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tWe give a new, 
ombinatorial proof for the ne
kla
e splitting problem for twothieves using only Tu
ker's lemma (a 
ombinatorial version of the Borsuk-Ulamtheorem). We show how this method 
an be applied to obtain a related re
ent resultof Simonyi and even generalize it.1 Ne
kla
e SplittingThis paper was inspired by the 
ombinatorial proof of Matou²ek [7℄ of the Lovász-Kneser theorem [6℄. He used Tu
ker's lemma [11℄ that was proved 
ombinatorially byFreund and Todd [4℄. A 
ombinatorial proof for a generalization of Tu
ker's lemma 
anbe found in a paper of Ziegler [12℄. We start by stating a version of this lemma and thenshow how it 
an be used to give a simple proof for the ne
kla
e splitting theorem.We denote the set {1, . . . , n} by [n] and let −S denote {−s : s ∈ S}, thus −[n] =
{−1, . . . ,−n}. For four subsets of [n], A1, B1, A2, B2 we say that the set-pair (A1, B1)is smaller than the set-pair (A2, B2) if A1 ⊂ A2 and B1 ⊂ B2 and at least one of thein
lusions is stri
t. We denote this by (A1, B1) ⊂ (A2, B2). A family of set-pairs is said toform a 
hain, if any two members of the family are 
omparable.Lemma 1.1. (O
tahedral Tu
ker's lemma, in [12℄ Lemma 4.1) If for any set-pair A, B ⊂
[n], A ∩ B = ∅, A ∪ B 6= ∅ we have a λ(A, B) ∈ ±[n − 1] 
olor, su
h that λ(A, B) =
−λ(B, A), then there are two set-pairs, (A1, B1) and (A2, B2), su
h that (A1, B1) ⊂
(A2, B2) and λ(A1, B1) = −λ(A2, B2).Two set-pairs for whi
h (A1, B1) ⊂ (A2, B2) and λ(A1, B1) = −λ(A2, B2) are said toform an opposing in
lusion.
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In the ne
kla
e splitting problem, we have an open ne
kla
e with k types of beads,
ai beads of the ith kind and p thieves want to split it by using as few 
uts as possible,su
h that ea
h one of them gets ⌊ai/p⌋ or ⌈ai/p⌉ beads of the ith kind. They are allowedto 
ut the ne
kla
e between any two beads and then divide the parts among themselvesarbitrarily. If the di�erent types of beads are after ea
h other, then it is easy to see that
(p − 1)k 
uts are ne
essary. That this number is always enough was proved for p = 2 byGoldberg and West [5℄. Later Alon and West [3℄ gave a simpler proof using the Borsuk-Ulam theorem. This was generalized to arbitrary p, ea
h kind having a multiple of pnumber of beads by Alon [1℄ and the following version is the result of Alon, Moshkovitzand Safra [2℄.Theorem 1.2. (Ne
kla
e Splitting Theorem) If p thieves want to split a ne
kla
e with kkinds of beads su
h that ea
h of them gets ⌊ai/p⌋ or ⌈ai/p⌉ beads of the ith kind, then they
an do so using at most (p − 1)k 
uts.For another re
ent proof of this theorem see Meunier [8℄ (the proof is 
ombinatorialbut uses algebrai
 topologi
al notions).We 
onje
ture that a generalization of this theorem might also be true. The general-ization is that we 
an de
ide for ea
h thief and ea
h kind if the thief should get more orless beads of that kind. (So the statement is stronger in the 
ase when p does not dividethe ai's.)Conje
ture 1.3. (General Ne
kla
e Splitting Conje
ture) If p thieves want to split ane
kla
e with k kinds of beads su
h that the jth thief gets a

(j)
i of the ith kind where a

(j)
i =

⌊ai/p⌋ or ⌈ai/p⌉ and ∑
j a

(j)
i = ai, then they 
an do so using at most (p − 1)k 
uts.We will give a dire
t, simple 
ombinatorial proof from Tu
ker's lemma to this 
onje
-ture for the p = 2 
ase in the next se
tion. (In fa
t for the p = 2 
ase, this 
onje
turefollows easily from the previous theorem, this version is proved also in [9℄, but our proofmethod is quite di�erent.) To demonstrate the power of our method, in Se
tion 3 wereprove the result that appeared in a re
ent paper of Simonyi [10℄ following his idea butusing our method. Finally in Se
tion 4 we prove a generalization of it (Corollary 4.6) usingsome geometri
 observations about a property that we 
all stair-
onvexity. Theorem 4.8at the end of that se
tion is our strongest result.2 Proof of the 
lassi
 ne
kla
e splitting theorem for twothievesBefore the proof we need a de�nition, the 
ore of the main idea.De�nition 2.1. For A∩B = ∅, A∪B = [n] de�ne |m(A, B)| as the number of alternationsbetween A and B when we are going from 1 to n and the sign of m(A, B) to be positiveif 1 ∈ A and negative if 1 ∈ B. For other set-pairs, de�ne it as maxabs{m(A′, B′) :

(A, B) ⊂ (A′, B′), A′ ∩ B′ = ∅, A′ ∪ B′ = [n]} where maxabs denotes the number with thelargest absolute value.
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Eg. if n = 5, A = {2}, B = ∅, then |m(A, B)| = 4 be
ause we 
an take A′ = {2, 4} and
B′ = {1, 3, 5}. Note that the sign of m(A, B) is well-de�ned be
ause whether 1 belongsto A′ or B′ is determined by A and B. Eg. m({2}, ∅) = −(n− 1), m({3}, {5, 6}) = n− 3,while m([n], ∅) = 0. Note that |m(A, B)| ≤ n − 1. Its 
onne
tion to splitting ne
kla
es isthat if we asso
iate the beads of the ne
kla
e with [n] a

ording to their order, then thisnumber determines the maximum number of 
uts with whi
h we 
an provide a splittingof the ne
kla
e that lets the beads belonging to A go to the �rst thief, those in B to these
ond, while the ownership of the rest does not matter. Using this fun
tion, we 
an proveConje
ture 1.3 for p = 2.Theorem 2.2. (General Ne
kla
e Splitting for two thieves) If two thieves want to splita ne
kla
e with k kinds of beads su
h that the jth thief gets a

(j)
i of the ith kind where

a
(j)
i = ⌊ai/2⌋ or ⌈ai/2⌉ and a

(1)
i + a

(2)
i = ai, then they 
an do so using at most k 
uts.Proof. Our goal is to give a λ 
oloring fot the use Tu
ker's lemma. Denote the types ofthe beads by the numbers from 1 through k. Asso
iate the beads of the ne
kla
e with

[n] a

ording to their order. The �rst idea is that λ(A, B) = +1 if the number of the 1beads in A is more than a1/2, and it is −1 if the number of the 1 beads in B is morethan a1/2. If none of this happens, then λ(A, B) = +2 if the number of the 2 beads in Ais more than a2/2, and it is −2 if the number of the 2 beads in B is more than a2/2, et
.This fun
tion is antipodal and it 
annot have an opposing in
lusion (sin
e two disjointsets 
annot both have more than half of the beads of the same kind) but unfortunately itdoes not 
olor all the set-pairs. So we have to extend it.If |m(A, B)| ≥ k + 1, then let λ(A, B) = m(A, B) and if |m(A, B)| ≤ k, then letus keep our earlier de�nition, ie. λ(A, B) = +1 if the number of the 1 beads in A ismore than a1/2 et
. Note that we 
annot have an opposing in
lusion for a set-pair with
|λ(A, B)| ≥ k + 1, be
ause if we have an in
lusion, then the extensions of the bigger set-pair of the in
lusion are also extensions for the smaller set-pair of the in
lusion, thus thesign of the bigger must be the same as the sign of the smaller if their absolute values arethe same. We have seen it earlier that no opposing in
lusion 
an o

ur for |λ(A, B)| ≤ k,thus using Tu
ker's lemma there must be an un
olored set-pair. For this set-pair we musthave |m(A, B)| ≤ k. Thus we have an assignment where for every i, nobody has morethan ai/2 of the i beads and no matter how we expand this assignment, the number ofne
essary 
uts is always at most k. Therefore we 
an divide the rest of the beads in anyway among the two thieves.3 Proof of Simonyi's resultTo demonstrate the power of our method, in this se
tion we reprove the result thatappeared in a re
ent paper of Simonyi [10℄.Theorem 3.1. If two thieves want to split a ne
kla
e with k kinds of beads, ea
h kindhaving an even number, and we are given two disjoint subsets of [k], D1 and D2, not both
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empty, then they 
an split the ne
kla
e using at most k−1 
uts, su
h that the distributionis either 
ompletely even or the jth thief gets more beads of type i if and only if i ∈ Dj.He used a lemma, whose 
ombinatorial equivalent is the following.Lemma 3.2. (O
tahedral Tu
ker-Ba
on lemma) If for any set-pair A, B ⊂ [n], A ∩ B =
∅, A∪B 6= ∅ we have an ∅ 6= λ(A, B) ⊂ ±[n] 
olor set, su
h that λ(A, B) = −λ(B, A) andif (A1, B1) ⊂ (A2, B2), then λ(A1, B1) ∩ −λ(A2, B2) = ∅1, then for any pair of disjointsubsets of [n], I and J , not both empty, there is a 
hain of set-pairs, {(Ah, Bh)} su
h that
∪λ(Ah, Bh) = I ∪ −J .This lemma easily follows from the 
ontinuous version and we will anyhow prove thesame result without using this lemma, thus we omit its proof. Now we sket
h how thislemma implies Simonyi's theorem using our method.Proof. The main idea is the same as in our previous proof, we de�ne a λ fun
tion to usethe O
tahedral Tu
ker-Ba
on lemma. If m(A, B) ≥ k, then λ(A, B) = {m(A, B) + 1}, if
m(A, B) ≤ −k, then λ(A, B) = {m(A, B) − 1}. If |m(A, B)| < k, then +i ∈ λ(A, B) ifthe number of the i beads in A is more than ai/2, and −i ∈ λ(A, B) if the number of the ibeads in B is more than ai/2. This way λ(A, B) is indeed a subset of ±[n]. De�ne I = D1and J = D2 and apply the O
tahedral Tu
ker-Ba
on lemma (if something is un
olored,then there is a fair division with k − 1 
uts and we are done). For the largest element ofthe 
hain that we get, we must have λ(A, B) = I ∪−J be
ause if someone already has themajority of the i beads in a smaller set, he must also have it in a larger set. Any extensionof this set has at most k − 1 
uts thus it has an extension in whi
h the majority of ea
htype of bead from I ∪ J goes to the respe
tive thief while the other types are dividedevenly.4 Proof of a generalizationTo prove the generalization of Simonyi's result, �rst we need some geometri
 observa-tions. Denote by ei the ith unit ve
tor of the standard basis of Rk.De�nition 4.1. We say that S ⊂ Zk is stair-
onvex if between any two of its points p, qthere is a monotone path meaning that there exists a sequen
e, {p = r0, r1, . . . , rh = q} ⊂ Sand a suitable signing of the standard basis, ǫi = ±ei su
h that for any j there is a i su
hthat rj+1 − rj = ǫi.It is easy to see that the interse
tion of a stair-
onvex set with a line parallel to oneof the axes is always an interval of integers. The interse
tion of a stair-
onvex set with anaxis-parallel box is also a stair-
onvex set.De�nition 4.2. For a set S ⊂ Zk, let S−

i = {z ∈ Zk|z /∈ S, ∃t ∈ N z + tei ∈ S} andsimilarly S+
i = {z ∈ Zk|z /∈ S, ∃t ∈ N z − tei ∈ S}.1This is the analogue of not having an opposing in
lusion for this multi
olored version
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Claim 4.3. If S is stair-
onvex, then S−
i and S+

i are disjoint. The set S−
i ∪ S ∪ S+

i isalso stair-
onvex, and if S is symmetri
 to the origin, then S−
i = −S+

i .This 
laim implies that the sets S [1] = S−
1 ∪ S ∪ S+

1 , S [2] = (S [1])−2 ∪ S [1] ∪ (S [1])+
2 , . . .,

S [k] = (S [k−1])−k ∪S [k−1] ∪ (S [k−1])+
k are all stair-
onvex. It is 
lear that S [k] = Zk if S 6= ∅,moreover, already S [k−1] = Zk if S interse
ts every hyperplane of the form xk = i.Claim 4.4. If ℓ is a line passing through the origin, then L = {z ∈ Zk|∃p ∈ ℓ ||p−z||∞ <

1} is a stair-
onvex set that is symmetri
 to the origin. Therefore L[i] is also a symmetri
stair-
onvex set.Now we are ready to prove the following theorem whi
h gives a generalization ofSimonyi's result (Theorem 3.1).Theorem 4.5. Suppose two thieves want to split a ne
kla
e with k kinds of beads, andwe are given a sequen
e α1, . . . , αk, not all zero. Then there is a t ∈ R su
h that they 
ansplit the ne
kla
e using at most k − 1 
uts, su
h that the number of i beads of the �rstthief minus the number of i beads of the se
ond thief is the 
losest integer to tαi whoseparity equals the parity of ai.2Moreover, if none of the αi's is zero, then for ℓ = {t · α} and L = {z ∈ Zk|∃p ∈
ℓ ||p − z||∞ < 1} we 
an a
hieve that the point whose ith 
oordinate is the di�eren
e ofthe i beads lays in L.Corollary 4.6. Suppose two thieves want to split a ne
kla
e with k kinds of beads, ea
hkind having an even number, and we are given two disjoint subsets of [k], D1 and D2, notboth empty. Then there is a d ∈ N, su
h that they 
an split the ne
kla
e using at most
k−1 
uts, su
h that the number of i beads of the �rst thief is ai/2+d for i ∈ D1, ai/2−dfor i ∈ D2 and ai/2 for i /∈ D1 ∪ D2.Proof. (of the 
orollary.) Choose αi = 1 for i ∈ D1, αi = −1 for i ∈ D2 and αi = 1/2nfor i /∈ D1 ∪ D2. The theorem gives us a z ∈ Zk and a t ∈ R su
h that ||t · α − z||∞ < 1.Sin
e every ai is even, the di�eren
es in the number of beads, zi, will be also even. For
i, j ∈ D1 we have |zi − zj | ≤ |zi − t|+ |t− zj | < 1 + 1, thus zi = zj . For i ∈ D1, j ∈ D2 wehave |zi + zj | ≤ |zi − t| + |t + zj | < 1 + 1, thus zi = −zj . Sin
e zi ≤ n, we also know that
t < n + 1. For i /∈ D1 ∪ D2, 1 > |zi − t/2n| > |zi| − |(n + 1)/2n| and the parity implies
zi = 0. This proves the statement (after a possible swap of the r�les of the thieves.)Proof. (of the theorem.) The proof will be very similar to the proof of the normal ne
kla
esplitting theorem. Let ℓ be {t · α} and L = {z ∈ Zk|∃p ∈ ℓ ||p − z||∞ < 1}. Then
L, L−

1 , L+
1 , . . . , (L[k−2])−k−1, (L

[k−2])+
k−1 give a partitioning of the spa
e (unless αk = 0 butwe 
an suppose without loss of generality that this is not the 
ase). For simpli
ity, de�ne

Hi = (L[k−i−1])+
k−i and −Hi = (L[k−i−1])−k−i as the only property that we will use is that

Zk \ ∪j<i(Hj ∪ −Hj) is stair-
onvex. (And de�ne L[0] = L, so that Hk−1 = L+
1 .)2If there are two su
h integers, then one of them.
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For any set-pair (A, B) we de�ne a mapping ϕ to Zk where ϕi equals the number of ibeads in A minus the number of i beads in B. We say that (A, B) avoids S if ϕ(A, B) /∈ S.Now we 
an de�ne λ.If |m(A, B)| ≥ k, then λ(A, B) = m(A, B). If |m(A, B)| < k, then we de�ne λ asfollows. If the ϕ of every extension of (A, B) is in H1, then λ(A, B) = +1 and if everyextension is in −H1, then λ(A, B) = −1. If the ϕ of every extension of (A, B) that avoids
H1 ∪ −H1, is in H2, then λ(A, B) = +2 and if every su
h extension is in −H2, then
λ(A, B) = −2. Generally, we de�ne λ(A, B) = ±i if the ϕ of every extension of (A, B)that avoids ∪j<i(Hj ∪ −Hj), is in ±Hi.Claim 4.7. If |m(A, B)| < k and |λ(A, B)| � i, then it has an extension that avoids
∪j≤i(Hj ∪ −Hj).Proof. By indu
tion, we 
an suppose that (A, B) has an extension that avoids ∪j<i(Hj ∪
−Hj)∪Hi and another that avoids ∪j<i(Hj∪−Hj)∪−Hi. Sin
e Zk\∪j<i(Hj∪−Hj) is stair-
onvex, between any two of its points there is a monotone path. The ϕ's of the possibleextensions of (A, B) form a box in Zk, if we interse
t this box with Zk \ ∪j<i(Hj ∪−Hj),we get a stair-
onvex set. When going from the extension avoiding Hi to the one avoiding
−Hi on the monotone path inside this stair-
onvex set, somewhere on the way we mustavoid both Hi and −Hi be
ause of Claim 4.3.It is easy to see that λ satis�es the 
onditions of Tu
ker's lemma and that we 
annothave an opposing in
lusion, thus it is somewhere unde�ned. No matter how we extend thisassignment, the number of ne
essary 
uts is always at most k− 1 and it has an extensionthat avoids all the Hi's be
ause of the previous 
laim. We 
an divide the rest of the beadssu
h that we stay in the 
losure of L and (moreover) if αi 6= 0 for all i, then we 
an evenstay in L. We are done.Of 
ourse the same proof works for a mu
h larger 
lass of fun
tions, instead of L, we
ould have omitted the integers 
lose to y = x3 or a d-dimensional subspa
e. In fa
t, wehave proved the following theorem.Theorem 4.8. If a stair-
onvex set S ⊂ Zk, that is symmetri
 to the origin, interse
tsevery integer a�ne subspa
e that is perpendi
ular to ej1 , . . . ejd

for some j1, . . . , jd, thenwe 
an split any ne
kla
e among two thieves with k − d 
uts su
h that there is an s ∈ Ssu
h that the number of i beads of the �rst thief minus the number of i beads of the se
ondthief is the 
losest integer to the ith 
oordinate of s whose parity equals the parity of ai.3Moreover, if ∀i and s ∈ S either s + ei ∈ S or s − ei ∈ S, then we 
an a
hieve thatthe point whose ith 
oordinate is the di�eren
e of the i beads lays in S.5 Remarks and a
knowledgmentI am thankful to Gábor Simonyi for his very useful advi
e and �nding several mistakesin the earlier versions of this paper. I am also thankful to Zoltán Király for early dis
ussions3If there are two su
h integers, then one of them.
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on the subjest and to Gábor Tardos for disproving one of my earlier 
onje
tures, that wouldhave stated that (p− 1)k 
uts are enough even if we demand that the thieves follow ea
hother in 
y
li
 order, eg. for p = 3, k = 2 the parts must belong to the 1., 2., 3., 1., 2. thief(where any part 
an be empty too). This suggests that the 
ombinatorial proof mightnot work for bigger p's, not even if we use Zp�Tu
ker's lemma or some other analogue.However, we 
annot resist to state another 
onje
ture that is stronger than the GeneralNe
kla
e Splitting Conje
ture.Conje
ture 5.1. (Strong Ne
kla
e Splitting Conje
ture) If p thieves want to split a ne
k-la
e with k kinds of beads su
h that the jth thief gets a
(j)
i of the ith kind where a

(j)
i ≥ ⌊ai/p⌋and ∑

j a
(j)
i = ai, then they 
an do so using at most (p − 1)k 
uts.Those who are familiar with the proof of the Ne
kla
e Splitting Theorem should notethat even if one 
an prove this 
onje
ture for prime p's, it does not imply automati
allythat it also holds for 
omposite p's as in that proof.Are these 
onje
tures true for at least p = 3?Is there a simple 
hara
terization for the sets S for whi
h it is true that we 
an splitany ne
kla
e among two thieves with k− d 
uts su
h that there is an s ∈ S su
h that thenumber of i beads of the �rst thief minus the number of i beads of the se
ond thief is the

ith 
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