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Abstract

We introduce a coloring game on graphs, in which each vertex v of a graph

G owns a stack of ℓv−1 erasers. In each round of this game the first player Mr.

Paint takes an unused color, and colors some of the uncolored vertices. He might

color adjacent vertices with this color – something which is considered “incorrect”.

However, Mrs. Correct is positioned next to him, and corrects his incorrect coloring,

i.e., she uses up some of the erasers – while stocks (stacks) last – to partially undo his

assignment of the new color. If she has a winning strategy, i.e., she is able to enforce

a correct and complete final graph coloring, then we say that G is ℓ-paintable.

Our game provides an adequate game-theoretic approach to list coloring prob-

lems. The new concept is actually more general than the common setting with lists

of available colors. It could have applications in time scheduling, when the available

time slots are not known in advance. We give an example that shows that the two

notions are not equivalent; ℓ-paintability is stronger than ℓ-list colorability. Never-

theless, many deep theorems about list colorability remain true in the context of

paintability. We demonstrate this fact by proving strengthened versions of classical

list coloring theorems. Among the obtained extensions are paintability versions of

Thomassen’s, Galvin’s and Shannon’s Theorems.

Introduction

There are many papers about graph coloring games. Originally, these games were intro-

duced with the aim to provide a game-theoretic approach to coloring problems. The hope

was to obtain good bounds for the chromatic number of graphs, in particular with regards

to the Four Color Problem (see, e.g., [BGKZ] and the literature cited there). However,

there is a fundamental problem with these games, which means that they cannot fulfill
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their original purpose. Typically, these games require many more colors than those actu-

ally needed for a correct graph coloring, so there is a large gap between the corresponding

game chromatic numbers and the chromatic number. Hence, even best possible upper

bounds for these game chromatic numbers are usually bad upper bounds for the chro-

matic or the list chromatic number, i.e., the minimal size of given color lists Lv , assigned

to the vertices v of a graph G , which ensures the existence of a correct vertex coloring

λ : v 7−→ λv ∈ Lv of G . (See [Al], [Tu] and [KTV] in order to get an overview of list

colorings.)

The game of Mr. Paint and Mrs. Correct, introduced in Section 1 (in Game1.1 and its

reformulation Game1.6), is different. It provides an adequate game-theoretic approach to

list coloring problems. The existence of a winning strategy for Mrs. Correct, which we call

ℓ-paintability (see Definition 1.2 or the reformulated recursive Definition 1.8), comes very

close to ℓ-list colorability (Definition 1.3). The ℓ-paintability is stronger than the ℓ-list

colorability (Preposition 1.4), but not by much. Although Example 1.5 shows that there is

a gap between these two notions, most theorems about list colorability hold for paintability

as well. Therefore, good bounds for the painting number – which may be found using

game-theoretic approaches – are usually good bounds for the list chromatic number as well.

The reason for all this is that (as described after Definition 1.3) paintability can be seen

as a dynamic version of list colorability, where the lists of colors are not completely fixed

before the coloring process starts. Beyond this connection to list colorings, paintability

also may have interesting new applications. See [Scha2, Example 3.11] for an application

to a time scheduling problem that demonstrates the advantage of the new painting concept

against the list coloring approach with fixed list of available time slots.

All list coloring theorems – whose proofs are exclusively based on coloring extension

techniques, on the existence of kernels, and on Alon and Tarsi’s Theorem – can be trans-

ferred into a paintability version. These three techniques are the main techniques in the

theory of list colorings. In addition, for colorings in the classical sense, there is the impor-

tant recoloring technique (Kempe-chain technique). It is used for example in the proofs

of Vizing’s Theorem, and works with neither list colorings nor with paintability.

In Section 2 we prove several lemmas that can be used as a replacement for coloring

extension techniques. They are based on a technique, called the pre-use of additional

erasers, which is described in Preposition 2.1. We demonstrate the application of these

replacements in the proof of Theorem2.6, a strengthening of Thomassen’s Theorem about

the 5-list colorability of planar graphs.

In Section 3 (Lemma3.1), we strengthen Bondy, Boppana and Siegel’s Kernel Lemma.

Afterwards, we apply it in the proof of Galvin’s celebrated theorem about the list chro-

matic index of bipartite graphs (Theorem3.2), and in Borodin, Kostochka and Woodall’s

strengthening of Galvins’s result (Theorem3.3). This leads also to a strengthening of their

refinement of Shannon’s bound for the list chromatic index of multigraphs (Theorem3.5).

We are also working [Scha2] on a purely combinatorial proof of a paintability version of

Alon and Tarsi’s Theorem [AlTa] about colorings and orientations of graphs. This will lead
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to paintability versions of many other list coloring theorems, e.g., Alon and Tarsi’s bound

of the list chromatic number of bipartite and planar bipartite graphs, and Häggkvist and

Janssen’s bound for the list chromatic index of the complete graph Kn . Brooks’ Theorem

can be strengthened as well using the Alon-Tarsi-Theorem. Our version will even be

stronger than the version of Borodin and of Erdős, Rubin and Taylor. Furthermore, we will

present in [Scha3] a paintability version of the Combinatorial Nullstellensatz [Al2, Scha1],

and will apply it to hypergraphs.

1 Mr. Paint and Mrs. Correct

The game of Mr. Paint and Mrs. Correct is a game with complete information, played

on a fixed given graph G = (V, E) . It is defined as follows: G = (V, E)

Game 1.1 (Paint-Correct-Game). Mr. Paint has many different colors, at least one for

each round of the game. In each round he uses a new color that cannot be used again.

Mrs. Correct has a finite stack Sv of erasers for each vertex v ∈ V of the underlying Sv

graph G . They are lying at the corresponding vertices, ready for use.

The game of Mr. Paint and Mrs. Correct works as follows:

1P : Mr. Paint starts, and in the first round he uses his first color to color some (at least

one) vertices of G .

1C: Mrs. Correct may use – and hereby use up – for each newly colored vertex v one

eraser from Sv (if Sv 6= ∅ ) to clear v . It is the job of Mrs. Correct to avoid

monochromatic edges, i.e., edges with ends of the same color.

2P : In the second round Mr. Paint uses his second color to color some (at least one) of

the by now uncolored vertices of G .

2C: Mrs. Correct, again, uses up erasers from some stacks Sv belonging to the newly

colored vertices v , to avoid monochromatic edges.

...
...

End: The game ends when one player cannot move anymore, and hence loses.

Mrs. Correct cannot move if not enough erasers are available with which she could

avoid monochromatic edges, so that the remaining partial coloring would be incorrect.

Mr. Paint loses if all vertices have already been colored when it is his turn.

This game ends after at most
∑

v∈V (|Sv|+ 1) rounds. If Mrs. Correct wins, then the

game results in a proper coloring of G . In this case, Mrs. Correct has rejected the color of

each vertex v ∈ V up to |Sv| times. Put another way, we could imagine that Mr. Paint
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uses real paint and varnishes the vertices with it, and that Mrs. Correct uses sandpaper

pieces to roughen the paint surface. In this way we obtain up to ℓv := |Sv| + 1 layers of

paint on each v ∈ V , which leads us to the following terminology:

Definition 1.2 (Paintability). Let ℓ = (ℓv)v∈V be defined by ℓv := |Sv| + 1 . If there is ℓ, ℓv

a winning strategy for Mrs. Correct, then we say that G is ℓ-paintable. We also say that

Gℓ is paintable, where Gℓ is the graph G together with ℓv − 1 erasers at each vertex Gℓ

v ∈ V (the mounted graph, as we call it).

We write n-“something” instead of (n1)-“something”, where 1 = (1)v∈V and n ∈ N . 1

There is a connection to list colorings, which are defined as follows:

Definition 1.3 (List Colorings). A product L =
∏

v∈V Lv of sets Lv (called lists) of ℓv L, Lv

elements (called colors) is an ℓ-product (where ℓ := (ℓv)v∈V ).

If there is a (proper) coloring λ ∈ L of G – i.e., if λu 6= λv for all uv ∈ E – then

we say that G is L-colorable. If G is L-colorable for all ℓ-products L , then we say that

G is ℓ-list colorable or just ℓ-colorable.

Imagine that Mr. Paint writes down the colors he suggests for the vertex v in a list

Lv . At the end of the game the list Lv has at most ℓv := |Sv| + 1 entries, since |Sv|

is the maximal number of rejections at v . Furthermore, if v “wears” a color at the

end of the game, then its color lies in the list Lv . Hence, paintability may be seen as

a dynamic version of list colorability, where the lists Lv are not completely fixed before

the coloration process starts. Thus we have the following connection to the usual list

colorability:

Proposition 1.4. Let G be a graph and ℓ ∈ N
V.

G is ℓ-paintable. =⇒ G is ℓ-list colorable.

The following example shows the strictness of this statement:

Example 1.5. The graph G in Figure 1 below is ℓ-list colorable but not ℓ-paintable,

where ℓv := 2 for all vertices v ∈ V except the center v5 , for which ℓv5 := 3 :

v12

v53

v62

v32

x12

x22

v22

v42

Figure 1: An ℓ-list colorable but not ℓ-paintable graph.
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Proof. We start with the unpaintability of G : In order to prevail, Mr. Paint colors the
vertices x1 and x2 in his first move. If Mrs. Correct then clears x1 , Mr. Paint can win
as the induced subgraph G[x1, v1, v2, v3, v4] is not even L-colorable for G[U ]

L = Lx1 × Lv1 × Lv2 × Lv3 × Lv4 := {1} × {1, 2} × {2, 3} × {3, 4} × {4, 2}. (1)

Indeed, this argument shows that the whole remaining uncolored part G\x2 of G is

not list colorable for updated list sizes; and uncolorability implies unpaintability, as we

have seen in Proposition 1.4 . Thus, Mrs. Correct cannot find a strategy for the remaining

uncolored part G\x2 of G . (See also the recursive description of the game below).

If Mrs. Correct sands off x2 , then Mr. Paint can win for the same reason. In this case

there is an odd circuit in the remaining uncolored part G\x1 which cannot be colored

with 2 colors, and the third color of v5 can be “neutralized” through its neighbor x2 .

Summarizing, Mr. Paint wins in any case, and G is not ℓ-paintable.
We come now to the ℓ-list colorability, and have to examine all possible ℓ-products L :

If
Lx1 = Lx2 or Lx1 ∩ Lx2 = ∅ (2)

then each proper coloring of G \ {x1, x2} extends to a proper coloring of G . It is thus
sufficient to examine the more difficult case:

Lx1 := {1, 2} and Lx2 := {2, 3}. (3)

In this case we have to find a coloring λ of G \ {x1, x2} with

(λv1 , λv5) 6= (1, 3). (4)

If, for example, there is a coloring λ of the path v1v2v3v4 with

λv4 6= λv1 6= 1, (5)

then this partial coloring can be extended to v6 , then to v5 and finally to the whole
graph G . However, such extendable colorings of the path v1v2v3v4 always exist, except
when the lists to v1 , v2 , v3 and v4 have the following “chain structure”:

Lv1 × Lv2 × Lv3 × Lv4 := {1, a} × {a, b} × {b, c} × {c, a} where a 6= b 6= c 6= a. (6)

But then we can choose

λv4 := a, λv1 := 1 and λv2 := a, (7)

and this partial coloring is extendable, at first to v5 , with λv5 6= 3 , then to x1 , x2 and

to v6 , and finally to v3 , which still has the two colors b 6= a and c 6= a “available”.

Now, we come to a more recursive formulation of our game, which is more easily

accessible for proofs by induction. It is based on the simple observation that – since Mr.

Paint uses an extra color for each round – it makes no difference whether one looks for

coloring extensions of the partially colored graph G , or whether one cuts off the already

colored vertices from the graph and colors the remaining graph. More precisely, we have

the following reformulation:
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Game 1.6 (Reformulation). In this reformulation Mr. Paint has just one marker. As

this is his only possession some call him Mr. Marker, but that is just a nickname.

Mrs. Correct has a finite stack Sv of erasers for each vertex v in G1 := G . They

are lying on the corresponding vertices, ready for use.

The reformulated game of Mr. Paint and Mrs. Correct works as follows:

1P : Mr. Paint starts, choosing a nonempty set of vertices V1P ⊆ V (G1) and marking

them with his marker.

1C: Mrs. Correct chooses an independent subset V1C ⊆ V1P of marked vertices in G1 ,

i.e., uv /∈ E(G1) for all u, v ∈ V1C . She cuts off the vertices in V1C , so that the

graph G2 := G1 \ V1C remains. The still marked vertices v ∈ V1P \ V1C of G2

have to be cleared. Therefore, Mrs. Correct must use one eraser from each of the

corresponding stacks Sv . She loses if she runs out of erasers and cannot do that,

i.e., if already Sv = ∅ for a still marked vertex v ∈ V1P \ V1C .

2P : Mr. Paint again chooses a nonempty set of vertices V2P ⊆ V (G2) and marks them

with his marker.

2C: Mrs. Correct again cuts off an independent set V2C ⊆ V2P , so that a graph G3 :=

G2 \ V2C remains. She also uses (and uses up) some erasers to clear the remaining

marked vertices v ∈ V2P \ V2C .

...
...

End: The game ends when one player cannot move anymore, and hence loses.

Mrs. Correct cannot move if she does not have enough erasers left to clear the

vertices she was not able to cut off.

Mr. Paint loses if there are no more vertices left.

With this reformulation the original Definition 1.2 of paintability can be rewritten.

At first, we introduce an appropriate notation for the graphs G1 , G2 , . . . , produced in

this version of the game, and their corresponding mounted graphs. Using characteristic

maps/tuples of subsets U ⊆ V and of elements u ∈ V , namely 1U , 1u

1U := (?(v=U))v∈V ∈ {0, 1}V and 1u := 1{u}, (8)

based on the “Kronecker query” ?(A) , defined for statements A by ?(A)

?(A) :=

{

0 if A is false,

1 if A is true,
(9)

we provide:
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Definition 1.7. Let Gℓ be a mounted graph. We treat Gℓ as any usual graph; but, when

we change the graph, we adapt the stacks of erasers in the natural way. For example we

set for sets U of vertices and edges Gℓ \ U

Gℓ \ U := (G \ U)ℓ|V \U . (10)

We also introduce a new operation ⇂ (down) which acts only on the stacks of erasers: Gℓ ⇂ U

Gℓ ⇂ U := Gℓ−1(U∩V ). (11)

Now, the remaining graph G2 , after Mrs. Correct’s first move 1C , together with the

remaining stacks of reduced sizes

ℓ2
v − 1 ≤ ℓ1

v − 1 := ℓv − 1 for all v ∈ V , (12)

can be written as:

Gℓ2

2 = Gℓ1

1 \ V1C ⇂ V1P . (13)

Furthermore, we obtain a handy recursive definition for paintability:

Definition 1.8 (Paintability – Reformulation). For ℓ ∈ N
V the ℓ-paintability of G , i.e.,

the paintability of Gℓ, can be defined recursively as follows:

(i) G = ∅ is ℓ-paintable (where V = ∅ so that ℓ is the empty tuple).

(ii) G 6= ∅ is ℓ-paintable if ℓ ≥ 1 and if each nonempty subset VP ⊆ V of vertices

contains a good subset VC ⊆ VP , i.e., an independent set VC ⊆ VP , such that

Gℓ \ VC ⇂ VP is paintable.

It is obvious, that if VC ⊆ U ⊆ VP and VC is good in VP , then VC is also good in U .

If, in addition, U is independent, then U is good in VP . Conversely, in Proposition 2.1

we will learn that, if VC is good in U , then VC is also good in VP ⊇ U , but for the price

of additional erasers, i.e. if we put one additional eraser on each vertex v of VP \U . This

will be important when we generalize theorems, based on coloring extension techniques,

to paintability.

Before we come to this, we want to mention that, with slight modifications that do

not affect the definition of paintability, our game can be viewed as a game in the sense

of Conway’s game theory [Co], [SSt]. From this point of view, graphs are not just either

ℓ-paintable or not ℓ-paintable, but some graphs may be more ℓ-paintable than others.

However, this game is not a “cold” game, i.e., it is usually no number.
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2 Coloring Extensions and Cut Lemmas

In this section we generalize coloring extension techniques to paintability. When we try

to find list colorings, we may choose a particular vertex enumeration v1, v2, . . . , vn , and

color the vertices vi in turn, with a color not used for any neighbor of vi among the

successors v1, v2, . . . , vi−1 . This technique cannot be used in the frame of paintability,

but the following lemmas can provide a replacement. These replacements are then used

at the end of the section to prove a strengthening of Thomassen’s Theorem. Note that

the corresponding list coloring versions of the used lemmas are almost trivial.

The proofs of the lemmas are based on a technique that we call pre-use of additional

erasers. It means that additional erasers can be used before one has to look after a

winning move. More exactly:

Proposition 2.1 (Pre-Usage Argument). Let Gℓ be a mounted graph, and assume that

Mr. Paint has marked a subset VP ⊆ V , in which Mrs. Correct should find a good subset

VC ⊆ VP . If we put additional erasers on the vertices of a subset U ⊆ VP , then Mrs.

Correct may use the additional erasers at first, and then search for a good subset in VP \U :

If VC is good in the remaining set VP \ U , with respect to ℓ ,

then VC is also good in VP , but with respect to ℓ + 1U .

More general, for arbitrary subsets U, VC , VP ⊆ V , the following equality holds:

Gℓ+1(U∩VP ) \ VC ⇂ VP = Gℓ \ VC ⇂ (VP \ U). (14)

Lemma 2.2 (Edge Lemma). Let two different vertices u and w of G be given. The

ℓ-paintability of G implies the (ℓ+ℓw1u)-paintability of G ∪ wu := (V, E ∪ {wu}) . G ∪ wu

Proof. Let a nonempty subset VP ⊆ V be given. If w ∈ VP , we pre-use one additional
eraser, and choose V\u

VC good in VP\u := VP \ {u} (15)

with respect to ℓ and G . Using Preposition 2.1, we know that

VC is also good in VP (16)

but with respect to ℓ + 1u and G .
If now w /∈ VC , then we apply an induction argument to

G′ℓ′ := Gℓ+1u \ VC ⇂ VP , (17)

which has one eraser fewer at w ∈ VP , i.e.,

ℓ′w = ℓw − 1. (18)

It follows the paintability of

(G′ ∪ wu)ℓ
′+ℓ′w1u

(17)
= (Gℓ+1u+ℓ′w1u \ VC ⇂ VP ) ∪ wu = (G ∪ wu)ℓ+ℓw1u \ VC ⇂ VP , (19)
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so that the recursive Definition 1.8 applies and accomplishes this case.
If w ∈ VC then exactly one end of wu lies in VC (since we chose VC ⊆ VP\u ),

(G ∪ wu) \ VC = G \ VC , (20)

and
(G ∪ wu)ℓ+1u \ VC ⇂ VP = Gℓ+1u \ VC ⇂ VP (21)

is still paintable, so that
VC is good in VP (22)

even with respect to G ∪ wu and ℓ + 1u ≤ ℓ + ℓw1u .
If w /∈ VP things are even simpler, we choose

VC good in VP (23)

with respect to ℓ and G ; i.e., Gℓ \ VC ⇂ VP is paintable. If, now, u ∈ VC then again

exactly one end of wu lies in VC and we can argue as above. In the other case we use

an induction argument to prove the paintability of (G ∪ wu)ℓ+ℓw1u \ VC ⇂ VP , and apply

Definition 1.8.

Later on in this paper we will need the following simple lemma, which can also be

applied to single vertices (the case |U | = 1 as well as the case |W | = 1 ):

Lemma 2.3 (Cut Lemma). Let V = U ⊎W (disjoined union) be a partition of the vertex ⊎

set of G , and let ηu := |N(u) ∩ W | be the number of neighbors of u ∈ U in W .

If G[U ] is ℓU -paintable and G[W ] is ℓW -paintable then G is (ℓU + ℓW +η)-paintable;

where η := (ηu)u∈U , and where this η , as well as ℓU and ℓW , is “filled up” with zeros,

in order to view it as a tuple over V .

Proof. Let a nonempty subset VP ⊆ V be given, and choose

WC good in WP := VP ∩ W (24)

with respect to ℓW and G[W ] . Now, let N(WC) be the set of all neighbors of vertices
in WC . We pre-use the erasers in the subset

∆ := VP ∩ U ∩ N(WC) ⊆ VP ∩ U (25)

and choose
UC good in UP := VP ∩ U \ N(WC) (26)

with respect to ℓU and G[U ] ; i.e., using Preposition 2.1, we know that

UC is also good in VP ∩ U = UP ⊎ ∆ (27)

but with respect to ℓU + 1∆ and G[U ] . In other words, if we introduce the set

VC := UC ⊎ WC , (28)
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the mounted graphs

G[W ]ℓW \ WC ⇂ (VP ∩ W ) = (GℓW \ VC ⇂ VP )[W \ WC ] (29)

and
G[U ]ℓU +1∆ \ UC ⇂ (VP ∩ U) = (GℓU +1∆ \ VC ⇂ VP )[U \ UC ] (30)

are paintable, and an induction argument implies that

(GℓW +ℓU+1∆+η′
\ VC ⇂ VP )[V \ VC ] = GℓW +ℓU+1∆+η′

\ VC ⇂ VP (31)

is paintable as well, where

η′u := |N(u) ∩ W \ WC | for all u ∈ U . (32)

Since neighbors u of elements w ∈ WC have fewer neighbors in W \ WC than in W

η′u < ηu for all u ∈ N(WC) , (33)

and
η′ + 1∆ ≤ η. (34)

It follows that
GℓW +ℓU+η \ UC ⇂ VP (35)

is paintable, so that the recursive Definition 1.8 applies.

Lemma2.3 does not suffice to prove Thomassen’s Theorem2.6. We will need the

following version of its |W | = 1 case, which requires more additional erasers, but also

saves one at one distinguished neighbor u0 of w :

Lemma 2.4 (Vertex Lemma). Let wu0 ∈ E be given and set ηw := 2 , ηu0 := 0 , ηu = 2

for all other neighbors u of w , and ηv = 0 for the remaining vertices v of G .

If G\w is ℓ-paintable then G is (ℓ + η)-paintable; where η := (ηv)v∈V , and where

ℓ ∈ N
V \w is “filled up” with one zero ( ℓw := 0 ), in order to view it as tuple over V .

Proof. Let a nonempty subset VP ⊆ V be given. Using an induction argument, as in the
last part of the proof of Lemma2.2, we may suppose that w ∈ VP . Let

N := {u 6= u0 � dist(u,w) ≤ 1} (36)

and choose
V ′

C good in V ′
P := VP \ N (37)

with respect to ℓ and G\w ; i.e.,

(G\w)ℓ \ V ′
C ⇂ V ′

P (38)

is paintable. Of course, we want to apply a pre-usage argument to the difference

VP \ V ′
P = VP ∩ N. (39)
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We distinguish two cases:
If u0 ∈ V ′

C we apply Lemma2.3 to Gℓ+1w \ V ′
C ⇂ V ′

P , where we choose W := {w} ,
U := (V \w) \ V ′

C and use the inherited stacks, e.g., ℓW := 1w . It follows that

Gℓ+η′
\ V ′

C ⇂ V ′
P = Gℓ+η′+1(VP ∩N) \ V ′

C ⇂ VP (40)

is paintable; where η′
w := 1 , η′

u := 1 for all neighbors u of w in G \ V ′
C , and η′

v := 0
for the remaining vertices v of G . As we assumed u0 ∈ V ′

C this means that η′
u0

= 0
and hence

η′ + 1(VP ∩N) ≤ η, (41)

so that
V ′

C is good in VP (42)

with respect to ℓ + η and G .
If u0 /∈ V ′

C then, on one hand, w has no neighbor in V ′
C , and V ′

C ∪{w} is independent
in G , on the other hand, as we have seen above,

Gℓ+1(VP ∩N) \ (V ′
C ∪ {w}) ⇂ VP = (G\w)ℓ \ V ′

C ⇂ V ′
P (43)

is paintable. Hence,
V ′

C ∪ {w} is good in VP (44)

with respect to G and ℓ + η ≥ ℓ + 1(VP∩N) .

We will also need the following lemma that, together with the Edge Lemma 2.2, could

be used in another proof of the Cut Lemma 2.3:

Lemma 2.5 (Merge Lemma). Let Gℓ := G′ℓ′∪G′′ℓ′′ be the union G′ ∪G′′ of two graphs G′ℓ′∪ G′′ℓ′′

G′ and G′′, together with the inherited erasers, i.e.,

ℓ − 1 := (ℓ′− 1) + (ℓ′′− 1); (45)

where ℓ′−1 and ℓ′′−1 are “filled up” with zeros, in order to view them as tuples over the

set V. Suppose further that in G′′ there are no erasers at the vertices of the intersection,

i.e.,

ℓ′′|U ≡ 1, where U := V (G′) ∩ V (G′′). (46)

If G′ℓ′ and G′′ℓ′′ are paintable, then Gℓ := G′ℓ′ ∪ G′′ℓ′′ is paintable as well.

Proof. In order to prove the paintability of Gℓ , we have to find a good subset VC in each
fixed given nonempty subset VP ⊆ V . To this end, we choose

V ′
C good in V ′

P := VP ∩ V (G′) (47)

with respect to G′ℓ′, and we choose

V ′′
C good in V ′′

P := (VP \ V (G′)) ⊎ (U ∩ V ′
C) (48)
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with respect to G′′ℓ′′. Since no erasers lie at the vertices u ∈ U ∩ V ′′
P of G′′, they have to

be cut off, i.e.,
U ∩ V ′′

P ⊆ V ′′
C ⊆ V ′′

P . (49)

Moreover, intersecting these sets with U , we see that

U ∩ V ′′
C = U ∩ V ′′

P

(48)
= U ∩ V ′

C . (50)

Hence, if we define
VC := V ′

C ∪ V ′′
C , (51)

then
V ′

P ∩ V ′′
P

(48)
= U ∩ V ′

C = U ∩ VC = U ∩ V ′′
C , (52)

and it follows that
G′ \ VC = G′ \ V ′

C , G′′ \ VC = G′′ \ V ′′
C (53)

and
VP \ VC = (V ′

P \ VC) ⊎ (V ′′
P \ VC) = (V ′

P \ V ′
C) ⊎ (V ′′

P \ V ′′
C ). (54)

Therefore,

Gℓ \ VC ⇂ VP =
(

(G′ℓ′ ) ∪ (G′′ℓ′′ )
)

\ VC ⇂ (VP \ VC)
(54)
=

(

(G′ℓ′ \ VC ) ∪ (G′′ℓ′′ \ VC )
)

⇂
(

(V ′
P \ V ′

C) ⊎ (V ′′
P \ V ′′

C )
)

(53)
=

(

(G′ℓ′ \ V ′
C ) ∪ (G′′ℓ′′ \ V ′′

C )
)

⇂ (V ′
P \ V ′

C) ⇂ (V ′′
P \ V ′′

C )

=
(

G′ℓ′ \ V ′
C ⇂ (V ′

P \ V ′
C)

)

∪
(

G′′ℓ′′ \ V ′′
C ⇂ (V ′′

P \ V ′′
C )

)

= (G′ℓ′ \ V ′
C ⇂ V ′

P ) ∪ (G′′ℓ′′ \ V ′′
C ⇂ V ′′

P ),

(55)

and, based on an induction argument, the last obtained term indicates the paintability of

Gℓ \ VC ⇂ VP . However, this means that VC is good in VP with respect to the examined

graph Gℓ.

Now, we are prepared to strengthen Thomassen’s Theorem [Th], [Di, p. 122] about the

5-list colorability of planar graphs:

Theorem 2.6. Planar graphs are 5-paintable.

Proof. The proof works almost exactly the same as the original one, but the coloring

extension arguments have to be replaced (see also [Di, p. 122]). We start with a slightly

modified induction hypothesis, and will prove by induction the following assertion for all

plane graphs G with at least 3 vertices. In connection with Lemma2.2 (which allows us

to reinsert the removed edge v1v2 ) this assures the 5-paintability of plan triangulations,

and hence all planar graphs. The induction hypothesis reads as follows:

Suppose that every inner face of Gℓ is bounded by a triangle and its outer

face by a cycle C = v1 . . . vkv1 . Suppose further that there is no eraser at v1
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and at v2 ( ℓv1 = ℓv2 := 1 ), that there are 2 erasers at each other vertex vi

of the boundary C ( ℓvi
:= 3 ), and that there are 4 at each inner vertex u

( ℓu := 5 ). Then Mrs. Correct can enforce a proper coloring of Gℓ\v1v2 .

If |G| = 3 , then G = C and the assertion is trivial. We may thus assume that there
are edges inside C , and we can distinguish between the following two cases:

Case 1. If C has a chord vivj , then vivj lies on two unique cycles

C ′, C ′′ ⊆ C + vivj (56)

with
v1v2 ∈ C ′ and v1v2 /∈ C ′′. (57)

Let G′ resp. G′′ denote the subgraph of G induced by the vertices lying on or inside
C ′ resp. C ′′. Using an induction argument, we know that the assertion holds for G′ℓ′,
with the inherited erasers ( ℓ′ := ℓ|V (G′)) ). Similarly, it also holds for G′′, but with vi and
vj in the place of v1 and v2 , i.e., G′′\vivj is ℓ′′-paintable when all erasers at vi and
at vj are removed ( ℓ′′vi

= ℓ′′vj
:= 1 and ℓ′′u := ℓu for the other vertices u in G′′ ). Now

Lemma2.5 applies and proves the paintability of

Gℓ\v1v2 = G′ℓ′\v1v2 ∪ G′′ℓ′′\vivj (58)

Case 2. If C has no chord, let v1, u1, u2, . . . , um, vk−1 be the neighbors of vk in their
natural cyclic order around vk . By definition of C , all these neighbors ui lie in the
inner face of C . Since the inner faces of G are bounded by triangles, and there are no
multiple edges,

P := v1u1 . . . umvk−1 (59)

is a path in G . Since C is chordless,

C̃ := P ∪ (C\vk) (60)

is a cycle – the boundary cycle of G\vk . By induction we know that G\vk\v1v2 is

paintable, where at the new boundary vertices ui two erasers suffice.

We now extend the paintability of G\vk\v1v2 to G\v1v2\vkv1 and finally to G\v1v2 .

To this end we apply Lemma2.4 to G\v1v2\vkv1 , with vk in the role of w and vk−1 in

the role of u0 . Afterwards, we apply Lemma2.2, with vk in the role of w and v1 in the

role of u . Altogether, we had to add 2 erasers at each of the ui and on the new vertex

vk ; the sizes of the other stacks remained unchanged.

3 Kernels and Edge Paintability

In this section we generalize some results about edge list colorability to edge paintability;

where a graph G is called edge ℓ-paintable if its line graph is ℓ-paintable. Two further

edge paintability results, concerning the complete graph Kn and regular planar graphs,
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will be presented in [Scha2]. All results of this section are based on the existence of

kernels (Lemma3.1) and the examination of orientations. We use the following notations

for these kind of investigations: �� , e�����

����� : E −→ V , e 7−→ e����� denotes a fixed orientation of G . Therefore, e����� is always

one end of e , and e����� denotes the other one ( {e�����, e�����} = e ).
�����

G := (V, E, �����) is the �����

G

corresponding oriented graph. D = D(G) = D(
�����

G) denotes the set of all orientations D

ϕ : E ∋ e 7−→ eϕ ∈ e of G . We write u ����� v (resp. u
ϕ
����� v ) if we want to say that uv ∈ E u��v

and that (uv)����� = v (resp. (uv)ϕ = v ). N
+

ϕ (v) := {w ∈ V � v
ϕ
�����w } denotes the set N

+

ϕ (v)

of ϕ-successors of v ∈ V , d
+

ϕ(v) := |N
+

ϕ (v)| its ϕ-outdegree, and d
+

ϕ :=
(

d
+

ϕ(v)
)

v∈V
the d

+

ϕ

outdegree tuple. We abbreviate N
+
(v) := N

+

�����
(v) and d

+
:= d

+

�����
. Similarly, we define

N
+

(v), d
+

N(v) = NG(v) := {w ∈ V � vw ∈ E } and dG :=
(

d(v)
)

v∈V
. As usual, ∆(G) is the

NG(v), dG

∆, ∆
+maximal degree, and ∆

+
(ϕ) is the maximal outdegree of the vertices in G .

Now, the following paintability version of Bondy, Boppana and Siegel’s Lemma, in

[Ga, Lemma2.1] or [Di, Lemma5.4.3], follows easily with a simple induction argument

from Definition 1.8 :

Lemma 3.1 (Kernel Lemma). Let
�����

G be a directed graph, such that each induced sub-

graph G[VP ] of
�����

G has a kernel – i.e., an independent subset VC ⊆ VP such that, for

each vertex u ∈ VP \ VC there is a ū ∈ VC with u�����ū – then G is (d
+
+ 1)-paintable.

Proof. We may assume G 6= ∅ . Let VC be a kernel of a fixed given nonempty subset
VP ⊆ V . As necessarily VC 6= ∅ , and as G \ VC fulfills the preconditions of the Lemma,
we may apply an induction argument, and see that G \ VC is (d

+

G\VC
+ 1)-paintable, i.e.,

(G \ VC)
d
+

G\VC
+1+1(VP \VC ) ⇂ VP = (G \ VC)

d
+

G\VC
+1

(61)

is paintable. Now, because of

d
+

G(v) > d
+

G\VC
(v) for all v ∈ VP \ VC , (62)

the paintability of

Gd
+

G+1 \ VC ⇂ VP (63)

follows; so that the recursive Definition 1.8 applies.

Galvin used in [Ga] Bondy, Boppana and Siegel’s Lemma to prove the list coloring

conjecture for bipartite graphs (see also [Di, Theorem5.4.4]). Using our version this can be

strengthened to paintability (without further modifications in the proof). Together with

König’s classical calculation [Di, Proposition 5.3.1] of the chromatic index of bipartite

graphs we obtain:

Theorem 3.2. Bipartite graphs G are edge ∆(G)-paintable.
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Galvin’s result also implies the existence of certain generalized Latin Squares, which

was conjectured by Dinitz. With the stronger Theorem3.2 this existence result can be

generalized further, leading to a version with stacks of erasers on a
”
chess board“.

Borodin, Kostochka and Woodall exploited in [BKW] Galvin’s remarkable new method

to prove further sharpenings and applications. We strengthen their main result [BKW,

Theorem3], and our Theorem3.2, as follows:

Theorem 3.3. Bipartite multigraphs G are edge ℓ-paintable, when for each edge e = uw

we set

ℓe := max{d(u), d(w)}.

Proof. We refer to Galvin’s original proof as it was printed in Diestel’s book [Di]. Borodin,

Kostochka and Woodall’s proof use a terminology different from those in [Di, Theo-

rem5.4.4 & Corollary 5.4.5], and does not explicitly work with orientations. However,

the only real difference to the proof in [Di] is that the authors have chosen the underlying

coloring c : E −→ Z more carefully (see the remark after [BKW, Corollary 1.1]). Based

on the construction of c in the proof of [BKW, Theorem3], and using our strength-

ened Kernel Lemma3.1 instead of [Di, Lemma5.4.3], the proof in [Di] yields the stated

theorem.

They also provide a proof for a strengthening of Shannon’s bound of the chromatic

index of multigraphs. This proof is based on the following interesting lemma, which we

state for paintability:

Lemma 3.4. If G , H and B are multigraphs, where B is bipartite and G = H ∪ B ,

and if

ℓe := max{dG(u) + dH(w), dH(u) + dG(w)} for each edge e = uw ,

then G is edge ℓ-paintable.

Proof. The proof is based on Theorem3.3, and works almost exactly as in [BKW,
Lemma4.1]: We may assume

E(H) ∩ E(B) = ∅. (64)

Since dG(v) ≥ dH(v) for each v ∈ V , it follows that

ℓe > dLH(e) for all e ∈ E , (65)

where LH is the line graph of H . Hence, as a repeated application of the simple Cut

Lemma2.3 (with |U | = 1 ) shows, H is edge paintable using the inherited erasers.
Using Theorem3.3, we see that the other part B is edge ℓ′-paintable, where

ℓ′uw := max{dB(u), dB(w)} for all uw ∈ E(B) . (66)
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Since each edge uw of B (as a vertex of the line graph LG ) has

ηuw := |NLG(uw) ∩ E(H)| = dH(u) + dH(w) (67)

neighbors in E(H) , so that

ℓuw = max{ dG(u) + dH(w) , dH(u) + dG(w) }

= max{ dB(u) + (dH(u) + dH(w)) , (dH(u) + dH(w)) + dB(w) }

= max{ dB(u) , dB(w) } + (dH(u) + dH(w))

= ℓ′uw + ηuw,

(68)

the Cut Lemma2.3 (with LG, E(B), E(H) in the place of G, U , W ) to prove the

ℓ-paintability of G .

With this lemma we obtain the following strengthening of Shannon’s bound:

Theorem 3.5. Multigraphs G are edge ℓ-paintable, where

ℓuw := max{d(u), d(w)}+ ⌊
1

2
min{d(u), d(w)}⌋ for all uw ∈ E .

In particular, G is edge ⌊3
2
∆(G)⌋-paintable.

Proof. As in [BKW, Theorem4] one can apply Lemma3.4 to a maximal cut E(U, W )

B = (V,E(U,W )), V = U ⊎ W (69)

in G , and to
H := G \ E(B); (70)

which fulfills
dH(v) ≤ 1

2dG(v) for all v ∈ V , (71)

since otherwise we could move a vertex v to the other side of the partition, and would

obtain a contradiction to the maximality of |E(U, W )| .

The figure ⌊3
2
∆(G)⌋ in this theorem is best possible. The so-called “thick triangle”

with ⌊1
2
∆⌋ , ⌊1

2
∆⌋ and ⌈1

2
∆⌉ edges between the vertices shows this; it has chromatic

index ⌊3
2
∆⌋ .

Clearly, it would be interesting to find a paintability version of Vizing’s Theorem. This

is an open problem, even for list colorings. The recoloring techniques (Kempe-chains)

used in the known proofs of Vizing’s Edge Coloring Theorem do not work with list col-

orings. In [Ko] Kostochka needed the additional assumption that G has girth at least

8∆(G)
(

ln(∆(G))+1.1
)

, in order to prove that simple graphs G are edge (∆(G)+1)-list

colorable. However, if the list color conjecture is true, this holds without further assump-

tions about the girth as well.
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