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Abstract

The chromatic polynomial P (G,λ) gives the number of λ-colourings of a graph.
If P (G,λ) = P (H1, λ)P (H2, λ)/P (Kr , λ), then the graph G is said to have a chro-
matic factorisation with chromatic factors H1 and H2. It is known that the chro-
matic polynomial of any clique-separable graph has a chromatic factorisation. In
this paper we construct an infinite family of graphs that have chromatic factori-
sations, but have chromatic polynomials that are not the chromatic polynomial of
any clique-separable graph. A certificate of factorisation, that is, a sequence of
rewritings based on identities for the chromatic polynomial, is given that explains
the chromatic factorisations of graphs from this family. We show that the graphs in
this infinite family are the only graphs that have a chromatic factorisation satisfying
this certificate and having the odd cycle C2n+1, n ≥ 2, as a chromatic factor.

1 Introduction

The chromatic polynomial, P (G, λ) ∈ Z[λ], gives the number of proper λ-colourings of a
graph G. This polynomial was first studied by Birkhoff [1, 2] in an effort to algebraically
prove the four colour theorem. Since then the chromatic polynomial has been extensively
studied in both graph theory and statistical mechanics. There has been considerable
interest in chromatic roots (roots of the chromatic polynomial); see the surveys by Woodall
[6] and Jackson [3].

This paper continues the study of algebraic properties of the chromatic polynomial
that we began in [5].

As a first step in the study of the algebraic structure of the chromatic polynomial,
we considered the factorisation of the chromatic polynomial of a graph G into chromatic
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polynomials of lower degree. We say P (G, λ) has a chromatic factorisation if

P (G, λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)
(1)

where H1 and H2 are graphs of lower order than G, neither H1 nor H2 is isomorphic to
Kr and 0 ≤ r ≤ min{χ(H1), χ(H2)}. By convention P (K0, λ) := 1. We say G has a
chromatic factorisation, if P (G, λ) has a chromatic factorisation, and that the chromatic
factors of G are H1 and H2.

A graph is clique-separable if it is either disconnected or if it can be obtained by
identifying two graphs at some clique. Two graphs are said to be chromatically equiv-
alent if they have the same chromatic polynomial. A graph is quasi-clique-separable if
it chromatically equivalent to a clique-separable graph. If G is quasi-clique-separable,
then G has a chromatic factorisation. In [5] we demonstrated that there exist strongly
non-clique-separable graphs — graphs that are not quasi-clique-separable — that have
chromatic factorisations. We found 512 chromatic polynomials of strongly non-clique-
separable graphs of order at most 10 that have chromatic factorisations. We introduced
the concept of a certificate of factorisation, which is a sequence of steps that explains the
chromatic factorisation of a given chromatic polynomial. A schema for certificates was
introduced and certificates were given for all strongly non-clique-separable graphs of order
at most 9 that have a chromatic factorisation [5].

The graphs that have chromatic factorisations that satisfy this schema all have a
common structural property; they are almost clique-separable, that is graphs that can
obtained by adding a single edge to, or removing a single edge from, a clique-separable
graph. In this paper we construct an infinite family of strongly non-clique-separable
graphs. Graphs in this family not only have the property of being almost clique-separable;
these graphs are also triangle-free. We give a certificate of factorisation for graphs be-
longing to this family. We then show that any graph that has a chromatic factorisation
that satisfies this certificate and has an odd cycle of length at least five as a chromatic
factor must belong to this family.

We assume the reader is familiar with [5]. The basic definitions and properties of the
chromatic polynomial given in [5] will be used in this article. Section 2 establishes some
properties on the number of triangles in graphs that have chromatic factorisations. These
properties are used in Section 3 where we give a certificate of factorisation and prove that
any non-clique-separable graph that factorises in the form of this certificate contains no
triangles if one of the chromatic factors contains no triangles. In Section 4 we give an
infinite family of strongly non-clique-separable graphs that have a chromatic factorisation
and give a certificate of factorisation for these factorisations.

2 Graphs having a Chromatic Factorisation

In this section we consider the number of triangles in strongly non-clique-separable graphs
that have chromatic factorisations.
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Lemma 1 If G is a strongly non-clique-separable graph and P (G, λ) satisfies (1) with
chromatic factors H1 and H2, then either H1 or H2 does not contain a clique of size at
least r.

Proof Suppose, in order to obtain a contradiction, both H1 and H2 contain an r-clique.
As H1 and H2 are chromatic factors, neither of these graphs is isomorphic to Kr. So the
graph obtained by identifying an r-clique in H1 and an r-clique in H2 is chromatically
equivalent to G. But then G, a strongly non-clique-separable graph, is chromatically
equivalent to a clique-separable graph, a contradiction. �

Corollary 2 If G is a strongly non-clique-separable graph and P (G, λ) satisfies (1), then
r ≥ 3.

Proof Let H1 and H2 be the chromatic factors of G. The proof considers the cases r = 1
and r = 2.

Suppose r = 1. Then both H1 and H2 have at least one vertex, and thus a clique of
size one, which contradicts Lemma 1.

Suppose r = 2. Now as χ(Hi) ≥ r = 2 for i = 1, 2, both H1 and H2 have at least one
edge. Thus each of these graphs contain a clique of size at least two, which contradicts
Lemma 1. �

The Stirling number of the first kind is denoted by s(n, k) where s(n, k) is the coefficient
of λk in the expansion of the falling factorial λ(λ−1) . . . (λ−n+1). The Stirling number
s(r, r − 2) is the coefficient of λr−2 in the expansion of P (Kr, λ), and we use this in the
proof of Theorem 4.

Fact 3 The Stirling number s(r, r − 2) is

s(r, r − 2) =

r−1
∑

i=2

(

i ×
i−1
∑

j=1

j

)

=

r−1
∑

i=2

(

i ×

(

i(i − 1)

2

))

=

r−1
∑

i=2

(

i2(i − 1)

2

)

=
1

2

((

(r − 1)4

4
+

(r − 1)3

2
+

(r − 1)2

4

)

−

(

(r − 1)3

3
+

(r − 1)2

2
+

r − 1

6

))

=
r4

8
−

5r3

12
+

3r2

8
−

r

12
.

We now show that, if G has a chromatic factorisation, its number of triangles behaves
as if G is clique-separable, even if it is not. This will be used later, in Section 4.

Theorem 4 If P (G, λ) = P (H1, λ)P (H2, λ)/P (Kr, λ), r ≥ 3, then G has t1 + t2 −
(

r

3

)

triangles, where t1 and t2 are the number of triangles in H1 and H2 respectively.

Proof The first three terms of the chromatic polynomial are

P (G, λ) = λn − mλn−1 +

((

m

2

)

− t

)

λn−2 + . . .
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where the graph G has n vertices, m edges and t triangles. Let ni and mi be the number
of vertices and edges in graph Hi, i = 1, 2. Then

P (G, λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)

=
(λn1 − m1λ

n1−1 + (
(

m1

2

)

− t1)λ
n1−2 + . . .)(λn2 − m2λ

n2−1 + (
(

m2

2

)

− t2)λ
n2−2 + . . .)

P (Kr, λ)

which by Fact 3 becomes

P (G, λ) =
λn1+n2 − (m1 + m2)λ

n1+n2 + (
(

m1

2

)

+
(

m2

2

)

− m1m2 − (t1 + t2))λ
n1+n2−2 + . . .

λ(λr−1 − r(r−1)
2

λr−2 + ( r4

8
− 5r3

12
+ 3r2

8
− r

12
)λr−3 + . . .)

= λn1+n2−r − (m1 + m2 −
r(r − 1)

2
)λn1+n2−r−1+

(

(

m1

2

)

+

(

m2

2

)

+ m1m2 − (t1 + t2) −
r4

8
+

5r3

12
−

3r2

8
+

r

12

− (m1 + m2)
r(r − 1)

2
+

r2(r − 1)2

4

)

λn1+n2−r−2 + . . . (2)

Now from (2) G has m1 + m2 − r(r − 1)/2 edges. Let tG be the number of triangles
in G. Then

(

m1 + m2 −
r(r−1)

2

2

)

− tG =

(

m1

2

)

+

(

m2

2

)

+ m1m2 − (t1 + t2)

−
r4

8
+

5r3

12
−

3r2

8
+

r

12
− (m1 + m2)

r(r − 1)

2
+

r2(r − 1)2

4
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So

tG =

(

m1 + m2 −
r(r−1)

2

2

)

−

(

m1

2

)

−

(

m2

2

)

− m1m2 + (t1 + t2)

+
r4

8
−

5r3

12
+

3r2

8
−

r

12
+ (m1 + m2)

r(r − 1)

2
−

r2(r − 1)2

4

=

(

m1

2

)

+

(

m2

2

)

+ m1m2 − (m1 + m2)
r(r − 1)

2
+

r2(r − 1)2

8

+
r(r − 1)

4
−

(

m1

2

)

−

(

m2

2

)

− m1m2 + (t1 + t2) +
r4

8
−

5r3

12

+
3r2

8
−

r

12
+ (m1 + m2)

r(r − 1)

2
−

r2(r − 1)2

4

=
r(r − 1)

4
+ (t1 + t2) +

r4

8
−

5r3

12
+

3r2

8
−

r

12
−

r2(r − 1)2

8

= (t1 + t2) −
r(r − 1)(r − 2)

6

= t1 + t2 −

(

r

3

)

� (3)

Now by Lemma 1 one of the chromatic factors of a chromatic factorisation of a strongly
non-clique-separable graph graph has no r-clique. We now consider the case where one of
these chromatic factors, say H1, has no triangle.

Corollary 5 If P (G, λ) satisfies (1) with r = 3 and G is a strongly non-clique-separable
graph, then exactly one of H1 or H2 has at least one triangle. If H2 is the chromatic
factor that has at least one triangle, then H2 has exactly one more triangle than G.

Proof By Lemma 1 as G is not chromatically equivalent to any clique-separable graph,
one of the chromatic factors, say H1, contains no triangles. Thus (3) becomes

t(G) = t2 −

(

3

3

)

= t2 − 1. (4)

So H2 contains exactly one more triangle that G, and certainly has at least one triangle.
�

3 A Certificate of Factorisation for r = 3

We now give some more specific results on the number of triangles in graphs that satisfy
a particular certificate of factorisation. In Section 4 these results are used to demonstrate
that an infinite family of graphs have chromatic factorisations that satisfy this certificate.

A certificate of factorisation is a sequence of steps that explains the chromatic factori-
sation of a given chromatic polynomial. A schema for some certificates and a number of

the electronic journal of combinatorics 16 (2009), #R75 5



classes of certificates were given in [5]. In this section we present a certificate of factori-
sation belonging to this schema for the case where:

• r = 3 in (1), that is P (G, λ) = P (H1, λ)P (H2, λ)/P (K3, λ),

• G is a non-clique-separable graph with connectivity 2, and

• there exists uv 6∈ E(G) such that such that G + uv and G/uv are both clique-
separable graphs each having H1 as a chromatic factor.

Without loss of generality, it is assumed that:

• H1 contains no triangles and

• H2 contains at least one triangle by Corollary 5.

This case is illustrated in Figure 1. (In this figure we use the standard approach of
representing the chromatic polynomial of a graph by the graph itself.) In this case G+uv
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G

u

G + uv

vu

G/uv

v

H1

H3

H4

H1

Figure 1: P (G, λ) = P (G + uv, λ) + P (G/uv, λ)

is isomorphic to a 2-gluing of H1 and some graph H3, and G/uv is isomorphic to a 1-gluing
of H1 and some graph H4. Thus,

P (G, λ) = P (G + uv, λ) + P (G/uv, λ)

=
P (H1, λ)P (H3, λ)

P (K2, λ)
+

P (H1, λ)P (H4, λ)

P (K1, λ)
. (5)

Now, H1 and H3 in G + uv contract to H4 and H1 respectively in G/uv (see Figure 1).
Thus, it is clear that

H1
∼= H3/uv (6)

and
H4

∼= H1/uv. (7)
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Thus (5) becomes

P (G, λ) =
P (H1, λ)P (H3, λ)

P (K2, λ)
+

P (H1, λ)P (H1/uv, λ)

P (K1, λ)

= P (H1, λ)

(

P (H3, λ)

P (K2, λ)
+

P (H1/uv, λ)

P (K1, λ)

)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
+

P (H1/uv, λ)P (K3, λ)

P (K1, λ)

)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
+

P (H1/uv, λ)P (K3, λ)P (K2, λ)

P (K2, λ)P (K1, λ)

)

. (8)

Now if there exists wx 6∈ E(H2) such that H2 + wx is isomorphic to a 2-gluing of H3 and
K3, and H2/wx is isomorphic to a (2, 1)-gluing of the graphs H1/uv, K3 and K2, then (8)
becomes

P (G, λ) =
P (H1, λ)

P (K3, λ)
(P (H2 + wx, λ) + P (H2/wx, λ))

=
P (H1, λ)P (H2, λ)

P (K3, λ)
.

Thus the certificate for such a factorisation is as follows:

P (G, λ) = P (G + uv, λ) + P (G/uv, λ)

=
P (H1, λ)P (H3, λ)

P (K2, λ)
+

P (H1, λ)P (H1/uv, λ)

P (K1, λ)

= P (H1, λ)

(

P (H3, λ)

P (K2, λ)
+

P (H1/uv, λ)

P (K1, λ)

)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
+

P (H1/uv, λ)P (K3, λ)

P (K1, λ)

)

=
P (H1, λ)

P (K3, λ)

(

P (K3, λ)P (H3, λ)

P (K2, λ)
+

P (H1/uv, λ)P (K3, λ)P (K2, λ)

P (K2, λ)P (K1, λ)

)

=
P (H1, λ)

P (K3, λ)
(P (H2 + wx, λ) + P (H2/wx, λ)) (9)

=
P (H1, λ)P (H2, λ)

P (K3, λ)
.

Certificate 1

In the remainder of this section, some properties of graphs with chromatic factorisa-
tions that satisfy Certificate 1 will be examined.
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Theorem 6 If G is a non-clique-separable graph that has a chromatic factorisation that
satisfies Certificate 1 and the chromatic factor H1 contains no triangles, then G contains
no triangles.

Proof Now H1 contains no triangles by assumption. But H1
∼= H3/uv, uv ∈ E(H3),

uv 6∈ E(G), so H3/uv contains no triangles. Thus any triangle in H3 must contain the
edge uv, and H3 \ uv contains no triangles.

Recall G + uv is the graph obtained by a 2-gluing of H1 and H3 on edge uv. Now H1

and H3 \ uv contain no triangles. It follows that G contains no triangles. �

An immediate consequence of Theorem 6 is

Theorem 7 If the chromatic factor H1 in Certificate 1 contains no triangles, then the
chromatic factor H2 in Certificate 1 contains exactly one triangle.

Proof By Corollary 5, as both G and H1 are triangle-free, t2 = 1. �

In summary, some necessary properties for graphs, G, H1, H2, H3, satisfying Certificate
1 are:

• G contains no triangles,

• H1 contains no triangles,

• H2 contains exactly one triangle,

• min{χ(H1), χ(H2)} ≥ 3,

• H1
∼= H3/uv,

• H2 + wx is isomorphic to a 2-gluing of K3 and H3.

4 A Factorisable Family

In this section we show that there exists an infinite family of strongly non-clique-separable
graphs that have chromatic factorisations that satisfy Certificate 1. These have H1 =
C2n+1, n ≥ 2, which may be considered the simplest graphs containing no triangles and
with chromatic number at least three. We then show that graphs belonging to this infinite
family are the only graphs that have a chromatic factorisation that satisfies Certificate 1
where C2n+1, n ≥ 2, is a chromatic factor.

Theorem 8 There exists an infinite family of graphs G such that every G ∈ G satisfies
Certificate 1 with H1 = C2n+1, n ≥ 2.

Proof Let n ≥ 2 and let G ∈ G be the graph (a K4-subdivision) with V = {0, 1, . . . , 4n}
and E = {(i, i + 1) : 0 ≤ i ≤ 4n − 1 ∪ {(0, 4n), (0, 2n + 1), (2n, 4n)} (see Figure 2). Let
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0

1

2 2n − 2

2n − 1

2n

2n + 1

2n + 2

4n

4n − 1

Figure 2: Graph G isomorphic to C4n+1 + (0, 2n + 1) + (2n, 4n), n ≥ 2.

2

0

2n − 1

2n

2n + 2

2n + 1

1

Figure 3: Graph H2.

0 2n

2n + 1

2n + 24n − 1

4n

Figure 4: Graph H3
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H1 = C2n+1, H2 be the graph in Figure 3 and H3 = C2n+2 + (0, 2n + 1) + (2n, 4n) as
displayed in Figure 4. By addition-identification,

P (G, λ) = P (G + (0, 2n), λ) + P (G/(0, 2n), λ). (10)

Now G+(0, 2n) is isomorphic to a 2-gluing of H1 = C2n+1 and H3 = C2n+2+(2n, 4n)+
(0, 2n + 1), and G/(0, 2n) is isomorphic to a 1-gluing of C2n and C2n+1, so (10) becomes

P (G, λ) =
P (C2n+1, λ)P (H3, λ)

P (K2, λ)
+

P (C2n, λ)P (C2n+1, λ)

P (K1, λ)

= P (C2n+1, λ)

(

P (H3, λ)

P (K2, λ)
+

P (C2n, λ)

P (K1, λ)

)

=
P (C2n+1, λ)

P (K3, λ)

(

P (H3, λ)P (K3, λ)

P (K2, λ)
+

P (C2n, λ)P (K3, λ)

P (K1, λ)

)

=
P (C2n+1, λ)

P (K3, λ)

(

P (H3, λ)P (K3, λ)

P (K2, λ)
+

P (C2n, λ)P (K3, λ)P (K2, λ)

P (K2, λ)P (K1, λ)

)

. (11)

Now H2 + (0, 2n) is isomorphic to the 2-gluing of H3 = C2n+2 + (2n, 4n) + (0, 2n + 1) and
K3 on the edge (2n, 4n). Furthermore H2/(0, 2n) is isomorphic to the graph obtained by
a (2, 1)-gluing of C2n, K3 and K2. So (11) becomes

P (G, λ) =
P (C2n+1, λ)

P (K3, λ)
(P (H2 + (0, 2n), λ) + P (H2/(0, 2n), λ))

=
P (C2n+1, λ)P (H2, λ)

P (K3, λ)
. (12)

Thus, Certificate 1 is a certificate of factorisation for G ∈ G with H1 = C2n+1, n ≥ 2,
and H2 being the graph in Figure 3. �

Lemma 9 All graphs in the family G are strongly non-clique-separable graphs.

Proof It is clear that any G ∈ G is a non-clique-separable graph (see Figure 2). In fact each
G is isomorphic to K4(1, 1, 1, 1, 2n− 1, 2n), the graph obtained by replacing two disjoint
edges in K4 by paths of length 2n−1 and 2n respectively. As the graph K4(s, s, s, s, t, u),
for t, u > s, is chromatically unique [4], each G ∈ G is chromatically unique. Thus all
graphs in this family are strongly non-clique-separable. �

A specialisation of Certificate 1 for G ∈ G is given in Certificate 2. In this certificate
H1

∼= C2n+1, n ≥ 2, and H2 is the graph in Figure 3. We now show that any Certificate
1 factorisation with H1 6∼= K3 an odd cycle must have this form.
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P (G, λ) = P (G + (0, 2n), λ) + P (G/(0, 2n), λ)

=
P (C2n+1, λ)P (H3, λ)

P (K2, λ)
+

P (C2n, λ)P (C2n+1, λ)

P (K1, λ)

= P (C2n+1, λ)

(

P (H3, λ)

P (K2, λ)
+

P (C2n, λ)

P (K1, λ)

)

=
P (C2n+1, λ)

P (K3, λ)

(

P (H3, λ)P (K3, λ)

P (K2, λ)
+

P (C2n, λ)P (K3, λ)

P (K1, λ)

)

=
P (C2n+1, λ)

P (K3, λ)

(

P (H3, λ)P (K3, λ)

P (K2, λ)
+

P (C2n, λ)P (K3, λ)P (K2, λ)

P (K2, λ)P (K1, λ)

)

=
P (C2n+1, λ)

P (K3, λ)
(P (H2 + (0, 2n), λ) + P (H2/(0, 2n, λ)))

=
P (C2n+1, λ)P (H2, λ)

P (K3, λ)

Certificate 2.

A specialisation of Certificate 1 for G ∈ G where G is the graph in Figure 2, H2 is the
graph in Figure 3 and H3 is the graph in Figure 5.

Theorem 10 If G is a strongly non-clique-separable graph and P (G, λ) has a chromatic
factorisation that satisfy Certificate 1 with P (H1, λ) = P (C2n+1, λ), then H2 is isomorphic
to the graph in Figure 3 and P (G, λ) has the chromatic factorisation given in Certificate 2.

Proof Let H1 = C2n+1. Suppose there exists a non-clique-separable graph G and graph
H2 such that

P (G, λ) =
P (C2n+1, λ)P (H2, λ)

P (K3, λ)
(13)

and P (G, λ) has a chromatic factorisation in the form stated in Certificate 1 for some
uv 6∈ E(G), wx 6∈ E(H2) and graph H3. Then by Theorem 6 the graph G contains no
triangles, and by Theorem 7 the graph H2 contains exactly one triangle.

Now G + uv is a 2-gluing of graphs C2n+1 and H3 on the edge uv. Furthermore G
and C2n+1 contain no triangles, so the only triangles in G + uv must be in H3. From
(6), H3/uv ∼= C2n+1, which is triangle-free. Thus, all triangles in H3 must contain the
edge uv. Hence, there are three possibilities for H3. It is the cycle graph C2n+2 with one
the following sets of additional edges where a and b are the vertices adjacent to u and v,
respectively, in C2n+2:

• {av},

• ∅, that is, no additional edges,

• {av, bu}.

These graphs are displayed in Figure 5. Note that C2n+2 + av ∼= C2n+2 + bu.
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Figure 5: Three candidate graphs for H3: (a) C2n+2+av, (b) C2n+2 and (c) C2n+2+av+bu.
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C2n+2 \ uv

H3 \ uv
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ba

v
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u

ba

v

(b)

u

ba

v

(
)
Figure 6: G where H3 is: (a) C2n+2 + av, (b) C2n+2 and (c) C2n+2 + av + bu.

Case 1 Suppose H3
∼= C2n+2 +av. Then G+uv is isomorphic to a 2-gluing of C2n+1

and C2n+2 + av. But this means that G (see Figure 6(a)) is isomorphic to a 2-gluing of
C2n+2 and C2n+1, which makes G clique-separable, a contradiction.

Case 2 Suppose H3
∼= C2n+2. Now in order to satisfy (9) in Certificate 1, there

must exist a 2-gluing of C2n+2 and K3 that is isomorphic to H2 + e for some e 6∈ E(H2).
Let H ′ be the 2-gluing of C2n+2 and K3 on some edge cd ∈ E(C2n+2). Then there exists
e ∈ E(H ′) such that H ′ \ e ∼= H2. As both H2 and H ′ each have exactly one triangle, e
must be some edge on C2n+2 excluding cd. But then H ′/e is isomorphic to the 2-gluing
of C2n+1 and K3, which is not chromatically equivalent to any 1-gluing of K3 and C2n as
required by Certificate 1, a contradiction.

Case 3 Finally suppose H3
∼= C2n+2 + av + bu. Now in order to satisfy (9) in

Certificate 1, there must exist a 2-gluing of C2n+2 + av + bu and K3 that is isomorphic to
H2 + e for some e 6∈ E(H2).

Firstly, suppose H ′ is the graph obtained by a 2-gluing of H3 and K3 on the edge uv.
Then H ′ contains three triangles each sharing the common edge uv. In order to satisfy
(9) there exists e ∈ E(H ′) such that H ′ \ e ∼= H2. But H2 contains exactly one triangle.
Now if e is an edge not in any of the triangles in H ′ then H ′ \ e contains 3 triangles,
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a contradiction. In addition, if e is an edge in any of the triangles in H ′, then either
e = uv and H ′ \ e contains no triangles, or e 6= uv and H ′ \ e contains 2 triangles, also
a contradiction. Thus H ′ \ e 6∼= H2 for all e ∈ E(H ′). Thus H ′ cannot be obtained by a
2-gluing of C2n+2 + av + bu and K3 on edge uv.

Suppose H ′ is obtained by a 2-gluing of C2n+2 + av + bu and K3 on an edge e ∈
E(H3) \ {uv, bv, av, au, bu}. Then H ′ contains 3 triangles, two of which share a common
edge uv, with the third being edge-disjoint from the others. Thus, the only edge whose
removal from H ′ will reduce the number of triangles to one is uv. However, H ′/uv is
isomorphic to a 2-gluing of C2n+1 and K3, which is not chromatically equivalent to a
1-gluing of K3 and C2n as required by Certificate 1. Thus, H ′ cannot be obtained by a
2-gluing of C2n+2 + av + bu and K3 on any edge e ∈ E(H3) \ {uv, bv, av, au, bu}.

Suppose H ′ is obtained by a 2-gluing of C2n+2 + av + bu and K3 on an edge e ∈
{bv, av, au, bu}, say bv without loss of generality. Then H ′ contains 3 triangles. The only
edge whose removal reduces the number of triangles in H ′ to one is either uv or bv. Now
H ′/uv is isomorphic to a 2-gluing of C2n+1 and K3 which is not chromatically equivalent
to a 1-gluing of K3 and C2n as required by Certificate 1 and thus is not suitable. However,
H ′/bv is isomorphic to a (2, 1)-gluing of graphs C2n, K3 and K2, which is chromatically
equivalent to a 1-gluing of K3 and C2n as required by Certificate 1.

Thus C2n+2 + av + bu is the only H3 and H ′ \ uv is the only H2 satisfying Certificate
1 (up to isomorphism).

Now G + uv is isomorphic to a 2-gluing of C2n+1 and C2n+2 + av + bu on the edge uv.
Thus G is isomorphic to the graph with V = {0, 1, . . . , 4n} and E = {(i, i + 1) : 0 ≤ i ≤
4n − 1} ∪ {(0, 2n + 1), (2n, 4n)} (see Figure 2).

Thus the chromatic factorisation given in Certificate 2 is the only chromatic factori-
sation satisfying Certificate 1 where H1 = C2n+1, n ≥ 2. �

5 Conclusion

In [5] we introduced the idea of certificates of factorisation in order to explain the chro-
matic factorisations of strongly non-clique-separable graphs. We noted that graphs that
have chromatic factorisations that satisfy some certificate, also have common structural
properties. In this article we gave an example of a family of such graphs.

We constructed an infinite family of strongly non-clique-separable graphs that have
chromatic factorisations. Graphs in this family, K4(1, 1, 1, 1, 2n− 1, 2n) where n ≥ 2, are
not only almost clique-separable, but are also triangle-free. A certificate of factorisation
was given for graphs belonging to this family. Some properties of the number of triangles
in graphs that have chromatic factorisations and in their chromatic factors were proved.
These properties were used to show that members of this infinite family of graphs are
the only graphs that have chromatic factorisations that satisfy Certificate 1 when an odd
cycle (excluding K3) is a chromatic factor.

Not all strongly non-clique-separable graphs that have chromatic factorisations belong
to the infinite family we have constructed. It would be interesting to determine other
properties of strongly non-clique-separable graphs having chromatic factorisations.
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An interesting problem is to determine the length of a minimal certificate of fac-
torisation for a given graph. It is clear that any clique-separable graph has a mini-
mal certificate of factorisation of length 1, and any quasi-clique-separable graph that is
not clique-separable has a minimal certificate of factorisation of length 2. In this pa-
per we gave a certificate of factorisation of length 8 for graphs belonging to the family
K4(1, 1, 1, 1, 2n − 1, 2n). However, it is not known if this is the shortest certificate of
factorisation for graphs belonging to this family.

Another related question concerns the length of the shortest certificate of factorisation
for strongly non-clique-separable graphs. In [5] we gave several certificates for a number of
classes of strongly non-clique-separable graphs. The shortest certificate given had seven
steps. It is an open question whether shorter certificates of factorisation for strongly
non-clique-separable graphs exist.
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