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Abstract

The Laplacian spread of a graph is defined to be the difference between the
largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the
graph. In this paper, we investigate Laplacian spread of graphs, and prove that
there exist exactly five types of tricyclic graphs with maximum Laplacian spread
among all tricyclic graphs of fixed order.

1 Introduction

In this paper, we consider only simple undirected graphs. Let G = (V, E) be a graph with
vertex set V = V (G) = {v1, v2, ..., vn} and edge set E = E(G). The adjacency matrix of
the graph G is defined to be a matrix A = A(G) = [aij] of order n, where aij = 1 if vi is
adjacent to vj , and aij = 0 otherwise. The spectrum of G can be denoted by

S(G) = (λ1(G), λ2(G), ..., λn(G)),

where λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) are the eigenvalues of A(G) arranged in weakly
decreasing order. The spread of graph G is defined as SA(G) = λ1(G)−λn(G). Generally,
the spread of a square complex matrix M is defined to be s(M) = maxi,j |λi − λj|, where
the maximum is taken over all pairs of eigenvalues of M . There have been some studies
on the spread of an arbitrary matrix [8, 15, 17, 18].

Recently, the spread of a graph has received much attention. In [16], Petrović deter-
mines all minimal graphs whose spread do not exceed 4. In [6], Gregory, Hershkowitz and
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Kirkland present some lower and upper bounds for the spread of a graph. They show
that the path is the unique graph with minimum spread among connected graphs of given
order. However, the graph(s) with maximum spread is still unknown, and some conjec-
tures are presented in their paper. In [10], Li, Zhang and Zhou determine the unique
graph with maximum spread among all unicyclic graphs with given order not less than
18, which is obtained from a star by adding an edge between two pendant vertices. In
[11] Bolian Liu and Muhuo Liu obtain some new lower and upper bounds for the spread
of a graph, which are some improvements of Gregory’s bound on the spread for graphs
with additional restrictions.

Here we consider another version of spread of a graph, i.e. the Laplacian spread of a
graph, which is defined as follows. Let G be a graph as above. The Laplacian matrix of
the graph G is L(G) = D(G) − A(G), where D(G) =diag(d(v1), d(v2), ..., d(vn)) denotes
the diagonal matrix of vertex degrees of G, and d(v) denotes the degree of the vertex v

of G. The Laplacian spectrum of G can be denoted by

SL(G) = (µ1(G), µ2(G), ..., µn(G)),

where µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) are the eigenvalues of L(G) arranged in weakly
decreasing order. We define the Laplacian spread of the graph G as SL(G) = µ1(G) −
µn−1(G). Note that in the definition we consider the largest eigenvalue and the second
smallest eigenvalue, as the smallest eigenvalue always equals zero.

Recently, the Laplacian spread of a graph has also received much attention. Yizheng
Fan et al. have shown that among all trees of fixed order, the star is the unique one
with maximum Laplacian spread and the path is the unique one with the minimum
Laplacian spread [5]; among all unicyclic graphs of fixed order, the unique unicyclic graph
with maximum Laplacian spread is obtained from a star by adding an edge between two
pendant vertices [2]; and among all bicyclic graphs of fixed order, the only two bicyclic
graphs with maximum Laplacian spread are obtained from a star by adding two incident
edges and by adding two nonincident edges between the pendant vertices of the star,
respectively [4].

A tricyclic graph is a connected graph in which the number of edges equals the number
of vertices plus two. In this paper, we study the Laplacian spread of tricyclic graphs and
determine that there are only five types of tricyclic graphs with maximum Laplacian
spread among all tricyclic graphs of fixed order.

2 Preliminaries

In this section, we first introduce some preliminaries, which are needed in the following
proofs. Let G be a graph and let v be a vertex of G. The neighborhood of v in G is
denoted by N(v), i.e. N(v) = {w : wv ∈ E(G)}. Denote by ∆(G) the maximum degree
of all vertices of a graph G.

Lemma 2.1 [1] Let G be a connected graph of order n ≥ 2. Then

µ1(G) ≤ n,
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with equality if and only if the complement graph of G is disconnected.

Lemma 2.2 [3] Let G be a connected graph with vertex set {v1, v2, ..., vn}(n ≥ 2). Then

µ1(G) ≤ max{d(vi) + d(vj) − |N(vi) ∩ N(vj)| : vivj ∈ E(G)}.

Lemma 2.3 [12] Let G be a connected graph with vertex set {v1, v2, ..., vn}(n ≥ 2). Then

µ1(G) ≤ max{d(vi) + m(vi) : vi ∈ V (G)},

where m(vi) =

P

vj∈N(vi)
d(vj )

d(vi)
, the average of the degrees of the vertices adjacent to vi.

Lemma 2.4 [7] Let G be a graph of order n ≥ 2 containing at least one edge. Then

µ1(G) ≥ ∆(G) + 1.

If G is connected, then the equality holds if and only if ∆(G) = n − 1.

Lemma 2.5 [9] Let G be a connected graph of order n with a cutpoint v. Then µn−1(G) ≤
1, with equality if and only if v is adjacent to every vertex of G.

Lemma 2.6 Let G be a connected graph of order n ≥ 3 with two pendant vertices u,v
adjacent to a common vertex w. Then

SL(G + uv) ≤ SL(G).

Proof. From the Corollary 3.9 of [13], we can get that 1 is in SL(G) and SL(G + uv) is
SL(G)\{1} ∪ {3}. Since the largest eigenvalue in SL(G) is at least △(G) + 1 ≥ 3, the
result follows.

3 Main Results

We introduce nineteen tricyclic graphs of order n in Figure 1: the graphs G1(s; n), s ≥ 0;
G2(r, s; n), r ≥ 1, s ≥ 0; G3(r, s; n), r ≥ 0, s ≥ 0; G4(r, s; n), r ≥ 0, s ≥ 0; G5(r, s; n),
s ≥ r ≥ 0; G6(r, s; n), r ≥ 1, s ≥ 1; G7(r, s; n), s ≥ r ≥ 1; G8(r, s; n), r ≥ 0, s ≥ 0;
G9(r, s; n), r ≥ 0, s ≥ 0; G10(r, s; n), s ≥ r ≥ 0; G11(r, s; n), r ≥ 0, s ≥ 0; G12(r, s; n),
r ≥ 0, s ≥ 0; G13(r, s; n), r ≥ 0, s ≥ 0; G14(r, s; n), r ≥ 1, s ≥ 0; G15(r, s; n), s ≥ r ≥ 0;
G16(r, s; n), s ≥ r ≥ 0; G17(r, s; n), s ≥ r ≥ 1; G18(r, s; n), s ≥ r ≥ 0; G19(r, s; n),
r ≥ 0, s ≥ 1. Here r, s are nonnegative integers, which are respectively the number of
pendant vertices adjacent to some vertices of the related graphs.

Lemma 2.7 Let G be any of the graphs G1(n − 7; n), n ≥ 7; G3(0, n − 6; n), n ≥ 6;
G4(0, n − 5; n), n ≥ 6; G8(0, n − 5; n), n ≥ 6; and G18(0, n − 4; n), n ≥ 5. Then

SL(G) = n − 1.

Proof. By Lemma 2.4 and Lemma 2.5, we can get the result easily.
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Figure 1: Nineteen tricyclic graphs on n vertices.

In the following, we will prove that the graphs G1(n−7; n), n ≥ 7; G3(0, n−6; n), n ≥ 6;
G4(0, n−5; n), n ≥ 6; G8(0, n−5; n), n ≥ 6; and G18(0, n−4; n), n ≥ 4 are the only tricyclic
ones with maximum Laplacian spread. We first narrow down the possibility of the tricyclic
graphs with maximum Laplacian spread.

Lemma 2.8 Let G be a connected tricyclic graph with a triangle attached at a single
vertex. Then SL(G) ≤ n− 1, the equality holds if and only if G is G1(n− 7; n), n ≥ 7 or
G3(0, n − 6; n), n ≥ 6.

Proof. Suppose that the graph G has a triangle uvw attached at a single vertex w (see
Figure 2). By Lemma 2.6, SL(G) ≤ SL(G − uv). In addition, by Theorem 2.16 of
[4] (that is, among all bicyclic graphs of fixed order, the only two bicyclic graphs with
maximum Laplacian spread are obtained from a star by adding two incident edges and
by adding two nonincident edges between the pendant vertices of the star, respectively),
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SL(G−uv) ≤ n−1. Then SL(G) ≤ SL(G−uv) ≤ n−1. Moreover, if there exist such a
graph G with SL(G) = n−1, then SL(G−uv) = n−1 and so G−uv (and consequently,
G) must have a vertex of degree n − 1 (again, by Theorem 2.16 of [4]). Furthermore, by
Lemma 2.7, SL(G1(n − 7; n)) = n − 1, n ≥ 7 and SL(G3(0, n − 6; n)) = n − 1, n ≥ 6.
The result follows.

 u  v

 w

 H

 u  v

 w

 H

 uvG − G

Figure 2

Lemma 2.9 Let G be one with maximum Laplacian spread of all tricyclic graphs of
order n ≥ 11. Then G is among the graphs G1(n − 7; n), G2(1, n − 7; n), G3(0, n − 6; n),
G3(1, n − 7; n), G4(0, n − 5; n), G4(1, n − 6; n), G5(0, n − 5; n), G6(1, n − 6; n), G7(1, n −
6; n), G8(0, n − 5; n), G8(1, n − 6; n), G9(0, n − 7; n), G11(0, n − 6; n), G12(0, n − 6; n),
G18(0, n − 4; n), G18(1, n − 5; n), G19(n − 6, 1; n).

Proof. Let vivj be an edge of G. Then

d(vi) + d(vj) − |N(vi) ∩ N(vj)| = |N(vi) ∪ N(vj)| ≤ n,

with equality holds if and only if vivj is adjacent to every vertex of G. Therefore, if G

has no edge that is adjacent to every vertex of G, then by Lemma 2.2, µ1(G) ≤ n − 1
and hence SL(G) = µ1(G) − µn−1(G) < n − 1 as µn−1(G) > 0. In addition, if G is a
tricyclic graph with a triangle attached at a single vertex but not the graphs G1(n− 7; n)
and G3(0, n − 6; n), then by Lemma 2.8, SL(G) < n − 1. However, by Lemma 2.7,
SL(G1(n − 7; n)) = SL(G3(0, n − 6; n)) = SL(G4(0, n − 5; n)) = SL(G8(0, n − 5; n)) =
SL(G18(0, n − 4; n)) = n − 1. So G must be one graph in Figure 1 for some r or s.

For the graph G2(r, s; n) of Figure 1 with 1 ≤ r ≤ n − 6, 0 ≤ s ≤ n − 7, by Lemma
2.3,

µ1(G2(r, s; n)) ≤ max{r + 1 +
n − 1

r + 1
, s + 5 +

n + 5

s + 5
}.

For n ≥ 11, s ≤ n − 8 and an arbitrary r ≥ 1,

r + 1 +
n − 1

r + 1
≤ max{2 +

n − 1

2
, n − 5 +

n − 1

n − 5
} ≤ n − 1,

s + 5 +
n + 5

s + 5
≤ max{5 +

n + 5

5
, n − 3 +

n + 5

n − 3
} ≤ n − 1,

and hence µ1(G2(r, s; n)) ≤ n − 1, SL(G2(r, s; n)) < n − 1 as µn−1(G) > 0.
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For the graph G3(r, s; n) of Figure 1 with 0 ≤ r ≤ n − 6, 0 ≤ s ≤ n − 6, by Lemma
2.3,

µ1(G3(r, s; n)) ≤ max{r + 2 +
n + 1

r + 2
, s + 5 +

n + 5

s + 5
}.

For n ≥ 11, s ≤ n − 8 and an arbitrary r,

r + 2 +
n + 1

r + 2
≤ max{2 +

n + 1

2
, n − 4 +

n + 1

n − 4
} ≤ n − 1,

s + 5 +
n + 5

s + 5
≤ max{5 +

n + 5

5
, n − 3 +

n + 5

n − 3
} ≤ n − 1,

and hence µ1(G3(r, s; n)) ≤ n − 1, SL(G3(r, s; n)) < n − 1 as µn−1(G) > 0.

For the graph G4(r, s; n) of Figure 1 with 0 ≤ r ≤ n − 5, 0 ≤ s ≤ n − 5, by Lemma
2.3,

µ1(G4(r, s; n)) ≤ max{r + 2 +
n + 2

r + 2
, s + 4 +

n + 5

s + 4
}.

For n ≥ 11, s ≤ n − 7 and an arbitrary r,

µ1(G4(r, s; n)) ≤ max{r + 2 +
n + 2

r + 2
, s + 4 +

n + 5

s + 4
} ≤ n − 1.

and hence µ1(G4(r, s; n)) ≤ n − 1, SL(G4(r, s; n)) < n − 1.

For the graph G5(r, s; n) of Figure 1 with 0 ≤ r ≤ s ≤ n − 5, by Lemma 2.3,

µ1(G5(r, s; n)) ≤ max{r + 3 +
n + 4

r + 3
, s + 3 +

n + 4

s + 3
}.

For n ≥ 10 and 0 ≤ r ≤ s ≤ n − 6,

µ1(G5(r, s; n)) ≤ max{r + 3 +
n + 4

r + 3
, s + 3 +

n + 4

s + 3
} ≤ n − 1.

and hence µ1(G5(r, s; n)) ≤ n − 1, SL(G5(r, s; n)) < n − 1.

For the graph G6(r, s; n) of Figure 1, n ≥ 11, 1 ≤ r ≤ n − 6 and 1 ≤ s ≤ n − 7, by
Lemma 2.3,

µ1(G6(r, s; n)) ≤ max{r + 3 +
n + 4

r + 3
, s + 4 +

n + 5

s + 4
} ≤ n − 1.

and hence µ1(G6(r, s; n)) ≤ n − 1, SL(G6(r, s; n)) < n − 1.

For the graph G7(r, s; n) of Figure 1, n ≥ 11 and 1 ≤ r ≤ s ≤ n − 7, by Lemma 2.3,

µ1(G7(r, s; n)) ≤ max{r + 4 +
n + 5

r + 4
, s + 4 +

n + 5

s + 4
} ≤ n − 1.

and hence µ1(G7(r, s; n)) ≤ n − 1, SL(G7(r, s; n)) < n − 1.
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For the graph G8(r, s; n) of Figure 1, n ≥ 11, s ≤ n− 7 and an arbitrary r, by Lemma
2.3,

µ1(G8(r, s; n)) ≤ max{r + 2 +
n + 3

r + 2
, s + 4 +

n + 5

s + 4
} ≤ n − 1.

and hence µ1(G8(r, s; n)) ≤ n − 1, SL(G8(r, s; n)) < n − 1.

For the graph G9(r, s; n) of Figure 1, n ≥ 10, s ≤ n− 8 and an arbitrary r, by Lemma
2.3,

µ1(G9(r, s; n)) ≤ max{r + 2 +
n

r + 2
, s + 5 +

n + 4

s + 5
} ≤ n − 1.

and hence µ1(G9(r, s; n)) ≤ n − 1, SL(G9(r, s; n)) < n − 1.

For the graph G10(r, s; n) of Figure 1, n ≥ 8 and arbitrary r, s, by Lemma 2.3,

µ1(G10(r, s; n)) ≤ max{r + 3 +
n + 2

r + 3
, s + 3 +

n + 2

s + 3
} ≤ n − 1.

and hence µ1(G10(r, s; n)) ≤ n − 1, SL(G10(r, s; n)) < n − 1.

For the graph G11(r, s; n) of Figure 1, n ≥ 10, s ≤ n−7 and an arbitrary r, by Lemma
2.3,

µ1(G11(r, s; n)) ≤ max{r + 2 +
n

r + 2
, s + 4 +

n + 4

s + 4
} ≤ n − 1.

and hence µ1(G11(r, s; n)) ≤ n − 1, SL(G11(r, s; n)) < n − 1.

For the graph G12(r, s; n) of Figure 1, n ≥ 10, s ≤ n−7 and an arbitrary r, by Lemma
2.3,

µ1(G12(r, s; n)) ≤ max{r + 2 +
n

r + 2
, s + 4 +

n + 4

s + 4
} ≤ n − 1.

and hence µ1(G12(r, s; n)) ≤ n − 1, SL(G12(r, s; n)) < n − 1.

For the graph G13(r, s; n) of Figure 1, n ≥ 9 and arbitrary r, s, by Lemma 2.3,

µ1(G13(r, s; n)) ≤ max{r + 3 +
n + 1

r + 3
, s + 4 +

n + 3

s + 4
} ≤ n − 1.

and hence µ1(G13(r, s; n)) ≤ n − 1, SL(G13(r, s; n)) < n − 1.

For the graph G14(r, s; n) of Figure 1, n ≥ 10, s ≤ n − 7 and an arbitrary r ≥ 1, by
Lemma 2.3,

µ1(G14(r, s; n)) ≤ max{r + 3 +
n + 3

r + 3
, s + 4 +

n + 4

s + 4
} ≤ n − 1.

and hence µ1(G14(r, s; n)) ≤ n − 1, SL(G14(r, s; n)) < n − 1.

For the graph G15(r, s; n) of Figure 1, n ≥ 9 and arbitrary r, s, by Lemma 2.3,

µ1(G15(r, s; n)) ≤ max{r + 4 +
n + 3

r + 4
, s + 4 +

n + 3

s + 4
} ≤ n − 1.
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and hence µ1(G15(r, s; n)) ≤ n − 1, SL(G15(r, s; n)) < n − 1.

For the graph G16(r, s; n) of Figure 1, n ≥ 8 and arbitrary r, s, by Lemma 2.3,

µ1(G16(r, s; n)) ≤ max{r + 4 +
n + 2

r + 4
, s + 4 +

n + 2

s + 4
} ≤ n − 1.

and hence µ1(G16(r, s; n)) ≤ n − 1, SL(G16(r, s; n)) < n − 1.

For the graph G17(r, s; n) of Figure 1, n ≥ 10 and 1 ≤ r ≤ s, by Lemma 2.3,

µ1(G17(r, s; n)) ≤ max{r + 4 +
n + 4

r + 4
, s + 4 +

n + 4

s + 4
} ≤ n − 1.

and hence µ1(G17(r, s; n)) ≤ n − 1, SL(G17(r, s; n)) < n − 1.

For the graph G18(r, s; n) of Figure 1, n ≥ 11 and 0 ≤ r ≤ s ≤ n − 6, by Lemma 2.3,

µ1(G18(r, s; n)) ≤ max{r + 3 +
n + 5

r + 3
, s + 3 +

n + 5

s + 3
} ≤ n − 1.

and hence µ1(G18(r, s; n)) ≤ n − 1, SL(G18(r, s; n)) < n − 1.

For the graph G19(r, s; n) of Figure 1, n ≥ 11, r ≤ n − 7 and an arbitrary s ≥ 1, by
Lemma 2.3,

µ1(G19(r, s; n)) ≤ max{r + 4 +
n + 5

r + 4
, s + 1 +

n − 1

s + 1
} ≤ n − 1.

and hence µ1(G19(r, s; n)) ≤ n − 1, SL(G19(r, s; n)) < n − 1.

By the above discussion, if G is one with maximum Laplacian spread of all tricyclic
graphs of order n ≥ 11, then G is among the graphs G1(n−7; n), G2(1, n−7; n), G3(0, n−
6; n), G3(1, n − 7; n), G4(0, n − 5; n), G4(1, n − 6; n), G5(0, n − 5; n), G6(1, n − 6; n),
G7(1, n−6; n), G8(0, n−5; n), G8(1, n−6; n), G9(0, n−7; n), G11(0, n−6; n), G12(0, n−6; n),
G18(0, n − 4; n), G18(1, n − 5; n), G19(n − 6, 1; n). The result follows.

We next show that except the graphs G1(n − 7; n), G3(0, n − 6; n), G4(0, n − 5; n),
G8(0, n − 5; n) and G18(0, n − 4; n), the Laplacian spreads of the other graphs in Lemma
2.9 are all less than n− 1 for a suitable n. Thus by a little computation for the graphs in
Figure 1 of small order, G1(n − 7; n), n ≥ 7; G3(0, n − 6; n), n ≥ 6; G4(0, n − 5; n), n ≥ 6;
G8(0, n−5; n), n ≥ 6; and G18(0, n−4; n), n ≥ 4 are proved to be the only tricyclic graphs
with maximum Laplacian spread among all tricyclic graphs of fixed order n.

In the following Lemmas 2.10-2.21, for convenience we simply write µ1(Gi(r, s; n)),
µn−1(Gi(r, s; n)) as µ1, µn−1 respectively under no confusions.

Lemma 2.10 For n ≥ 7
SL(G2(1, n − 7; n)) < n − 1.
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Proof. The characteristic polynomial det(λI −L(G2(1, n− 7; n))) of L(G2(1, n− 7; n)) is

λ(λ − 3)(λ2 − 6λ + 7)(λ − 1)n−7[λ3 − (n + 2)λ2 + (3n − 2)λ − n].

By Lemma 2.1 and Lemma 2.4, n > µ1 > n − 1 ≥ 6, and by Lemma 2.5, µn−1 < 1. So
µ1, µn−1 are both roots of the following polynomial:

f1(λ) = λ3 − (n + 2)λ2 + (3n − 2)λ − n.

Observe that

(n − 1) − SL(G2(1, n − 7; n)) = (n − 1) − (µ1 − µn−1) = (n − µ1) − (1 − µn−1).

If we can show n − µ1 > 1 − µn−1, the result will follow. By Lagrange Mean Value
Theorem,

f1(n) − f1(µ1) = (n − µ1)f
′

1(ξ1)

for some ξ1 ∈ (µ1, n). As f ′

1(x) is positive and strict increasing on the interval (µ1, n],

n − µ1 =
f1(n) − f1(µ1)

f ′

1(ξ1)
>

n2 − 3n

f ′

1(n)
= 1 − 2n − 2

n2 − n − 2
,

Note that the function g1(x) = 2x−2
x2

−x−2
is strictly decreasing for x ≥ 7. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g1(n) ≥ µn−1 − g1(7) = µn−1 − 0.3.

Observe that a star of order n has eigenvalues: 0, n, 1 of multiplicity n− 2, and hence
has n− 1 eigenvalues not less than 1. As G2(1, n− 7; n) contains a star of order n− 1, by
eigenvalues interlacing theorem (that is, µi(G) ≥ µi(G − e) for i = 1, 2, ..., n if we delete
an edge e from a graph G of order n; or see [14]), G2(1, n−7; n) has (n−2) eigenvalues not
less than 1. Now f1(0.3) = −0.753−0.19n < 0 and f1(1) = n−3 > 0. So 0.3 < µn−1 < 1.
The result follows.

Lemma 2.11 For n ≥ 7
SL(G3(1, n − 7; n)) < n − 1.

Proof. The characteristic polynomial det(λI −L(G3(1, n− 7; n))) of L(G3(1, n− 7; n)) is

λ(λ − 2)(λ − 4)(λ − 1)n−7[λ4 − (n + 5)λ3 + (6n + 3)λ2 − (9n − 5)λ + 3n].

By Lemma 2.1 and Lemma 2.4, n > µ1 > n − 1 ≥ 6, and by Lemma 2.5, µn−1 < 1. So
µ1, µn−1 are both roots of the following polynomial:

f2(λ) = λ4 − (n + 5)λ3 + (6n + 3)λ2 − (9n − 5)λ + 3n,

By Lagrange Mean Value Theorem,

n − µ1 =
f2(n) − f2(µ1)

f ′

2(ξ1)
>

n3 − 6n2 + 8n

f ′

2(n)
=

n(n − 2)(n − 4)

(n − 1)(n2 − 2n − 5)
>

n − 4

n − 1
,
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for some ξ1 ∈ (µ1, n). In addition, by Taylor’s Theorem,

f2(µn−1) = f2(1) + f ′

2(1)(µn−1 − 1) +
f ′′

2 (ξ2)

2!
(µn−1 − 1)2,

for some ξ2 ∈ (µn−1, 1). As f ′

2(1) = 0 and f ′′

2 (x) is positive and strict decreasing on the
open interval (0, 1),

(1 − µn−1)
2 =

2(n − 4)

f ′′

2 (ξ2)
<

2(n − 4)

f ′′

2 (1)
=

n − 4

3(n − 2)
.

If n ≥ 7, n−4
n−1

>
√

n−4
3(n−2)

, and hence n − µ1 > 1 − µn−1. The result follows.

Lemma 2.12 For n ≥ 9
SL(G4(1, n − 6; n)) < n − 1.

Proof. The characteristic polynomial of L(G4(1, n − 6; n)) is

λ(λ−1)n−7[λ6−(n+11)λ5+(12n+40)λ4−(52n+48)λ3+(99n−10)λ2−(80n−34)λ+21n].

So µ1, µn−1 are both roots of the following polynomial:

f3(λ) = λ6− (n+11)λ5 +(12n+40)λ4 − (52n+48)λ3 +(99n−10)λ2 − (80n−34)λ+21n,

The derivative

f ′

3(λ) = 6λ5 − 5(n + 11)λ4 + 4(12n + 40)λ3 − 3(52n + 48)2 + 2(99n − 10)λ − (80n − 34)

and the second derivative

f ′′

3 (λ) = 30λ4 − 20(n + 11)λ3 + 12(12n + 40)λ2 − 6(52n + 48) + 2(99n − 10)

As f ′

3(x) is positive and strict increasing on the interval (µ1, n], By Lagrange Mean Value
Theorem,

n − µ1 =
f3(n) − f3(µ1)

f ′

3(ξ1)
>

n5 − 12n4 + 51n3 − 90n2 + 55n

f ′

3(n)

= 1 − 5n4 − 47n3 + 144n2 − 155n + 34

n5 − 7n4 + 4n3 + 54n2 − 100n + 34

> 1 − 5n4 − 47n3 + 144n2 − 151n

n5 − 7n4 + 4n3 + 54n2 − 100n

= 1 − 5n3 − 47n2 + 144n − 151

n4 − 7n3 + 4n2 + 54n − 100
,

for some ξ1 ∈ (µ1, n). Note that the function

g2(x) =
5x3 − 47x2 + 144x − 151

x4 − 7x3 + 4x2 + 54x − 100
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is strictly decreasing for x ≥ 9. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g2(n) ≥ µn−1 − g2(9) = µn−1 − 0.4534.

By a similar discussion to those in the last paragraph of the proof of Lemma 2.10, as
f3(0.4534) ≈ 10.3743 + 0.7208n > 0 and f3(1) = −n + 6 < 0. 0.4534 < µn−1 < 1. The
result follows.

Lemma 2.13 For n ≥ 7
SL(G5(0, n − 5; n)) < n − 1.

Proof. The characteristic polynomial of L(G5(0, n − 5; n)) is

λ(λ − 1)n−6[λ5 − (n + 10)λ4 + (11n + 29)λ3 − (40n + 16)λ2 + (54n − 19)λ − 21n].

So µ1, µn−1 are both roots of the following polynomial:

f4(λ) = λ5 − (n + 10)λ4 + (11n + 29)λ3 − (40n + 16)λ2 + (54n − 19)λ − 21n,

By Lagrange Mean Value Theorem,

n − µ1 =
f4(n) − f4(µ1)

f ′

4(ξ1)
>

n4 − 11n3 + 38n2 − 40n

f ′

4(n)
= 1 − 4n3 − 31n2 + 62n − 19

n4 − 7n3 + 7n2 + 22n − 19
,

for some ξ1 ∈ (µ1, n). Note that the function

g3(x) =
4x3 − 31x2 + 62x − 19

x4 − 7x3 + 7x2 + 22x − 19

is strictly decreasing for x ≥ 7. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g3(7) = µn−1 − 0.5607.

As f4(0.5607) ≈ −11.5044 − 1.4574n < 0 and f4(1) = 3n − 15 > 0, µn−1 > 0.5607.
The result follows.

Lemma 2.14 For n ≥ 8
SL(G6(1, n − 6; n)) < n − 1.

Proof. The characteristic polynomial of L(G6(1, n − 6; n)) is

λ(λ−1)n−7[λ6−(n+11)λ5+(12n+39)λ4−(51n+45)λ3+(95n−9)λ2−(77n−31)λ+21n].

So µ1, µn−1 are both roots of the following polynomial:

f5(λ) = λ6 − (n + 11)λ5 + (12n + 39)λ4 − (51n + 45)λ3 + (95n− 9)λ2 − (77n− 31)λ + 21n,
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By Lagrange Mean Value Theorem,

n − µ1 =
f5(n) − f5(µ1)

f ′

5(ξ1)
>

n5 − 12n4 + 50n3 − 86n2 + 52n

f ′

5(n)

= 1 − 5n4 − 47n3 + 141n2 − 147n + 31

n5 − 7n4 + 3n3 + 55n2 − 95n + 31

> 1 − 5n4 − 47n3 + 141n2 − 143n

n5 − 7n4 + 3n3 + 55n2 − 95n

= 1 − 5n3 − 47n2 + 141n − 143

n4 − 7n3 + 3n2 + 55n − 95
,

for some ξ1 ∈ (µ1, n). Note that the function

g4(x) =
5x3 − 47x2 + 141x − 143

x4 − 7x3 + 3x2 + 55x − 95

is strictly decreasing for x ≥ 8. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g4(n) ≥ µn−1 − g4(8) = µn−1 − 0.5119.

As f5(0.5119) ≈ 9.7836+0.4254n > 0 and f5(1) = −n+6 < 0, µn−1 > 0.5119. The result
follows.

Lemma 2.15 For n ≥ 8
SL(G7(1, n − 6; n)) < n − 1.

Proof. The characteristic polynomial of L(G7(1, n − 6; n)) is

λ(λ − 2)2(λ − 1)n−7[λ4 − (n + 7)λ3 + (8n + 5)λ2 − (13n − 7)λ + 5n].

So µ1, µn−1 are both roots of the following polynomial:

f6(λ) = λ4 − (n + 7)λ3 + (8n + 5)λ2 − (13n − 7)λ + 5n,

and

n − µ1 =
f6(n) − f6(µ1)

f ′

6(ξ1)
>

n3 − 8n2 + 12n

f ′

6(n)
=

n(n − 2)(n − 6)

(n − 1)(n2 − 4n − 7)
>

n − 6

n − 1
,

for some ξ1 ∈ (µ1, n). In addition,

f6(µn−1) = f6(1) + f ′

6(1)(µn−1 − 1) +
f ′′

6 (ξ2)

2!
(µn−1 − 1)2,

for some ξ2 ∈ (µn−1, 1). Noting f ′

6(1) = 0,

(1 − µn−1)
2 <

2(n − 6)

f ′′

6 (1)
=

n − 6

5(n − 2)
.

If n ≥ 8, n−6
n−1

>
√

n−6
5(n−2)

, and hence n − µ1 > 1 − µn−1. The result follows.
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Lemma 2.16 For n ≥ 8
SL(G8(1, n − 6; n)) < n − 1.

Proof. The characteristic polynomial of L(G8(1, n − 6; n)) is

λ(λ − 2)(λ − 1)n−7[λ5 − (n + 9)λ4 + (10n + 21)λ3 − (31n + 3)λ2 + (33n − 16)λ − 10n].

So µ1, µn−1 are both roots of the following polynomial:

f7(λ) = λ5 − (n + 9)λ4 + (10n + 21)λ3 − (31n + 3)λ2 + (33n − 16)λ − 10n,

and

n − µ1 =
f7(n) − f7(µ1)

f ′

7(ξ1)
>

n4 − 10n3 + 30n2 − 26n

f ′

7(n)
= 1 − 4n3 − 29n2 + 53n − 16

n4 − 6n3 + n2 + 27n − 16
,

for some ξ1 ∈ (µ1, n). Note that the function

g5(x) =
4x3 − 29x2 + 53x − 16

x4 − 6x3 + x2 + 27x − 16

is strictly decreasing for x ≥ 8. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g5(8) = µn−1 − 0.4658.

As f7(0.4658) ≈ −6.3831−0.3911n < 0 and f7(1) = n−6 > 0, µn−1 > 0.4658. The result
follows.

Lemma 2.17 For n ≥ 7
SL(G9(0, n − 7; n)) < n − 1.

Proof. The characteristic polynomial of L(G9(0, n − 7; n)) is

λ(λ − 4)(λ − 2)2(λ − 1)n−7[λ3 − (n + 3)λ2 + (4n − 2)λ − 2n].

So µ1, µn−1 are both roots of the following polynomial:

f8(λ) = λ3 − (n + 3)λ2 + (4n − 2)λ − 2n,

By Lagrange Mean Value Theorem,

n − µ1 =
f8(n) − f8(µ1)

f ′

8(ξ1)
=

n(n − 4)

f ′

8(ξ1)
,

1 − µn−1 =
f8(1) − f8(µn−1)

f ′

8(ξ2)
=

n − 4

f ′

8(ξ2)
,

for some ξ1 ∈ (µ1, n) and ξ2 ∈ (µn−1, 1). If we can show

n

f ′

8(ξ1)
>

1

f ′

8(ξ2)
,
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the result will follow.

Note that f ′

8(λ) = 3λ2−2(n+3)λ+4n−2. As f ′

8(λ) is positive and strictly decreasing
on the interval (0, 1), and is positive and strictly increasing on the interval (µ1, +∞),

nf ′

8(ξ2) > nf ′

8(1) = n(2n − 5).

f ′

8(ξ1) < f ′

8(n) = n2 − 2n − 2.

Then
nf ′

8(ξ2) − f ′

8(ξ1) > n2 − 3n + 2 > 0.

The result follows.

Lemma 2.18 For n ≥ 8
SL(G11(0, n − 6; n)) < n − 1.

Proof. The characteristic polynomial of L(G11(0, n − 6; n)) is

λ(λ − 2)(λ − 1)n−7[λ5 − (n + 9)λ4 + (10n + 22)λ3 − (32n + 8)λ2 + (38n − 12)λ − 14n].

So µ1, µn−1 are both roots of the following polynomial:

f9(λ) = λ5 − (n + 9)λ4 + (10n + 22)λ3 − (32n + 8)λ2 + (38n − 12)λ − 14n,

and

n − µ1 =
f9(n) − f9(µ1)

f ′

9(ξ1)
>

n4 − 10n3 + 30n2 − 26n

f ′

9(n)
= 1 − 4n3 − 28n2 + 48n − 12

n4 − 6n3 + 2n2 + 22n − 12
,

for some ξ1 ∈ (µ1, n). Note that the function

g6(x) =
4x3 − 28x2 + 48x − 12

x4 − 6x3 + 2x2 + 22x − 12

is strictly decreasing for x ≥ 8. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g6(8) = µn−1 − 0.4772.

As f9(0.4772) ≈ −5.5994−2.1186n < 0 and f9(1) = n−6 > 0, µn−1 > 0.4772. The result
follows.

Lemma 2.19 For n ≥ 8
SL(G12(0, n − 6; n)) < n − 1.
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Proof. The characteristic polynomial of L(G12(0, n − 6; n)) is

λ(λ−1)n−7[λ6−(n+11)λ5+(12n+41)λ4−(53n+55)λ3+(106n+4)λ2−(94n−26)λ+29n].

So µ1, µn−1 are both roots of the following polynomial:

f10(λ) = λ6− (n+11)λ5 +(12n+41)λ4− (53n+55)λ3 +(106n+4)λ2− (94n−26)λ+29n,

and

n − µ1 =
f10(n) − f10(µ1)

f ′

10(ξ1)
>

n5 − 12n4 + 51n3 − 90n2 + 55n

f ′

10(n)

= 1 − 5n4 − 46n3 + 137n2 − 141n + 26

n5 − 7n4 + 5n3 + 47n2 − 86n + 26

> 1 − 5n3 − 46n2 + 137n − 137

n4 − 7n3 + 5n2 + 47n − 86
,

for some ξ1 ∈ (µ1, n). Note that the function

g7(x) =
5x3 − 46x2 + 137x − 137

x4 − 7x3 + 5x2 + 47x − 86

is strictly decreasing for x ≥ 8. Hence

(n − µ1) − (1 − µn−1) > µn−1 − g7(8) = µn−1 − 0.5125.

As f10(0.5125) ≈ 9.4297 + 2.3247n > 0 and f10(1) = −n + 6 < 0, µn−1 > 0.5125. The
result follows.

Lemma 2.20 For n ≥ 7
SL(G18(1, n − 5; n)) < n − 1.

Proof. The characteristic polynomial of L(G18(1, n − 5; n)) is

λ(λ − 4)(λ − 1)n−6[λ4 − (n + 6)λ3 + (7n + 4)λ2 − (11n − 6)λ + 4n].

So µ1, µn−1 are both roots of the following polynomial:

f11(λ) = λ4 − (n + 6)λ3 + (7n + 4)λ2 − (11n − 6)λ + 4n,

and

n − µ1 =
f11(n) − f11(µ1)

f ′

11(ξ1)
>

n3 − 7n2 + 10n

f ′

11(n)
=

n(n − 2)(n − 5)

(n − 1)(n2 − 3n − 6)
>

n − 5

n − 1
,

for some ξ1 ∈ (µ1, n). In addition,

f11(µn−1) = f11(1) + f ′

11(1)(µn−1 − 1) +
f ′′

11(ξ2)

2!
(µn−1 − 1)2,
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for some ξ2 ∈ (µn−1, 1). Noting f ′

11(1) = 0,

(1 − µn−1)
2 =

2(n − 5)

f ′′

11(ξ2)
<

2(n − 5)

f ′′

11(1)
=

n − 5

4(n − 2)
.

If n ≥ 7, n−5
n−1

>
√

n−5
4(n−2)

, and hence n − µ1 > 1 − µn−1. The result follows.

Lemma 2.21 For n ≥ 7
SL(G19(n − 6, 1; n)) < n − 1.

Proof. The characteristic polynomial of L(G19(n − 6, 1; n)) is

λ(λ − 4)2(λ − 1)n−6[λ3 − (n + 2)λ2 + (3n − 2)λ − n].

So µ1, µn−1 are both roots of the following polynomial:

f12(λ) = λ3 − (n + 2)λ2 + (3n − 2)λ − n.

By a similar discussion of Lemma 2.10, the result follows.

From the previous discussion , we can get that G1(n− 7; n), G3(0, n− 6; n), G4(0, n−
5; n), G8(0, n−5; n) and G18(0, n−4; n) of Figure 1 are the only five graphs with maximum
Laplacian spread among all tricyclic graphs of order n ≥ 11. Moreover, for 5 ≤ n ≤ 10,
if G is one with maximum Laplacian spread of all tricyclic graphs of order n, then G is
necessary among the graphs in Figure 1 (by the first paragraph of the proof of Lemma
2.9), and we can determine that the Laplacian spreads of the graphs in Figure 1 are all
less than n − 1 (by Lemma 2.3 and Lemmas 2.10-2.21) except for the graphs shown in
Figure 3. By a little computation (with Mathematica) for the graphs in Figure 3, we find
that G1(n − 7; n), 7 ≤ n ≤ 10; G3(0, n − 6; n), 6 ≤ n ≤ 10; G4(0, n − 5; n), 6 ≤ n ≤ 10;
G8(0, n−5; n), 6 ≤ n ≤ 10; and G18(0, n−4; n), 5 ≤ n ≤ 10 of Figure 1 are the only graphs
with maximum Laplacian spread among all tricyclic graphs of order n for 5 ≤ n ≤ 10.

Theorem 2.22 G1(n − 7; n), n ≥ 7; G3(0, n − 6; n), n ≥ 6; G4(0, n − 5; n), n ≥ 6;
G8(0, n − 5; n), n ≥ 6; and G18(0, n − 4; n), n ≥ 4 of Figure 1 are the only graphs with
maximum Laplacian spread among all tricyclic graphs of fixed order n. For each n ≥ 5,
the maximum Laplacian spread is equal to n − 1.

Remark There is only one tricyclic graph of order n ≤ 4. It is G18(0, 0; 4) = K4 with
Laplacian spread 0.

n=5
graph G4(0, 0; 5) G7(0, 0; 5) G18(0, 1; 5)

spread 2 +
√

2 3 4

n=6
graph G3(0, 0; 6) G4(0, 1; 6) G4(1, 0; 6) G5(0, 1; 6) G8(0, 1; 6) G8(1, 0; 6)

spread 5 5 4.3871 4.4177 5 2
√

5

graph G10(0, 0; 6) G11(0, 0; 6) G12(0, 0; 6) G18(0, 2; 6) G18(1, 1; 6) G19(0, 1; 6)

spread 4
√

3 +
√

2 + 1 4.1696 5 2
√

5 4.6002
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n=7
graph G1(0; 7) G3(0, 1; 7) G4(0, 2; 7) G4(1, 1; 7) G4(2, 0; 7) G5(1, 1; 7) G6(1, 1; 7)
spread 6 6 6 5.3905 4.8682 4.7921 5.3141

graph G7(1, 1; 7) G8(0, 2; 7) G8(1, 1; 7) G8(2, 0; 7) G10(0, 1; 7) G11(0, 1; 7) G11(1, 0; 7)
spread 5.3852 6 5.3716 5.0047 4.7399 5.2548 4.8846

graph G12(0, 1; 7) G12(1, 0; 7) G13(0, 0; 7) G14(1, 0; 7) G15(0, 0; 7) G18(0, 3; 7) G19(0, 2; 7)

spread 5.2536 4.7995 4.6031 4.7953 3 +
√

3 6 4.8635

n=8
graph G1(1; 8) G2(2, 0; 8) G3(0, 2; 8) G3(2, 0; 8) G4(0, 3; 8) G4(3, 0; 8) G4(1, 2; 8)
spread 7 5.7675 7 5.6808 7 5.6589 6.4029

graph G4(2, 1; 8) G5(1, 2; 8) G6(2, 1; 8) G8(0, 3; 8) G8(2, 1; 8) G8(3, 0; 8) G9(1, 0; 8)
spread 5.6233 5.5986 5.7140 7 5.6194 5.7446 5.6824

graph G11(1, 1; 8) G12(1, 1; 8) G13(0, 1; 8) G14(1, 1; 8) G14(2, 0; 8) G15(0, 1; 8) G17(1, 1; 8)
spread 5.6472 5.6394 5.4620 5.5533 5.5595 5.4820 5.6811

graph G18(2, 2; 8) G19(1, 2; 8) G18(0, 4; 8) G19(0, 3; 8)

spread
√

33 5.7675 7 2
√

7

n=9
graph G1(2; 9) G2(2, 1; 9) G3(0, 3; 9) G3(2, 1; 9) G4(0, 4; 9) G4(2, 2; 9) G5(1, 3; 9)
spread 8 6.7032 8 6.6231 8 6.5709 5.5375

graph G6(2, 2; 9) G6(3, 1; 9) G7(2, 2; 9) G8(0, 4; 9) G8(2, 2; 9) G9(1, 1; 9) G11(1, 2; 9)
spread 6.5144 6.5350 6.6332 8 6.5550 6.6219 6.5719

graph G12(1, 2; 9) G14(1, 2; 9) G17(1, 2; 9) G18(0, 5; 9) G18(2, 3; 9) G19(2, 2; 9)
spread 6.5783 6.4790 6.4713 8 6.5553 6.7302

n=10
graph G1(3; 10) G2(2, 2; 10) G3(0, 4; 10) G3(2, 2; 10) G4(0, 5; 10) G4(2, 3; 10) G6(2, 3; 10)
spread 9 7.7142 9 7.6058 9 7.5591 7.4849

graph G7(2, 3; 10) G8(0, 5; 10) G8(2, 3; 10) G18(0, 6; 10) G18(2, 4; 10) G19(3, 2; 10)
spread 7.4654 9 7.5437 9 7.5212 6.7302

Figure 3 Laplacian spreads of some graphs of order n in Figure 1 for 5 ≤ n ≤ 10.

Acknowledgements

The authors are grateful to an anonymous referee for his helpful comments and sugges-
tions. Particularly, he gives Lemma 2.6 and Lemma 2.8 that have helped to shorten the
length of the paper.

References

[1] W. N. Anderson and T. D. Morely, Eigenvalues of the Laplacian of a graph, Linear
Multilinear Algebra, 18(1985), 141-145.

[2] Y. Bao, Y. Tan, Y. Fan, The Laplacian spread of unicyclic graphs, Applied Mathe-
matics Letters, (2009), In Press.

the electronic journal of combinatorics 16 (2009), #R80 17



[3] K. Das, An improved upper bound for Laplacian graph eigenvalues, Linear Algebra
Appl., 368(2003), 269-278.

[4] Y. Fan, S. Li, Y. Tan, The Laplacian spread of bicyclic graphs, submitted.

[5] Y. Fan, J. Xu, Y. Wang, D. Liang, The Laplacian spread of a tree, Discrete Mathe-
matics and Theoretical Computer Science, 10(1)(2008), 79-86.

[6] D. Gregory, D. Hershkowitz, S. Kirkland, The spread of the spectrum of a graph,
Linear Algebra Appl., 332-334(2001), 23-35.

[7] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete
Math., 7(1994), 229-237.

[8] C. R. Johnson, R. Kumar, H. Wolkowicz, Lower bounds for the spread of a matrix,
Linear Algebra Appl., (71)1985, 161-173.

[9] S. Kirkland, A bound on the algebraic connectivity of a graph in terms of the number
of cutpoints, Linear Multilinear Algebra, 47(2000), 93-103.

[10] X. Li, J. Zhang, B. Zhou, The spread of unicyclic graphs with given size of maximum
matchings, Journal of Mathematical Chemistry, 42(4)(2007), 775-788.

[11] B. Liu, M. Liu, On the spread of the spectrum of a graph, Discrete Math, (2008) In
Press.

[12] R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl., 285(1998),
33-35.

[13] R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278(1998), 221-236.

[14] B. Mohar, The Laplacian spectrum of graphs. In: Y. Alavi et al. (Eds.), Graph
Theory, Combinatorics, and Applications, 1991, pp. 871-898. Wiley, New York.

[15] P. Nylen, T.Y. Tam, On the spread of a Hermitian matrix and a conjecture of Thomp-
son, Linear Multilinear Algebra, (37)1994, 3-11.
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