
Combinatorial neklae splittingDömötör PálvölgyiEole Polytehnique Fédérale de Lausanne, Switzerlanddom�s.elte.huSubmitted: Jun 9, 2009; Aepted: Jun 24, 2009; Published: Jul 2, 2009Mathematis Subjet Classi�ation: 05A18,05D99,55M20AbstratWe give a new, ombinatorial proof for the neklae splitting problem for twothieves using only Tuker's lemma (a ombinatorial version of the Borsuk-Ulamtheorem). We show how this method an be applied to obtain a related reent resultof Simonyi and even generalize it.1 Neklae SplittingThis paper was inspired by the ombinatorial proof of Matou²ek [7℄ of the Lovász-Kneser theorem [6℄. He used Tuker's lemma [11℄ that was proved ombinatorially byFreund and Todd [4℄. A ombinatorial proof for a generalization of Tuker's lemma anbe found in a paper of Ziegler [12℄. We start by stating a version of this lemma and thenshow how it an be used to give a simple proof for the neklae splitting theorem.We denote the set {1, . . . , n} by [n] and let −S denote {−s : s ∈ S}, thus −[n] =
{−1, . . . ,−n}. For four subsets of [n], A1, B1, A2, B2 we say that the set-pair (A1, B1)is smaller than the set-pair (A2, B2) if A1 ⊂ A2 and B1 ⊂ B2 and at least one of theinlusions is strit. We denote this by (A1, B1) ⊂ (A2, B2). A family of set-pairs is said toform a hain, if any two members of the family are omparable.Lemma 1.1. (Otahedral Tuker's lemma, in [12℄ Lemma 4.1) If for any set-pair A, B ⊂
[n], A ∩ B = ∅, A ∪ B 6= ∅ we have a λ(A, B) ∈ ±[n − 1] olor, suh that λ(A, B) =
−λ(B, A), then there are two set-pairs, (A1, B1) and (A2, B2), suh that (A1, B1) ⊂
(A2, B2) and λ(A1, B1) = −λ(A2, B2).Two set-pairs for whih (A1, B1) ⊂ (A2, B2) and λ(A1, B1) = −λ(A2, B2) are said toform an opposing inlusion.
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In the neklae splitting problem, we have an open neklae with k types of beads,
ai beads of the ith kind and p thieves want to split it by using as few uts as possible,suh that eah one of them gets ⌊ai/p⌋ or ⌈ai/p⌉ beads of the ith kind. They are allowedto ut the neklae between any two beads and then divide the parts among themselvesarbitrarily. If the di�erent types of beads are after eah other, then it is easy to see that
(p − 1)k uts are neessary. That this number is always enough was proved for p = 2 byGoldberg and West [5℄. Later Alon and West [3℄ gave a simpler proof using the Borsuk-Ulam theorem. This was generalized to arbitrary p, eah kind having a multiple of pnumber of beads by Alon [1℄ and the following version is the result of Alon, Moshkovitzand Safra [2℄.Theorem 1.2. (Neklae Splitting Theorem) If p thieves want to split a neklae with kkinds of beads suh that eah of them gets ⌊ai/p⌋ or ⌈ai/p⌉ beads of the ith kind, then theyan do so using at most (p − 1)k uts.For another reent proof of this theorem see Meunier [8℄ (the proof is ombinatorialbut uses algebrai topologial notions).We onjeture that a generalization of this theorem might also be true. The general-ization is that we an deide for eah thief and eah kind if the thief should get more orless beads of that kind. (So the statement is stronger in the ase when p does not dividethe ai's.)Conjeture 1.3. (General Neklae Splitting Conjeture) If p thieves want to split aneklae with k kinds of beads suh that the jth thief gets a

(j)
i of the ith kind where a

(j)
i =

⌊ai/p⌋ or ⌈ai/p⌉ and ∑
j a

(j)
i = ai, then they an do so using at most (p − 1)k uts.We will give a diret, simple ombinatorial proof from Tuker's lemma to this onje-ture for the p = 2 ase in the next setion. (In fat for the p = 2 ase, this onjeturefollows easily from the previous theorem, this version is proved also in [9℄, but our proofmethod is quite di�erent.) To demonstrate the power of our method, in Setion 3 wereprove the result that appeared in a reent paper of Simonyi [10℄ following his idea butusing our method. Finally in Setion 4 we prove a generalization of it (Corollary 4.6) usingsome geometri observations about a property that we all stair-onvexity. Theorem 4.8at the end of that setion is our strongest result.2 Proof of the lassi neklae splitting theorem for twothievesBefore the proof we need a de�nition, the ore of the main idea.De�nition 2.1. For A∩B = ∅, A∪B = [n] de�ne |m(A, B)| as the number of alternationsbetween A and B when we are going from 1 to n and the sign of m(A, B) to be positiveif 1 ∈ A and negative if 1 ∈ B. For other set-pairs, de�ne it as maxabs{m(A′, B′) :

(A, B) ⊂ (A′, B′), A′ ∩ B′ = ∅, A′ ∪ B′ = [n]} where maxabs denotes the number with thelargest absolute value.
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Eg. if n = 5, A = {2}, B = ∅, then |m(A, B)| = 4 beause we an take A′ = {2, 4} and
B′ = {1, 3, 5}. Note that the sign of m(A, B) is well-de�ned beause whether 1 belongsto A′ or B′ is determined by A and B. Eg. m({2}, ∅) = −(n− 1), m({3}, {5, 6}) = n− 3,while m([n], ∅) = 0. Note that |m(A, B)| ≤ n − 1. Its onnetion to splitting neklaes isthat if we assoiate the beads of the neklae with [n] aording to their order, then thisnumber determines the maximum number of uts with whih we an provide a splittingof the neklae that lets the beads belonging to A go to the �rst thief, those in B to theseond, while the ownership of the rest does not matter. Using this funtion, we an proveConjeture 1.3 for p = 2.Theorem 2.2. (General Neklae Splitting for two thieves) If two thieves want to splita neklae with k kinds of beads suh that the jth thief gets a

(j)
i of the ith kind where

a
(j)
i = ⌊ai/2⌋ or ⌈ai/2⌉ and a

(1)
i + a

(2)
i = ai, then they an do so using at most k uts.Proof. Our goal is to give a λ oloring fot the use Tuker's lemma. Denote the types ofthe beads by the numbers from 1 through k. Assoiate the beads of the neklae with

[n] aording to their order. The �rst idea is that λ(A, B) = +1 if the number of the 1beads in A is more than a1/2, and it is −1 if the number of the 1 beads in B is morethan a1/2. If none of this happens, then λ(A, B) = +2 if the number of the 2 beads in Ais more than a2/2, and it is −2 if the number of the 2 beads in B is more than a2/2, et.This funtion is antipodal and it annot have an opposing inlusion (sine two disjointsets annot both have more than half of the beads of the same kind) but unfortunately itdoes not olor all the set-pairs. So we have to extend it.If |m(A, B)| ≥ k + 1, then let λ(A, B) = m(A, B) and if |m(A, B)| ≤ k, then letus keep our earlier de�nition, ie. λ(A, B) = +1 if the number of the 1 beads in A ismore than a1/2 et. Note that we annot have an opposing inlusion for a set-pair with
|λ(A, B)| ≥ k + 1, beause if we have an inlusion, then the extensions of the bigger set-pair of the inlusion are also extensions for the smaller set-pair of the inlusion, thus thesign of the bigger must be the same as the sign of the smaller if their absolute values arethe same. We have seen it earlier that no opposing inlusion an our for |λ(A, B)| ≤ k,thus using Tuker's lemma there must be an unolored set-pair. For this set-pair we musthave |m(A, B)| ≤ k. Thus we have an assignment where for every i, nobody has morethan ai/2 of the i beads and no matter how we expand this assignment, the number ofneessary uts is always at most k. Therefore we an divide the rest of the beads in anyway among the two thieves.3 Proof of Simonyi's resultTo demonstrate the power of our method, in this setion we reprove the result thatappeared in a reent paper of Simonyi [10℄.Theorem 3.1. If two thieves want to split a neklae with k kinds of beads, eah kindhaving an even number, and we are given two disjoint subsets of [k], D1 and D2, not both
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empty, then they an split the neklae using at most k−1 uts, suh that the distributionis either ompletely even or the jth thief gets more beads of type i if and only if i ∈ Dj.He used a lemma, whose ombinatorial equivalent is the following.Lemma 3.2. (Otahedral Tuker-Baon lemma) If for any set-pair A, B ⊂ [n], A ∩ B =
∅, A∪B 6= ∅ we have an ∅ 6= λ(A, B) ⊂ ±[n] olor set, suh that λ(A, B) = −λ(B, A) andif (A1, B1) ⊂ (A2, B2), then λ(A1, B1) ∩ −λ(A2, B2) = ∅1, then for any pair of disjointsubsets of [n], I and J , not both empty, there is a hain of set-pairs, {(Ah, Bh)} suh that
∪λ(Ah, Bh) = I ∪ −J .This lemma easily follows from the ontinuous version and we will anyhow prove thesame result without using this lemma, thus we omit its proof. Now we sketh how thislemma implies Simonyi's theorem using our method.Proof. The main idea is the same as in our previous proof, we de�ne a λ funtion to usethe Otahedral Tuker-Baon lemma. If m(A, B) ≥ k, then λ(A, B) = {m(A, B) + 1}, if
m(A, B) ≤ −k, then λ(A, B) = {m(A, B) − 1}. If |m(A, B)| < k, then +i ∈ λ(A, B) ifthe number of the i beads in A is more than ai/2, and −i ∈ λ(A, B) if the number of the ibeads in B is more than ai/2. This way λ(A, B) is indeed a subset of ±[n]. De�ne I = D1and J = D2 and apply the Otahedral Tuker-Baon lemma (if something is unolored,then there is a fair division with k − 1 uts and we are done). For the largest element ofthe hain that we get, we must have λ(A, B) = I ∪−J beause if someone already has themajority of the i beads in a smaller set, he must also have it in a larger set. Any extensionof this set has at most k − 1 uts thus it has an extension in whih the majority of eahtype of bead from I ∪ J goes to the respetive thief while the other types are dividedevenly.4 Proof of a generalizationTo prove the generalization of Simonyi's result, �rst we need some geometri observa-tions. Denote by ei the ith unit vetor of the standard basis of Rk.De�nition 4.1. We say that S ⊂ Zk is stair-onvex if between any two of its points p, qthere is a monotone path meaning that there exists a sequene, {p = r0, r1, . . . , rh = q} ⊂ Sand a suitable signing of the standard basis, ǫi = ±ei suh that for any j there is a i suhthat rj+1 − rj = ǫi.It is easy to see that the intersetion of a stair-onvex set with a line parallel to oneof the axes is always an interval of integers. The intersetion of a stair-onvex set with anaxis-parallel box is also a stair-onvex set.De�nition 4.2. For a set S ⊂ Zk, let S−

i = {z ∈ Zk|z /∈ S, ∃t ∈ N z + tei ∈ S} andsimilarly S+
i = {z ∈ Zk|z /∈ S, ∃t ∈ N z − tei ∈ S}.1This is the analogue of not having an opposing inlusion for this multiolored version
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Claim 4.3. If S is stair-onvex, then S−
i and S+

i are disjoint. The set S−
i ∪ S ∪ S+

i isalso stair-onvex, and if S is symmetri to the origin, then S−
i = −S+

i .This laim implies that the sets S [1] = S−
1 ∪ S ∪ S+

1 , S [2] = (S [1])−2 ∪ S [1] ∪ (S [1])+
2 , . . .,

S [k] = (S [k−1])−k ∪S [k−1] ∪ (S [k−1])+
k are all stair-onvex. It is lear that S [k] = Zk if S 6= ∅,moreover, already S [k−1] = Zk if S intersets every hyperplane of the form xk = i.Claim 4.4. If ℓ is a line passing through the origin, then L = {z ∈ Zk|∃p ∈ ℓ ||p−z||∞ <

1} is a stair-onvex set that is symmetri to the origin. Therefore L[i] is also a symmetristair-onvex set.Now we are ready to prove the following theorem whih gives a generalization ofSimonyi's result (Theorem 3.1).Theorem 4.5. Suppose two thieves want to split a neklae with k kinds of beads, andwe are given a sequene α1, . . . , αk, not all zero. Then there is a t ∈ R suh that they ansplit the neklae using at most k − 1 uts, suh that the number of i beads of the �rstthief minus the number of i beads of the seond thief is the losest integer to tαi whoseparity equals the parity of ai.2Moreover, if none of the αi's is zero, then for ℓ = {t · α} and L = {z ∈ Zk|∃p ∈
ℓ ||p − z||∞ < 1} we an ahieve that the point whose ith oordinate is the di�erene ofthe i beads lays in L.Corollary 4.6. Suppose two thieves want to split a neklae with k kinds of beads, eahkind having an even number, and we are given two disjoint subsets of [k], D1 and D2, notboth empty. Then there is a d ∈ N, suh that they an split the neklae using at most
k−1 uts, suh that the number of i beads of the �rst thief is ai/2+d for i ∈ D1, ai/2−dfor i ∈ D2 and ai/2 for i /∈ D1 ∪ D2.Proof. (of the orollary.) Choose αi = 1 for i ∈ D1, αi = −1 for i ∈ D2 and αi = 1/2nfor i /∈ D1 ∪ D2. The theorem gives us a z ∈ Zk and a t ∈ R suh that ||t · α − z||∞ < 1.Sine every ai is even, the di�erenes in the number of beads, zi, will be also even. For
i, j ∈ D1 we have |zi − zj | ≤ |zi − t|+ |t− zj | < 1 + 1, thus zi = zj . For i ∈ D1, j ∈ D2 wehave |zi + zj | ≤ |zi − t| + |t + zj | < 1 + 1, thus zi = −zj . Sine zi ≤ n, we also know that
t < n + 1. For i /∈ D1 ∪ D2, 1 > |zi − t/2n| > |zi| − |(n + 1)/2n| and the parity implies
zi = 0. This proves the statement (after a possible swap of the r�les of the thieves.)Proof. (of the theorem.) The proof will be very similar to the proof of the normal neklaesplitting theorem. Let ℓ be {t · α} and L = {z ∈ Zk|∃p ∈ ℓ ||p − z||∞ < 1}. Then
L, L−

1 , L+
1 , . . . , (L[k−2])−k−1, (L

[k−2])+
k−1 give a partitioning of the spae (unless αk = 0 butwe an suppose without loss of generality that this is not the ase). For simpliity, de�ne

Hi = (L[k−i−1])+
k−i and −Hi = (L[k−i−1])−k−i as the only property that we will use is that

Zk \ ∪j<i(Hj ∪ −Hj) is stair-onvex. (And de�ne L[0] = L, so that Hk−1 = L+
1 .)2If there are two suh integers, then one of them.
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For any set-pair (A, B) we de�ne a mapping ϕ to Zk where ϕi equals the number of ibeads in A minus the number of i beads in B. We say that (A, B) avoids S if ϕ(A, B) /∈ S.Now we an de�ne λ.If |m(A, B)| ≥ k, then λ(A, B) = m(A, B). If |m(A, B)| < k, then we de�ne λ asfollows. If the ϕ of every extension of (A, B) is in H1, then λ(A, B) = +1 and if everyextension is in −H1, then λ(A, B) = −1. If the ϕ of every extension of (A, B) that avoids
H1 ∪ −H1, is in H2, then λ(A, B) = +2 and if every suh extension is in −H2, then
λ(A, B) = −2. Generally, we de�ne λ(A, B) = ±i if the ϕ of every extension of (A, B)that avoids ∪j<i(Hj ∪ −Hj), is in ±Hi.Claim 4.7. If |m(A, B)| < k and |λ(A, B)| � i, then it has an extension that avoids
∪j≤i(Hj ∪ −Hj).Proof. By indution, we an suppose that (A, B) has an extension that avoids ∪j<i(Hj ∪
−Hj)∪Hi and another that avoids ∪j<i(Hj∪−Hj)∪−Hi. Sine Zk\∪j<i(Hj∪−Hj) is stair-onvex, between any two of its points there is a monotone path. The ϕ's of the possibleextensions of (A, B) form a box in Zk, if we interset this box with Zk \ ∪j<i(Hj ∪−Hj),we get a stair-onvex set. When going from the extension avoiding Hi to the one avoiding
−Hi on the monotone path inside this stair-onvex set, somewhere on the way we mustavoid both Hi and −Hi beause of Claim 4.3.It is easy to see that λ satis�es the onditions of Tuker's lemma and that we annothave an opposing inlusion, thus it is somewhere unde�ned. No matter how we extend thisassignment, the number of neessary uts is always at most k− 1 and it has an extensionthat avoids all the Hi's beause of the previous laim. We an divide the rest of the beadssuh that we stay in the losure of L and (moreover) if αi 6= 0 for all i, then we an evenstay in L. We are done.Of ourse the same proof works for a muh larger lass of funtions, instead of L, weould have omitted the integers lose to y = x3 or a d-dimensional subspae. In fat, wehave proved the following theorem.Theorem 4.8. If a stair-onvex set S ⊂ Zk, that is symmetri to the origin, intersetsevery integer a�ne subspae that is perpendiular to ej1 , . . . ejd

for some j1, . . . , jd, thenwe an split any neklae among two thieves with k − d uts suh that there is an s ∈ Ssuh that the number of i beads of the �rst thief minus the number of i beads of the seondthief is the losest integer to the ith oordinate of s whose parity equals the parity of ai.3Moreover, if ∀i and s ∈ S either s + ei ∈ S or s − ei ∈ S, then we an ahieve thatthe point whose ith oordinate is the di�erene of the i beads lays in S.5 Remarks and aknowledgmentI am thankful to Gábor Simonyi for his very useful advie and �nding several mistakesin the earlier versions of this paper. I am also thankful to Zoltán Király for early disussions3If there are two suh integers, then one of them.
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on the subjest and to Gábor Tardos for disproving one of my earlier onjetures, that wouldhave stated that (p− 1)k uts are enough even if we demand that the thieves follow eahother in yli order, eg. for p = 3, k = 2 the parts must belong to the 1., 2., 3., 1., 2. thief(where any part an be empty too). This suggests that the ombinatorial proof mightnot work for bigger p's, not even if we use Zp�Tuker's lemma or some other analogue.However, we annot resist to state another onjeture that is stronger than the GeneralNeklae Splitting Conjeture.Conjeture 5.1. (Strong Neklae Splitting Conjeture) If p thieves want to split a nek-lae with k kinds of beads suh that the jth thief gets a
(j)
i of the ith kind where a

(j)
i ≥ ⌊ai/p⌋and ∑

j a
(j)
i = ai, then they an do so using at most (p − 1)k uts.Those who are familiar with the proof of the Neklae Splitting Theorem should notethat even if one an prove this onjeture for prime p's, it does not imply automatiallythat it also holds for omposite p's as in that proof.Are these onjetures true for at least p = 3?Is there a simple haraterization for the sets S for whih it is true that we an splitany neklae among two thieves with k− d uts suh that there is an s ∈ S suh that thenumber of i beads of the �rst thief minus the number of i beads of the seond thief is the
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