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Abstract

Extending the work of K. L. Collins and A.N. Trenk, we characterize connected
bipartite graphs with large distinguishing chromatic number. In particular, if G is
a connected bipartite graph with maximum degree ∆ ≥ 3, then χD(G) ≤ 2∆ − 2
whenever G 6∼= K∆−1,∆, K∆,∆.

1 Introduction

A colouring of a graph G is an assignment of labels (colours) to the vertices of G; the
colouring is proper if and only if adjacent vertices receive different labels, and the colouring
is distinguishing provided that no automorphism of G, other than the identity, preserves
the labels. The distinguishing chromatic number of G, written χD(G), is the minimum
number of labels required to produce a colouring that is both proper and distinguishing.
The distinguishing chromatic number is introduced by K.L. Collins and A.N. Trenk [3],
as a natural extension of the distinguishing number of a graph, defined by M.O. Albertson
and K.L. Collins [1].

In [3], Collins and Trenk compute the distinguishing chromatic number for various
classes of graphs. In particular, they characterize the connected graphs with maximum
possible distinguishing chromatic number, showing that χD(G) = |V (G)| if and only if G
is a complete multipartite graph [3, Theorem 2.3]. Further, they show that for a connected
graph G with maximum degree ∆, χD(G) ≤ 2∆ with equality if and only if G ∼= K∆,∆

or G ∼= C6, a cycle of length six [3, Theorem 4.5]. For connected graphs with ∆ ≤ 2,
they also completely determine the distinguishing chromatic number. Note that if G is
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connected and has ∆ ≤ 2, then G is either a path or a cycle. Let Pk denote a path with
k vertices, and Ck a cycle with k vertices. Then

χD(Pk) =

{

2 for k ≥ 2 and even,
3 for k ≥ 3 and odd,

and

χD(Ck) =

{

3 for k = 3, 5, k ≥ 7,
4 for k = 4, 6.

Since, for ∆ ≥ 3, χD(G) = 2∆ if and only if G ∼= K∆,∆, it is natural to consider the
distinguishing chromatic number for the class of connected bipartite graphs. In this paper,
we further characterize connected bipartite graphs with large distinguishing chromatic
number, proving that, for ∆ ≥ 3, χD(G) ≤ 2∆ − 2 whenever G 6∼= K∆−1,∆, K∆,∆. This
solves Conjecture 5.1 of [3]. We also compute the distinguishing chromatic number of the
complete bipartite graph minus a perfect matching; this provides an interesting example
of a graph that is “close” to K∆,∆, but whose distinguishing chromatic number is generally
much less than 2∆.

Unless otherwise specified, we us the notation and terminology of [2]. If G is a graph,
and v is a vertex of G, we denote by d(v) the degree of v in G. For any connected graph
G, and any vertex u ∈ V (G), one can easily construct a breadth-first search spanning
tree rooted at u. In order to facilitate the proofs in Sections 3 and 4, we visualize such a
spanning tree as a plane graph in which the children of a vertex in the tree are added in
order from left to right (so the leftmost child is the first child added to the tree, and the
rightmost child is the last child added to the tree).

The remainder of this paper is structured as follows. In Section 2 we provide an exact
value for the distinguishing chromatic number of the complete bipartite graph minus a
perfect matching. Section 3 contains a modification of the basic algorithm developed by
Collins and Trenk [3] for giving G a distinguishing colouring with 2∆ − 1 colours. This
is necessary preparation for the proof of the main result, presented in Section 4, where
a colouring with 2∆ − 1 colours is modified to produce a colouring with 2∆ − 2 colours.
Finally, Section 5 contains some discussion and open problems.

2 The distinguishing chromatic number of Kn,n − M

We denote by Kn,n − M the graph obtained from the complete bipartite graph Kn,n by
deleting the edges of a perfect matching. This graph arises in the proof of our main
result, but is also of interest on its own. Other than K∆,∆, C6 is the only graph with
χD(G) = 2∆ [3, Theorem 2.3]. But K3,3 − M ∼= C6, providing an alternate context for
C6; i.e., from Theorem 1, χD(C6) = χD(K3,3−M) = ⌈2

√
3 ⌉ = 4, which happens to equal

2∆. Also, Kn,n − M is a regular bipartite graph with a high degree of symmetry, much
like Kn,n, yet χD(Kn,n − M) is generally much less than 2∆.

Definition 1. Let G be a connected graph and c a colouring of G. An automorphism σ
of G is called colour preserving if, for every u ∈ V (G), c(σ(u)) = c(u). A vertex u in
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Figure 1: A distinguishing colouring of K9,9 − M .

V (G) is pinned (under the colouring c) if, for any colour preserving automorphism σ of
G, σ(u) = u.

Theorem 1. Let n ≥ 3, and let G ∼= Kn,n − M , where M is a perfect matching in Kn,n.

Then χD(G) = ⌈2√n ⌉ =
⌈

2
√

∆ + 1
⌉

.

Proof. Let G have bipartition (X, Y ) where X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn},
and E(G) = {xiyj | 1 ≤ i 6= j ≤ n}. Vertices xi and yi are said to be corresponding. We
first describe a distinguishing colouring of G with ⌈2√n ⌉ colours.

The case when n is a perfect square provides a general idea of how the colouring is
defined, but is much simpler to describe than the general case, so we begin with this case.
If n is a perfect square, then the vertices of both X and Y consist of

√
n subsets of

√
n

vertices (the vertices of subset 1 having subscripts 1 through
√

n, those of subset 2 having
subscripts

√
n + 1 through 2

√
n, etc.). In X, colour the vertices of the first subset with

colour 1, the vertices of the second subset with colour 2, and so on, colouring the vertices
of the last subset with colour

√
n. In Y , colour the vertices of each subset, in order from

smallest to largest, with colours
√

n + 1,
√

n + 2, . . . , 2
√

n. The case n = 32 is illustrated
in Figure 1, where the dashed lines indicate the (missing) edges of the perfect matching.

More generally, let k be the positive integer so that k2 < n ≤ (k+1)2; i.e., k =
√

n−1
if n is a perfect square, and k = ⌊√n⌋ otherwise.

If k2 < n ≤ k(k + 1), write n = k2 + r where 1 ≤ r ≤ k. Partition X into sets as
follows: for 1 ≤ i ≤ k, define

Xi = {x(i−1)k+1, x(i−1)k+2, . . . , xik},

and
Xk+1 = {xk2+1, xk2+2, . . . , xk2+r},

and assign colours to the vertices of X so that c(x) = i if and only if x ∈ Xi, 1 ≤ i ≤ k+1.
Partition Y into sets as follows: for 1 ≤ j ≤ k, define

Yj = {yi | i ≡ j (mod k)},

and assign colours to the vertices of Y so that c(y) = k + j + 1 if and only if y ∈ Yj,
1 ≤ j ≤ k. This results in a colouring of G with 2k + 1 colours. Since k2 < n ≤ k(k + 1),
k <

√
n ≤ k + 1

2
, and thus 2k < 2

√
n ≤ 2k + 1. From this we conclude that the number

of colours used is exactly ⌈2√n ⌉ = 2k + 1.
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If k(k + 1) < n ≤ (k + 1)2, write n = k(k + 1) + r where 1 ≤ r ≤ k + 1. Partition X
into sets as follows: for 1 ≤ i ≤ r, define

Xi = {x(i−1)(k+1)+1, x(i−1)(k+1)+2, . . . , xi(k+1)},

and for r + 1 ≤ i ≤ k + 1, define

Xi = {x(i−1)k+r+1, x(i−1)k+r+2, . . . , xik+r}.

Then assign colours to the vertices of X so that c(x) = i if and only if x ∈ Xi, 1 ≤ i ≤ k+1.
Partition Y into sets as follows: for 1 ≤ j ≤ k + 1, define

Yj = {yi | i ≡ j (mod (k + 1))},

and assign colours to the vertices of Y so that c(y) = k + j + 1 if and only if y ∈ Yj,
1 ≤ j ≤ k + 1. This results in a colouring of G with 2k + 2 colours. Since k2 + k < n ≤
(k + 1)2 and n, k are integers, k2 + k + 1 ≤ n ≤ (k + 1)2; also, (k + 1

2
)2 < k2 + k + 1, and

so k + 1
2

<
√

n ≤ k + 1. It follows that 2k + 1 < 2
√

n ≤ 2k + 2. From this we conclude
that the number of colours used is exactly ⌈2√n ⌉ = 2k + 2.

This colouring is certainly proper: no colour occurs in both X and Y . To see that
this colouring is distinguishing, observe that xi ∈ X is adjacent to every vertex of Y
except its corresponding vertex, yi (1 ≤ i ≤ n). The colouring has been defined so
that if c(xi) = c(xj) for some 1 ≤ i 6= j ≤ n, then c(yi) 6= c(yj); therefore, G has no
colour preserving automorphism that maps xi to xj . Similarly, if c(yi) = c(yj) for some
1 ≤ i 6= j ≤ n, then c(xi) 6= c(xj), so again there is no colour preserving automorphism
of G that maps yi to yj. Thus this colouring pins all vertices of G.

We must now prove that any colouring of G with fewer than ⌈2√n ⌉ colours results
in G having a colour preserving automorphism. We say that a colouring c of G contains
a bad configuration if, for some i 6= j, c(xi) = c(xj) and c(yi) = c(yj).

Suppose that G has a proper colouring that contains a bad configuration. Define the
automorphism σ so that

σ(xi) = xj , σ(xj) = xi, σ(yi) = yj, σ(yj) = yi,

and σ(u) = u otherwise. Then σ is a colour preserving automorphism of G.
To prove that χD(G) = ⌈2√n ⌉, it suffices to prove that any proper colouring of G

with fewer than ⌈2√n ⌉ colours contains a bad configuration. In order to do so, we require
the following.

Claim. G has a distinguishing colouring with χD(G) colours so that no colour
appears in both X and Y .

Proof. Let c be a distinguishing colouring of G with χD(G) colours. Suppose,
without loss of generality, that colour 1 appears in both X and Y . We may
assume that c(x1) = 1; since x1 is adjacent to every vertex of Y except y1, it must

the electronic journal of combinatorics 16 (2009), #R76 4



be that c(y1) = 1, and no other vertices in X or Y can be assigned colour 1. A
colouring of G in which c(xi) = c(yi) for each i is certainly not distinguishing,
and thus for some i, 2 ≤ i ≤ n, c(xi) 6= c(yi). Without loss of generality, assume
that c(x2) = 2 and c(y2) = 3; then no vertex in Y has colour 2. We recolour
x1 by setting c(x1) = 2 (the same colour as x2). The resulting colouring is still
proper. If the colouring is not distinguishing, then there is a colour preserving
automorphism, σ, with σ(x1) = u for some u ∈ X, u 6= x1 (u 6∈ Y because no
vertex in Y has colour 2). But this is impossible because u must be adjacent to
y1, which has colour 1, but x1 has no neighbour of colour 1.

Suppose that c is a proper distinguishing colouring of G with fewer than ⌈2√n ⌉
colours. By the preceding Claim, we may assume that no colour appears in both X and
Y ; let p denote the number of colours used to colour X, and let q denote the number of
colours used to colour Y . By the Pigeonhole Principle, some colour in Y occurs on at
least ⌈n/q⌉ vertices; since G contains no bad configurations, the corresponding vertices
must have distinct colours, and thus the number of colours used in X must be at least

⌈n/q⌉; i.e., p ≥ ⌈n/q⌉. Therefore pq ≥ n. Since p + q ≤ ⌈2√n ⌉ − 1 and pq ≤
(

p+q

2

)2
, it

is routine to verify that pq < n, a contradiction.

3 General machinery: proper distinguishing colour-

ing with 2∆ − 1 colours

Let G be a connected bipartite graph with ∆ ≥ 3, and assume G 6∼= K∆,∆. In this section,
we describe the general method for producing a proper distinguishing colouring of G with
at most 2∆− 1 colours. This is a modification of the algorithm of Collins and Trenk [3],
and is the basis for our later result.

Suppose G has bipartition (X, Y ). Choose r ∈ V (G) to be a vertex of minimum degree
in G; without loss of generality, we may assume r ∈ Y . Construct T , a breadth-first search
spanning tree rooted at r; a vertex at distance i from r is in level i of T , and a level is
even (odd) if the level number is even (odd). Observe that any vertex of X is therefore
in an odd level, and any vertex of Y is in an even level.

We construct a proper colouring c : V (G) → {1, 2, . . . , 2∆ − 1} using a modification
of the algorithm of [3]. Begin by setting c(r) = 2∆ − 1, and then discard colour 2∆ − 1;
this clearly pins vertex r. The vertices of X will be coloured with colours from the
set {1, 2, · · ·∆ − 1}, and the vertices of Y \{r} will be coloured with colours from the
set {∆, ∆ + 1, . . . , 2∆ − 2}. If h denotes the height of the tree, then for each level i,
i = h, h−1, . . . , 2, 1, colour vertices in level i from left to right in the order they are added
to T so that each vertex is assigned the smallest available colour (from its corresponding
set) that does not appear among its siblings.

If d(r) ≤ ∆ − 1, this results in a proper distinguishing colouring of G: it is proper
because any edge of G joins vertices in adjacent levels of T , and the colours on adjacent
levels of T form disjoint sets; it is distinguishing because for each u ∈ V (G), the children
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of u in T have distinct colours, so once r is pinned, the remaining vertices of T , and hence
of G, are pinned.

If d(r) = ∆, it is not possible to complete the colouring of G as prescribed, since there
are ∆ vertices in level 1 that should receive distinct colours, but there are only ∆ − 1
available colours. However, since d(r) = ∆, the choice of r in this case implies that G is
∆-regular. Also, since G 6∼= K∆,∆, there must exist x, y ∈ N(r) so that N(x) 6= N(y). Let
N(r) = {a1, a2, . . . , a∆−2, x, y}, and assume without loss of generality that the vertices
in N(r) are added to T in the order a1, a2, . . . , a∆−2, x, y (so that x and y are the last
two children of r). Now recolour the vertices of G in level 1 so that c(ai) = i and
c(x) = c(y) = ∆ − 1. The result is a proper colouring of G. If this colouring is also
distinguishing, there is nothing to do. Otherwise, define G′ to be the subgraph of G
induced by r and a1, a2, . . . , a∆−2, along with the descendants of a1, a2, . . . , a∆−2 in T .
Suppose that σ is a nontrivial colour preserving automorphism of G. Then the vertices
of G′ are pinned, and σ must exchange x and y; i.e., σ(x) = y and σ(y) = x.

Define Sx to be the set of children of x in T that are not adjacent to y, and similarly
define Sy to be the set of children of y in T . Because T is a breadth-first search spanning
tree, no vertex of Sy is adjacent to x. Since σ exchanges x and y, σ must also exchange
Sx and Sy. We claim that Sy 6= ∅. To justify this, recall that N(x) 6= N(y) but d(x) =
d(y) = ∆. Thus, there exists some vertex z ∈ N(y)\N(x). If z ∈ V (G′), then z is pinned;
but zy ∈ E(G) and zx 6∈ E(G) implies that σ can not exchange x and y, a contradiction.
Therefore z ∈ Sy, so Sy 6= ∅. (In fact, this proves N(y) \ N(x) ⊆ Sy.)

Suppose that |Sy| < ∆ − 1; then no child of y receives colour 2∆ − 2 (the algorithm
dictates that the children of y be coloured with colours ∆, ∆ +1, . . . , ∆− 1 + |Sy|). Since
σ exchanges Sx with Sy, no vertex in Sx is coloured 2∆ − 2. Now recolour the rightmost
child of y with 2∆ − 2. This results in a proper colouring, and because colour 2∆ − 2
appears in Sy but not Sx, σ is no longer a colour preserving automorphism of G. This
implies that x and y are pinned, and since the children of x and y in T each have distinct
colours, the colouring is distinguishing as desired.

Finally, if |Sy| = ∆ − 1, then |Sx| = ∆ − 1 as well, and the children of each of x and
y are coloured ∆, ∆ + 1, . . . , 2∆ − 2 in order from left to right. Choose x′ and y′ as the
two rightmost children of y in T , and recolour y′ so that c(x′) = c(y′) = 2∆ − 3. This is
still a proper colouring, and because 2∆ − 2 appears as a colour in Sx but is no longer a
colour in Sy, σ is no longer a colour preserving automorphism of G. Therefore x and y are
pinned under c, and since the children of x are coloured distinctly, all descendants of x are
pinned under any colour preserving automorphism. Similarly, the children of y coloured
∆, ∆+1, . . . , 2∆−4, along with their descendants, are pinned. If x′ and y′ are also pinned,
then the colouring is distinguishing. Otherwise, there is a colour preserving automorphism
σ′ that exchanges x′ and y′. When constructing T , if it is not possible to choose the
children of y so that N(x′) 6= N(y′), then for any two vertices u, v ∈ Sy, N(u) = N(v)
(see Figure 2‡). This implies that the subgraph of G induced by Sy ∪ {N(y′)\{y}} is
isomorphic to Kn−1,n−1. We now construct a different breadth-first search spanning tree

‡In all figures, solid lines denote edges of the spanning tree; dotted lines are edges of G that may or
may not be in the spanning tree.
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Figure 2: N(u) = N(v) for all u, v ∈ Sy.

rooted at x′, and proceed as before, with the two rightmost children of x′, say u and v,
chosen so that N(u) 6= N(v). Notice that in this case, y′ ∈ N(u) ∩ N(v), implying that
|Sv| < ∆ − 1. Therefore we obtain the desired proper distinguishing colouring of G as
described.

We may now assume that N(x′) 6= N(y′), and proceed by induction on the number of
levels of T , with x replaced by x′, and y replaced by y′. Because T has finite height, this
process eventually ends and results in a proper distinguishing colouring of G.

It is important to note that after any recolouring, the vertices of X are still coloured
with colours from the set {1, 2, . . . , ∆− 1}, while the vertices of Y \{r} are coloured with
colours from the set {∆, ∆ + 1, . . . , 2∆ − 2}. The vertex r is the only vertex of G to
receive colour 2∆− 1. In the next section, we describe ways to eliminate colour 2∆− 1 ,
the precise details of which depend on the structure of G.

4 Proper distinguishing colouring with 2∆−2 colours

Theorem 2. If G is a connected bipartite graph with maximum degree ∆ ≥ 3, and
G 6∼= K∆−1,∆, K∆,∆, then χD(G) ≤ 2∆ − 2.

Before proceeding with the proof, we observe that χD(K∆−1,∆) = 2∆− 1 [3, Theorem
2.3], and so it follows from Theorem 2 that:

Corollary 3. If G is a connected bipartite graph with maximum degree ∆ ≥ 3, then
χD(G) = 2∆ − 1 if and only if G ∼= K∆−1,∆.

The proof of Theorem 2 uses, as an initial colouring, the proper distinguishing colour-
ing with 2∆ − 1 colours that is described in Section 3. This colouring is subsequently
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modified to eliminate colour 2∆− 1; the modification requires several cases, based on the
structure of the graph.

Proof. Let G be a connected bipartite graph with maximum degree ∆ ≥ 3, and assume
G 6∼= K∆,∆, G 6∼= K∆−1,∆. We assume throughout that G has bipartition (X, Y ), and choose
r ∈ V (G) to be a vertex of minimum degree in G; without loss of generality, we assume
r ∈ Y . Following the method described in Section 3, construct a breadth-first search
spanning tree T rooted at r, and give G the corresponding proper distinguishing colouring
with 2∆−1 colours as specified. The proof proceeds with three main cases, depending on
δ, the minimum degree of G; in each case, the initial colouring is appropriately modified.

Case 1. δ ≤ ∆ − 2.
Since d(r) = δ ≤ ∆ − 2, colour ∆ − 1 does not occur on any vertex of N(r), so

modify the colouring by setting c(r) = ∆ − 1. This results in a proper colouring with
2∆− 2 colours. To see that this colouring is distinguishing, note that r is the only vertex
with colour ∆ − 1 that is adjacent to a vertex of colour 1 (the first child of r in T );
any other vertex coloured ∆ − 1 is in X, and all its neighbours are in Y (coloured from
{∆, ∆+1, . . . , 2∆− 2}). Therefore r is pinned, and it follows that the remaining vertices
of G are pinned.

Case 2. δ = ∆ − 1.
In this case, every vertex of G has degree ∆ or ∆ − 1. Note that δ = ∆ − 1 implies

that G contains at least one other vertex p 6= r with d(p) = ∆ − 1. To see this, assume
r ∈ Y is the unique vertex in G with degree ∆− 1. Since every edge of G is incident with
one vertex of X and one vertex of Y , we have |E(G)| =

∑

u∈X d(u) ≡ 0 (mod ∆), and
|E(G)| =

∑

v∈Y d(v) ≡ −1 (mod ∆), a contradiction.
Choose p 6= r to be a vertex with degree ∆−1 whose distance from r in G is minimum.

Case 2a. d(r, p) = 1.
We may assume that p is the first vertex of N(r) to be added to T , so c(p) = 1.

The ∆ − 2 vertices of N(p)\{r} are children of p in T , and so are coloured using colours
{∆, ∆ + 1, . . . , 2∆ − 3}; i.e., no vertex in N(p) has colour 2∆ − 2. We now recolour p
and r: set c(p) = 2∆ − 2 and c(r) = 1. This colouring is still proper. Furthermore, the
colouring is distinguishing because r is pinned (r is the only vertex in Y with colour 1),
and the children of every vertex in T are distinctly coloured. Thus, colour 2∆ − 1 has
been eliminated, completing Case 2a.

In what follows, d(r, p) ≥ 2, implying that each vertex in N(r) has degree ∆. Let
P = ra1a2 . . . akp be a shortest path between r and p in G. Construct the breadth-first
search spanning tree T so that a1 is the first child of r, aj is the leftmost descendant of
a1 on level j (2 ≤ j ≤ k), and p is the first child of ak. The colouring scheme described in
Section 3 results in a proper distinguishing colouring of G in which c(aj) = 1 if j is odd,
c(aj) = ∆ if j is even, and c(p) = 1 or c(p) = ∆ according as p’s level is odd or even.

the electronic journal of combinatorics 16 (2009), #R76 8



p
∆

u1

∆ + 1

u∆−2

2∆ − 2

a1

1

s1

2

s∆−2

∆ − 1

r
2∆− 1

p
∆ + 1

u1

∆ + 1

u∆−2

2∆ − 2

a1

∆

s1

2

s∆−2

∆ − 1

r
1

Figure 3: Case 2b, N(p) = N(r). Initial and modified colouring.

Case 2b. d(r, p) = 2.
Let N(r) = {a1, s1, s2, . . . , s∆−2} and N(a1) = {r, p, u1, u2, . . . , u∆−2}. If N(p) = N(r),

then we have the situation depicted in Figure 3.§ Since G 6∼= K∆−1,∆, there is some
i (1 ≤ i ≤ ∆ − 2) for which N(ui) 6= N(p). When constructing T , we may choose
u1 so that N(u1) 6= N(p), and c(u1) = ∆ + 1. We now recolour p, a1 and r: set
c(p) = ∆+1(= c(u1)), c(a1) = ∆ and c(r) = 1. This modified colouring is still proper. In
addition, it is distinguishing: r is pinned (r is the only vertex of colour 1 in Y ), so N(r) is
pinned (vertices in N(r) are distinctly coloured). Vertices p, u1, u2, . . . , u∆−2 are pinned
because N(p) 6= N(u1) and u1, . . . , u∆−2 are coloured distinctly. The other vertices of G
remain pinned as before.

If N(p) 6= N(r), then p has at least one child in T , and the first child of p receives
colour 1. Thus p has two neighbours coloured 1 (its first child and a1), implying that
some colour, t, in {2, . . . , ∆− 1} does not occur on any vertex of N(p). We now recolour
p, a1, and r: set c(p) = t, c(a1) = ∆, and c(r) = 1. This modified colouring is still proper.
In addition, it is distinguishing: r is pinned (r is the only vertex of colour 1 in Y ), and
the children of every vertex in T are distinctly coloured.

Case 2c. d(r, p) ≥ 3.
First assume that d(r, p) is odd, i.e., p ∈ X and c(p) = 1. For notational convenience,

let a0 = r.
If N(p) = N(ak−1)\{ak−2}, then we have the situation depicted in Figure 4. In this

case, choose a different breadth-first search spanning tree, T ′, this one with root p, and
add vertices to T ′ so that ak is the first child of p, and ak−1 is the first child of ak (see
Figure 5). Colour G using the scheme from Section 3. Then c(p) = 2∆ − 1, c(ak) = 1,
and c(ak−1) = ∆. Also, since d(ak−1) is one more than d(p), ak−1 has a unique child, q,
in level 3 of T ′, and c(q) = 1. We now modify the colouring as follows: set c(q) = 2,
c(ak−1) = 1, c(ak) = ∆ and c(p) = 1. This colouring is still proper: no neighbour of q has
colour 2. To see that this colouring is distinguishing, observe that p is the only vertex of
degree ∆− 1 in Y that has colour 1, and so p is pinned. The remaining vertices of G are
pinned because, in T ′, the children of any vertex are coloured with distinct colours.

§In all figures, dashed lines are edges of G that are not in the spanning tree; boldface labels such as
1,2,∆, etc. denote colours.
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p
1

ak ∆

ak−1 1

a1

1

r = a0 2∆ − 1

2∆ − 2

∆ − 1

Figure 4: Case 2c, N(p) = N(ak−1)\{ak−2}.

q 1

ak−1 ∆

ak

1

p 2∆ − 1

2 ∆ − 1

∆ + 1 2∆ − 2

q 2

ak−1 1

ak

∆

p 1

2 ∆ − 1

∆ + 1 2∆− 2

Figure 5: Case 2c, N(p) = N(ak−1)\{ak−2}. Initial and modified colouring.
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p
1

ak ∆

ak−1 1

a2 ∆

a1

1 ∆ − 1

a0 = r 2∆ − 1

p
t

ak 1

ak−1 ∆

a2 1

a1

∆ ∆ − 1

a0 = r 1

Figure 6: Case 2c, N(p) 6= N(ak−1)\{ak−2}. Initial and modified colouring.

We are now left with the situation in which N(p) 6= N(ak−1)\{ak−2}. If p has at least
one child in T , then ak and p’s first child are both coloured ∆. If p has no children in
T , then every vertex of N(p) is in level k of T , and since N(p) 6= N(ak−1)\{ak−2}, we
may choose to add vertices to T in an order that ensures p has at least one neighbour,
other than ak, with colour ∆. Thus p has at least two neighbours coloured ∆, so there
exists a colour t, ∆ + 1 ≤ t ≤ 2∆ − 2 that does not occur on any vertex of N(p). We
now modify the colouring as follows (see Figure 6): set c(p) = t, c(r) = 1, and c(aj) = 1
if j is even, c(aj) = ∆ if j is odd (exchanging colours 1 and ∆ along the path a1a2 . . . ak).
The colouring is still proper. To see that this colouring is distinguishing, observe that
r is the only vertex of degree ∆ − 1 in Y that has colour 1, and so r is pinned. The
remaining vertices of G are pinned because, in T , the children of any vertex are coloured
with distinct colours.

Now suppose that d(r, p) is even, i.e., p ∈ Y and c(p) = ∆. We proceed as when d(r, p)
is odd, up to the point that N(p) 6= N(ak−1)\{ak−2}. An analogous argument allows us
to conclude that p has at least two neighbours coloured 1, and hence there is some t,
2 ≤ t ≤ ∆ − 1 that does not occur on any vertex of N(p). The remainder of the proof is
identical to d(r, p) odd.

Case 3. δ = ∆.
In this case G is a ∆-regular bipartite graph, and is not a tree, so has at least one

cycle. The length of a shortest cycle in G is the girth of G, and is denoted g; because
G is bipartite, g is even. Let C be any cycle of length g, and choose r (the root of the
breadth-first search spanning tree T ) to be a vertex of C. Because T is a breadth-first
search spanning tree and r lies in a cycle of length g = 2k (for some integer k ≥ 2), there
is an edge of C that is not in T but joins a vertex on level k − 1 of T to a vertex on level
k of T . Furthermore, for 1 ≤ j ≤ k − 1, no edge in E(G)\E(T ) joins a vertex in level
j − 1 to a vertex in level j. We consider two cases, depending on g.
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p
q1 q∆−2

a1 a2

a∆

r

Figure 7: Case 3a(i).

Case 3a. g = 4.
If G ∼= K∆+1,∆+1−M , where M is a perfect matching in K∆+1,∆+1, then by Theorem 1,

χD(G) =
⌈

2
√

∆ + 1
⌉

. For ∆ ≥ 3,
⌈

2
√

∆ + 1
⌉

≤ 2∆ − 2, and hence χD(G) ≤ 2∆ − 2.
Thus, in what follows, we assume G 6∼= K∆+1,∆+1 − M .

Case 3a(i). There exist two vertices in G with same neighbourhood.
Without loss of generality, we may assume that we have r, p ∈ V (G) such that N(r) =

N(p) = {a1, a2, . . . , a∆}. This case is almost identical to the situation in Case 2b when
N(p) = N(r); the only difference is that, in this case, d(r) = d(p) = ∆, whereas in Case
2b, d(r) = d(p) = ∆ − 1. Since G 6∼= K∆,∆, there exist i and j so that N(ai) 6= N(aj);
again without loss of generality, we may assume that N(a∆−1) 6= N(a∆).

With r as usual the root of the breadth-first search spanning tree, T , we may assume
that the vertices of N(r) are added to T in the order a1, a2, . . . , a∆, from left to right, and
that p is the first child of a1 added to T (see Figure 7). Let p, q1, q2, . . . , q∆−2 denote the
children of a1 in the order that are added to T (from left to right). Since G 6∼= K∆,∆, there
exists some j so that N(qj) 6= N(p) (= N(r)); we may assume that the vertices are added
to T in an order so that N(q1) 6= N(p). In the initial colouring (with at most 2∆ − 1
colours), we have c(r) = 2∆−1; c(aj) = j for 1 ≤ j ≤ ∆−1, and c(a∆) = c(a∆−1) = ∆−1;
c(p) = ∆, and c(qj) = ∆ + j for 1 ≤ j ≤ ∆ − 2.

We now recolour by setting c(p) = c(q1) = ∆+1, c(a1) = ∆ and c(r) = 1. It is routine
to verify that the colouring is still proper. To see that it is distinguishing, note that r is
the only vertex in Y of colour 1, and this pins r. If the vertices in N(r) were not pinned,
then there would exist a nontrivial colour preserving automorphism, σ, exchanging a∆−1

and a∆; but this would have been a colour preserving automorphism before p, a1 and r
were recoloured, a contradiction. Therefore, the vertices in N(r) are pinned. It follows
that p is pinned, since N(p) = N(r) which is pinned, and the only other vertices that could
have neighbourhood N(p) are r, q2, . . . , q∆−2, none of which have colour c(p) = ∆ + 1.
It now follows that the remaining vertices of G are pinned, and so we have successfully
eliminated colour 2∆ − 1.

Case 3a(ii). Any two distinct vertices have distinct neighbourhoods.
Recall that r, the root of the breadth-first search spanning tree T , is a vertex on a

cycle C of length four. Denote the vertices of N(r) by a1, a2, . . . , a∆, from left to right, in
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Figure 8: Case 3a(ii).

m 1

q1 3
q2

4 3

a1 1 a2 2 a3 2

r 5

m 2

q1 1
q2

4 3

a1 3 a2 4a3 1

r 2

Figure 9: Case 3a(ii). Initial and final colouring when ∆ = 3.

the order that they are added to T , and denote the children of a1 in T by q1, q2, . . . , q∆−1,
from left to right, in the order that they are added to T . Without loss of generality, we
may assume that the neighbours of r and a1 are added so that C = ra1q1a2r is a cycle
of length four in G. This situation is depicted in Figure 8. Since N(a2) 6= N(a1), we
may assume that q∆−1 6∈ N(a2), and that a2 has at least one child in T . Also, since
N(q1) 6= N(r), q1 has at least one child in T ; let m denote the first child of q1 in T .

Two key observations are: (1) q1 has (at least) two neighbours in level 1 of T , and
thus has no child coloured ∆ − 1; (2) a2 is adjacent to q1 in G, implying it has at most
∆− 2 children in T , so a2 has no child coloured 2∆− 2; since a2 is not adjacent to q∆−1,
it follow that a2 has no neighbour in G with colour 2∆ − 2.

For ∆ > 3, recolour by setting c(r) = 2 and c(a2) = 2∆−2. This is a proper colouring
since ∆ > 3 (so r is not connected to any vertex of colour 2), and distinguishing since r
is pinned (as the only vertex in Y of colour 2).

If ∆ = 3, then recolour by setting c(m) = ∆ − 1 (=2), c(q1) = 1, c(a1) = ∆(= 3),
c(a2) = 2∆ − 2, c(r) = 2, and c(a3) = 1 (see Figure 9). Since N(q1) 6= N(r), q1 6∈ N(a3)
and the resulting colouring is proper. To see that this colouring is distinguishing, note
that r is the only vertex in Y that has colour 2, q1 is the only vertex in Y that has colour
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∆
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1
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∆

a1 ∆ b1 2
∆ − 1

r 1

Figure 10: g = 2k, k odd. Initial and modified colouring.

1, a1 is the only vertex in X that has colour ∆, a2 is the only vertex in X that has colour
2∆ − 2. Thus, vertices r, q1, a1 and a2 are all pinned, unless there is a colour preserving
automorphism, σ that exchanges X and Y ; this is only possible if |X| = |Y | = 4, and σ
exchanges q1 with a3, m with r, q2 with a2, and a1 with some vertex p ∈ Y . It follows
that G ∼= K4,4 − M , a contradiction. Therefore, r is pinned, and this is sufficient to pin
the remaining vertices in G.

Case 3b. g ≥ 6.
We may assume, without loss of generality, that vertices are added to T in an order

that ensures that
C = ra1a2 . . . ak−1akbk−1bk−2 . . . b2b1r,

where a1, b1 are the two leftmost children of r in T , aj is the leftmost descendant of a1

on level j (2 ≤ j ≤ k), and bj is the leftmost descendant of b1 on level j (2 ≤ j ≤ k − 1).
The proper distinguishing colouring scheme described in Section 3 ensures that c(a1) = 1,
c(b1) = 2, c(aj) = c(bj) = 1 if j > 1 is odd, and c(aj) = c(bj) = ∆ if j is even.

Suppose first that k is odd (so k ≥ 3); this situation is depicted in Figure 10. Consider
the vertex ak; then c(ak) = 1 and c(ak−1) = c(bk−1) = ∆. Let S ⊆ V (G) consist of the
union of all the vertices in levels 0 through k − 1 of T . Because of our choice of C and
r, G[S] ∼= T [S], with all leaves of G[S] at level k − 1. Since G has girth at least 6, ak is
not joined to two vertices in level k − 1 that have a common parent. Therefore, we may
choose to add vertices to T in an order that ensures that every level k−1 neighbour of ak

(in G) receives colour ∆. Any other neighbour of ak in G must be a child of ak in T ; since
ak has at most ∆− 2 children, no child of ak is coloured 2∆− 2. Therefore, no neighbour
of ak (in G) is coloured 2∆ − 2.

We now recolour vertices r, a1, a2, . . . , ak as follows: set c(ak) = 2∆ − 2; for j odd,
1 ≤ j ≤ k − 2, set c(aj) = ∆; for j even, 2 ≤ j ≤ k − 1, set c(aj) = 1; set c(r) = 1.
This colouring is still proper: recolouring ak with colour 2∆ − 2 presents no problems,
and the effect of the rest of the recolouring is to exchange colours 1 and ∆ along the
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path (in T ) from a1 to ak−1, making colour 1 available for r. To see that the colouring
is distinguishing, observe that r, a2, a4, . . . , ak−1 are the only vertices of colour 1 in the
partition Y , r has two neighbours coloured ∆− 1 (the two rightmost children of r in T ),
and each of a2, a4, . . . , ak−1 has only one neighbour coloured ∆ − 1. This pins r, and is
sufficient to pin all the remaining vertices in G.

The case when k is even is analogous, but because of a parity shift, we begin with
c(ak) = ∆ and c(ak−1) = c(bk−1) = 1. In this case, vertices can be added to T in an order
that ensures that no neighbour of ak (in G) is coloured ∆ − 1. The recolouring is as in
the case k odd, except ak is coloured ∆− 1. The remainder of the argument follows, and
this completes Case 3b.

In all cases we have successfully eliminated colour 2∆ − 1, thus showing χD(G) ≤
2∆ − 2.

5 Conclusion

We have proven that if G is a connected bipartite graph with ∆ ≥ 3, then χD(G) ≤
2∆ − 2, unless G ∼= K∆−1,∆ (in which case χD(G) = 2∆ − 1) or G ∼= K∆,∆ (in which
case χD(G) = 2∆). There are infinitely many graphs for which χD = 2∆ − 2; Collins
and Trenk [3] give a construction for an infinite class of such graphs, and by choosing
appropriately, it is easy to construct infinitely many bipartite graphs with χD = 2∆ − 2.
However, as Collins and Trenk [3] observe, this construction relies heavily on subgraphs
isomorphic to K∆−1,∆−1. This leads to the problem of characterizing those connected
bipartite graphs for which χD = 2∆ − 2. In particular, does every such graph contain an
induced subgraph isomorphic to K∆−1,∆−1?

Our focus has been on bipartite graphs: we have shown that the only bipartite graph
with ∆ ≥ 3 and χD = 2∆− 1 is K∆−1,∆. It is natural to ask: do there exist non-bipartite
connected graphs with ∆ ≥ 3 and χD = 2∆ − 1?
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