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Abstract

We give a new, combinatorial proof for the necklace splitting problem for two
thieves using only Tucker’s lemma (a combinatorial version of the Borsuk-Ulam
theorem). We show how this method can be applied to obtain a related recent result
of Simonyi and even generalize it.

1 Necklace Splitting

This paper was inspired by the combinatorial proof of Matousek |7| of the Lovasz-
Kneser theorem [6]. He used Tucker’s lemma [11] that was proved combinatorially by
Freund and Todd [4]. A combinatorial proof for a generalization of Tucker’s lemma can
be found in a paper of Ziegler |[12|. We start by stating a version of this lemma and then
show how it can be used to give a simple proof for the necklace splitting theorem.

We denote the set {1,...,n} by [n] and let —S denote {—s : s € S}, thus —[n] =
{=1,...,—n}. For four subsets of [n], A;, B1, Az, By we say that the set-pair (A;, By)
is smaller than the set-pair (As, By) if Ay C Ay and By C By and at least one of the
inclusions is strict. We denote this by (A, By) C (A, Bs). A family of set-pairs is said to
form a chain, if any two members of the family are comparable.

Lemma 1.1. (Octahedral Tucker’s lemma, in [12] Lemma 4.1) If for any set-pair A, B C
n],ANB =0,AUB # 0 we have a A(A,B) € £[n — 1] color, such that \(A, B) =
—A(B, A), then there are two set-pairs, (Ay, By) and (As, Bs), such that (A, By) C
(Ag, Ba) and A(Ay, By) = —A(Ag, By).

Two set-pairs for which (Ay, By) C (Ay, By) and A(Ay, By) = —A(Aa, By) are said to
form an opposing inclusion.
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In the necklace splitting problem, we have an open necklace with k types of beads,
a; beads of the i kind and p thieves want to split it by using as few cuts as possible,
such that each one of them gets |a;/p| or [a;/p] beads of the i kind. They are allowed
to cut the necklace between any two beads and then divide the parts among themselves
arbitrarily. If the different types of beads are after each other, then it is easy to see that
(p — 1)k cuts are necessary. That this number is always enough was proved for p = 2 by
Goldberg and West [5]. Later Alon and West |3] gave a simpler proof using the Borsuk-
Ulam theorem. This was generalized to arbitrary p, each kind having a multiple of p
number of beads by Alon [1] and the following version is the result of Alon, Moshkovitz
and Safra [2].

Theorem 1.2. (Necklace Splitting Theorem) If p thieves want to split a necklace with k
kinds of beads such that each of them gets |a;/p] or [a;/p| beads of the it kind, then they
can do so using at most (p — 1)k cuts.

For another recent proof of this theorem see Meunier [8] (the proof is combinatorial
but uses algebraic topological notions).

We conjecture that a generalization of this theorem might also be true. The general-
ization is that we can decide for each thief and each kind if the thief should get more or
less beads of that kind. (So the statement is stronger in the case when p does not divide
the a;’s.)

Conjecture 1.3. (General Necklace Splitting Congjecture) If p thieves want to split a
necklace with k kinds of beads such that the j™ thief gets al(-j) of the i'" kind where agj) =
lai/p| or [ai/p] and }_; agj) = a;, then they can do so using at most (p — 1)k cuts.

We will give a direct, simple combinatorial proof from Tucker’s lemma to this conjec-
ture for the p = 2 case in the next section. (In fact for the p = 2 case, this conjecture
follows easily from the previous theorem, this version is proved also in [9], but our proof
method is quite different.) To demonstrate the power of our method, in Section 3 we
reprove the result that appeared in a recent paper of Simonyi [10] following his idea but
using our method. Finally in Section 4 we prove a generalization of it (Corollary 4.6) using
some geometric observations about a property that we call stair-convexity. Theorem 4.8
at the end of that section is our strongest result.

2 Proof of the classic necklace splitting theorem for two
thieves

Before the proof we need a definition, the core of the main idea.

Definition 2.1. For ANB = (), AUB = [n] define |m(A, B)| as the number of alternations
between A and B when we are going from 1 to n and the sign of m(A, B) to be positive
if 1 € A and negative if 1 € B. For other set-pairs, define it as mazabs{m(A’', B') :
(A,B) Cc (A, B"),AnB =0,A"UB = [n|} where maxabs denotes the number with the
largest absolute value.
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Eg.if n =5, A = {2}, B =0, then |m(A, B)| = 4 because we can take A’ = {2,4} and
B’ ={1,3,5}. Note that the sign of m(A, B) is well-defined because whether 1 belongs
to A" or B’ is determined by A and B. Eg. m({2},0) = —(n — 1), m({3},{5,6}) =n — 3,
while m([n],®) = 0. Note that |m(A, B)| < n — 1. Its connection to splitting necklaces is
that if we associate the beads of the necklace with [n] according to their order, then this
number determines the maximum number of cuts with which we can provide a splitting
of the necklace that lets the beads belonging to A go to the first thief, those in B to the
second, while the ownership of the rest does not matter. Using this function, we can prove
Conjecture 1.3 for p = 2.

Theorem 2.2. (General Necklace Splitting for two thieves) If two thieves want to split

a necklace with k kinds of beads such that the j™ thief gets al(-j) of the i" kind where
agj) = |a;/2] or [a;/2] and agl) + af) = a;, then they can do so using at most k cuts.
Proof. Our goal is to give a A coloring fot the use Tucker’s lemma. Denote the types of
the beads by the numbers from 1 through k. Associate the beads of the necklace with
[n] according to their order. The first idea is that A(A, B) = +1 if the number of the 1
beads in A is more than a;/2, and it is —1 if the number of the 1 beads in B is more
than a;/2. If none of this happens, then A\(A, B) = +2 if the number of the 2 beads in A
is more than as/2, and it is —2 if the number of the 2 beads in B is more than as/2, etc.
This function is antipodal and it cannot have an opposing inclusion (since two disjoint
sets cannot both have more than half of the beads of the same kind) but unfortunately it
does not color all the set-pairs. So we have to extend it.

If /m(A,B)| > k + 1, then let \M(A, B) = m(A, B) and if |m(A, B)| < k, then let
us keep our earlier definition, ie. A(A, B) = +1 if the number of the 1 beads in A is
more than a;/2 etc. Note that we cannot have an opposing inclusion for a set-pair with
IA(A, B)| > k + 1, because if we have an inclusion, then the extensions of the bigger set-
pair of the inclusion are also extensions for the smaller set-pair of the inclusion, thus the
sign of the bigger must be the same as the sign of the smaller if their absolute values are
the same. We have seen it earlier that no opposing inclusion can occur for |A\(A, B)| < k,
thus using Tucker’s lemma there must be an uncolored set-pair. For this set-pair we must
have |m(A, B)| < k. Thus we have an assignment where for every i, nobody has more
than a;/2 of the i beads and no matter how we expand this assignment, the number of
necessary cuts is always at most k. Therefore we can divide the rest of the beads in any
way among the two thieves. O

3 Proof of Simonyi’s result

To demonstrate the power of our method, in this section we reprove the result that
appeared in a recent paper of Simonyi |10].

Theorem 3.1. If two thieves want to split a necklace with k kinds of beads, each kind
having an even number, and we are given two disjoint subsets of [k|, D1 and Ds, not both
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empty, then they can split the necklace using at most k —1 cuts, such that the distribution
is either completely even or the j™ thief gets more beads of type i if and only if i € D;.

He used a lemma, whose combinatorial equivalent is the following.

Lemma 3.2. (Octahedral Tucker-Bacon lemma) If for any set-pair A, B C [n], AN B =
0, AUB # 0 we have an ) # A(A, B) C £[n] color set, such that A\(A, B) = —\(B, A) and
if (A1, By) C (Ag, By), then A(Ay, B1) N —\(Ay, By) = 0, then for any pair of disjoint
subsets of [n], I and J, not both empty, there is a chain of set-pairs, {(An, By)} such that
U)\(Ah, Bh) =TuUu-—J.

This lemma easily follows from the continuous version and we will anyhow prove the
same result without using this lemma, thus we omit its proof. Now we sketch how this
lemma implies Simonyi’s theorem using our method.

Proof. The main idea is the same as in our previous proof, we define a A\ function to use
the Octahedral Tucker-Bacon lemma. If m(A, B) > k, then A(A4, B) = {m(A, B) + 1}, if
m(A, B) < —k, then A\(A, B) = {m(A, B) — 1}. If |m(A, B)| < k, then +i € A\(A, B) if
the number of the i beads in A is more than a;/2, and —i € A(A, B) if the number of the i
beads in B is more than a;/2. This way A(A, B) is indeed a subset of +[n|. Define I = D,
and J = D, and apply the Octahedral Tucker-Bacon lemma (if something is uncolored,
then there is a fair division with & — 1 cuts and we are done). For the largest element of
the chain that we get, we must have \(A, B) = I U—J because if someone already has the
majority of the ¢ beads in a smaller set, he must also have it in a larger set. Any extension
of this set has at most £ — 1 cuts thus it has an extension in which the majority of each
type of bead from [ U J goes to the respective thief while the other types are divided
evenly. O

4 Proof of a generalization

To prove the generalization of Simonyi’s result, first we need some geometric observa-
tions. Denote by e; the i* unit vector of the standard basis of RF.

Definition 4.1. We say that S C ZF is stair-convez if between any two of its points p,q
there is a monotone path meaning that there exists a sequence, {p = ro,71,...,7n =q} C S
and a suitable signing of the standard basis, €; = +e; such that for any j there is a i such
that rjp1 —1rj = €.

It is easy to see that the intersection of a stair-convex set with a line parallel to one
of the axes is always an interval of integers. The intersection of a stair-convex set with an
axis-parallel box is also a stair-convex set.

Definition 4.2. For a set S C ZF, let S; = {2 € Z¥|z ¢ S,3t € N 2z + te; € S} and
similarly S;7 = {2 € Z*|2 ¢ S,3t € N 2z — te; € S}.

! This is the analogue of not having an opposing inclusion for this multicolored version
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Claim 4.3. If S is stair-conver, then S; and S; are disjoint. The set S; U S U S;" is
also stair-convex, and if S is symmetric to the origin, then S; = —S;.

U

This claim implies that the sets S = S uSuU ST, SB = (sth; u sty (sthy, ...,

Sl = (Sh=1h U Sty (S are all stair-convex. It is clear that Sl = ZF if S #£ 0,
moreover, already S~ = ZF if S intersects every hyperplane of the form z; = i.

Claim 4.4. If( is a line passing through the origin, then L = {z € Z¥|3p € £ ||p— 2||o <
1} is a stair-conver set that is symmetric to the origin. Therefore L is also a symmetric
stair-conver set.

O
Now we are ready to prove the following theorem which gives a generalization of
Simonyi’s result (Theorem 3.1).

Theorem 4.5. Suppose two thieves want to split a necklace with k kinds of beads, and
we are given a SeqUENCe v, . . ., ax, not all zero. Then there is a t € R such that they can
split the necklace using at most k — 1 cuts, such that the number of v beads of the first
thief minus the number of i beads of the second thief is the closest integer to ta,; whose
parity equals the parity of a;.>

Moreover, if none of the o;’s is zero, then for £ = {t-a} and L = {z € Z¥|3p €
{||lp — 2|l < 1} we can achieve that the point whose i" coordinate is the difference of
the v beads lays in L.

Corollary 4.6. Suppose two thieves want to split a necklace with k kinds of beads, each
kind having an even number, and we are given two disjoint subsets of [k], Dy and Ds, not
both empty. Then there is a d € N, such that they can split the necklace using at most
k—1 cuts, such that the number of i beads of the first thief is a;/2+d fori € Dy, a;/2—d
for i € Dy and a;/2 for i ¢ DU Ds.

Proof. (of the corollary.) Choose o; = 1 for i € Dy, oy = —1 for i € Dy and «; = 1/2n
for i ¢ Dy U Dy. The theorem gives us a z € Z* and a t € R such that ||t - a — z||o < 1.
Since every a; is even, the differences in the number of beads, z;, will be also even. For
i,7 € Dy we have |z; — z;| < |z —t|+ |t — 2j] <141, thus 2, = 2z;. For i € Dy,j € Dy we
have |z; + z;| < |z —t| + |t + z;] < 141, thus z; = —z;. Since z; < n, we also know that
t <n+1. Fori ¢ DyUDy 1> |z —t/2n] > |zi] —|(n + 1)/2n| and the parity implies
z; = 0. This proves the statement (after a possible swap of the roles of the thieves.) [

Proof. (of the theorem.) The proof will be very similar to the proof of the normal necklace
splitting theorem. Let ¢ be {t-a} and L = {z € ZF|Fp € (||p — 2||s« < 1}. Then
L,Ly, L. (LF=2) (L2 | give a partitioning of the space (unless ay = 0 but
we can suppose without loss of generality that this is not the case). For simplicity, define
H; = (Lk==1)F and —H; = (L*==1)," . as the only property that we will use is that
ZF\ Uj<i(H; U —H;) is stair-convex. (And define LI% = L, so that Hy,_, = L} .)

2If there are two such integers, then one of them.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R79 )



For any set-pair (A, B) we define a mapping ¢ to ZF where ; equals the number of i
beads in A minus the number of ¢ beads in B. We say that (A, B) avoids S if (A, B) ¢ S.
Now we can define \.

If /m(A, B)| > k, then A(A, B) = m(A, B). If |m(A, B)| < k, then we define \ as
follows. If the ¢ of every extension of (A, B) is in Hy, then A(A, B) = +1 and if every
extension is in —Hy, then A(A, B) = —1. If the ¢ of every extension of (A, B) that avoids
H, U —Hy, is in H,, then A(A, B) = 42 and if every such extension is in —H,, then
A(A, B) = —2. Generally, we define \(A, B) = =i if the ¢ of every extension of (A, B)
that avoids U;;(H; U —H;), is in £H,.

Claim 4.7. If Im(A, B)| < k and |X(A, B)| £ i, then it has an extension that avoids
Uj<i(H; U —H;).

Proof. By induction, we can suppose that (A, B) has an extension that avoids U;;(H; U
—H;)UH,; and another that avoids U;;(H;U—H,;)U—H;. Since Z*\ U, ;(H;U—H;) is stair-
convex, between any two of its points there is a monotone path. The ’s of the possible
extensions of (A, B) form a box in Z*, if we intersect this box with Z* \ U;-;(H; U —H,),
we get a stair-convex set. When going from the extension avoiding H; to the one avoiding
—H; on the monotone path inside this stair-convex set, somewhere on the way we must
avoid both H; and —H; because of Claim 4.3. OJ

It is easy to see that \ satisfies the conditions of Tucker’s lemma and that we cannot
have an opposing inclusion, thus it is somewhere undefined. No matter how we extend this
assignment, the number of necessary cuts is always at most £ — 1 and it has an extension
that avoids all the H;’s because of the previous claim. We can divide the rest of the beads
such that we stay in the closure of L and (moreover) if a; # 0 for all 4, then we can even
stay in L. We are done. O

Of course the same proof works for a much larger class of functions, instead of L, we
could have omitted the integers close to y = 2% or a d-dimensional subspace. In fact, we
have proved the following theorem.

Theorem 4.8. If a stair-convex set S C ZF, that is symmetric to the origin, intersects
every integer affine subspace that is perpendicular to e;, ,...e;, for some ji,...,Jq, then
we can split any necklace among two thieves with k — d cuts such that there is an s € S
such that the number of i beads of the first thief minus the number of i beads of the second
thief is the closest integer to the it coordinate of s whose parity equals the parity of a;.>

Moreover, if Vi and s € S either s+¢e; € S or s —e; € S, then we can achieve that

the point whose i coordinate is the difference of the i beads lays in S.

5 Remarks and acknowledgment

[ am thankful to Gabor Simonyi for his very useful advice and finding several mistakes
in the earlier versions of this paper. I am also thankful to Zoltan Kiraly for early discussions

31f there are two such integers, then one of them.
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on the subjest and to Gabor Tardos for disproving one of my earlier conjectures, that would
have stated that (p — 1)k cuts are enough even if we demand that the thieves follow each
other in cyclic order, eg. for p = 3, k = 2 the parts must belong to the 1.,2.,3.,1., 2. thief
(where any part can be empty too). This suggests that the combinatorial proof might
not work for bigger p’s, not even if we use Z, Tucker’s lemma or some other analogue.
However, we cannot resist to state another conjecture that is stronger than the General
Necklace Splitting Conjecture.

Conjecture 5.1. (Strong Necklace Splitting Congecture) If p thieves want to split a neck-
lace with k kinds of beads such that the j™ thief gets al(.j) of the it kind where al(.j) > |a;/p]
and Zj agj) = a;, then they can do so using at most (p — 1)k cuts.

Those who are familiar with the proof of the Necklace Splitting Theorem should note
that even if one can prove this conjecture for prime p’s, it does not imply automatically
that it also holds for composite p’s as in that proof.

Are these conjectures true for at least p = 37

Is there a simple characterization for the sets S for which it is true that we can split
any necklace among two thieves with k£ — d cuts such that there is an s € S such that the
number of ¢ beads of the first thief minus the number of ¢ beads of the second thief is the
it" coordinate of s?
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