. whenevera has a 1,b also has a
1 (grapha is containedin graphb). The four equalities in eq. (4) can be rephrased asa1 ≺ a2,
a1 ≺ b2, b1 ≺ a2 andb1 ≺ b2. This is equivalent to(a1 ∨ b1) ≺ (a2b2). Orthogonality is directly
related to the common elements of the certainty and nihil parts.

A particular relevant case – see eq. (8) – is when we consider the dot product of one element
z = (a, b) with itself. In this case we get(a ∨ b) ≺ (ab), which is possible if and only ifa = b.
We shall come back to this issue later.

Definition3-3 (Preliminary Monotone Complex Algebra, PMCA). The setG′ = {z | z is a
Boolean complex} together with the basic operations of Def. 3-2 will be known as preliminary
monotone complex algebra. Besides, we shall also introduce the subsetH′ = {z = (a, b) ∈
G′ | a ∧ b = 0} with the same operations.

3Notice that these operations are also well defined for vectors (they are matrices as well).
4Zero is the matrix in which every element is a zero, and is represented by0 or a bolded0 if any confusion may

arise. Similarly,1 or 1 will represent the matrix whose elements are all ones.

the electronic journal of combinatorics 16 (2009), #R73 8

Elements ofH′ are the strict Boolean complexes introduced in Def. 3-1. We will get rid of
the term “preliminary” in Def. 4-1, when not only the adjacency matrix is considered but also
the vector of nodes that make up a simple digraph. In MGG we will be interested in thosez ∈ G′

with disjoint certainty and nihil parts, i.e.z ∈ H′. We shall define a projectionZ : G′ −→ H′

by Z(g) = Z(a, b) = (ab, ba). The mappingZ sets to zero those elements that appear in both
the certainty and nihil parts.

A morecomplex-analyticalrepresentation can be handy in some situations and in fact will
be preferred for the rest of the present contribution:

z = (a, b) 7−→ z = a ∨ i b.

Its usefulness will be apparent when the algebraic manipulations become a bit cumbersome,
mainly in Secs. 5, 6 and 7.

Define one elementi – that we will namenil termor nihil term– with the propertyi∧ i = 1,
beingi itself not equal to1. Then, the basic operations of Def. 3-2, following the same notation,
can be rewritten:5

z∗ = b ∨ i a

z1 ∨ z2 = (a1 ∨ a2) ∨ i (b1 ∨ b2)

z1z2 = z1 ∧ z2 = (a1 ∨ ib1) ∧ (a2 ∨ ib2) = (a1a2 ∨ b1b2) ∨ i (a1b2 ∨ b1a2)

〈z1, z2〉 = (a1 ∨ ib1) ∧
(
b2 ∨ ia2

)
=
(
a1b2 ∨ b1a2

)
∨ i
(
a1a2 ∨ b1b2

)
.

Notice that the conjugate of a complex termz ∈ G′ that consists of certainty part only is
z∗ = (a ∨ i0)∗ = 1∨i a. Similarly for one that consists of nihil part alone:z∗ = (0∨ib)∗ = b∨i.
If z ∈ H′ then they further reduce toa∨ i0 and0∨ ib by applying the projectionZ, respectively,
i.e. they are invariant.6 Also, the multiplication reduces to the standardand operation if there
are no nihil parts:(a1 ∨ i0)(a2 ∨ i0) = a1a2.

Proposition 3-4. Let x, y, z ∈ G′ and z1, z2 ∈ H′. Then,〈x ∨ y, z〉 = 〈x, z〉 ∨ 〈y, z〉,
〈z1, z2〉 = 〈z2, z1〉∗ and(z1z2)

∗ = z∗1z
∗

2 .

Proof
�The first identity is fulfilled by any Boolean complex and follows directly from the definition.
The other two hold inH′ but not necessarily inG′. For the second equation just write down the
definition of each side of the identity:

〈z1, z2〉 =
(
a1b2 ∨ a2b1

)
∨ i
(
a1a2 ∨ b1b2

)

〈z2, z1〉∗ =
[
a1b2 ∨ a2b1 ∨

(
a1b1 ∨ a2 b2

)]
∨ i
[
a1a2 ∨ b1b2 ∨

(
a1b1 ∨ a2 b2

)]
.

Termsa1b1 ∨ a2b2 vanish as they appear in both the certainty and nihil parts. The third identity
is proved similarly.�

5The authors did not manage to prove the existence of such element i in any domain, by any means. In the
present contribution,i should be understood just as a very convenient notation thatsimplifies some manipulations.
The reader may however stick to the representation of Boolean complexes as pairs of matrices(a, b). All formulas
and final results in this paper have an easy translation from one notation into the other.

6Notice that1 ∨ ia = (a ∨ a) ∨ ia = a ∨ i0 andb ∨ i1 = b ∨ i
(
b ∨ b

)
= 0 ∨ ib.

the electronic journal of combinatorics 16 (2009), #R73 9

Notice however that(z1 ∨ z2)
∗ 6= z∗1 ∨ z∗2 . It can be checked easily as(z1 ∨ z2)

∗ =
[(a1 ∨ a2) ∨ i (b1 ∨ b2)]

∗ = b1b2 ∨ i a1a2 but z∗1 ∨ z∗2 =
(
b1 ∨ b2

)
∨ i (a1 ∨ a2). This implies

that, although〈z1 ∨ z2, z〉 = 〈z1, z〉 ∨ 〈z2, z〉, we no longer havesesquilineality, i.e. it is not
linear in its second component taking into account conjugacy:

z
[(

b1 ∨ b2

)
∨ i (a1 ∨ a2)

]
= 〈z, z1 ∨ z2〉 6= 〈z, z1〉 ∨ 〈z, z2〉 = z

[
b1b2 ∨ i a1a2

]
.

In fact the equality〈z, z1 ∨ z2〉 = 〈z, z1〉 ∨ 〈z, z2〉 holds if and only ifz1 = z2.
The following identities show that the dot product of one element with itself does not have

nihil part, returning what one would expect. Equation (7) isparticularly relevant as it states that
the certainty and nihil parts are in some sense mutually exclusive, which together with eq. (8)
suggest the definition ofH′ as introduced in Sec. 3. Notice that this fits perfectly well with the
interpretation ofL andK in MGG given in Sec. 2.

〈a ∨ i 0, a ∨ i 0〉 = (a ∨ 0 a) (1 ∨ ia) = (a ∨ 0 a) ∨ i (0 ∨ a a) = a (5)

〈0 ∨ i b, 0 ∨ i b〉 = (0 ∨ i b)
(
b ∨ i 1

)
=
(
b ∨ 0 b

)
∨ i
(
b b ∨ 0

)
= b (6)

〈c ∨ i c, c ∨ i c)〉 = (c ∨ i c) (c ∨ i c) = (c c ∨ c c) ∨ i (c c ∨ c c) = 0. (7)

The dot product of one element with itself gives rise to the following useful identity:

〈z, z〉 = z z∗ =
(
ab ∨ ab

)
∨ i
(
bb ∨ aa

)
= a ⊕ b, (8)

being⊕ the componentwisexor operation. Apart from stating that the dot product of one
element with itself has no nihil part (as commented above), eq. (8) tells us how tofactorizeone
of the basic Boolean operations:xor.

We shall introduce the notation
‖z‖ = 〈z, z〉. (9)

In some sense,‖z‖ measureshow big (closer to1) or small (closer to0) the Boolean com-
plex z is. It follows directly from the definition that‖i‖ = 1 (this is just a formal identity) and
‖z∗‖ = ‖z‖.

4 Production Encoding

In this section we introduce the Monotone Complex Algebra, which not only considers edges
but also nodes. Compatibility issues may appear so we study compatibility for a simple digraph
and also for a single production (compatibility for sequences will be addressed in Sec. 7). Next
we turn to the characterization of MGG productions using thedot product of Def. 3-2. The
section ends introducingswaps, which can be thought of as a generalization of productions.
This concept will allow us to reinterpret productions as introduced in [12].

To get rid of the “preliminary” term in the definition ofG′ and H′ (Def. 3-3) we shall
consider an element as being composed of a (strict) Boolean complex and a vector of nodes.
Hence, we have thatL =

(
LE ∨ iKE , LV ∨ iKV

)
whereE stands foredgeandV for vertex.7

Notice thatLE ∨ iKE are matrices andLV ∨ iKV are vectors.
7If an equation is applied to both edges and nodes then the superindices will be omitted. They will also be

omitted if it is clear from the context which one we refer to.

the electronic journal of combinatorics 16 (2009), #R73 10

Definition4-1 (Monotone Complex Algebra). TheMonotone Complex Algebrais the set
G = {

(
LE ∨ iKE , LV ∨ iKV

)
|LE ∨ iKE andLV ∨ iKV are Boolean complexes as intro-

duced in the paragraph above} together with the operations in Def. 3-2. LetH be the subset of
G in which certainty and nihil parts are disjoint.

This definition extends Def. 3-3. The intuition behindG (andH) is thatLE ∨ iKE keeps
track of edges whileLV ∨ iKV keeps track of nodes.

ConcerningG, a productionp : G → G consists of two independent productionsp =
(pC , pN) – beingpC , pN MGG productions; see Defs. 2-1 and 2-2 – one acting on the certainty
part and the other on the nihil part:

R = p(L) = p(L ∨ iK) = pC(L) ∨ ipN(K) = R ∨ iQ, (10)

whereR is introduced in Def. 2-1 andQ in eq. (1). AspC andpN are not related to each other
if we stick to G, it is true that∀g1, g2 ∈ G, ∃p such thatp(g1) = g2. However, productions
as introduced in MGG do relatepC andpN : they must fulfillpN = p−1

C . Also, in MGG, the
certainty and nihil parts have to be disjoint. Hence, we willconsiderp = (pC , pN) : H → H for
the rest of the paper unless otherwise stated.

We wantpN to be a production so we must split it into two parts: the one that acts on edges
and the one that acts on vertices. Otherwise there would probably be dangling edges in the nihil
part as soon as the production acts on nodes. The point is thatthe image of the nihil part with
the operations specified by productions are not graphs in general, unless we restrict to edges
and keep nodes apart. This behaviour is unimportant and should not be misleading.

Figure 4: Potential Dangling Edges in the Nihilation Part

Example.�The left of Fig. 4 shows the certainty part of a productionp that deletes node 1
(along with two incident edges) and adds node 3 (and two incident edges). Its nihil counterpart
for edges is depicted to the right of the same figure. Notice that node1 should not be included
in K because it appears inL and we would be simultaneously demanding its presence and its
absence. Therefore, edges(1, 3), (1, 2) and (3, 1) – those with a red dotted line – would be
dangling inK (red dotted edges do belong to the graphs they appear on). Thesame reasoning
shows that something similar happens inQ but this time with edges(1, 3), (3, 1), (3, 2) and
(3, 3) and node 3.

This is the reason to consider nodes and edges independentlyin the nihil parts of graphs and
productions. InK, as nodes1 and3 belong toL, it should not make much sense to include them
in K too, for if K dealt with nodes we would be demanding their presence and their abscense.
In Q the production adds node3 and something similar happens.�

Now that nodes are considered, compatibility issues in the certainty part may show up.
The determination of compatibility for a simple digraph is almost straightforward. Letg =

the electronic journal of combinatorics 16 (2009), #R73 11

(gE
C ∨ igE

N , gV
C ∨ igV

N) ∈ H. Potential dangling edges are given by

Dg = gV
C ⊗ gV

C , (11)

so the graphg will be compatible ifgE
C Dg = 0. As g ∈ H, there are no common elements

between the certainty and nihil parts andDg ≺ gE
N .

A productionp(L) = p(L ∨ iK) = R ∨ iQ = R is compatible if it preserves compatibility,
i.e. if it transforms a compatible digraph into a compatibledigraph. This amounts to saying that
RQ = 0.

Recall from Sec. 2 that grammar rule actions are specified througherasingandaddition
matrices,e andr respectively. Becausee acts on elements that must be present andr on those
that should not exist, it seems natural to encode a production as

p = e ∨ ir. (12)

Our next objective is to use the dot product – see Def. 3-2 – to represent the application of
a production. This way, a unified approach would be obtained.To this end define the operator
P : G → G by

p = e ∨ ir 7−→ P (p) = e r ∨ i (e ∨ r) . (13)

Proposition 4-2 (Production).Let L andR be the left and right hand sides, resp., as in
Def. 4-1 and eq.(10), andP as defined in eq.(13). Then,

R = 〈L, P (p)〉 . (14)

Proof
�The proof is a short exercise that makes use of some identities which are detailed below:

〈L, P (p)〉 = 〈(L ∨ iK), e r ∨ i(e ∨ r)〉 =

= [e rL ∨ (e ∨ r)K] ∨ i [e rK ∨ (e ∨ r)L] =

= (r ∨ eL) e ∨ i (rK) = p(L) ∨ ip−1(K) = R. (15)

In addition torL = L, we have used the following identities:

(e ∨ r)K = eK ∨ rK = rK = r(r ∨ eD) = r.

e r K = r
(
e r ∨ e eD

)
= r K.

(e ∨ r)L = eL ∨ rL = eL = e.

We have also used thatre = r, rD = r due to compatibility andrL = 0 almost by definition.
Besides, Prop. 7.4.5 in [12] has also been used, which provesthat transformation of the nihil
parts evolves according to the inverse of the production, i.e. Q = p−1 (K) . �

The production is defined through the operatorP instead of directly asp = e r ∨ i(e ∨ r)
for several reasons. First, eq. (12) and its interpretationseem more natural. Second,P (p)
is self-adjoint, i.e.P (p)∗ = P (p), which in particular implies that‖P (p)‖ = 1, ∀p (see eq.
(16) below). Therefore,‖·‖ would notmeasurethe size of productions (interpreted as graphs

the electronic journal of combinatorics 16 (2009), #R73 12

according to eq. (12) and as long as‖·‖ measures sizes of Boolean complexes) and we would
be forced to introduce a new norm. This is because

‖P (p)‖ = 〈P (p), P (p)〉 =

= (e r ∨ i(e ∨ r)) (e r ∨ i(e ∨ r))∗ = e r ∨ e ∨ r = 1. (16)

By way of contrast,‖p‖ = e⊕r = e∨r. With operatorP the size of a production is the number
of changes it specifies, which is appropriate for MGG.8

The proposed encoding puts into a single expression the application of a grammar rule, both
to L and toK. Also, it links the functional notation introduced in [12] and the dot product of
Sec. 3.

Theorem 4-3 (Surjective Mapping).There exists a surjective mapping from the set of MGG
productions on to the set of self-adjoint graphs inH.

Proof
�It is not difficult to check thatz is self-adjoint if and only if‖z‖ = 1: on the one hand, if
z = a ∨ ia then〈z, z〉 = zz∗ = (a ∨ ia)(a ∨ ia) = a ∨ a = 1. On the other hand, if we have
z = a ∨ ib and‖z‖ = a ⊕ b = 1 thena = b.

The surjective morphism is given by operatorP . Clearly,P is well-defined for any pro-
duction. To see that it is surjective, fix some graphg = g1 ∨ ig2 such that‖g‖ = 1. Then,
g = g1 ∨ ig1. Any partition ofg1 asor of two disjoint digraphs would do. Recall that produc-
tions (as graphs) have the property that their certainty andnihil parts must be disjoint.�

The operatorP is surjective but not necessarily injective. It defines an equivalence relation
and the corresponding quotient space. In this way, we introduce the notion ofswapwhich
allows a more abstract view of the concept of production. Their importance stems from the fact
that swaps summarize the dynamics of a production, independently of its left hand side. They
allow us to study a set of actions, indepedently of the actualgraph they are going to be applied
to.

Definition4-4 (Swap). The swap space is defined asW = H/P (H). An equivalence class
in the swap space will be called aswap. The swapw associated to a productionp : H → H is
w = wp = P (p), i.e. p ∈ H 7−→ wp ∈ W.9

Figure 5: Example of Productions

Example �Let p2 andp3 be two productions as those depicted in Fig. 5. Their images in W
are:

P (p2) = P (p3) =

[
0 0
1 0

]

∨ i

[
1 1
0 1

]

= w. (17)

8Eventually, in complexity theory, one is interested in looking for an appropriate measure of the number of
actions that transform one state (graph) into another.

9Acording to eq. (12) any element inH can be interpreted as a production and viceversa.

the electronic journal of combinatorics 16 (2009), #R73 13

They appear to be very different if we look at their defining matricesL2, L3 andR2, R3 or
at their graph representation. Also, they seem to differ if we look at their erasing and addition
matrices:

e2 =

[
1 0
0 1

]

e3 =

[
1 1
0 0

]

r2 =

[
0 1
0 0

]

r3 =

[
0 0
0 1

]

.

However, they are the same swap as eq. (17) shows, i.e. they belong to the same equivalence
class. Notice that both productions act on edges(1, 1), (2, 2) and (1, 2) and none of them
touches edge(2, 1). This is precisely what eq. (17) says as we will promptly see.

Swaps can be helpful in studying and classifying the productions of a grammar. For ex-
ample, there are 16 different simple digraphs with 2 nodes. Hence, there are 256 different
productions that can be defined. However, there are only 16 different swaps. From the point
of view of the number of edges that can be modified, there is 1 swap that does not act on any
element (which includes 16 productions), 4 swaps that act on1 element, 6 swaps that act on 2
elements, 4 swaps that act on 3 elements and 1 swap that acts onall elements.�

We can reinterpret actions specified by productions in Matrix Graph Grammars in terms of
swaps: instead of adding and deleting elements, they interchange elements between the certainty
and nihil parts, hence the name.

Notice that, because swaps are self-adjoint, it is enough tokeep track of the certainty or
nihil parts. So one production is fully specified by, for example, its left hand side and the nihil
part of its associated swap.10

5 Coherence

So far we have extended MGG by defining the transformations (productions) inG andH. The
theory will be more interesting if we are able to develop the necessary concepts to deal with
sequences of applications rather than productions alone. Among the two most basic notions are
coherence and the initial digraph, which have been introduced in Sec. 2. We shall reformulate
and extend them in this and the next sections.

Recall that the coherence of the sequences = pn; . . . ; p1 guarantees that the actions of one
productionpi do not prevent the actions of those sequentially behind it:pi+1, . . . , pn. The first
production to be applied ins is p1 and the last one ispn. The order is as in composition, from
right to left.

Theorem 5-1 (Coherence).The sequence of productionss = pn; . . . ; p1 is coherent if the
Boolean complexC ≡ C+∨ iC− = 0, where

C+ =

n∨

j=1

(
Rj ▽n

j+1 (exry) ∨ Lj △j−1
1 (ey rx)

)
(18)

10Given a swap and a complexL, it is not difficult to calculate the production havingL as left hand side and
whose actions agree with those of the swap.

the electronic journal of combinatorics 16 (2009), #R73 14

and

C− =
n∨

j=1

(
Qj ▽n

j+1 (ey rx) ∨ Kj △j−1
1 (ry ex)

)
. (19)

with △ and▽ as defined in eqs. (2) and (3), resp.

Proof
�The definition of equality of Boolean complexes in Def. 3-1 states thatC+∨ iC− = 0 if and
only if C+ = C− = 0. The certainty partC+ and the nihil partC− = 0 can be proved simi-
larly.11 We shall start with the certainty partC+.

Certainty part C
+

Considers2 = p2; p1 a sequence of two productions. In order to decide whether theapplication
of p1 does not excludep2, we impose three conditions on edges:

1. The first production –p1 – does not delete (e1) any element used (L2) by the second
production:

e1L2 = 0. (20)

2. p2 does not add (r2) any element preserved (used but not deleted,e1L1) by p1:

r2L1e1 = 0. (21)

3. No common elements are added by both productions:

r1r2 = 0. (22)

The first condition is needed because ifp1 deletes an edge used byp2, thenp2 would not be
applicable. Regarding edges, the last two conditions are mandatory in order to obtain a simple
digraph (with at most one edge in each direction between two nodes).

Conditions (21) and (22) are equivalent tor2R1 = 0 because, as both are equal to zero, we
can do

0 = r2L1e1 ∨ r2r1 = r2 (r1 ∨ e1L1) = r2R1,

which may be read “p2 does not add any element that comes out fromp1’s application”. All
conditions can be synthesized in the following identity:

r2R1 ∨ e1L2 = 0. (23)

To obtain a closed formula for the general case, we may use thefact thatre = r ander = e.
Equation (23) can be transformed to obtain:

R1e2r2 ∨ L2e1r1 = 0. (24)

the electronic journal of combinatorics 16 (2009), #R73 15

D2; D1 (20) D2; P1

√
D2; A1

√

P2; D1 (20) P2; P1

√
P2; A1

√

A2; D1

√
A2; P1 (21) A2; A1 (22)

Table 1: Possible Actions for Two Productions

Now we chack that eq. (24) covers all possibilities. CallD the action of deleting an element,
A its addition andP its preservation, i.e. the edge appears in both the LHS and the RHS. Table
1 comprises all nine possibilities for two productions.

A tick means that the action is allowed, while a number refersto the condition that prohibits
the action. For example,P2; D1 means that first productionp1 deletes the element and second
p2 preserves it (in this order). If the table is looked up we find that this is forbidden by eq. (20).

Now we proceed with three productions. Consider the sequence s3 = p3; p2; p1. We must
check thatp2 does not disturbp3 and thatp1 does not prevent the application ofp2. Notice that
both of them are covered in our previous explanation (in the two productions case). Thus, we
just need to ensure thatp1 does not excludep3, taking into account thatp2 is applied in between.

1. p1 does not delete (e1) any element used (L3) by p3 and not added (r2) by p2:

e1L3r2 = 0. (25)

2. Productionp3 does not add (r3) any edge stemming fromp1 (this isR1) and not deleted
(e2) by p2:

r3R1e2 = 0. (26)

Again, regarding edges, the last condition is needed in order to obtain a simple digraph.
Performing similar manipulations to those carried out fors2 we get the full condition fors3,
given by the equation:

L2e1 ∨ L3 (e1r2 ∨ e2) ∨ R1 (e2r3 ∨ r2) ∨ R2r3 = 0. (27)

Proceeding as before, identity (27) is “extended” to represent the general case using operators
△ and▽:

L2e1r1 ∨ L3r2 (e1r1 ∨ e2) ∨ R1e2 (r2 ∨ e3r3) ∨ R2e3r3 = 0. (28)

This part of the proof can be finished by induction.

Nihil part C
−

We proceed as for the certainty part. First, let’s consider asequence of two productionss2 =
p2; p1. In order to decide whether the application ofp1 does not excludep2 (regarding elements
that appear in the nihil parts) the following conditions must be demanded:

1. No common element is deleted by both productions:

e1e2 = 0. (29)

11The reader is invited to consult the proof of Th. 4.3.5 in [12]plus Lemma 4.3.3 and the explanations that
follow Def. 4.3.2 in the same reference. Diagrams and examples therein included can be of some help.

the electronic journal of combinatorics 16 (2009), #R73 16

2. Productionp2 does not delete any element that the productionp1 demands not to be
present and that besides is not added byp1:

e2K1r1 = 0. (30)

3. The first production does not add any element that is demanded not to exist by the second
production:

r1K2 = 0. (31)

Altogether we can write

e1e2 ∨ r1e2K1 ∨ r1K2 = e2(e1 ∨ r1K1) ∨ r1K2 = e2Q1 ∨ r1K2 = 0, (32)

which is equivalent to
e2r2Q1 ∨ e1r1K2 = 0 (33)

due to basic properties of MGG productions (see e.g. Prop. 4.1.4 in [12] for further details).
In the case of a sequence that consists of three productions,s3 = p3; p2; p1, the procedure

is to apply the same reasoning to subsequencesp2; p1 (restrictions onp2 actions due top1) and
p3; p2 (restrictions onp3 actions due top1) and or them. Finally, we have to deduce which
conditions have to be imposed on the actions ofp3 due top1, but this time taking into account
thatp2 is applied in between. Again, we can put all conditions in a single expression:

Q1 (e2 ∨ r2e3) ∨ Q2e3 ∨ K2r1 ∨ K3 (r1e2 ∨ r2) = 0. (34)

D2; D1 (31) D2; P1

√
D2; A1

√

P2; D1 (31) P2; P1

√
P2; A1

√

A2; D1

√
A2; P1 (30) A2; A1 (29)

Table 2: Possible Actions for Two Productions

We now check that eqs. (33) and (34) do imply coherence. To seethat eq. (33) implies
coherence we only need to enumerate all possible actions on the nihil parts. It might be easier
if we think in terms of the negation of a potential host graph to which both productions would
be applied

(
G
)

and check that any problematic situation is ruled out. See table 2 whereD is
deletion of one element fromG (i.e., the element is added toG), A is addition toG andP is
preservation (These definitions ofD, A andP are opposite to those given for the certainty case
above).12 For example, actionA2; A1 tells that in first placep1 adds one elementε to G. To do
so this element has to be ine1 (or incident to a node that is going to be deleted). After that, p2

adds the same element, deriving a conflict between the rules.This provesC− = 0 for the case
n = 2.

When the sequence has three productions,s = p3; p2; p1, there are 27 possible combinations
of actions. However, some of them are considered in the subsequencesp2; p1 andp3; p2. Table
3 summarizes them.

12Preservation means that the element is demanded to be inG because it is demanded not to exist by the
production (it appears inK1) and it remains as non-existent after the application of theproduction (it appears
also inQ1).

the electronic journal of combinatorics 16 (2009), #R73 17

D3; D2; D1 (31) D3; D2; P1 (31) D3; D2; A1 (31)
P3; D2; D1 (31) P3; D2; P1 (31) P3; D2; A1 (31)
A3; D2; D1 (31) A3; D2; P1

√
A3; D2; A1

√

D3; P2; D1 (31) D3; P2; P1

√
D3; P2; A1

√

P3; P2; D1 (31) P3; P2; P1

√
P3; P2; A1

√

A3; P2; D1 (31)/(30) A3; P2; P1 (30) A3; P2; A1 (30)
D3; A2; D1

√
D3; A2; P1 (30) D3; A2; A1 (29)

P3; A2; D1

√
P3; A2; P1 (30) P3; A2; A1 (29)

A3; A2; D1 (29) A3; A2; P1 (29) A3; A2; A1 (29)

Table 3: Possible Actions for Three Productions

There are four forbidden actions:13 D3; D1, A3; P1, P3; D1 andA3; A1. Let’s consider the
first one, which corresponds tor1r3 (the first production adds the element – it is erased fromG
– and the same forp3). In Table 3 we see that related conditions appear in positions(1, 1), (4, 1)
and(7, 1). The first two are ruled out by conflicts detected inp2; p1 andp3; p2, respectively. We
are left with the third case which is in fact allowed. The condition r3r1 taking into account the
presence ofp2 in the middle in eq. (34) is contained inK3r1e2, which includesr1e2r3. This
must be zero, i.e. it is not possible forp1 andp3 to remove fromG one element if it is not added
to G by p2. The other three forbidden actions can be checked similarly.

The proof can be finished by induction on the number of productions. The induction hy-
pothesis leaves again four cases:Dn; D1, An; P1, Pn; D1 andAn; A1. The corresponding table
changes but it is not difficult to fill in the details.�

There are some duplicated conditions, so it could be possible to “optimize”C. The form
considered in Th. 5-1 is preferred because we may use△ and▽ to synthesize the expressions.
Some comments on previous proof follow:

1. Notice that eq. (29) is already inC through eq. (18) which demandse1L2 = 0 (ase2 ⊂ L2

we have thate1L2 = 0 ⇒ e1e2 = 0).

2. Condition (30) ise2K1r1 = e2r1r1 ∨ e2r1e1D1 = e2e1D1, where we have used that
K1 = p

(
D1

)
. Note that thosee1D1 6= 0 are the dangling edges not deleted byp1.

3. Equation (31) isr1K2 = r1p2

(
D2

)
= r1

(
r2 ∨ e2D2

)
= r1r2 ∨ r1e2D2. The first term

(r1r2) is already included inC and the second term is again related to dangling edges.

4. Potential dangling edges appear in coherence and this mayseem to indicate a possible
link between coherence and compatibility.14

An easy remark is that the complexC+∨iC− in Th. 5-1 provides more information than just
settling coherence as it measures non-coherence:problematicelements (i.e. those that prevent
coherence) would appear as ones and the rest as zeros.

13Those actions appearing in table 1 updated forp3.
14Compatibility for sequences is characterized in Sec. 7. Coherence takes into account dangling edges, but only

those that appear in the “actions” of the productions (in matricese andr).

the electronic journal of combinatorics 16 (2009), #R73 18

Figure 6: Example of Coherence

Example.�Let’s consider the sequences = p5; p4. Recall that the order of application is from
right to left sop4 is applied first andp5 right afterwards. Letp4 andp5 be those productions
depicted in Fig. 6. Once simplified, its coherence complex is

C(s) = C+(s) ∨ iC−(s) = (R4r5 ∨ L5e4) ∨ i (Q4e5 ∨ K5r4) =

=

0 1 1
0 0 1
0 0 0

0 0 0
0 0 1
0 0 0

 ∨

0 1 0
0 0 0
0 0 1

0 0 0
0 0 0
0 0 1

∨

∨ i

0 0 0
0 0 0
0 0 1

0 1 0
0 0 0
0 0 0

 ∨

1 0 1
1 0 1
1 0 0

0 1 1
0 0 1
0 0 0

 =

=

0 0 0
0 0 1
0 0 1

 ∨ i

0 0 1
0 0 1
0 0 0

 .

Coherence problems appear in this example for several reasons. Edge(2, 3) is added twice
while self-loop(3, 3) is first deleted inp4 and then used inp5. Edge(1, 3) becomes dangling
because productionp5 deletes node1. Edge(2, 3) appears inC−(s) for the same reason that
makes it appear inC+(s). �

6 Initial Digraph

The minimal initial digraphM(s) for a completed sequences = pn; . . . ; p1 was introduced
in [12] as a simple digraph that permits all operations ofs and that does not contain a proper
subgraph with the same property. The negative initial digraph has a similar definition but for
the nihil part (see Sec. 2 for both definitions).

In this section, in Th. 7-1 we encode, as a Boolean complex, the minimal and negative initial
digraphs, renaming it toinitial digraph. Also, a closed formula for its image under the action
of a sequence of productions is provided.

Coherence and initial digraphs are closely related. The coherence of a sequence of produc-
tions depends on how nodes are identified across productions. This identification defines the
minimum digraph needed to apply a sequence, which is the initial digraph.

Now we are interested in what elements will be forbidden and which ones will be available
once every production is applied.15 Matrix D = e ⊗ et specifies what edges can not be present

15Whenever the tensor (Kronecker) product is used, we refer tothe vector of nodes so theV superscript is

the electronic journal of combinatorics 16 (2009), #R73 19

because at least one of their incident nodes have been deleted. Let’s introduce the dual concept:

T =
(

r ⊗ rt
)

∧
(
e ⊗ et

)
. (35)

T are the newly available edges after the application of a production due to the addition
of nodes.16 The first term,r ⊗ rt, has a one in all edges incident to a vertex that is added by
the production. We have to remove those edges that are incident to some node deleted by the
production, which is whate ⊗ et does.

Figure 7: Available and Unavailable Edges After the Application of a Production

Example.�Figure 7 depicts to the left a productionq that deletes node1 and adds node3. Its
nihil term and its image are

K = q
(
D
)

= r ∨ eD =

1 0 1
1 0 1
1 0 0

 Q = q−1(K) = e ∨ rK =

1 1 1
1 0 0
1 0 0

To the right of Fig. 7, matrixT is included. It specifies those elements that are not forbidden
once productionq has been applied.�

It is worth stressing that matricesD andT do not tell actions of the production to be per-
formed in the complement of the host graph,G. Actions of productions are specified exclusively
by matricese andr.

Theorem 6-1 (Initial Digraph). The initial digraph M(s) for the completed coherent se-
quence of productionss = pn; . . . ; p1 is given by

M(s) = MC(s) ∨ iMN (s) = ▽n
1

(
rxLy ∨ i exT xKy

)
. (36)

Proof
�We shall first prove the theorem for the certainty part. This will give us the main ideas to
proceed with the nihil part. In both cases we shall use induction on the number of productions.

Certainty part MC = ▽n
1 (rxLy)

As the sequence is coherent and has been completed (i.e. nodes are related across produc-
tions) the graphL =

∨n

j=1 Li has enough elements to carry out all operations specified in

omitted. For exampleR ⊗ R′ ≡ RV ⊗
(
RV
)t

. Thet symbol stands for transposition.
16This is whyT does not appear in the calculation of the coherence of a sequence: coherence takes care of real

actions(e, r) and not of potential elements that may or may not be available
(
D, T

)
.

the electronic journal of combinatorics 16 (2009), #R73 20

the sequence.17 Hence, in order to check ifM(s) has enough elements it suffices to see that
s(L) = s(M(s)).

If we had a sequence consisting of only one productions1 = p1 then it should be clear that
the minimal digraph needed to apply the sequence isL1. This is almost by definition.

In the case of a sequence of two productions, says2 = p2; p1, whatp1 uses(L1) is again
needed. All edges thatp2 uses (L2), except those added (r1) by the first production, are also
mandatory. Note that the elements added (r1) by p1 are not considered in the initial digraph.
If an element is preserved (used and not erased,e1L1) by p1, then it should not be taken into
account:

L1 ∨ L2r1 (e1L1) = L1 ∨ L2r1

(
e1 ∨ L1

)
= L1 ∨ L2R1. (37)

This formula can be paraphrased as “elements used byp1 plus those needed byp2’s left hand
side, except the ones resulting fromp1’s application”. Let’s see that it provides enough elements
to s2:

p2; p1

(
L1 ∨ L2R1

)
= r2 ∨ e2

(
r1 ∨ e1

(
L1 ∨ L2R1

))
=

= r2 ∨ e2

(
R1 ∨ r1R1L2 ∨ e1R1L2

)
=

= r2 ∨ e2 (R1 ∨ r1L2 ∨ e1L2) =

= r2 ∨ e2 (r1 ∨ e1 (L1 ∨ L2)) = p2; p1 (L1 ∨ L2) .

Let’s move one step forward with the sequence of three productionss3 = p3; p2; p1. The
minimal digraph needs whats2 needed (L1 ∨L2R1) but even more so. We have to add what the
third production uses (L3) except what comes out fromp1 and is not deleted by productionp2

(this isR1e2) to finally remove what comes out (R2) from p2:

M(s3) = L1 ∨ L2R1 ∨ L3(e2 R1)R2 = L1 ∨ L2R1 ∨ L3R2

(
e2 ∨ R1

)
. (38)

Similarly to what has already been done fors2, we check that the initial digraph has enough
elements such that it is possible to applyp1, p2 andp3:

p3; p2; p1 (M(s3)) = r3∨e3

(
r2∨e2

(
r1 ∨ e1

(
L1 ∨ L2R1 ∨ L3R2

(
e2 ∨ R1

))))
=

= r3∨e3

r2∨e2

e1L2 ∨ e1e2L3R2 ∨ R1 ∨ L3e1R1R2
︸ ︷︷ ︸

=R1∨L3e1R2

 =

= r3∨e3

e2r1 ∨ e2e1L1
︸ ︷︷ ︸

=e2R1

∨e2e1L2 ∨ r2 ∨ L3e1e2r2L2
︸ ︷︷ ︸

=r2∨L3e1e2L2

 =

= r3∨e3 (r2 ∨ e2 (r1 ∨ e1 (L1 ∨ L2 ∨ L3))) =

= p3; p2; p1 (L1 ∨ L2 ∨ L3) .

17It is also possible to interpretL as a non-completed graph, whose completion will avoid any coherence issue.
If for example we had coherence issues with every single element inpi thenL would be the disjoint union of every
Li.

the electronic journal of combinatorics 16 (2009), #R73 21

The same reasoning applied to the case of four productions gives the equation:

M4 = L1 ∨ L2R1 ∨ L3(e2 R1)R2 ∨ L4(e3 e2R1) (e3R2) R3. (39)

Minimality is inferred by construction, because for eachLi all elements added by a previous
production and not deleted by any productionpj, j < i, are removed. If any other element is
erased from the initial digraph, then some production insn would miss some element.

Now we want to express previous formulas using operators△ and▽. The expression

L1 ∨
n∨

i=2

[
Li △i−1

1

(
Rx ey

)]
(40)

is close but we would be adding terms that includeR1e1, and clearlyR1e1 6= R1, which is what
we have in the initial digraph.18 Therefore, considering the fact thatab∨a b = a in propositional
logics, we eliminate them by performingor operations:

e1 ▽n−1
1

(
RxLy+1

)
. (41)

Thus we have a formula for the initial digraph which is slightly different from that in the
theorem:

M(s) = L1 ∨ e1 ▽n−1
1

(
RxLy+1

)
∨

n∨

i=2

[
Li △i−1

1

(
Rxey

)]
. (42)

Our next step is to show that previous identity is equivalentto

M(s) = L1 ∨ e1 ▽n−1
1 (rxLy+1) ∨

n∨

i=2

[
Li △i−1

1 (rxey)
]

(43)

by illustrating the way to proceed forn = 3. To this end, the identityrL = L is used as well as
the fact thata ∨ ab = a ∨ b in propositional logics:

M3 = L1 ∨ L2R1 ∨ L3R2

(
e2 ∨ R1

)
=

= L1 ∨ L2r1

(
e1 ∨ L1

)
∨
(
L3r2e2 ∨ L3r2L2

) (
e2 ∨ r1e1r1L1

)
=

= L1 ∨ L2r1L1 ∨ L2e1 ∨ L3e2 ∨ L3e2e1 ∨ L3e2r1L1 ∨ L3e2L2
︸ ︷︷ ︸

disappears due toL3e2

∨

∨ L3r2L2r1L1 ∨ L3r2L2e1 =

= L1 ∨ L2 (r1 ∨ e1) ∨ L3L2r2r1 ∨ L3e2 ∨ L3L2r2e1 =

= L1 ∨ L2r1 ∨ L3r2 (e2 ∨ r1) .

But (43) is what we have in the theorem, because as the sequence is coherent, the third term
in (43) is zero:

n∨

i=2

[
Li △i−1

1 (rx ey)
]

= 0. (44)

18Not in formula (36) but in expressions derived up to now for minimal initial digraph: formulas (37) and (38).

the electronic journal of combinatorics 16 (2009), #R73 22

Finally, asL1 = L1 ∨ e1, it is possible to omite1 and obtain (36), recalling again that
rL = L.

Nihil part MN(s) = ▽n
1

(
exTxKy

)

We shall go a little bit faster as the proof proceeds along thelines of that for the certainty part,
which in essence started with a big enough graph and removed as many elements as possible.
However, for edges in the nihil part, besides the actions of the productions on edges, we need
to keep track of the actions of the productions on nodes because some potential dangling edges
may become available (if their incident nodes are added by some grammar rule then they stop
being potential dangling edges).

Think of G as an “ambient graph” in which the operations are taking place. For the nihil
term▽n

1exT xKy it is easier to think in what must be or must not be found inG, rather than in
G.

We once more proceed by induction on the number of productions. For the time being, for
simplicity, we omit the effect of adding nodes which may turnpotential dangling edges into
available ones, i.e. we ignoreT x. In a sequence with a single production it should be obvious
thatK1 (and onlyK1) needs to be demanded.

For a sequence of two productionss2 = p2; p1, K1 is again necessary. It is clear that
K1 ∨ K2 with KV

1 KV
2 = 0 – i.e. all nodes and hence edges unrelated – would be enough, but it

may include more elements than strictly needed. Among them,those already deleted byp1 and
those that already appear inK1 and that are not added byp1 – r1K1 –. If these elements ofK2

are not going to be considered, we need toand their negation:e1(r1K1)K2. Altogether, we get
K1 ∨ e1(r1K1)K2. Some simple manipulations prove that:

K1 ∨ K2e1(r1K1) = K1 ∨ K2e1

(
r1 ∨ K1

)
=

= K1 ∨ K2(e1 ∨ r1K1) = K2Q1. (45)

Minimality is inferred by construction. If any other element was removed then eitherp−1
1 or

p−1
2 could not be applied (and still consider dangling edges). Itis not difficult to check that the

sequencep−1
2 ; p−1

1 can be applied toK1 ∨ K2Q1. The expressions for sequences of three, four,
. . ., n poductions are:

N3 = N2 ∨ K3r2Q1 Q2 (46)

N4 = N3 ∨ K4r3r2Q1 r2Q2 Q3 (47)

. . .

Nn = K1 ∨ r1 ▽n−1
1

(
QxKy+1

)
∨

n∨

j=2

[
Kj △j−1

1

(
Qxry

)]
(48)

Nn = K1 ∨ r1 ▽n−1
1 (exKy+1) ∨

n∨

j=2

[
Kj △j−1

1 (exry)
]
. (49)

There are two tricky steps. The first one is how to deriveNn in eq. (48) and the second is
how to obtain its equivalent expression (49). The reader is referred to the proof for the certainty
part above, where detailed explanations have been provided.

the electronic journal of combinatorics 16 (2009), #R73 23

Once we get here it is easy to obtain▽n
1 (exKy). First, note that the sequence is coherent so

the third term in eq. (49) is zero. Second, asK1 = K1 ∨ r1, ther1 can be simplified because
a ∨ ab = a ∨ b in propositional logics.

Finally, the same reasoning applies for those nodes that areadded. So we do not only need
to remove elements erased by previous productions but also edges that are not incident to any
non-existent edge,▽n

1 (exKy) 7−→ ▽n
1

(
exT xKy

)
�

Figure 8: Sequence of Two Productions

Example.�Figure 8 includes two productions with their nihilation matricesK1 andK2. The
initial digraph of the sequences = q2; q1 is

M(s) = ▽2
1

(
rxLy∨iexT xKy

)
= (r1L1∨r1r2L2)∨i

(
e1T 1K1∨e1e2T 1T 2K2

)
=

= (L1 ∨ r1L2)∨i
(
T 1K1 ∨ e1T 1T 2K2

)

=

1 1 0
0 0 0
1 1 0

 ∨

1 1 1
0 1 1
1 1 1

0 0 0
1 1 0
0 0 0

 ∨ i

1 1 1
1 1 1
1 1 1

0 0 1
1 0 1
0 0 1

 ∨

∨

1 0 1
1 1 1
0 0 1

1 1 1
1 1 1
1 1 1

1 1 0
1 1 0
0 0 0

0 1 1
0 0 1
0 0 0

 =

=

1 1 0
0 1 0
1 1 0

 ∨ i

0 0 1
1 0 1
0 0 1

 ≡ MC(s2) ∨ iMN (s2).

MC(s2) has the minimal set of edges and nodes necessary to apply productionsp1 andp2,
in this precise order.MN(s2) has the minimal amount of edges that must be missing.

We have representedMC(s2) ∨ iMN (s2) to the left of Fig. 9 together with its evolution as
well as the final state,s2 (M(s2)). To the right of the same figure there is the same evolution
but limited to edges and from the point of view of swaps. With black solid lines we have
represented the edges that are present and with red dotted lines those that are absent. Recall that
swaps interchange them.�

As above, think ofG as an “ambient graph” in which operations take place. A final remark
is thatT makes the number of edges inG as small as possible. For example, ine1e2T 1T 2K2 we

the electronic journal of combinatorics 16 (2009), #R73 24

Figure 9: Initial Digraph of a Sequence of Two Productions Together with its Evolution

are in particular demandinge1T 1T 2r2 (becauseK2 = r2 ∨ e2D2). If we start with a compatible
host graph, it is not necessary to ask for the absence of edgesincident to nodes that are added
by a production (we called thempotentially availableabove). Notice that these edges could not
be in the host graph as they would be dangling edges or we wouldbe adding an already existent
node. Summarizing, if compatibility is assumed or demandedby hypothesis, we may safely
ignoreT x in the formula for the initial digraph. This remark will be used in the proof of the
G-congruence characterization theorem in Sec. 7.

We end this section with a closed formula for the effect of theapplication of a coherent
concatenation to an initial digraph. It can be useful if we want to operate in the general case.

Corollary 6-2. Let s = pn; . . . ; p1 be a coherent sequence of productions, andM(s) its
initial digraph. Considering only the certainty parts, then

s(M(s)) =

n∧

i=1

(eiM(s)) ∨△n
1 (exry) (50)

s(M(s)) =
n∧

i=1

(

riM(s)
)

∨△n
1 (rxey) (51)

Proof
�Theorem 6-1 proves thats (M(s)) = s (

∨n

i=1 Li). To derive the formulas apply induction on
the number of productions ander = r. �

Notice that eqs. (50) and (51) have the same shape as a single productionp = r∨eL, where
for eq. (50)

e =

n∨

i=1

ei r = △n
1 (ex ry) (52)

and for eq. (51)

e =

n∨

i=1

ri r = △n
1 (rx ey) . (53)

Thee’s in eqs. (52) and (53) are those elements not deleted by any production and ther’s
are what a grammar rule adds and no previous production deletes (previouswith respect to the
order of application).

the electronic journal of combinatorics 16 (2009), #R73 25

For the application of a single productionp, the order of deletion and addition is unimpor-
tant: p(L) = r ∨ eL = e(r ∨ L). This is becauseer = r. However, the order of application
does matter in the case of a sequences if we write it using eqs. (52) and (53),s(G) = r ∨ eG.
Here it is necessary to carry out deletion first and addition afterwards.

Equation (50) is closely related to composition of a sequence of productions as defined in
Sec. 4.5 in [12]. This explains why it is possible to interpret a coherent sequence of productions
as a single production. Recall that any sequence is coherentif the appropriate identifications on
nodes are performed.

The negation of the minimal initial digraph which appears inidentity (51) can be explicitly
calculated in terms of the operator nabla:

M(s) = ∇n−1
1

(
Lx ry

)
∨

n∧

i=1

Li. (54)

Corollary 6-3. Let s = pn; . . . ; p1 be a coherent sequence of productions, andM(s) its
initial digraph. Then

s(M(s)) = s (MC(s)) ∨ i s
(

MN(s)
)

. (55)

7 Compatibility and Congruence

This section reviews some more sequential results, adapting and extending them. The notions
we cope with are compatibility19 and G-congruence. By the end of the section we will very
briefly touch on sequential independence, application conditions and graph constraints.

Compatibility asks for “closedness” of the space (graphs) with respect to the specified op-
erations. In essence, it demands the lack of dangling edges.Definitions of compatibility for
increasingly general concepts can be found in Sec. 2: singlesimple digraph, production and
sequence. According to Prop. 4-2 productions act on edges and on vertices. They are obviously
related but this relation has not been demonstrated. It is ofimportance in order to study the
evolution of the nihil part of (strict) Boolean complexes. What one production forbids, another
production may need or even can make accessible again.

Proposition 7-1 (Compatibility). Let s = pn; . . . ; p1 be a sequence consisting of compati-
ble productions. If

▽n
1 (exrxMC(sx)MN(sx)) = 0 (56)

thens is compatible, whereMC(sm) andMN (sm) are the certainty and nihil parts of the initial
digraphs ofsm = pm; . . . ; p1, m ∈ {1, . . . , n}.

Proof (Sketch)
�Equation (56) is a restatement of the definition of compatibility for a sequence of productions.
The condition appears when the certainty and nihil parts aredemanded to have no common
elements. Compatibility of each production is used to simplify terms of the formLiKi �

19Compatibility has been defined in Sec. 2 and used for a single production for example in the proof of Prop.
4-2, Sec. 4.

the electronic journal of combinatorics 16 (2009), #R73 26

As happened with coherence and the complexC+∨iC− in Th 5-1, eq. (56) for compatibility
provides information on which elements may prevent it.

Compatibility and coherence are related notions but only tosome extent. Coherence deals
with actions of productions, while compatibility with potential presence or abscense of ele-
ments. This might be better understood if we think in terms ofsequences: when the left hand
sideL ∨ iK of a grammar rulep is matched in a host graphG ∨ iG, all elements ofL must be
found inG and all edges ofK must be found inG. Whenp is applied, a new graphH ∨ iH
is derived. Again, all elements ofR have to be found inH and all edges inQ will be in H, no
matter if some of them are now potentially usable (sayp adds some nodes and some potentially
dangling edges are not dangling edges anymore).

Now we turn to G-congruence, which studies equality of initial digraphs for a sequences =
pn; . . . ; p1 and a permutation of it,s′ = σ(s) = pσ(n); . . . ; pσ(1). As previously commented, this
is closely related to sequential indepence, which is a fundamental concept in graph rewriting.

We limit ourselves to the advancement and delaying of a single production: permutationsφ
andδ. Advancement20 is φ = (1 2 . . . n−1 n) and delaying isδ = (n n−1 . . . 2 1), i.e
φ(s) = pn−1; pn−2 . . . ; p1; pn andδ(s) = p1; pn; . . . p2.

We first calculate what we call congruence conditions. Then,some technical lemmas are
proved and, finally, the section ends stating and proving themain result regarding sameness of
initial digraphs. As commented right after the example on p.25, assuming compatibility allows
us to safely ignoreT . We shall do so for the rest of the section.

Congruence conditions (abbreviated asCC, positive CCif they refer to the certainty part
of the initial digraph andnegative CCfor the nihil part of the initial digraph) are the formulas
which should check the differences between the initial digraphs of two sequences, one being a
permutation of the other. For its calculation we proceed by induction on the number of produc-
tions, starting withn = 2.

Let’s start by just considering the certainty part of the initial digraph. Suppose we have a
coherent sequence made up of two productionss2 = p2; p1 with initial digraphMC(s2) and,
applying the (only possible) permutationσ = (1 2), get another coherent concatenations′2 =
p1; p2 with initial digraph MC(s′2). Productionp1 does not delete any element added byp2

because, otherwise, ifp1 in s2 deleted something, it would mean that it already existed (asp1 is
applied first ins2) while p2 adding that same element ins′2 would mean that this element was
not present (becausep2 is applied first ins′2). This condition can be written:

e1r2 = 0. (57)

A similar reasoning states thatp1 can not add any element thatp2 is going to use:

r1L2 = 0. (58)

Analogously forp2 againstp1, i.e. fors′2 = p1; p2, we have:

e2r1 = 0 (59)

r2L1 = 0. (60)

20Numbers in the permutation refers to the position that the production occupies inside the sequence, not to its
subindex.

the electronic journal of combinatorics 16 (2009), #R73 27

As a matter of fact two equations are redundant – (57) and (59)– because they are already
contained in the other two. Note thateiLi = ei, i.e. in some senseei ⊂ Li, so it is enough to
ask for:

r1L2 ∨ r2L1 = 0. (61)

It is easy to check that these conditions makeMC(s2) = MC(s′2). In detail:

MC(s2) = MC(s2) ∨ r1L2 = L1 ∨ r1L2 ∨ r1L2 = L1 ∨ L2

MC(s′2) = MC(s′2) ∨ r2L1 = L2 ∨ r2L1 ∨ r2L1 = L2 ∨ L1.

Let’s now turn to the nihil part of the initial digraph, for which the first production should
not delete any element forbidden forp2 (in such a case these elements would be inG for p1; p2

and inG for p2; p1):
0 = e1K2 = e1r2 ∨ e1e2D2. (62)

Note that we already hade1r2 = 0 in eq. (57). A symmetrical reasoning yieldse2e1D1 = 0,
and altogether:

e1e2D2 ∨ e2e1D1 = 0. (63)

First monomial in (63) simply states that no potential dangling edge forp2 (not deleted by
p2) can be deleted byp1.

It is not difficult to show that eq. (63) guarantees the same nihil part of the initial digraph.
In p2; p1 the nihil part of the initial digraph is given byK1 ∨ e1K2. Condition (62) demands
e1K2 = 0 so we canor them to get:

K1 ∨ e1K2 ∨ e1K2 = K1 ∨ K2. (64)

A similar reasoning applies top1; p2, obtaining the same result.
We will proceed with three productions so, following a consistent notation, we sets3 =

p3; p2; p1, s′3 = p2; p1; p3 with permutationσ3 = (1 3 2) and their corresponding certainty part
of the initial digraphsMC(s3) = L1 ∨ r1 L2 ∨ r1 r2 L3 andMC(s′3) = r3 L1 ∨ r3 r2 L2 ∨ L3.
Conditions are deduced similarly to the two productions case:21

r3L1 = 0 r3L2r1 = 0 r1L3 = 0 r2L3e1 = 0. (65)

Let’s interpret them all.r3L1 = 0 says thatp3 cannot add an edge thatp1 uses. This is
because this would mean (bys3) that the edge is in the host graph (it is used byp1) but s′3
says that it is not there (it is going to be added byp3). The second condition is almost equal
but with p2 playing the role ofp1, which is why we demandp1 not to add the element(r1).
Third equation is symmetrical with respect to the first. The fourth states that we would derive
a contradiction if the second production adds something(r2) that productionp3 uses(L3) and
p1 does not delete(e1). This is because bys3 the element was not in the host graph. Note
thats′3 says the opposite, asp3 (to be applied first) uses it. All can be put together in a single
expression:

L3 (r1 ∨ e1r2) ∨ r3 (L1 ∨ r1L2) = 0. (66)

21As far as we know, there is no rule of thumb to deduce the conditions for G-congruence. They depend on the
operations that productions define and their relative order.

the electronic journal of combinatorics 16 (2009), #R73 28

For the sake of completeness let’s point out that there are other four conditions but they are
already considered in eq. (66):

e1r3 = 0 r3e2r1 = 0 e3r1 = 0 r2e3e1 = 0. (67)

Now we deal with those elements that must not be present. Fourconditions similar to those
for two productions – compare with eq. (62) – are needed:

e1K3 = e1r3 ∨ e1e3D3 = 0

e3K1 = e3r1 ∨ e3e1D1 = 0

e3K2e1 = e3r2e1 ∨ e3e1e2D2 = 0

e2K3r1 = e2r3r1 ∨ e2r1e3D3 = 0. (68)

Note that the first monomial in every equation can be discarded as they are already consid-
ered in identity (66). We put them altogether to get:

e1e3D3 ∨ e3e2e1D2 ∨ e3e1D1 ∨ e2e3r1D3 =

= e3

(
e1D1 ∨ e1e2D2

)
∨ e3D3 (e1 ∨ r1e2) . (69)

Moving one production three positions forward in a sequenceof four productions, i.e.
p4; p3; p2; p1 7→ p3; p2; p1; p4, while maintaining the certainty part of the initial digraph has
as associated conditions those given by the equation:

L4 (r1 ∨ e1 r2 ∨ e1 e2 r3) ∨ r4 (L1 ∨ r1 L2 ∨ r1 r2 L3) = 0, (70)

and the nihil part of the initial digraph by:

e4

(
e1 D1 ∨ e1 e2D2 ∨ e1 e2 e3D3

)
∨ e4 D4 (e1 ∨ r1 e2 ∨ r1 r2 e3) = 0. (71)

By induction it can be proved that for advancement of one productionn−1 positions inside
the sequence ofn productionssn = pn; . . . ; p1, the equation which contains allpositive CCcan
be expressed in terms of operator∇ and has the form:

CC+ (φn, sn) = Ln∇n−1
1 (exry) ∨ rn∇n−1

1 (rxLy) = 0. (72)

and for thenegative CC:

CC− (φn, sn) = Dnen∇n−1
1 (rxey) ∨ en∇n−1

1

(
exDy

)
= 0. (73)

Some monomials were discarded in eq. (68) because they were already considered in eq.
(66). If (73) is not used in conjunction with (72), then the more complete form

CC− (φn, sn) = Kn∇n−1
1 (rxey) ∨ en∇n−1

1 (exKy) (74)

should be preferred. Recall thatKj = rj ∨ ejDj . The point is thatejDj considers potential
dangling edges whileKj also includes those to be added.

the electronic journal of combinatorics 16 (2009), #R73 29

It is possible to write eqs. (72) and (73) in terms ofLi andKi. We will do it for sequences
s3 ands′3. One illustrating example should suffice:

r3r1L1 ∨ D3e3r1e1 = r1L1

(
r3 ∨ e1e3D3

)
=

= r1L1

(
r3e1 ∨ r3e1 ∨ e1e3D3

)
=

= r1L1 (e1K3 ∨ r3e1) = r1L1K3 (e1 ∨ r3) . (75)

Last equality holds becauseKiri = ri∨riDi = ri anda∨ab = a∨b in propositional logics.
We have also used thatKiei = ei

(
ri ∨ eiDi

)
= Ki.

A formula considering the positive (72) and the negative (73) parts can be derived by induc-
tion. It is presented as a proposition:

Proposition 7-2. Positive and negative congruence conditions for sequencessn ands′n =
φn(sn) are given by:

CC (φn, sn) = Ln∇n−1
1 exKy (ry ∨ en) ∨ Kn∇n−1

1 rxLy (ey ∨ rn) . (76)

Proof
��

G-congruence is obtained whenCC (φn, sn) = 0. An equivalent reasoning does it for
production delayingn − 1 positions, giving very similar formulas. Suppose that production
p1 is moved backwards in concatenationsn to gets′′n = p1; pn; . . . ; p2, i.e. δn is applied. The
positive part of the condition is:

CC+ (δn, sn) = L1∇n
2 (exry) ∨ r1∇n

2 (rxLy) = 0 (77)

and the negative part:

CC− (δn, sn) = D1e1∇n
2 (rxey) ∨ e1∇n

2

(
exDy

)
= 0. (78)

As in the positive case it is possible to merge equations (77)and (78) to get a single expres-
sion:

Proposition 7-3. Positive and negative congruence conditions for sequencessn ands′′n =
δn(sn) are given by:

CC (δn, sn) = L1∇n
2exKy (ry ∨ e1) ∨ K1∇n

2rxLy (ey ∨ r1) . (79)

Proof
��

It is necessary to show that these conditions guarantee sameness of initial digraphs, but first
we need two technical lemmas that provide us with some identities used to transform the initial
digraphs. Advancement and delaying are very similar so onlyadvancement is considered for
the rest of the section.

Lemma 7-4. Let sn = pn; . . . ; p1 be a sequence ands′n = σ (sn) = pn−1; . . . ; p1; pn and
that CC+ (φn, sn) is satisfied. Then the following identity may beored toMC(sn) without
changing it:

DC+(φn, sn) = Ln∇n−2
1 (rxey) . (80)

the electronic journal of combinatorics 16 (2009), #R73 30

Proof
�Let’s start with three productions. Recall thatMC(s3) = L1 ∨ other termsand thatL1 =
L1 ∨ e1 = L1 ∨ e1 ∨ e1L3 (last equality holds for any formulaa ∨ ab = a in propositional
logics). Note thate1L3 is eq. (80) forn = 3.

Forn = 4, apart frome1L4, we need to gete2r1L4 (as the full condition isDC+(φ4, s4) =
L4 (e1 ∨ r1e2)). Recall again the minimal initial digraph for four productions whose first two
terms areMC(s4) = L1 ∨ r1L2. It is not necessary to consider all terms inMC(s4) to get
DC+(φ4, s4):

MC(s4) = (L1 ∨ e1) ∨ (r1L2 ∨ r1e2) ∨ . . . =

= (L1 ∨ e1 ∨ e1L4) ∨ (r1L2 ∨ r1e2 ∨ r1e2L4) ∨ . . . =

= (L1 ∨ e1L4) ∨ (r1L2 ∨ r1e2L4) ∨ . . . =

= MC(s4) ∨ DC+(φ4, s4).

The proof can be finished by induction.�

Next lemma states a similar result for the nihil part of initial digraphs. We will need it to
prove invariance of the nihil part of the initial digraph.

Lemma 7-5. With notation as above and assuming thatCC− (φn, sn) is satisfied, the fol-
lowing identity may beored toMN(sn) without changing it:

DC−(φn, sn) = enDn∇n−2
1 (exry) . (81)

Proof
�We follow the same scheme as in the proof of Lemma 7-4. Let’s start with three productions.
Recall thatMN (s3) = K1 ∨ other termsand thatK1 = K1 ∨ r1 = K1 ∨ r1 ∨ r1e3D3. Note that
r1e3D3 is eq. (81) forn = 3.

For n = 4, besides the termr1e4D4 we need to gete1r2e4D4 (because we have that
DC−(φ4, s4) = e4D4 (r1 ∨ e1r2)). The first two terms of the negative initial digraph for four
productions areMN (s4) = K1 ∨ e1K2. Again, it is not necessary to consider the whole formula
for MN (s4):

MN(s4) = (K1 ∨ r1) ∨ (e1K2 ∨ r2e1) ∨ . . . =

=
(
K1 ∨ r1 ∨ r1e4D4

)
∨
(
e1K2 ∨ e1r2 ∨ e1r2e4D4

)
∨ . . . =

=
(
K1 ∨ r1e4D4

)
∨
(
e1K2 ∨ e1r2e4D4

)
∨ . . . =

= MN(s4) ∨ DC−(φ4, s4).

The proof can be finished by induction.�

If conditionsCC−(φn, sn) andDC−(φn, sn) are applied independently ofCC+(φn, sn) and
DC+(φn, sn) then the expression

DC−(φn, sn) = Kn∇n−2
1 (ex ry) (82)

should be used instead of the definition given by equation (81).
We are ready to formally state a characterization of G-congruence in terms of congruence

conditionsCC.

the electronic journal of combinatorics 16 (2009), #R73 31

Theorem 7-6 (G-congruence).With notation as above and assuming compatibility and co-
herence, sequencesn andφ(sn) are G-congruent ifCC+(φn, sn) ∨ i CC−(φn, sn) = 0, where

CC+(φn, sn) = Ln∇n−1
1 exKy (ry ∨ en) (83)

CC−(φn, sn) = Kn∇n−1
1 rxLy (ey ∨ rn) . (84)

Also,sn andδ(sn) are G-congruent ifCC+(δn, sn) ∨ i CC−(δn, sn) = 0, with

CC+(δn, sn) = L1∇n
2exKy (ry ∨ e1) (85)

CC−(δn, sn) = K1∇n
2rxLy (ey ∨ r1) . (86)

Proof
�First, usingCC+(φi, si) andDC+(φi, si), we will proveMC(s) = MC(s′) for three and five
productions. Identitiesa ∨ a b = a ∨ b anda ∨ a b = a ∨ b will be used.

MC(s3) ∨ CC+(φ3, s3) ∨ DC+(φ3, s3) = [L1 ∨ r1L2 ∨ r1r2L3]∨
∨ [r1L3 ∨ e1r2L3 ∨ r3L1 ∨ r1r3L2] ∨ [e1L3] =

= L1 ∨ r1L2∨ 6r1r2L3 ∨ r1L3∨ 6e1r2L3 ∨ e1L3 =

= L1 ∨ r1L2∨ 6r2L3 ∨ r2L3 ∨ L3 (r1 ∨ e1) =

= L1 ∨ r1L2 ∨ L3.

In our first step, as neitherr3L1 nor r1r3L2 are applied toMC(s3), they have been omitted
(for example,L1 ∨ r3L1 = L1). Oncer1L3, e1L3 andr2L3 have been used, they are omitted as
well.

Let’s check outMC(s′3), where in the second equalityr1L3 andr2e1L3 are ruled out since
they are not used:

MC(s′3)∨CC+(φ3, s
′

3) = [r3L1∨r1r3L2∨L3]∨[r1L3∨r2e1L3∨r3L1∨r1r3L2] =

= 6r3L1 ∨ r1 6r3L2 ∨ L3 ∨ r3L1 ∨ r1r3L2 =

= L1 ∨ r1L2 ∨ L3.

The case for five productions is almost equal to that of three productions but it is useful to
illustrate in detail howCC+(φ5, s5) andDC+(φ5, s5) are used to prove thatMC(s5) = MC(s′5)
in a more complex situation. The key point is the transformation r1r2r3r4L5 7−→ L5 and the
following identities show the way to proceed:

6r1 r2 r3 r4 L5 ∨ r1L5 = r2 r3 r4 L5

6r2 r3 r4 L5∨ 6e1 r2L5 ∨ e1L5 = r3 r4 L5

6r3 r4 L5∨ 6e1 6e2r3L5 ∨ e1L5∨ 6r1e2L5 ∨ r1L5 = r4 L5

6r4L5∨ 6e1 6e2 6e3r4L5 ∨ e1L5∨ 6r1e2L5 ∨ r1L5

∨ 6r1 6r2e3L5∨ 6e1r2L5 = L5.

Note that we are in a kind of iterative process: what we get on the right of the equality is
inserted and simplified on the left of the following one, until que getL5. ForL4 the process is
similar but shorter.

the electronic journal of combinatorics 16 (2009), #R73 32

Now one example with three productions for the nihil part of the initial digraph is studied,
MN (s3) ∨ CC−(φ3, s3) ∨ DC−(φ3, s3) = MN (s′3) ∨ CC−(φ3, s3):

MN(s3) ∨ CC−(φ3, s3) ∨ DC−(φ3, s3) =

= [K1 ∨ e1 K2 ∨ e1 e2 K3] ∨ [e3K1 ∨ e1 e3K2 ∨ e1K3∨
∨ r1 e2K3] ∨ [r1K3] = K1 ∨ e1 K2∨ 6e1 e2 K3 ∨ e1K3∨
∨ 6r1 e2K3 ∨ r1K3 = K1 ∨ e1 K2∨ 6e2 K3 ∨ e2K3∨
∨ K3 (r1 ∨ e1) = K1 ∨ e1 K2 ∨ K3.

MN(s′3) ∨ CC−(φ3, s3) = [e3K1 ∨ e1e3 K2 ∨ K3] ∨ [e1K3 ∨ e2r1K3 ∨ e3K1∨
∨ e1e3K2] = 6e3 K1∨e1 6e3K2∨K3∨e3K1 ∨ e1e3K2 =

= K1 ∨ e1 K2 ∨ K3.

Notice that the procedure followed to showMN(s3) = MN(s′3) is completely analogous to that
of MC(s3) = MC(s′3). �

As happened with coherence in Th 5-1 and compatibility in Prop. 7-1, CC+∨ iCC− in
Th. 7-6 provides information on which elements may prevent congruence.

There are some relevant topics that we have not mentioned such as sequential indepen-
dence,22 application conditions and graph constraints.23 We briefly discuss them now.

Swaps and productions are closely related, but one does not substitute the other. With re-
spect to the image of a sequence and sequential independence, sticking to swaps to the detriment
of productions has its effect on the interpretation of operations. On the positive side, among
many other things, swaps are a nice redefinition and generalization of productions that take into
account the certainty and nihil parts; on the negative side,our intuition needs to be adjusted. For
example, consider a productionp that only deletes edge(1, 2) and does nothing else. Suppose
that it is applied twice to the graphG that consists of nodes1, 2 and edge(1, 2). In this case
p; p(G) = G which is algebraically correct. However, it does not encode“delete edge(1, 2)
twice”. The point here is that of completion: we would ratherhave considered its application
to G′, made up of nodes1, 1′ and2 and edges(1, 2) and(1′, 2). A similar reasoning shows that
sequential independence is “granted” if we rely only on algebraic operations and do not pay
attention to completion:

p2; p1(L) = 〈〈L, P (p1)〉 , P (p2)〉 = LP (p1)P (p2) = LP (p2)P (p1) = p1; p2(L).

Previous comments highlight some of the reasons why coherence, compatibility, initial digraph
and G-congruence are so valuable, justifying their inclusion and also linking Secs. 5, 6 and 7 to
Sec. 4.

Regarding application conditions and graph constraints, they are not difficulty related to
what has been presented so far. If they are allowed to be applied to g ∈ G instead of the
restricted case that we have studied(H), we may impose limits on what elements cannot be

22Productionsp1 andp2 are sequentially independent ifp2; p1 andp1; p2 output the same result. This concept
can be generalized to more than two productions. This topic is studied in detail in [12].

23They are both means to establish restrictions on the application of productions. These topics are studied in
detail in [12].

the electronic journal of combinatorics 16 (2009), #R73 33

added or deleted by sequences of productions (swaps). This is because if one edge is in the
certainty part and in the nihil part, it cannot be deleted by any swap. On the contrary, if one
edge does not appear either in the certainty or in the nihil parts, it is not possible for a swap to
add it.

If we call any of these situations aswap restriction, it can be guaranteed that a sequence
will not add or delete (or both) some element, despite the actual definition of the productions
that make up the sequence or the grammar.

8 Conclusions and Future Work

In this paper we have given a comprehensive study of MGG. Besides, some new concepts such
as swaps and (strict) Boolean complexes have been introduced and almost all results have been
generalized. We believe it is a natural representation in the MGG context, as productions act
on pairs of graphs(L, K)

p→ (p(L), p−1(K)). Relevant algebraic structures for their study have
been introduced (PMCA,G, H). Swaps allow studying and classifying productions according
to their dynamic behaviour, defining a surjective morphism into the self-adjoint graphs inH.

With respect to other similar approaches to MGGs, in [15] theDPO approach was im-
plemented using Mathematica. In that work, (simple) digraphs were represented by Boolean
adjacency matrices. This is the only similarity with our work, as our goal is to develop a theory
for (simple) graph rewriting based on Boolean matrix algebra. Other somehow related work is
the relational approaches of [5, 6], but they rely on category theory for expressing the rewriting.
It is also worth mentioning the set-theoretic approaches tograph transformation [3, 13]. Even
though some of these approaches have developed powerful analysis techniques and efficient
tool implementations, the rewriting is usually limited (e.g. a node or edge can be replaced by
a subgraph). Altogether, our work is original as we encode inrules not only static information
(pre- and post-conditions), but also the dynamics (elementaddition and deletion). Moreover,
our new formalization allows a compact representation of positive and implicit negative infor-
mation. This new approach to graph transformation has made possible to analyse new concepts
in the literature (like e.g. the initial digraphs, nihilation matrix, swaps, congruence) and extend
others to sequences of arbitrary finite length (e.g, sequential independence).

Our main interest for further research is complexity theorythrough MGGs. Complexity
theory [4, 8] is concerned with the study of theintrinsic complexityof computational tasks.
Traditionally, it has been studied through abstract devices able to represent the notion of algo-
rithm, such as Turing Machines or Boolean Circuits [16]. Ourproposal is to use MGG instead,
as its algebraic nature allows using results from differentbranches of mathematics such as log-
ics, group theory and Boolean algebra. For this purpose, it is first necessary to study MGG as
a model of computation. Also, measures of complexity and thelike are mandatory. Identities
like (8) suggest the use ofxor metrics.

Another promising idea might be to encode properties of graphs (such as coloring) using
graph grammars, translatingstaticproperties into equivalentdynamicproperties of associated
sequences. We are also working in the introduction of abstract harmonic analysis in MGG.
Finally, there are many more topics for further research, e.g. graph constraints, applicability,

the electronic journal of combinatorics 16 (2009), #R73 34

reachability, confluence and infinite graphs, some of which we have already commented on.
Acknowledgements: The authors would like to thank an anonymous referee for his/her

extremely useful comments. Pedro Pablo wants to thank the open source and the copyleft com-
munities.SAGE(http://www.sagemath.org/) has been used for some calculations.OpenOffice
Drawing (http://www.openoffice.org/) has been used with Figs. 4, 5, 7, 8 and 9.The Gimp
(http://www.gimp.org/) has helped with some finishing touches.Emacs(http://www.gnu.org/
software/emacs/) is unvaluable for typing andteTeXfor LATEX. This work has been partially
sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-
02081/TIN).

References

[1] Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. 1999.Handbook of Graph Gram-
mars and Computing by Graph Transformation. Vol. 2 (Applications, Languages and
Tools). World Scientific.

[2] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. 2006.Fundamentals of Algebraic Graph
Transformation.Springer.

[3] Engelfriet, J., Rozenberg, G. 1997.Node Replacement Graph Grammars.In [14], pp.:
1-94.

[4] Goldreich, O. 2008.Computational Complexity: A Conceptual Approach.Cambridge Uni-
versity Press.

[5] Kahl, W. 2002.A Relational Algebraic Approach to Graph Structure Transformation.
Tech. Rep. 2002-03, Universitat der Bundeswehr Munchen.

[6] Mizoguchi, Y., Kuwahara, Y. 1995.Relational Graph Rewritings. TCS 141:311–328, El-
sevier.

[7] Mulmuley, K., Sohoni, M. A. 2008.On P vs. NP, Geometric Complexity Theory, and the
Flip I: a high level view. arXiv:0709.0748v1.

[8] Papadimitriou, C. 1994.Computational Complexity.Addison-Wesley.

[9] Pérez Velasco, P. P., de Lara, J. 2006.Matrix Approach to Graph Transformation: Match-
ing and Sequences. LNCS 4178, pp.:122-137. Springer.

[10] Pérez Velasco, P. P., de Lara, J. 2006.Petri Nets and Matrix Graph Grammars: Reacha-
bility. EC-EAAST(2).

[11] Pérez Velasco, P. P., de Lara, J. 2007.Using Matrix Graph Grammars for the Analysis of
Behavioural Specifications: Sequential and Parallel Independence.ENTCS 206, pp.:133-
152. Elsevier.

[12] Pérez Velasco, P. P. 2008.Matrix Graph Grammars. E-book available at:
http://www.mat2gra.info/, CoRR abs/0801.1245.

[13] Raoult, J.-C., Vosisin, F. 1992.Set-Theoretic Graph Rewriting.INRIA Rapport de
Recherche no. 1665.

the electronic journal of combinatorics 16 (2009), #R73 35

[14] Rozenberg, G. (ed.) 1997.Handbook of Graph Grammars and Computing by Graph
Transformation.Vol.1 (Foundations), World Scientific.

[15] Valiente, G. 1998.Grammatica: An Implementation of Algebraic Graph Transformation
on Mathematica. Proc. 6th Works on Theory and Application of Graph Transformations.
pp. 261–267.

[16] Vollmer, H. 1999.Introduction to Circuit Complexity. A Uniform Approach.Springer.

the electronic journal of combinatorics 16 (2009), #R73 36

