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Abstract

We give a necessary and sufficient condition for the maximum multiplicity of a root

of the matching polynomial of a tree to be equal to the minimum number of vertex

disjoint paths needed to cover it.

1 Introduction

All the graphs in this paper are simple. The vertex set and the edge set of a graph G are
denoted by V (G) and E(G) respectively. A matching of a graph G is a set of pairwise
disjoint edges of G. Recall that for a graph G on n vertices, the matching polynomial
µ(G, x) of G is given by

µ(G, x) =
∑

k≥0

(−1)kp(G, k)xn−2k,

where p(G, k) is the number of matchings with k edges in G. Let mult(θ, G) denote the
multiplicity of θ as a root of µ(G, x).

The following results are well known. The proofs can be found in [2, Theorem 4.5 on
p. 102].

Theorem 1.1. The maximum multiplicity of a root of the matching polynomial µ(G, x)

is at most the minimum number of vertex disjoint paths needed to cover the vertex set of

G.
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Consequently,

Theorem 1.2. If G has a Hamiltonian path, then all roots of its matching polynomial

are simple.

The above is the source of motivation for our work. It is natural to ask when does
equality holds in Theorem 1.1. In this note, we give a necessary and sufficient condition
for the maximum multiplicity of a root of the matching polynomial of a tree to be equal
to the minimum number of vertex disjoint paths needed to cover it. Before stating the
main result, we require some terminology and basic properties of matching polynomials.

It is well known that the roots of the matching polynomial are real. If u ∈ V (G), then
G \ u is the graph obtained from G by deleting the vertex u and the edges of G incident
to u. It is known that the roots of G \ u interlace those of G, that is, the multiplicity of
a root changes by at most one upon deleting a vertex from G. We refer the reader to [2]
for an introduction to matching polynomials.

Lemma 1.3. Suppose θ is a root of µ(G, x) and u is a vertex of G. Then

mult(θ, G) − 1 ≤ mult(θ, G \ u) ≤ mult(θ, G) + 1.

As a consequence of Lemma 1.3, we can classify the vertices in a graph by assigning a
‘sign’ to each vertex (see [3]).

Definition 1.4. Let θ be a root of µ(G, x). For any vertex u ∈ V (G),

• u is θ-essential if mult(θ, G \ u) = mult(θ, G) − 1,

• u is θ-neutral if mult(θ, G \ u) = mult(θ, G),

• u is θ-positive if mult(θ, G \ u) = mult(θ, G) + 1.

Clearly, if mult(θ, G) = 0 then there are no θ-essential vertices since the multiplicity
of a root cannot be negative. Nevertheless, it still makes sense to talk about θ-neutral
and θ-positive vertices when mult(θ, G) = 0. The converse is also true, i.e. any graph
G with mult(θ, G) > 0 must have at least one θ-essential vertex. This was proved in [3,
Lemma 3.1].

A further classification of vertices plays an important role in establishing some struc-
tural properties of a graph:

Definition 1.5. Let θ be a root of µ(G, x). For any vertex u ∈ V (G), u is θ-special if it

is not θ-essential but has a neighbor that is θ-essential.

If G is connected and not all of its vertices are θ-essential, then G must contain a θ-special
vertex. It turns out that a θ-special vertex must be θ-positive (see [3, Corollary 4.3]).

We now introduce the following definition which is crucial in describing our main
result.

the electronic journal of combinatorics 16 (2009), #R81 2



Definition 1.6. Let G be a graph and Q = {Q1, . . . , Qm} be a set of vertex disjoint

paths that cover G. Then Q is said to be (θ, G)-extremal if it satisfies the following:

(a) θ is a root of µ(Qi, x) for all i = 1, . . . , m;

(b) for every edge e = {u, v} ∈ E(G) with u ∈ Qr and v ∈ Qs, r 6= s, either u is

θ-special in Qr or v is θ-special in Qs.

Our main result is the following:

Theorem 1.7. Let T be a tree and Q = {Q1, . . . , Qm} be a set of vertex disjoint paths

covering T . Then m is the maximum multiplicity of a root of the matching polynomial

µ(T, x), say mult(θ, T ) = m for some root θ, if and only if Q is (θ, T )-extremal.

The following example shows that Theorem 1.7 cannot be extended to general graphs.

Example 1.8. Consider the following graph G:

• • • • • • •

• • • • • • •

Let P7 denote the path on 7 vertices. Note that mult(
√

3, G) = 2 and µ(P7, x) =
x7 − 6x5 + 10x3 − 4x. By Theorem 1.1, the maximum multiplicity of a root of µ(G, x)
is 2. Also, G can be covered by two paths on 7 vertices. However,

√
3 is not a root of

µ(P7, x).

2 Basic Properties

In this section, we collect some useful results proved in [2] and [3]. Recall that if u ∈ V (G),
then G \ u is the graph obtained from G by deleting vertex u and the edges of G incident
to u. We also denote the graph (G \ u) \ v by G \ uv. Note that the resulting graph does
not depend on the order of which the vertices are deleted.

If e ∈ E(G), the graph G − e is the graph obtained from G by deleting the edge e.
The matching polynomial satisfies the following basic identities, see [2, Theorem 1.1 on
p. 2].

Proposition 2.1. Let G and H be graphs with matching polynomials µ(G, x) and µ(H, x),

respectively. Then

(a) µ(G ∪ H, x) = µ(G, x)µ(H, x),

(b) µ(G, x) = µ(G − e, x) − µ(G \ uv, x) where e = {u, v} is an edge of G,

(c) µ(G, x) = xµ(G \ u, x) −
∑

v∼u
µ(G \ uv, x) for any vertex u of G.
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Suppose P is a path in G. Let G\P denote the graph obtained from G by deleting the
vertices of P and all the edges incident to these vertices. It is known that the multiplicity
of a root decreases by at most one upon deleting a path, see [3, Corollary 2.5].

Lemma 2.2. For any root θ of µ(G, x) and a path P in G,

mult(θ, G \ P ) ≥ mult(θ, G) − 1.

If equality holds, we say that the path P is θ-essential in G. Godsil [3] proved that if a
vertex v is not θ-essential in G, then no path with v as an end point is θ-essential. In
other words,

Lemma 2.3. If P is a θ-essential path in G, then its endpoints are θ-essential in G.

The next result of Godsil [3, Corollary 4.3] implies that a θ-special vertex must be
θ-positive.

Lemma 2.4. A θ-neutral vertex cannot be joined to any θ-essential vertex.

3 Gallai-Edmonds Decomposition

It turns out that θ-special vertices play an important role in the Gallai-Edmonds decom-
position of a graph. We now define such a decomposition. For any root θ of µ(G, x),
partition the vertex set V (G) as follows:

Dθ(G) = {u : u is θ-essential in G}
Aθ(G) = {u : u is θ-special in G}
Cθ(G) = V (G) − Dθ(G) − Aθ(G).

We call these sets of vertices the θ-partition classes of G. The Gallai-Edmonds Structure
Theorem is usually stated in terms of the structure of maximum matchings of a graph
with respect to its θ-partition classes when θ = 0. Its proof essentially follows from the
following assertions (for more information, see [5, Section 3.2]):

Theorem 3.1 (Gallai-Edmonds Structure Theorem).

Let G be any graph and let D0(G), A0(G) and C0(G) be the 0-partition classes of G.

(i) (The Stability Lemma) Let u ∈ A0(G) be a 0-special vertex in G. Then

• v ∈ D0(G) if and only if v ∈ D0(G \ u);

• v ∈ A0(G) if and only if v ∈ A0(G \ u);

• v ∈ C0(G) if and only if v ∈ C0(G \ u).

(ii) (Gallai’s Lemma) If every vertex of G is 0-essential then mult(0, G) = 1.
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For any root θ of µ(G, x), it was shown by Neumaier [6, Corollary 3.3] that the analogue
of Gallai’s Lemma holds when G is a tree. A different proof was given by Godsil (see [3,
Corollary 3.6]).

Theorem 3.2 ([3], [6]). Let T be a tree and let θ be a root of µ(T, x). If every vertex of

T is θ-essential then mult(θ, G) = 1.

On the other hand, it was proved in [3, Theorem 5.3] that if θ is any root of µ(T, x)
where T is tree and u 6∈ Dθ(T ), then v ∈ Dθ(T ) if and only if v ∈ Dθ(T \ u). It turns out
that this assertion is incorrect (see Example 4.2 below). However, using the idea of the
proof of Theorem 5.3 in [3], we shall prove the Stability Lemma for trees with any given
root of its matching poynomial. Note that the Stability Lemma is a weaker statement
than Theorem 5.3 in [3]. Together with Theorem 3.2, this yields the Gallai-Edmonds
Structure Theorem for trees with general root θ. Recently, Chen and Ku [1] had proved
the Gallai-Edmonds Structure Theorem for general graph with any root θ. However, our
proof of the special case for trees, which uses an eigenvector argument, is different from
the the one given in [1]. We believe that different proofs can be illuminating. For the
sake of completeness, we include the proof in the next section.

Theorem 3.3 (The Stability Lemma for Trees). Let T be a tree and let θ be a root of

µ(T, x). Let u ∈ Aθ(T ) be a θ-special vertex in T . Then

• v ∈ Dθ(T ) if and only if v ∈ Dθ(T \ u);

• v ∈ Aθ(T ) if and only if v ∈ Aθ(T \ u);

• v ∈ Cθ(T ) if and only if v ∈ Cθ(T \ u).

It is well known that the matching polynomial of a graph G is equal to the charac-
teristic polynomial of G if and only if G is a forest. To prove Theorem 3.3, the following
characterization of θ-essential vertices in a tree via eigenvectors is very useful. Recall that
a vector f ∈ R

|V (G)| is an eigenvector of a graph G with eigenvalue θ if and only if for
every vertex u ∈ V (G),

θf(u) =
∑

v∼u

f(v). (1)

Proposition 3.4 ([6, Theorem 3.4]). Let T be a tree and let θ be a root of its matching

polynomial. Then a vertex u is θ-essential if and only if there is an eigenvector f of T

such that f(u) 6= 0.

In fact Proposition 3.4 can be deduced from Lemma 5.1 of [3]. An immediate consequence
of Proposition 3.4 is that if f is an eigenvector of T such that f(u) 6= 0, then there exists
another eigenvector g such that g(u) = α for any given non-zero real number α. Moreover,
both g and f have the same support, i.e. {i : f(i) 6= 0} = {i : g(i) 6= 0}.

Corollary 3.5 ([6, Theorem 3.4]). Let T be a tree. If u is θ-special then it is joined to

at least two θ-essential vertices.
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Proof. By definition, u has a θ-essential neighbor, say w. By Proposition 3.4, there exists

an eigenvector f of T corresponding to θ such that f(w) 6= 0. By Proposition 3.4 again,

f(u) = 0 and so
∑

v∼u
f(v) = 0. This implies that f(v) 6= 0 on at least two neighbors of

u. By Proposition 3.4, both of them are θ-essential.

The following assertion follows from Theorem 3.2 and Proposition 3.4.

Corollary 3.6 ([6, Corollary 3.3]). Let T be a tree and let θ be a root of µ(T, x). Suppose

every vertex of T is θ-essential. Then every non-zero θ-eigenvector of T has no zero

entries.

We also require the following partial analogue of the Stability Lemma for general root
obtained by Godsil in [3].

Proposition 3.7 ([3, Theorem 4.2]). Let θ be a root of µ(G, x) with non-zero multiplicity

and let u be a θ-positive vertex in G. Then

(a) if v is θ-essential in G then it is θ-essential in G \ u;

(b) if v is θ-positive in G then it is θ-essential or θ-positive in G \ u;

(c) if v is θ-neutral in G then it is θ-essential or θ-neutral in G \ u.

4 Proof of the Stability Lemma for Trees

This section is devoted to the proof of Theorem 3.3, which will follow from the following
theorem.

Theorem 4.1. Let T be a tree and let θ be a root of µ(T, x). Then there exists a θ-

eigenvector f of T such that f(x) 6= 0 for every θ-essential vertex x in T . Moreover, if v

is θ-essential in T \ u where u is θ-special in T , then v is θ-essential in T .

Proof. If every vertex of T is θ-essential, then the result follows from Corollary 3.6. There-

fore, we may assume that T has a θ-special vertex, say u. We proceed by induction on

the number of vertices.

Suppose b1, . . . , bs are all the neighbors of u in T . Then each bi belongs to different

components of T \ u, say bi ∈ V (Ci) where C1, . . . Cs are components of T \ u.

First, we partition the set {1, . . . , s} as follows:

A = {i : bi is θ-essential in Ci},
B = {i : i 6∈ A, θ is a root of µ(Ci, x)},
C = {1, . . . , s} \ (A ∪ B).
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By the inductive hypothesis, for each i ∈ A, there exists a θ-eigenvector fi of Ci such

that fi(x) 6= 0 for every θ-essential vertex x in Ci. In particular, fi(bi) 6= 0 for all i ∈ A.

By Proposition 3.7, any θ-essential vertex in T is also θ-essential in T \ u, so for each

i ∈ A,

fi(x) 6= 0 if x is θ-essential in T and x ∈ V (Ci). (2)

For every i ∈ A, choose αi ∈ R such that

αi 6= 0 and
∑

i∈A

αi = 0.

Such a choice is always possible since |A| ≥ 2 by Corollary 3.5. Now, for each i ∈ A, there

is an eigenvector gi of Ci such that gi(bi) = αi 6= 0 with both gi and fi having the same

support. In particular, it follows from (2) that for each i ∈ A,

gi(x) 6= 0 if x is θ-essential in T and x ∈ V (Ci). (3)

Also, for each i ∈ B, by the inductive hypothesis, we can choose an eigenvector gi

so that gi(x) 6= 0 for every θ-essential vertex x in Ci. By Proposition 3.7 again, (3) also

holds for every gi with i ∈ B. However, note in passing that gi(bi) = 0 for all i ∈ B since

bi is not θ-essential in Ci (by Proposition 3.4).

Next, for each i ∈ C, set gi to be the zero vector on V (Ci). Note that (3) is satisfied

vacuously for every gi with i ∈ C since there are no θ-essential vertices in the corresponding

Ci.

Finally, we extend these gi’s to an eigenvector of T as follows: define g ∈ R
|V (T )| by

g(x) =

{

gi(x) if x ∈ V (Ci) for some i ∈ A ∪ B ∪ C,

0 if x = u.

Since (3) holds for every gi, we must have g(x) 6= 0 for every θ-essential vertex x of T . It is

also readily verified that conditions in (1) are satisfied so that g is indeed a θ-eigenvector

of T , as desired.

Moreover, by our construction, if x is θ-essential in T \u, then g(x) 6= 0. By Proposition

3.4, x must be θ-essential in T , proving the second assertion of the theorem

Proof of Theorem 3.3.

Recall that u is a given θ-special vertex of T . By Proposition 3.7, it remains to show
that if v is θ-essential in T \ u then v is θ-essential in T . But this is just the second
assertion of the preceding theorem. This proves the Stability Lemma for trees.
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Example 4.2. Let T be the following tree :

���������

??
??

??
??

?• • • • •

•

•

•

•

v1 v2 v3 v4 v5

v6

v7

v8

v9

∗ + + ∗ +

−

−

−

−
The vertices are labeled v1, . . . , v9 and the symbols ∗, +, − below each vertex indicates

whether it is θ-neutral or θ-positive or θ-essential respectively where θ = 1. Note that
µ(T, x) = x9 − 8x7 + 20x5 − 18x3 + 5x and mult(1, T ) = 1. As the vertex v5 is adjacent
to a θ-essential vertex, v5 is θ-special in T . By Theorem 3.3, upon deleting v5 from T , all
other vertices are ‘stable’ with respect to their θ-partition classes:

• • • •

•

•

•

•

v1 v2 v3 v4

v6

v7

v8

v9

∗ + + ∗

−

−

−

−
However, this is generally not true if we delete a non-special vertex, for example, deleting
v3 from T gives the following:

���������

??
??

??
??

?• • • •

•

•

•

•

v1 v2 v4 v5

v6

v7

v8

v9

− − ∗ +

−

−

−

−

5 Roots of Paths

In this section, we prove some basic properties about roots of paths.

Lemma 5.1. Let Pn denote the path on n vertices, n ≥ 2. Then µ(Pn, x) and µ(Pn−1, x)

have no common root.

Proof. Note that µ(P1, x) = x and µ(P2, x) = x2 − 1, and so they have no common root.

Suppose µ(Pn, x) and µ(Pn−1, x) have a common root for some n ≥ 3. Let n be the

least positive integer for which µ(Pn, x) and µ(Pn−1, x) have a common root, say θ. Then

µ(Pn−1, x) and µ(Pn−2, x) have no common root.

First we show that θ 6= 0. Note that for any graph G, the multiplicity of 0 as a root

of its matching polynomial is the number of vertices missed by some maximum matching.
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Therefore, if n is even then Pn has a perfect matching, so 0 cannot be a root of µ(Pn, x).

It follows that if n is odd then 0 cannot be a root of µ(Pn−1, x). So θ 6= 0.

Let {v1, v2} be an edge in Pn where v1 is an endpoint of the path Pn. Note that Pn\v1 =

Pn−1 and Pn \ v1v2 = Pn−2. By part (c) of Proposition 2.1, µ(Pn, x) = xµ(Pn−1, x) −
µ(Pn−2, x), so θ is a root of µ(Pn−1, x) and µ(Pn−2, x), which is a contradiction. Hence

µ(Pn, x) and µ(Pn−1, x) have no common root.

Corollary 5.2. Let θ be a root of µ(Pn, x). Then the endpoints of Pn are θ-essential.

Proof. Suppose v is an endpoint of Pn. If v is θ-neutral or θ-positive in Pn then θ is a

root of µ(Pn−1, x), a contrary to Lemma 5.1.

Corollary 5.3. Let θ be a root of µ(Pn, x). Then Pn has no θ-neutral vertices. Moreover,

every θ-positive vertex in Pn is θ-special.

Proof. Let v be a vertex of Pn such that it is not θ-essential. In view of Lemma 2.4, it

is enough to show that v has a θ-essential neighbor. By Corollary 5.2, v cannot be an

endpoint of Pn. Then Pn \ v consists of two disjoint paths, say Q1 and Q2. Let u1 be the

endpoint of Q1 such that it is a neighbor of v in Pn.

Consider the paths Q1 and Q1v in Pn. Since v is not θ-essential, by Lemma 2.3, Q1v

is not θ-essential in Pn. So the path Q2 = Pn \ Q1v has θ as a root of its matching

polynomial.

If Q1 is not θ-essential in Pn then the path Pn \ Q1 would also have θ as a root of its

matching polynomial. Since Pn \Q1 and Q2 differ by exactly one vertex, this contradicts

Lemma 5.1. Therefore, Q1 is a θ-essential path in Pn. By Lemma 2.3, u1 must be θ-

essential in Pn. Since u1 is joined to v, we deduce from Lemma 2.4 that v must be

θ-special.

6 Proof of Main Result

We begin by proving the following special case.

Proposition 6.1. Let T be a tree and mult(θ, T ) = 2. Let Q = {Q1, Q2} be a set of

vertex disjoint paths that cover T . Then Q is (θ, T )-extremal.

Proof. Since T is a tree, there is an edge {u, v} ∈ E(T ) with u ∈ V (Q1) and v ∈
V (Q2). By Lemma 2.2, mult(θ, Q1) = mult(θ, T \ Q2) ≥ mult(θ, T ) − 1 = 1. Similarly,

mult(θ, Q2) ≥ 1. Therefore θ is a root of µ(Q1, x) and µ(Q2, x).

It remains to show that either u is θ-special in Q1 or v is θ-special in Q2. If all vertices

in T are θ-essential, then mult(θ, T ) = 1 by Theorem 3.2, which is impossible. So, there

must be a θ-special vertex in T , say w.
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Suppose w = u. We shall prove that w is also θ-special in Q1. Note that mult(θ, T \
w) = 3. If w is an endpoint of Q1 then T \ w is a disjoint union of two paths Q1 \ w and

Q2. Since Q1\w and Q2 cover T \w, we deduce from Theorem 1.1 that mult(θ, T \w) ≤ 2,

a contradiction. So w is not an endpoint of Q1. Removing w from Q1 would result in two

disjoint paths, say R1 and R2. Note that T \ w is the disjoint union of R1, R2 and Q2.

By part (a) of Proposition 2.1, mult(θ, T \ w) = mult(θ, R1) + mult(θ, R2) + mult(θ, Q2).

By Theorem 1.2 and the fact that mult(θ, T \ w) = 3, we conclude that mult(θ, R1) =

mult(θ, R2) = mult(θ, Q2) = 1. Therefore, mult(θ, Q1\w) = mult(θ, R1)+mult(θ, R2) = 2.

This means that w must be θ-positive in Q1. By Corollary 5.3, w is θ-special in Q1, as

desired.

The case w = v can be proved similarly.

Therefore, we may assume that w 6= u, v. We now proceed by induction on the number

of vertices. Without loss of generality, we may assume that w ∈ V (Q1). As before, it can

be shown that w is not an endpoint of Q1. So removing w from Q1 results in two disjoint

paths, say S1 and S2. We may assume that u ∈ V (S2). Then T \w is a disjoint union of S1

and T ′ where T ′ is the tree induced by S2 and Q2. By Theorem 1.2, mult(θ, S1) ≤ 1. Since

S2 and Q2 cover T ′, by Theorem 1.1, mult(θ, T ′) ≤ 2. As w is θ-special, mult(θ, T \w) = 3.

By part (a) of Proposition 2.1, mult(θ, T \ w) = mult(θ, S1) + mult(θ, T ′). We deduce

that mult(θ, S1) = 1 and mult(θ, T ′) = 2. By induction, either u is θ-special in S2 or v is

θ-special in Q2. In the latter, we are done. Therefore, we may assume that u is θ-special in

S2. So u is not θ-essential in Q1\w. Since mult(θ, Q1\w) = mult(θ, S1)+mult(θ, S2) = 2,

w is θ-positive in Q1, so w is θ-special in Q1 by Corollary 5.3. By the Stability Lemma

for trees (Theorem 3.3), u is not θ-essential in Q1. By Corollary 5.3, u is θ-special in Q1.

Note that the base cases of our induction occur when w = u or w = v.

Theorem 6.2. Let T be a tree and mult(θ, T ) = m. Suppose Q = {Q1, . . . , Qm} be a set

of vertex disjoint paths that cover T . Then Q is (θ, T )-extremal.

Proof. We shall prove this by induction on m ≥ 1. The theorem is trivial if m = 1. If

m = 2, then the result follows from Proposition 6.1. So let m ≥ 3. Since T is a tree, there

exist two paths, say Q1 and Qm, such that exactly one vertex in Q1 is joined to other

paths in Q and exactly one vertex in Qm is joined to other paths in Q. To be precise, let

T ′ denote the tree induced by Q2, . . . , Qm−1. Then there is only one edge joining Q1 to

T ′ and only one edge joining Qm to T ′.

By Theorem 1.2, mult(θ, T \Q1) ≥ mult(θ, T )−1 = m−1. Let T ′′ be the tree induced

by T ′ and Qm, that is T ′′ = T \Q1. Now T ′′ can be covered by Q2, . . . , Qm. By Theorem

1.1, mult(θ, T ′′) ≤ m − 1. Therefore, mult(θ, T ′′) = m − 1 by Lemma 2.2. Moreover,

m − 1 is the maximum multiplicity of a root of µ(T ′′, x). By induction, {Q2, . . . , Qm} is

(θ, T \ Q1)-extremal.

By a similar argument, {Q1, . . . , Qm−1} is (θ, T \ Qm)-extremal. Hence Q is (θ, T )-

extremal.
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Theorem 6.3. Let F be a forest and Q = {Q1, . . . , Qm} be a set of vertex disjoint paths

that cover F . Suppose Q is (θ, F )-extremal. Then mult(θ, F ) = m and θ is a root of

µ(F, x) with the maximum multiplicity.

Proof. Since F can be covered by m vertex disjoint paths, by Theorem 1.1, we must have

mult(α, F ) ≤ m for any root α of µ(F, x). It remains to show that mult(θ, F ) ≥ m.

An edge {u, v} of F is said to be Q-crossing if u and v belong to different paths in Q.

If F contains no Q-crossing edges then F consists of m disjoint paths Q1, . . . , Qm. Clearly,

mult(θ, F ) =
∑

m

i=1 mult(θ, Qi) = m, as required. So we may assume that there exists an

edge {u, v} ∈ E(F ) such that u ∈ V (Q1) and v ∈ V (Q2). Since Q is (θ, F )-extremal,

either u is θ-special in Q1 or v is θ-special in Q2.

We now proceed by induction on the number of vertices. Suppose u is θ-special in

Q1. Since u is not an endpoint of Q1, Q1 \ u consists of two disjoint paths, say R1 and

R2. Since mult(θ, Q1 \ u) = 2 and mult(θ, Ri) ≤ 1 for each i = 1, 2 (by Theorem 1.2),

we deduce that mult(θ, Ri) = 1 for each i = 1, 2. Note that {R1, R2, Q3, . . . , Qm} is

a set of disjoint paths that cover F \ u. Recall that there are no θ-neutral vertices in

Q1. Moreover, by the Stability Lemma for trees (Theorem 3.3), every θ-positive vertex

in Q1 remains θ-positive in Q1 \ u and every θ-essential vertex in Q1 remains θ-essential

in Q1 \ u. So every θ-special vertex in Q1 remains θ-special in Q1 \ u. Consequently,

{R1, R2, Q3, . . . , Qm} is (θ, F \ u)-extremal. By induction, mult(θ, F \ u) = m + 1 and

θ is a root of µ(F \ u, x) with maximum multiplicity. It follows from Lemma 1.3 that

mult(θ, F ) ≥ mult(θ, F \ u) − 1 = m, as desired.

The case when v is θ-special in Q2 can be settled by a similar argument. Note that

the base cases of our induction occur when F has no crossing edges.

Our main result Theorem 1.7 now follows immediately from Theorem 6.2 and Theorem
6.3.

7 Conclusion

Theorem 1.7 gives a characterisation of trees for which the matching polynomial bound
on the size of a minimum path cover is tight. Denote the class of such trees by T .
Then T ∈ T if and only if there exists a (θ, T )-extremal path cover for some root θ of
its matching polynomial. In general, the conditions of (θ, T )-extremality are not easy
to verify. However, these conditions can be useful when we wish to show that a given
tree T does not belong to T . Indeed, suppose T ∈ T and let {Q1, . . . , Qm} be a (θ, T )-
extremal path cover of T . Then θ must be a common root of µ(Qi, x) and µ(T, x) for
all i = 1, . . . , m. This places some restrictions on θ as well as the lengths of the paths
Qi. Together with additional structural information about T , it may be possible to derive
a contradiction. As a future avenue of enquiry, we believe it might be interesting to
determine which types of trees do not belong to T .
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